doi: 10.12029/gc20230411005

赵如意,王登红,凤永刚,王成辉,梁婷,李凯旋,代鸿章,石煜,高景刚.2024.中国不同时代典型花岗伟晶岩型锂矿特征及其对找矿预测的启示 [J].中国地质,51(1):17-41.

Zhao Ruyi, Wang Denghong, Feng Yonggang, Wang Chenghui, Liang Ting, Li Kaixuan, Dai Hongzhang, Shi Yu, Gao Jinggang. 2024. Characteristics of granitic pegmatite type lithium deposits in different mineralization epochs and its enlightenment for prospecting prediction, China[J]. Geology in China, 51(1): 17–41(in Chinese with English abstract).

中国不同时代典型花岗伟晶岩型锂矿特征及其对 找矿预测的启示

赵如意1,王登红2,凤永刚3,王成辉2,梁婷3,李凯旋1,

代鸿章2, 石煜1, 高景刚3

(1.东华理工大学,核资源与环境国家重点实验室,江西南昌 330013;2.中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京100037;3.长安大学地球科学与资源学院,陕西西安 710054)

提要:【研究目的】花岗伟晶岩型锂矿是当今世界金属锂供给的主要矿床类型之一,为明确花岗伟晶岩型锂矿的 共性,本文针对性地制定找矿预测工作方案,圈定优质找矿靶区。【研究方法】本文对中国花岗伟晶岩型锂矿的 时空分布、构造背景、矿床地质、矿体特征、成矿规律和控矿因素等进行了系统对比,并对产锂花岗岩的特征进行 归纳、总结。【研究结果】认为中国已发现的花岗伟晶岩型(锂辉石)锂矿主要分布于西部,东部以花岗岩型(锂云 母)锂矿占优。古生代以来的后碰撞环境是中国现有伟晶岩型锂矿的主要产出背景,成矿时代可以延续到非造山构 造环境,成矿元素组合绝大多数具有 LCT 型伟晶岩的特征,矿床数量和资源量都以印支晚期最多。产锂花岗岩一 般是同期多阶段复式岩体,其演化分异程度较高。与花岗伟晶岩型锂矿关系最为密切的花岗岩颜色较浅、富含 K、 Na、P、F、Rb、U、Th,高氧逸度,高 Rb/Sr、低 Nb/Ta 和 Zr/Hf,其规模较大,结构构造稳定,更利于综合研究和遥感 识别。【结论】在"全位成矿,缺位找矿"理念指导下,从寻找目标更大的产锂花岗岩入手,"先找矿、后优化、再 填图",有望在二级构造单元从挤压向伸展转换的"界山"花岗岩,尤其是侵入边界呈波浪状、舌状产出的外接触带, 取得找矿突破。

关键 词:花岗伟晶岩;锂矿;成矿时代;产锂花岗岩;找矿预测;"界山找矿";矿产勘查工程

创新点:(1)中国不同时代花岗伟晶岩型锂矿主要产出于后碰撞构造背景,且与同期多阶段复式岩体有关;
 (2)从产锂花岗岩入手,"先找矿、后优化、再填图",有望在"界山"花岗岩外接触带取得找矿突破。

中图分类号: P612 文献标志码: A 文章编号: 1000-3657(2024)01-0017-25

Characteristics of granitic pegmatite type lithium deposits in different mineralization epochs and its enlightenment for prospecting prediction, China

ZHAO Ruyi¹, WANG Denghong², FENG Yonggang³, WANG Chenghui², LIANG Ting³, LI Kaixuan¹,

收稿日期: 2023-04-11; 改回日期: 2023-05-18

基金项目:国家重点研发计划项目(2021YFC2901902)和中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2022NRE-LH-17)联合资助。

作者简介:赵如意,男,1982年生,助理研究员,主要从事岩浆岩与成矿规律研究和矿产勘查工作;E-mail:93236749@qq.com。 通讯作者:王登红,男,1967年生,研究员,主要从事矿产资源研究;E-mail:wangdenghong@vip.sina.com。

DAI Hongzhang², SHI Yu¹, GAO Jinggang³

(1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. School of Earth Science and Resources, Chang'an University, Xi'an 710054, Shaanxi, China)

Abstract: This paper is the result of mineral pexploration engineering.

[Objective] Granite pegmatite type lithium deposit is the main supplying type of metal lithium in the world today. The development and policy formulation are restricted seriously by the shortage of economic and available granite pegmatite type lithium mine in China. In order to clarify the commonality of granite pegmatite-type lithium deposits, we make a prospecting prediction plan, and delineate high-quality prospecting targets. [Methods] This paper systematically compares the spatial-temporal distribution, tectonic background, ore deposit geology, ore body characteristics, mineralization regularities and ore controlling factors of granite pegmatite type lithium depsoits in China, and summarizes the characteristics of lithium-producing granite. [Results] It is believed that the granite pegmatite-type (spodumene) lithium ores discovered in China are mainly distributed in the west part, and the granite-type (lepidolite) lithium ore is dominant in the east part. The post-collision environments since the Paleozoic are the main output background of the existing pegmatite-type lithium deposits in China, and the mineralization setting can be extended to the non-orogenic tectonic environment, and most of the metallogenic element combinations have the characteristics of LCT-type pegmatites, and the number of deposits and resources are the largest in the late Indosinian. Lithium-producing granite is generally a multi-stage compound rock mass in the same period, and its evolution differentiation is high. The granite is lighter in color, rich in K, Na, P, F, Rb, U, Th, high oxygen fugacity, high Rb/Sr, low Nb/Ta and Zr/Hf, which is the most closely related to granite pegmatite type lithium deposit, and it is easier to identify than granite pegmatite dikes. [Conclusions] Under the guidance of the concept of "whole mineralization, absent prospecting", starting from the search for lithium-producing granite with a larger target, "first prospecting, then optimizing, and mapping in the last", it is expected to achieve a prospecting breakthrough in the "boundary mountain" granite where the secondary structural unit is converted from extrusion to stretching, especially in the outer contact zone of wavied and tongue-like intrusive boundaries.

Key words: granitic pegmatite; lithium ore; mineralization epoch; Li-bearing granite; prospecting forecasts; "Boundary Mountain Prospecting"; mineral exploration engineering

Highlights: (1) It is concluded that the granitic pegmatite type lithium deposits of different ages in China are mainly produced in the post collision tectonic setting, they are related to the multi-stage composite rock mass of the same period. (2) It is proposed to prospect lithium granitic pegmatite type lithium deposits with the starting of searching for Li–bearing granite, by "prospecting first, then optimizing, and mapping in the last", which is expected to achieve a prospecting breakthrough in the outer contact zone of the "boundary mountain" granite.

About the first author: ZHAO Ruyi, male, born in 1982, assistant researcher, mainly engaged in research of magmatic rocks, mineralizing regularities, and mineral resource prospecting; E-mail: 93236749@qq.com.

About the corresponding author: WANG Denghong, male, born in 1967, researcher, mainly engaged in research on mineral deposits; E-mail: wangdenghong@vip.sina.com.

Fund support: Supported by National Key Research and Development Program (No.2021YFC2901902), China Uranium Limited Corporation-State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Collaborate Innovation Fund Project (No.2022NRE–LH–17).

1 引 言

矿产资源是经济社会发展的重要物质基础,矿 产资源勘查开发事关国计民生和国家安全(习近平, 2022)。随着找矿突破战略行动的部署与推进,战略性矿产和紧缺的能源矿产必然成为下一步地质科研和找矿勘查的重中之重。过去的十年中,锂在能源、冶金、电子、核能和高新科技产业等方面广泛

应用,使其成了炙手可热的金属,也因此成为美国、 欧盟、澳大利亚、日本、中国等国家和地区的关键矿 产(王登红,2019)。当今世界具有经济开发价值的 锂矿主要为卤水型、花岗岩伟晶岩型和花岗岩型等 (陈毓川等,2010),前二者分别占全球锂资源量的 66%和26%(刘丽君等,2017),其他类型锂矿床的勘 查、开发尚在研究之中(Kesler et al., 2012)。虽然花岗 伟晶岩型锂资源量不及卤水型锂资源量大,但是其 品位高、开采和选冶技术成熟、矿山投资建设周期 短,所以全球锂的供给仍以花岗伟晶岩型锂矿为主 (王登红等,2016;刘丽君等,2017;王成辉等,2022)。

中国锂资源的主要类型、分布和开发利用现状 与其他国家相似,经济可采的花岗伟晶岩型锂资源 储量却更不足(李建康等,2014;王登红等,2016, 2021,2022;王核等,2022),巨量的锂需求制约了中 国经济的发展和战略方针的制定。本文在前人研 究成果的基础上,梳理对比了中国不同时代产出的 花岗伟晶岩型锂矿特征,归纳总结了产锂花岗岩的 产出规律和地质特征。在"全位成矿,缺位找矿"理 念指导下,完善了花岗伟晶岩型锂矿"先找矿、再优 化、后填图"的综合找矿工作方案,希望能对花岗伟 晶岩型锂矿的找矿勘查工作有所裨益。

2 中国花岗伟晶岩型锂矿的时空规律

与十年前相比,中国的锂矿床类型已从2种类型 8个矿床式(陈毓川等, 2010)发展为7种类型18个 矿床式,分布于16个成锂带(王登红等,2022)。这 些成锂带有阿尔泰、唐巴勒、西天山、东天山、西昆 仑、藏北、柴达木、松潘-甘孜、四川盆地、秦岭、潜 江凹陷、华南、阿尔金、冈底斯、喜马拉雅和大兴安 岭西坡成锂带。从王登红等(2022)编绘的中国主要 成锂带分布图看,花岗伟晶岩型锂矿、花岗岩型和 沉积(卤水)型锂矿具有明显的空间分带性。地下卤 水型锂矿分布于自云南、贵州,向北东至四川、重 庆、湖北、河南、陕西、山西及内蒙古中部一带,该 带以西的硬岩型锂矿以(锂辉石)花岗伟晶岩型为 主,其东以(锂云母)花岗岩型占优,盐湖卤水型锂矿 分布于高原内流湖泊之中。已控制的82个花岗伟 晶型锂矿床分布于 12个成锂带,累计提交锂资源 量(Li,O)742万余吨,其中超大型锂矿床6个、大型 锂矿床9个(表1),主要集中于松潘—甘孜的甲基卡矿 田、可尔因矿田和西昆仑的大红柳滩矿田(Qiao et al., 2021;梁婷等, 2021;王登红等, 2022;王核等, 2022)。

大量的成岩成矿年龄测试数据显示,花岗伟晶 岩型锂矿产出于各期构造岩浆活动的中—晚阶 段。与国外的克拉通、地盾区也发育有古老的花岗 伟晶岩型锂矿相比,中国已发现的伟晶岩型锂矿都 分布于古生代以来的褶皱造山带内,矿床数量和资 源量都以印支晚期的产量最多(图1)。加里东期含 锂辉石(锂云母)花岗伟晶岩脉最早产出于阿尔金造 山带,如沙锂沟(瓦石峡南)、吐格曼北、库木萨依和 塔什达坂北等矿床,其锡石、铌钽铁矿和锆石 U-Pb年龄为 472~454 Ma(徐兴旺等, 2019; Gao et al., 2021; 李杭等, 2020, 2022)。接着是秦岭造山带 花岗伟晶岩脉,如蔡家沟、南阳山含锂辉石伟晶岩 脉,其锡石、锆石 U-Pb 年龄为 420~405 Ma(赵如意 等, 2013; Yuan et al., 2018; Zhou et al., 2021; 曾威 等, 2021)。武夷—云开造山带在 430~400 Ma 也有 Li-F 花岗岩产出(Tang et al., 2017), 该区产出的福 建南平含锂辉石花岗伟晶岩的成矿作用延续到了 海西期,其铌钽铁矿和锆石 U-Pb 及全岩 K-Ar 年龄 为 424~387 Ma(陈国建, 2014; Tang et al., 2017)。 阿尔泰造山带的花岗伟晶岩型锂矿的产出时代起 始于加里东期(王登红等, 2001), 但目前该带发现的 前印支期锂矿床规模多为小型矿床和矿点、矿化 点。阿尔泰造山带的锂成矿作用在印支晚期得到 了正式解锁,形成了卡鲁安(223~216 Ma,马占龙 等, 2015; Feng et al., 2019)、 柯鲁木特、 可可托海 3号脉(王登红, 2002; 王登红等, 2003, 2016, 2022; 马占龙等, 2015; Che et al., 2015; Lü et al., 2018; 张 辉等, 2019)、库卡拉盖(211 Ma, 马占龙等, 2015)等 著名的花岗伟晶岩型锂矿床。直到燕山早期,阿尔 泰造山带仍有多个小型的锂矿床产出,如新疆富蕴 县小虎斯特(190.6 Ma, 任宝琴等, 2011)、库儒尔特 (180.7 Ma, 任宝琴等, 2011) 和别也萨麻斯 (160~151M,杨富全等,2018;何晗晗等,2020)等花 岗伟晶型锂矿床。与此同时花岗伟晶岩型锂矿在 西昆仑的大红柳滩、松潘—甘孜的甲基卡和可尔因 等矿田大规模聚集式产出(王登红等, 2005, 2016, 2021, 2022; 李侃等, 2019; 梁婷等, 2021; 王核等, 2021, 2022)。目前, 中国所有的超大型—大型花岗

				Table 1 The	e main granitic	c pegmatite li	thium deposits in	different ages del	posits of	China		
中陸	勾造-岩	锂成矿带	矿床夕森	成矿时代/Ma	成矿构浩背暑	成	à矿 母岩	出露脉休分带性	主要矿石	<u> </u>	矿床规模/资源	平均品位
	浆期	名称		TATATIN LEH MIXE	ለ በማረተ በ እ	岩体名称	岩性(组合)	日母をする	矿物	4.1k 字目在	储量/万t	(LiO ₂)/%
-			新疆若羌县吐格	480~464	南阿尔金后 碰撞环境	大 本 校 局 一 代	黑云母花岗岩、 二云母花岗岩、	单脉分带,脉群	笛 紫 广	二云石英片岩、云母	00 0/ 屉 中	01
-		して	惠	438~412	北阿尔金后 碰撞环境	生活叉石泽	白云母花岗岩、 钠长花岗岩	分带	堆冲山	片岩、变粒岩	00.7/王 土	1.10
7	Ħ	予く思	新疆若羌县沙 锂沟	405~402	白干湖后碰 撞环境			单脉分带, 脉群 分带	锂云母	二云石英片岩、 变粒 岩	中型/7.00	1.70
ŝ	ま ま して し し し し し し し し し し し し し し し し し		新疆若羌县塔什 达坂北	475	南阿尔金后 碰撞环境			单脉分带, 脉群 分带	锂辉石	云母石英片岩、千枚 岩、大理岩	中型/5.50	4.88~0.31
4	1	东秦岭	河南卢氏县蔡家 沟	415~405	北秦岭后碰 撞环境			单脉分带, 脉群 分带	锂辉石	云母片岩、斜长角闪 片岩、大理岩	中型/1.96	0.72
S	ı	を	福建南平西坑	428~387	龙泉—建瓯 后碰撞环境	西芹岩体	似斑状中──细粒 黑云母二长花 岗岩	单脉分带,脉群 分带	観辉石	变粒岩,云母片岩	大型/—	0.88
9			新疆富蕴县柯鲁 木特112号脉	238~202	中阿尔泰后 碰撞环境			单脉分带, 脉群 分带	锂辉石	云母片岩、石英片 岩, 变砂岩	中型/4.62	1.10
٢			新疆福海县卡 鲁安	224~216	中阿尔泰后 碰撞环境	哈龙岩体	黑云母花岗岩、 二云母花岗岩	单脉分带, 脉群 分带	锂辉石	黑云石英片岩、黑云 母角岩、泥质板岩	中型/6.49	1.22
8		阿尔泰	新疆福海县库卡 拉盖	228~211	中阿尔泰后 碰撞环境			单脉分带, 脉群 分带	锂辉石	黑云石英片岩、二云 母斜长片麻岩	中型/—	1.02~2.06
6			新疆富蕴县可可 托海3号脉	218~205	中阿尔泰后 碰撞到板内 环境	I	l	单脉分带	観辉石	变辉长岩(斜长角闪 岩、角闪岩、角闪斜 长变粒岩)	中型/5.30	1.18
10	印支期		新疆和田县大红 柳滩	218~212	巴颜喀拉造 山带后碰撞 环境		重大舟石苗以长	90-1号脉分带良 好,脉群分带	锂辉石	石英片岩	中型/8.70	1.43
11		く 日 王	新疆和田县大红 柳滩南(又称白 龙山)	211~204	巴颜喀拉造 山带后碰撞 环境	大红柳滩	※1441~22 地、黒六母花団 「大枯玉、黒六母 二大枯茵光、二	部分为全脉锂辉 石矿化,单脉分 带,脉群分带	観辉石	二云母石英片岩、变 砂岩	超大型 />82.0	1.26~1.60
12		지 전 고	新疆和田县雪 凤岭	208.2	巴颜喀拉造 山带后碰撞 环境	岩谷	云母二长花岗 岩、含石榴石电 气石二云母二长	单脉分带,脉群 分带	锂辉石	二云母石英片岩、变 砂岩	大型/—	0.88~3.74
13			新疆和田县509道 班西	200.8	巴颜喀拉造 山帯后碰撞 环境		花岗岩	单脉分带,脉群 分带	锂辉石	二云母石英片岩、变 砂岩、板岩	大型/23.0	0.85~2.93

中

玉

地

质

2024年

http://geochina.cgs.gov.cn 中国地质, 2024, 51(1)

20

表1 中国不同时代花岗伟晶型锂矿床主要矿床一览

												续表 1
序名	构造-岩 浆期	· 锂成矿帯 名称	矿床名称	成矿时代/Ma	成矿构造背景	成 岩体名称	矿母岩 岩性(组合)	出露脉体分带性	E 主要矿石 矿物	岩矿脉体围岩	矿床规模/资源 储量/万t	平均品位 (LiO ₂)%
14			四川雅江县甲基 卡X03号脉	214	松潘甘孜造 山带后碰撞 环境			单脉分带性差, 但结构不均一	锂辉石	角岩化二云母片岩	超大型/88.55	1.46
15			四川雅江县甲基 卡134号脉	198.9	松潘甘孜造 山帯后碰撞 环境	马颈子岩体	二云母二长花 岗岩	单脉分带,脉帮 分带	律辉石	二云母石英片岩、黑 云石英片岩	大型/48.63	1.38
16		松潘	四川雅江县甲基 卡矿田烧炭沟	l	松潘甘孜造 山带后碰撞 环境			单脉分带,脉帮 分带	伸耀石	长英质角岩、变粒岩	超大型/70.00	I
17	印支期	甘孜	四川金川县可尔 因矿田李家沟	211~198	松潘甘孜造 山带后碰撞 背景		黑云母二长花岗	单脉分带,脉帮 分带	律辉石	长英质角岩、绢云母 板岩、变粒岩	超大型/51.20	1.25
18			四川马尔康县可 尔因矿田党坝	208~199	松潘甘孜造 山帯后碰撞 环境	可尔因岩体	 −○、 ○ ○<td>单脉分带,脉帮 分带</td><td>律辉石</td><td>长英质角岩、绢云母 板岩</td><td>超大型/66.09</td><td>1.34</td>	单脉分带,脉帮 分带	律辉石	长英质角岩、绢云母 板岩	超大型/66.09	1.34
19			四川金川县可尔 因矿田斯则木足	l	松潘甘孜造 山带后碰撞 环境		4、144 図治 5445	单脉分带,脉帮 分带	伸耀石	长英质角岩、绢云母 板岩	超大型/51.95	1.77
20		华南	江西宁都县河源	220~199	华南陆内后 碰撞环境	I		单脉分带,脉帮 分带	自耀石	石英云母片岩	中型/4.05	1.03
21	燕山期	分 困	湖南平江县传 梓濵	140.2	华南陆内后 造山环境	幕卓山岩体	黑云母石英二木 岩、花岗闪木 岩、黑云母二卡 花岗岩、二云母 二卡花词岩、二云母 二卡花词岩、白云母 三卡花词岩、白	单脉分带, 脉帮 分带	種踏石	云母片岩、千枚岩、 板岩	中型/1.13	0.22
22	喜山期	樰 雅	西藏琼嘉岗	24.3	喜马拉雅造 山带后碰撞 环境	I		单脉分带	锂辉石	片麻岩、大理岩	具有大型矿 产地潜力	1.30 (捡块样)
al. (. Feng (20 (200) (200)	资料 2021), et al.(2(19), 涂 21); 14 20); 18-	来源: 1- 會威等(2 119): 8- 119): 8- 一著雪峰((一號浩峰)	-李杭等(2020, 7 (021); 5—陈国建 -马占龙等(2015) 2019),梁婷等(第(2015),刘丽 等(2015),刘丽	2022) , 徐兴旺 : (2014) , Tan : 9—Che et al : 9—Ch et al : 11—V 君等 (2015) , : 核等 (2022) ;	E等(2019,20 ng et al.(2017) L(2015),张) Nang et al.(20 代鸿章等(201 之)一李晓峰等	20) , Gao et , Che et al. (稱等 (2019) , 20a) , Zhou ([8) , Dai et al (2021) ; 21-	al. (2021); 2— 2019), 6—任宝 ³ (首军武等(2020) et al. (2021), 王 I. (2019); 15— -Xiong et al. (2020)	王登红等(202 等等(2011), ¹ 5 5 10—乔耿飚 核等(2021); 6登红等(2021); 1,22—秦克童章	2),王核, 马占龙等(2 等(2015) 12—白洪[,16—李] 等(2021)	等(2022); 3—Gao (015), Lü et al. (201 , Yan et al. (2018), 日等(2022); 13— 建康(2006), 王登 , 赵後兴等(2021);	et al. (2021); 8); 7—马占龙 凤永刚等(201)海练等(2018) 近等(2021); 1 一表示未见报道	4—Zhou et 等 (2015), 9), 李侃等 , 谭克彬等 7—费光春等。

http://geochina.cgs.gov.cn 中国地质, 2024, 51(1)

第51卷第1期

赵如意等:中国不同时代典型花岗伟晶岩型锂矿特征及其对找矿预测的启示

21

Fig.1 Comparison of number (a) and resource reserves (b) of granitic pegmatite lithium deposits in different mineralization epochs of China (Data from Li Jiankang et al., 2014; Wang Denghong et al., 2022; Wang He et al., 2022)

伟晶岩型锂矿床都产出于这几个矿田,其成矿时代 从 218 Ma 一直延续到燕山早期(王登红等,2005, 2021;李建康等,2014)。印支期花岗伟晶型锂成矿 作用在华南的江西广昌头陂(246 Ma, Che et al., 2019)、宁都河源(220~200 Ma,李晓峰等,2021)等 地也有一定规模产出。湖南幕阜山燕山期复式花 岗岩(图 2)多阶段侵入(158~138 Ma,李鹏等,2017, 2021),第一阶段黑云母花岗岩、二云母花岗岩和成 矿时代分别为 154~151 Ma、146~145 Ma 和 146~ 144 Ma,第二阶段黑云母花岗岩、二云母花岗岩和 成矿时代分别为 146~143 Ma、140~138 Ma 和 136~ 133 Ma(李鹏等, 2017, 2020, 2021; Xiong et al., 2020)。另外,在华南燕山期多金属矿床大规模产 出的过程中,一些高分异花岗岩的顶部和外围形成 了一定规模的花岗伟晶岩脉,具有一定的找矿潜 力。近几年,喜马拉雅成矿带珠峰西北部穷家岗、 热曲、普士拉等地发现了喜山期锂辉石伟晶岩脉 (25~23 Ma, Liu et al., 2020; 赵俊兴等, 2021),具有 落实超大型锂矿产地的潜力(秦克章等, 2021)。

图 2 中国大红柳滩地区印支期(数据引自梁婷等,2021)和幕阜山地区燕山期(图改自李鹏等,2021)主要岩浆活动与稀有金属 成矿作用时代分布图

Fig.2 The ages distribution of major magmatic activities and rare metal mineralization in the Indosinian period (data from Liang Ting et al., 2021) and the Yanshanian period in the Mufushan area of China (modified from Li Peng et al., 2021)

http://geochina.cgs.gov.cn 中国地质, 2024, 51(1)

3 加里东期吐格曼北锂矿床特征

中国加里东期花岗质岩浆活动广泛发育,但发现的花岗伟晶岩型锂矿以中小型矿床、矿点为主。 近几年,在加里东期阿尔金造山带的砂锂沟(瓦石峡 南)、吐格曼北、库木萨依、塔什达坂北等地落实了 多个中型规模的花岗伟晶岩型锂矿床,其中以吐格 曼北锂矿床最为典型(Gao et al., 2021;王登红等, 2022;王核等, 2022)。

阿尔金造山带吐格曼北花岗伟晶岩型锂矿床 位于新疆若羌县西南(200°)约87km处,在区域上 属阿尔金中段,区域地层为中元古界角闪岩相—绿 片岩相变火山岩、碎屑岩和碳酸盐岩,构造以北东 向断裂为主(徐兴旺等,2019)。吐格曼岩体发育似 层状构造,岩性有黑云母二长花岗岩、二云母钾长 花岗岩、二云母二长花岗岩、白云母钠长花岗岩和 电气石石榴石钠长花岗岩等(李杭等,2022)。

吐格曼北锂矿床的花岗岩伟晶岩脉定位于吐 格曼岩体北部二云母花岗岩及外接触带石榴石云 母片岩之中。矿区已发现的58条伟晶岩脉中含锂 铍者 31条,呈长透镜状、脉状产出,脉体分枝复合 现象发育,长度 50~700 m,宽 1~23 m(徐兴旺等, 2019;李杭等,2022)。含矿伟晶岩脉主要由钠长 石、钾长石、石英、白云母、锂辉石、电气石和绿柱 石组成,含有少量锡石、磷锂铝石、铌钽铁矿,以及 磷灰石、锆石等副矿物。因组成矿物、结构构造不 同, 矿脉可划分出多个相带。脉体内部分带以 ρ87 号脉体最为发育(李杭等, 2022),依据结构和矿 物组合特征可划分为边部带、过渡带、中间带和核 部带。下边部带又可细分为细晶花岗岩带、细晶钠 长石-石英带、细晶钠长花岗岩带,上边部带可分为 细晶含磷锂铝石-石英-白云带、含铌钽铁矿-石英-白云母带,过渡带可分为中细粒石英-白云母带、钠 长石带、含锡石-石英-白云母-钠长石-锂辉石带, 中间带为伟晶状石英--钠长石--锂辉石带,核部带主 要为团块状石英。锂矿体共伴生 Be、Nb、Ta、Rb、 Cs 矿化, Li₂O 品 位 0.57%~6.10%、BeO 品 位 0.04%~2.60%、Nb₂O₅ 品位 0.014%~0.029%、Ta₂O₅ 品位 0.008%~0.078%、Rb₂O 品位 0.051%~0.27%、 Cs₂O 品位 0.04%~1.96%(徐兴旺等, 2019)。Li₂O 的

平均品位为 1.10%, 控制 Li₂O 资源量 2.0 万 t(王 核等, 2022)。

吐格曼岩体黑云母二长花岗岩形成于南阿尔 金与阿中地块的后碰撞阶段(480~470 Ma, Gao et al., 2021), 是变杂砂岩(黑云母片麻岩) 与含黑云母 英云闪长岩质片麻岩部分熔融形成的高温 (>800℃)黑云母花岗岩(徐兴旺等, 2020; Gao et al., 2021),其演化分异出了二云母花岗岩、白云母花岗 岩和钠长石花岗岩。花岗伟晶岩带从近岩体的电 气石伟晶岩带,向远离岩体依次产出含绿柱石、锂 辉石和锂云母的花岗伟晶岩带(徐兴旺等, 2019; Gao et al., 2021; 李杭等, 2022)。含矿伟晶岩中锡 石、铌钽铁矿的 U-Pb 年龄为 472~464 Ma 代表了 早阶段成矿作用时代(李杭等, 2020, 2022; Gao et al., 2021)。细晶花岗岩中细粒浸染状铌钽铁矿、锡 石(436~434 Ma,李杭等,2022)形成于补充成矿阶 段,与早阶段铌钽铁矿呈环带状产出(Gao et al., 2021)。成矿晚阶段铌钽铁矿(415~414 Ma)交代或 胶结了前两个阶段的铌钽铁矿,是成矿作用晚阶段 岩浆热液成矿的产物(Gao et al., 2021)。

4 印支期花岗伟晶岩型锂矿床特征

印支期花岗伟晶岩型锂矿在华南、松潘—甘 孜、柴北缘、西昆仑、阿尔泰和天山等造山带都有 发育(乔耿彪等,2015;代鸿章等,2018;王秉璋等, 2020;李晓峰等,2021;凤永刚等,2021;Zhang et al., 2022)。中国西部印支期含锂花岗伟晶岩构成了国 内规模最大的巨型锂成矿带,它的成矿特征不仅在 中国不同时代伟晶岩中,而且在世界上都可以说是 独一无二的。该成矿带的锂矿以甲基卡矿田和大 红柳滩等矿田的花岗伟晶岩型锂矿聚集式产出最 为典型。其中甲基卡和大红柳滩矿田分别查明锂 (Li₂O)资源量达 323.96 万 t和 345.8 万 t(王登红 等,2016,2021;梁婷等,2021)。

4.1 甲基卡矿田新3号脉特征

甲基卡花岗伟晶岩型锂矿位于四川省西部康 定、雅江、道孚三市县交界处,大地构造背景上处在 松潘—甘孜造山带之雅江被动陆缘中央褶皱-推覆 带中段(图 3a)。区域地层主要有三叠系浅变质砂 板岩、板岩、千枚岩及变砂岩夹泥灰岩(大理岩)。 受区域构造作用,区域地层呈轴向北西的复式褶皱

图 3 中国主要花岗伟晶岩型锂矿(田)区域地质、矿田地质和矿床地质简图

a—川西地区区域构造及花岗伟晶岩型锂矿分布图(据李建康等,2014);b-1—甲基卡矿田地质简图(据 Dai et al., 2019);b-2—传梓源花岗伟晶 岩型锂矿地质简图(据张立平等,2021);c—西昆仑构造背景及花岗伟晶岩型锂矿分布图(据王核等,2021);d—大红柳滩矿田花岗伟晶岩型锂 矿分布图(据李侃等,2019);e—大红柳滩矿田 509 道班西—507 一带锂辉石花岗伟晶岩脉分布图(据李侃等,2019);f—幕阜山地区花岗伟晶 岩型锂矿分布图(据刘翔等,2018)

Fig.3 Regional geology, ore field geology and deposit geology of major granitic pegmatite type lithium deposits (fields) in China a-Regional structure and granitic pegmatite type lithium deposits distribution map in western Sichuan (after Li Jiankang et al., 2014); b-1–Geological diagram of the Jiajika ore field (after Dai et al., 2019); b-2–Geological diagram of Chuanziyuan granite pegmatite type lithium deposit (after Zhang Liping et al., 2021); c–Tectonic setting and granitic pegmatite type lithium deposits map of West Kunlun Mountains after (Wang He et al., 2021); d–Distribution map of granitic pegmatite type lithium deposits in Dahongliutan orefield (after Li Kan et al., 2019); e–Distribution map of spodumene granite pegmatite veins from 509 Daobanxi to 507 area of Dahongliutan orefield (after Li Kan et al., 2019); f–Distribution map of granite pegmatite type lithium deposits in Mufushan area (after Liu Xiang et al., 2018) 产出,区域断层也是 NW-SE 向走滑断层为主(王登 红等,2021)。区域上岩浆岩广泛发育,并以印支期 (227~195 Ma)中酸性侵入岩为主,岩体多呈圆形或 长条状产出(李建康,2006),在圆形岩体周边发育穹 隆状背斜,围岩发育角岩、片麻状构造,具有同构造 热侵位特征(侯立玮和付小方,2002)。

甲基卡矿田及周边地层以细碎屑岩和泥页岩 建造为主,受区域变质作用影响以千枚岩、板岩产 出者居多。矿田构造线以近南北向展布为主,马颈 子二云母花岗岩侵位于道泽沟复式背斜东翼的甲 基卡次级背斜中。花岗伟晶岩脉围绕马颈子岩体 在水平及垂直方向上呈离心式带状分布,但其北部 外围的脉体数量更多、规模更大、矿化更强。伟晶 岩脉的形态和产状受成岩前及成岩期构造裂隙控 制,以脉状为主,次为透镜状,少量串珠状、岩盘状、 岩盆状、板状、似层状、岩株—团块状、蘑菇状等 (王登红等, 2021)。甲基卡矿田现有稀有金属矿 (化)脉 378条,以锂为主,次为铍、铌、钽。具有工 业价值的矿脉有 124条,规模达到大中型矿床以上 的矿脉有 20 余条, 如 X03、9、104、134、154、308、 309、508、668等矿脉(王登红等, 2016; 付小方等, 2021), 其中尤以 X03 脉最为特殊和典型。

X03 号脉位于马颈子岩体北部(图 3b-1),两者 直线距离约 3 km,脉体就位于甲基卡构造-岩浆穹 窿的东北缘,矿脉近南北走向,倾向西,倾角 25°~35°,长度大于 1050 m,平均厚度 66.4 m,最厚 达 110.17 m。2013 年,中国地质科学院矿产资源研 究所组织四川地质调查院一同在甲基卡矿区外围 开展靶区验证工作,对甲基卡 A 区新三号(编号: X03 号)伟晶岩脉施工的 5 个钻孔均见锂辉石矿化, 141 件样品的 Li₂O 含量为 0.8%~2.81%(平均品位 达 1.61%),初步肯定了其工业价值(王登红和付小 方,2013)。后续勘查结果显示,X03 号脉蕴藏锂 (Li₂O)资源量达 89.49 万 t,为超大型锂矿床规模 (付小方等,2021)。

甲基卡矿田各类伟晶岩脉内部结构较为复杂, 一般由3至5个矿物组合和结构分带组成(王登红 等,2021),X03号脉属全脉锂矿化花岗伟晶岩脉(付 小方等,2019)。脉体主要由石英、钠长石、锂辉 石、微斜长石、白云母组成,含有少量电气石、石榴 石、铌钽铁矿、锡石、绿柱石及锆石等副矿物(杨岳 清等,2020)。锂辉石颗粒从<0.2 mm 至伟晶状,依 据锂辉石的结构特征,X03号脉可划分为4个结构 单元(表2)。X03号脉的围岩为十字石红柱石二云 母片岩,靠近花岗伟晶岩脉的部分发育厚度 0.20~0.90 m的堇青石电气石角岩(刘丽君等,2015; 王登红等,2021)。

甲基卡矿区中各类型伟晶岩相对富集 Li、Rb、 Cs、Be、Ga、Sn、P(侯江龙等, 2020),除 Ta<Nb 外, 其他特征基本符合Černý and Ercit(2005)划分的 LCT型伟晶岩(Dai et al., 2019)。甲基卡花岗伟晶 岩型锂矿的成矿母岩是马颈子二云母花岗岩,该岩 体和 X03 号脉的锆石 U-Pb 年龄为 223~216 Ma,锡 石 U-Pb、铌钽铁矿 U-Pb 和白云母 Ar-Ar 年龄结 果显示,其成矿作用一直延续到 195 Ma 前后(王登 红等, 2005, 2016, 2021, 2022;郝雪峰等, 2015;代鸿 章等, 2018; Wang et al., 2020b)。马颈子岩体具有 非造山花岗岩的地球化学特征(Dai et al., 2019;侯 江龙等, 2020),甲基卡矿区花岗伟晶岩是在印支晚 期,松潘—甘孜褶皱造山作用后碰撞至大陆逐渐稳 定阶段,由二云母花岗岩岩浆结晶分异形成的富含 Li和F、B、P及 CO,的熔体,在较高的温度(700~

Table 2 Characteristics of m	ain ore types of No.X03 vein in the Jiajika o	re-field area (after Wang Denghong et al., 2021)
结构单元	主要矿物	标型矿物锂辉石的特征
I 一含微晶状锂辉石伟晶岩结构	锂辉石20%±,石英30%~40%,钠长石	微晶毛发状,长度约为0.5~1 mm,呈纤毛状产出
単兀 Ⅱ-今知県北毎桜石住県半柱构	30%~35%,	半白形白形板状 一般长约0.2~0.5 mm 最大可达
11 百知曲朳至库有印邮石印码 单元	10%~20%,钠长石27%~42%,白云母3%~5%	2 mm
Ⅲ	锂辉石16%~28%,石英35%~45%,钠长石	锂辉石呈定向性排列成梳状结构,新三号脉中一般在
而 日视水连冲有作曲石组构中 元	20%~30%, 微斜长石5%~10%, 白云母	细晶结构单元和中粒结构单元中可见,一般垂直脉
	7%~10%	壁,或者是垂直两个结构单元的接触界线
Ⅳ-含巨晶锂辉石伟晶岩结构单	锂辉石10%~15%,石英30%±,钠长石40%±,	中粒结构 长约0.5-3 cm 最长可达5 cm
元	微斜长石1%~5%,白云母1%~5%	百位的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人

表 2 甲基卡矿区 X03 号脉主要矿石类型特征(据王登红等, 2021)

http://geochina.cgs.gov.cn 中国地质, 2024, 51(1)

质

中

500℃)和碱性环境下,锂辉石、绿柱石等矿石矿物结晶成矿,晚阶段中低温热液对伟晶岩脉中锂的活化、迁移、再沉淀有一定的影响(王登红等,2021)。

4.2 大红柳滩矿田白龙山锂矿

康西瓦——大红柳滩—带是帕米尔——昆仑山伟 晶岩区花岗伟晶岩脉分布最为密集的地段,已发现 有 7000 余条伟晶岩脉(邹天人和李庆昌, 2006)。该 带行政区域上隶属于和田市皮山县、和田县,从叶 城沿新藏公路前行 485 km 可达大红柳滩。大红柳 滩矿田在大地构造位置上处于可可西里—巴颜喀 拉褶断带,其南北分别为大红柳滩-郭扎错断裂与 康西瓦断裂(李侃等, 2019)。区域地层主要有古元 古界康西瓦群黑云石英片岩、变粒岩、片麻岩、大 理岩,二叠系黄羊岭群细碎屑岩夹少量碳酸盐岩及 中基性火山岩,三叠系巴颜喀拉山群长石石英砂 岩、石英砂岩、粉砂质板岩、绢云母板岩等具复理 石建造特征的岩石组合(梁婷等, 2021)。断裂构造 以NW-SE 向展布的韧性断裂为主, 糜棱岩化十分 发育。康西瓦—大红柳滩断裂以北黄羊岭群呈向 斜产出,而其南侧巴颜喀拉山群以宽缓的复式背斜 产出为主。三十里营房--康西瓦断裂北侧以加里 东期花岗岩为主,大红柳滩—郭扎错断裂以南仅有 南平雪山加里东期花岗岩发育,二者夹持区发育大 量印支期花岗岩(魏小鹏, 2018; 李侃等, 2019)。康 西瓦—大红柳滩一带位于巴颜喀拉—松潘甘孜成 矿省的大红柳滩 RM(Rare metal)-Fe-Pb-Zn-Cu 成 矿带中(王岩等, 2016),产出有斑岩型铜钼矿、 MVT 型铅锌矿、VMS 型硫化物矿、矽卡岩型铁铜 铅锌矿及伟晶岩型稀有金属矿等(胡军, 2015)。

大红柳滩花岗伟晶岩型锂矿田位于三十里营 房—大红柳滩复式岩体的东南端(图 3c),含矿伟晶 岩主要产出岩体外接触带,成群成带分段集中,断 续长约 30 km(梁婷等,2021)。目前,已发现锂辉石 伟晶岩脉 124条(李侃等,2019),分布于大红柳滩 北、大红柳滩、大红柳滩东、俘虏沟南、卡拉喀(白 龙山)(图 3d)、509 道班西、507 道班南(雪凤岭)、 505 道班南(图 3e)等矿床(李侃等,2019;梁婷等, 2021; 王核等,2021)。白龙山花岗伟晶岩型锂矿床 紧邻 509 道班西锂矿,王核等(2021)将 509 道班西 锂矿床的矿体划归为白龙山矿床的第V号含矿伟 晶岩群。

新疆大红柳滩矿田白龙山花岗伟晶岩型锂矿 床的矿区地层主体为绿片岩相变质的灰绿色变砂 岩和灰---深灰色二云母石英片岩,它们呈 NNE—NE 倾向的高角度单斜产出,角岩化、片理化 发育。白龙山矿床含锂辉石花岗伟晶岩脉多数定 位于大红柳滩花岗岩最东端岩枝的外接触带片理 化地层之中(彭海练等, 2018; Wang et al., 2020a; 王 核等,2021)。矿区已发现的47条锂多金属花岗伟 晶岩脉,展布于长约 8250 m、宽 200~500 m 的范围 内,脉体倾向 10°~20°,倾角 66°~75°,锂矿脉长 65~1230 m, 宽 1.80~115.85 m, 平均品位(Li₂O) 0.73%~5.47%(彭海练等, 2018; 王核等, 2021)。矿 石矿物主要为锂辉石和锂白云母,含少量绿柱石、 磷锂铝石、铌钽铁矿、锡石,脉石矿物主要有石英、 钠长石,次为钾长石、白云母、电气石、磷灰石等。 白龙山矿区花岗伟晶岩脉的单脉和群脉存在明显 的矿物组合和结构构造空间分带,单一的全脉型锂 矿化存在于矿区中段Ⅲ号脉群北部的Ⅲ-1、Ⅲ-2、 Ⅲ-3 和南部的Ⅲ-9 等脉体。

大红柳滩岩体主要有中细粒黑云母二长花岗 岩、二云母二长花岗岩、含石榴石二长花岗岩等。 中细粒黑云母二长花岗岩可见镁铁质(角闪黑云石 英闪长岩)暗色包体,被含石榴石(二云)二长花岗岩 侵入,界线截然,后者具高分异S型花岗岩特征(乔 耿彪等, 2015; 魏小鹏, 2018; 梁婷等, 2021)。"新疆 和田县大红柳滩南锂铍矿普查"项目圈定的白龙山 矿床的锂铍矿体主要赋存于二云母二长花岗岩外 接触带(涂其军等,2019)。大红柳滩矿田阿克塔斯 锂矿床 90-1 号伟晶岩脉中富含原生磷铁锂矿(凤 永刚等, 2019), 白龙山锂矿床伟晶岩脉中也含有少 量磷锂铝石和铁锰磷酸盐(王核等, 2021),表明其源 自富磷的 S 型花岗岩。所以, 白龙山花岗伟晶岩型 锂矿与大红柳滩岩体二云母花岗岩具有密切的成 因联系。大红柳滩岩体(图 2)黑云母花岗岩锆石 U-Pb年龄为214~212 Ma, 白云母二长花岗岩含有 大量捕获锆石,但有少量 212~208 Ma 的锆石 U-Pb 年龄(魏小鹏, 2018; 李侃等, 2019; 梁婷等, 2021), 与 白龙山花岗伟晶岩锂矿脉中铌钽铁矿的年龄 (212~208 Ma, Wang et al., 2020a; Zhou et al., 2021) 及大红柳滩阿克塔斯锂矿床 90-1 号(209.1±1.3 Ma)和90-4号(207.5±0.3 Ma)伟晶岩脉中锆石 U-Pb

年龄(梁婷等,2021)都较一致(图 2)。白龙山锂辉 石流体包裹体均一温度为 300~340℃,盐度为 10.2%~17.48%,与大红柳滩矿田其他矿床所获得的 流体特征相似(凤永刚等,2019;梁婷等,2021)。所 以,大红柳滩花岗伟晶岩型锂矿田白龙山锂矿是大 红柳滩二云母花岗岩充分演化分异形成的含锂熔 浆进一步分异结晶的产物。

5 燕山期传梓源花岗伟晶岩型锂矿 床特征

燕山期花岗伟晶岩型锂矿以幕阜山地区仁里 矿田传梓源锂矿床最为典型。幕阜山岩体地处湘 赣鄂三省交界处,大地构造上位于扬子板块与华夏 板块结合部位的江南造山带中段(李鹏等, 2020, 2021)。幕阜山岩体主体侵位于新元古界冷家溪群 变砂岩、绢云母板岩、泥质粉砂岩中,岩体东北部边 界与寒武系、奥陶系、志留系及上白垩统呈侵入接 触关系。区域断裂构造线以北东向为主体的构造 格局,冷家溪群呈北北西向展布为主,无大型褶皱 发育,下古生界中发育东西向断层,褶皱不发育(李 鹏春,2006)。幕阜山花岗岩是燕山期(158~125 Ma)侵位的复式花岗岩基,出露面积超过 2500 km², 岩性主要有石英二长岩、黑云母花岗闪长岩、黑云 母二长花岗岩、二云母二长花岗岩和白云母二长花 岗岩以及岩浆活动晚期发育大量伟晶岩(张立平等, 2021)。从空间上看,幕阜山复式花岗岩总体上从 东部→中部→西部、南部,呈现出由老变新的趋势, 仅在幕阜山岩体的西南角出露有少量晋宁期花岗 岩、花岗闪长岩岩株和岩滴(黄志飚等,2018)。

幕阜山岩体稀有金属矿化由东北向西南矿化 组合由单一到多样,成矿强度从弱到强(图 3f)。根 据矿化强度与成矿元素组合可以划分为岩体北东 部的 Be 矿化带(I)、岩体中部的 Be-Nb-Ta 矿化 带(Ⅱ)、岩体西南部的 Be-Nb-Ta(-Li) 矿化带(Ⅲ) 及岩体西南部外接触带的 Be-Nb-Ta-Li(-Cs) 矿化 带(Ⅳ)(刘翔等,2018,2019;周芳春等,2019;李鹏 等,2021)。在Ⅲ号矿化带中锂矿化以锂云母、锂电 气石出现于大型伟晶岩脉的核部,如断峰山铌钽 矿、仁里铌钽矿 5 号脉等。Ⅳ号矿化带的锂矿化主 要以锂辉石产出,还有少量锂云母及偶见的锂绿泥 石等矿物。另外,幕阜山岩体北部也有含少量透锂 长石的报道(李乐广等, 2022)。

仁里花岗伟晶岩型稀有金属矿田传梓源锂矿 床定位于幕阜山岩体西南角外接触带冷家溪群片 岩之中(图 3f)。传梓源锂矿床锂资源量主要集中 在 106、200、204 和 206 号锂辉石白云母伟晶岩脉 中(图 3b-2),蕴藏资源量有 Li₂O 11276.1 t、BeO 3854.1 t、(Nb,Ta)₂O₅ 1315.8 t(石科威等, 2020)。近 几年又在仁里铌钽矿 5 号伟晶岩脉外侧西部发现 了 46 号、47 号等锂辉石白云母伟晶岩脉,46 号脉 浅部腐锂辉石蚀变强烈,残留 Li₂O 品位仅 0.12%~ 0.22%,47 号脉平均品位 Li₂O 可达 1.72%、BeO 为 0.108%(李鹏等,2020;石科威等,2020)。另外,在 梭墩矿床、窄板洞矿床也都见有腐锂辉石发育的锂 辉石白云母伟晶岩脉(刘翔等,2019),其中 601 号 脉 Li₂O 晶位为 0.181%~0.417%,平均晶位 0.299%, 伴生有 Be、Cs 矿化(石科威等,2020)。

在印支期汇聚作用之后,幕阜山地区因古太平 洋俯冲、消亡和构造域转换(舒良树, 2012), 先后产 出了3个阶段的岩浆活动,分别对应了区域上3个 阶段的稀有金属成矿作用(李鹏等, 2021)。第一阶 段,黑云母二长花岗岩(154~151 Ma)岩浆对应的伟 晶岩型稀有金属矿(146~145 Ma)以 Be 为主、Nb-Ta 次之(Wang et al., 2014; Ji et al., 2017; 许畅等, 2019;李鹏等, 2020, 2021)。第二阶段, 以二云母二 长花岗岩(146~143 Ma)为主的岩浆活动对应了幕 阜山稀有金属成矿作用的主阶段(140~138 Ma),产 出了 Be-Nb-Ta-Li(-Cs) 矿化(Ji et al., 2017; 刘翔 等, 2018, 2019; Xiong et al., 2020; 李乐广等, 2022)。 第三阶段,白云母二长花岗岩(125~122 Ma)对应了 岩体型和少量伟晶岩型 Be-Nb-Ta 矿化(李鹏等, 2017, 2021), 也为稀有金属(尤其是 Ta)在最晚阶段 热液交代、沉淀再富集提供了契机(刘翔等,2018; 王臻等, 2019; 周芳春等, 2019; 李乐广等, 2022)。

6 喜山期穷家岗伟晶岩型锂矿产地

英国探险考察队在 20 世纪 20 年代于喜马拉 雅造山带的珠峰北坡花岗岩样品中发现有绿柱石 和锂电气石(Heron, 1922),之后也有少量关于该带 稀有金属矿物的报道。近几年,吴福元等(2015)指 出喜马拉雅带淡色花岗岩是异地深成高温高分异 花岗岩,其中的电气石-石榴石花岗岩与华南稀有 中

金属(Li-F)花岗岩较为相似。随后,中国地质科研 工作者在喜马拉雅东段的错那洞、洛扎县的拉隆和 珠峰及其外围地区发现了良好的稀有金属找矿线 索,显示出具有落实超大型矿床的潜力(王汝成等, 2017;李光明等,2017;Liu et al., 2020;秦克章等, 2021;刘小驰等,2021;刘晨等,2021;Li et al., 2022; 张志等,2022;Cao et al., 2023)。

珠峰地区地层下部为高喜马拉雅高级变质岩 系,中部下段为浅变质深色千枚岩、上段为黄色大 理岩、千枚岩,上部为特提斯喜马拉雅的灰岩,三者 以断层接触(秦克章等,2021),但是 Water et al.(2019) 认为中下部变质岩系为渐变过渡,都属高喜马拉 雅。区域上高喜马拉雅和特提斯喜马拉雅沿造山 带走向近东西向平行展布,南部高喜马拉雅变质岩 系中淡色花岗岩主要呈规模不等的岩席侵入,北部 特提斯喜马拉雅沉积岩系中侵位的淡色花岗岩则 以独立的岩枝、岩株产出(吴福元等,2015; Liu et al., 2020)。

穷家岗(琼嘉岗)位于珠峰北西侧,位于西藏自 治区日喀则市定日县热曲村约 193°方位直线距离 36 km 处。琼嘉岗地区出露的地层为高喜马拉雅变 质岩系的片岩、弱砂卡岩化大理岩,其中侵入有二 云母花岗岩、含电气石白云母花岗岩和电气石花岗 岩。已发现锂辉石伟晶岩脉 40余条,呈囊状、板状 产出于海拔 5390~5581 m 的大理岩中(秦克章等, 2021; 赵俊兴等, 2021)。这些花岗伟晶岩脉延长数 百米至上千米,最长者逾 2000 m,宽 10~100 m。脉 体从边至核可分为细粒钠长石带→分层细晶岩 带→块状微斜长石-锂辉石带(秦克章等, 2021;赵 俊兴等, 2021)。矿石矿物主要为锂辉石, 夹石矿物 有石英、微斜长石、钠长石、白云母、电气石和少量 石榴石,副矿物有铌钽铁矿、锡石、锆石、磷灰石、 独居石等, 59件样品的 Li₂O 含量为 0.02%~3.30%, 平均为1.30%。该区成矿条件优良,具有超大型矿 床的找矿潜力,因未开展详细地勘查工作,暂称之 为矿产地。穷家岗、普士拉花岗伟晶岩地球化学和 矿物组合具有 LCT 型伟晶岩的特征,所含的独居 石、铌钽铁矿、锡石 U-Pb 定年结果表明,其形成 于 25.0~22.9 Ma(Liu et al., 2020; 赵俊兴等, 2021), 在新喜马拉雅阶段(26~13 Ma, 吴福元等, 2015), 可 能由高喜马拉雅变质岩系中的泥质岩发生部分熔

融形成的淡色花岗岩演化分异生成(秦克章等, 2021;赵俊兴等,2021),普士拉地区伟晶岩中还见 有晚阶段热液作用形成的次生锂辉石和透锂长石 (Liu et al., 2020)。

7 对找矿预测的启示

7.1 从产锂花岗岩入手

质

地

为便于叙述,本文将与花岗伟晶岩型锂矿有直 接成因联系的花岗岩称为产锂花岗岩。虽然花岗 伟晶岩型锂矿可以产出于同造山—后碰撞—非造 山构造环境(Černý and Ercit, 2005; London, 2008; Lü et al., 2018; 张辉等, 2021),但是从成岩时代和构 造背景看,中国主要的花岗伟晶岩型锂矿床都是产 出于后碰撞构造背景,成矿作用可以延续到非造山 构造环境,其成矿元素组合大多数具有 LCT 型花岗 伟晶岩的特征(Dai et al., 2019; 李侃等, 2019; Gao et al., 2021; 张辉等, 2021; 孙文礼等, 2022)。

虽然有些花岗伟晶岩型锂矿没有发现产锂花 岗岩,但是中国大多数产锂花岗岩一般是同期多阶 段侵入的复式岩体,如大红柳滩岩体、可尔因岩体、 幕阜山岩体、吐格曼岩体,也可以是出露岩性较为 单一的岩株、岩枝,如马颈子岩体(其深部或许是复 式岩体)。中国主要的产锂复式岩体的岩性从黑云 母花岗岩→二云母花岗岩→白云母花岗岩→钠长 (花岗)岩演化,它们都是弱过铝—过铝质花岗岩 (图 4a),常见有石榴石、白云母、堇青石等富铝矿 物。从产锂花岗岩的球粒陨石标准化稀土元素配 分曲线图(图 5a、c)和原始地幔标准化微量元素曲 线图(图 5b、d)看,中国主要产锂复式花岗岩中黑云 母二长花岗岩具有相似的稀土、微量特征,可能暗 示着它们的源区和演化过程存在一定的相似性。 这与它们的锆石 Hf 同位素二阶段模式年龄 T_{DM},都 是中元古代的研究结果一致(李鹏等, 2020; 丁坤等, 2020; Gao et al., 2021)。二云母二长花岗岩轻、中 稀土(图 4b)及微量元素曲线特征的相似性(图 4c、 d),表明它们演化分异程度相似,只有幕阜山二云 母二长花岗岩重稀土元素上翘,可能是高温热液叠 加成矿作用产生的重稀土富集作用所致。

中国花岗伟晶岩型锂矿的产锂花岗岩具有高 演化分异花岗岩的特征。岩浆演化过程是造岩元 素从钙→钾→钠的转变过程,结晶出的长石对应了

图 4 中国主要花岗伟晶岩型锂矿(田)产锂花岗岩的地球化学相关性图解

a—A/CNK-A/NK 图解; b—La-(La/Sm)_N 图解; c—MgO/(MgO+FeOT)(分子比)-(Na₂O+K₂O)/CaO(分子比)图解; d—Rb/Sr-Nb/Ta 图解; e—Zr/Hf-Nb/Ta 图解; f—U-Th/U 图解; 马颈子岩体据梁斌等, 2016; 侯江龙等, 2020; 幕阜山岩体据周芳春等, 2019; Xiong et al., 2020; 李昌元, 2022; 大红柳滩岩体据乔耿彪等, 2015; 魏小鹏, 2018; 梁婷等, 2021; 吐格曼岩体据 Gao et al., 2021 Fig.4 Diagrams of geochemical correlation of lithium producing granites in major granitic pegmatite type lithium deposits (fields) in China

a–A/CNK–A/NK diagram; b–La–(La/Sm)_N diagram; c–MgO/(MgO+FeOT) (molecular ratio) – (Na₂O+K₂O)/CaO (molecular ratio) diagram; d–Rb/Sr–Nb/Ta diagram; e–Zr/Hf–Nb/Ta diagram; f–U–Th/U diagram; Data of Majingzi rock mass cited from Liang Bin et al., 2016; Hou Jianglong et al., 2020; Data of Mufushan rock mass cited from Zhou Fangchun et al., 2019; Xiong et al., 2020; Li Changyuan, 2022; Data of Dahongliutan rock mass cited from Qiao Gengbiao et al., 2015; Wei Xiaopeng, 2018; Liang Ting et al., 2021; Data of Tugeman intrusion cited from Gao et al., 2021

钙长石→钾长石→钠长石。同时,也是亲铁元素从 镁→铁→锰的过程,对应了黑云母、电气石、铌钽 铁矿、石榴石等矿物类质同象的矿物演化。从 MgO/(MgO+FeO^T)-(Na₂O+K₂O)/CaO 的相关性图解 (图 4c)可以看出,产锂复式岩体各岩性单元演化分 异关系明显,且与伟晶岩型锂矿关系最为密切的二 云母花岗岩演化分异程度已经较高。

Zr和Hf、Nb和Ta都是高场强元素,因价态相

图 5 中国主要花岗伟晶岩型锂矿床(田)产锂花岗岩球粒陨石标准化稀土元素配分图(a,c)和 原始地幔标准化微量元素蛛网图(b,d)

马颈子岩体据梁斌等, 2016; 侯江龙等, 2020; 幕阜山岩体据周芳春等, 2019; Xiong et al., 2020; 李昌元, 2022; 大红柳滩岩体据乔耿彪等, 2015; 魏小鹏, 2018; 梁婷等, 2021; 吐格曼岩体据 Gao et al., 2021

Fig.5 Chondrite normalized REEs distribution patterns (a, c) and primitive mantle normalized trace element diagrams (b, d) of lithium-bearing granite from major granitic pegmatite type lithium deposits (fields) in China

Data of Majingzi rock mass cited from Liang Bin et al., 2016; Hou Jianglong et al., 2020; Data of Mufushan rock mass cited from Zhou Fangchun et al., 2019; Xiong et al., 2020; Li Changyuan, 2022; Data of Dahongliutan rock mass cited from Qiao Gengbiao et al., 2015; Wei Xiaopeng, 2018, Liang Ting et al., 2021; Data of Tugeman intrusion cited from Gao et al., 2021

同、离子半径相似,是地球化学性质形式的元素 对。Zr和Hf在花岗岩中的载体主要是锆石(Zr/Hf> 40),当源区残留有锆石或者岩浆中有锆石分离结 晶时,高演化岩浆中Zr/Hf值会快速降低。当岩浆 中含有一定量的Li时,Nb⁵⁺可以替换Mg²⁺进入黑 云母,并使得残浆中的Ta含量升高(牟保磊,1999), 所以产锂花岗岩随着演化程度的提高Nb/Ta的值 快速减小。Rb作为一种大离子不相容元素,在岩浆 结晶作用过程中倾向在后期岩浆及残浆中富集, Sr却因其亲石性,且在花岗岩中与长石的Ca含量 关系密切,Rb/Sr值的增大也可指示产锂花岗岩演 化不断升高。产锂花岗岩的Rb/Sr-Nb/Ta(图4d) 和 Zr/Hf-Nb/Ta(图 4e)图解,都显示产锂花岗岩 各单元之间演化分异关系明显。因此,与花岗伟晶 岩型锂矿关系紧密的二云母花岗岩具有低的 Nb/Ta(2~8)和 Zr/Hf(15~25)值及高的 Rb/Sr(>5) 值,尤其是晚阶段成矿热液叠加时,这种特征更为 明显。

U和 Th 都是大离子亲石元素, 在演化晚阶段 岩浆中富集, 中国伟晶岩型锂矿的成锂花岗岩具有 较高的 U、Th 含量。Th 和 U 也是花岗岩、锆石、 磷灰石和多种副矿物中含量较高的微量元素, 普通 花岗岩中 Th/U 值为 3.0 左右。一般认为, 花岗岩 中 Th 相对稳定, 而 U 却随着岩浆演化不断向水含 量更高的岩浆中富集。所以,随着花岗质岩浆演化 分异的进行和岩浆中水含量的增加,演化晚阶段花 岗岩、副矿物及热液作用过程中U含量不断增加, Th/U值不断减小。中国伟晶岩型锂矿一般都伴随 有U的富集,如马颈子岩体、幕阜山岩体,晚阶段热 液叠加富集作用会使U的富集更加明显(图4f)。 吐格曼岩体具有较高Th/U值,可能暗示了它是该 区伟晶岩型锂矿的母源岩浆,其在高温下演化分异 出的含锂岩浆是吐格曼花岗伟晶岩型锂矿的成矿 母岩(徐兴旺等, 2019; Gao et al., 2021)。

中国伟晶岩型锂矿的成锂花岗岩具有较高的 氧逸度、P和F含量。花岗岩伟晶岩矿物除95种 硅酸盐外,还有66种氧化物和56种磷酸盐及其他 矿物约60种(陈光远等,1987)。含锂花岗伟晶岩和 产锂花岗岩及围岩中常见的氧化物有铌钽铁(锰) 矿、细晶石、晶质铀矿、钍石、锡石、磁铁矿、赤铁 矿、黑钨矿、白钨矿等,有的伟晶岩型锂矿床中还共 伴生有铌钽矿体、锡矿体。只有花岗质熔体的氧逸 度较高,才能形成如此众多的氧化物,甚至形成独 立的花岗伟晶岩型氧化物矿体。除磷灰石外,含锂 花岗伟晶岩中常见的磷酸盐有磷锂铝石、磷铁锂 石、磷锰矿、磷铁矿等矿物,如可可托海3号脉、南 平、大红柳滩、南阳山等矿床,其原生矿物都是富磷 岩浆在高温条件下的产物(Hatert et al., 2016)。凤 永刚等(2019)通过磷铁锂矿组分变化研究,认为大 红柳滩伟晶岩型锂矿床在伟晶岩热液阶段氧逸度 仍在升高,并富含 Ca、F。

综上所述,中国花岗伟晶岩型锂矿的产锂花岗 岩一般是后碰撞构造环境下产出的同期多阶段复 式岩体。产锂花岗岩演化分异程度较高,晚阶段产 出的与花岗伟晶岩型锂矿关系最为密切的花岗岩 颜色较浅、富含 K、Na、P、F、Rb、U、Th,高氧逸 度,高 Rb/Sr、低 Nb/Ta 和 Zr/Hf。与宽度有限的花 岗伟晶岩脉相比,产锂花岗岩更利于综合研究和遥 感识别。所以,要找花岗伟晶岩型锂矿可以从寻找 目标更大的高分异花岗岩入手。

7.2 "先找矿,再填图"

"先找矿,再填图"是在矿产预测成果的基础 上,带着科学问题、奔着矿化蚀变开展的专项填图 (王登红等,2022)。矿产预测类型是在全国矿产资 源潜力评价工作中提出来的,对于某一特定区域内 可能存在的矿产资源的一种分类方式,其既是一个 分类体系也是一种工作方法,是以成矿潜力评价和 找矿方向研究为目的,从预测的角度对矿产资源的 一种分类(陈毓川等,2010)。作为沟通成矿规律研 究与成矿预测方法的桥梁,矿产预测类型成为了连 接"成矿体系"理论中"全位成矿"与"缺位找矿"之 间的纽带(王登红等,2013)。矿产预测类型的理论 基础是"矿床式",其既基于典型矿床的研究成果, 又超越典型矿床的具体成矿条件。王登红等(2022) 和李建康等(2014)补充的 10 个花岗伟晶型矿床式 为可可托海式、合什哈力式、沙音图拜式、镜儿泉 式、大红柳滩式、砂锂沟式、甲基卡式、官坡式、库 局式、南平式。

依据"矿床式"、"先找矿"首先要找产锂花岗 岩。这项工作可以在现有1:20万、1:25万区域 地质图,甚至1:100万地质(矿产)图的基础上完 成。如前所述,中国的产锂花岗岩形成于后碰撞构 造背景,所以先对造山作用晚阶段产出的花岗岩进 行筛选,尤其是二级构造单元的从挤压向舒展转换 的"Z"形或"S"形转折端是产锂花岗岩形成的有利 部位(图 3a、c)。产锂花岗岩通常侵位于穹隆构造 或大型背斜(形)构造核部,花岗伟晶岩型锂矿床定 位于产锂花岗岩沿区域构造线延伸的"波浪状"或 "舌状"侵入边界的外接触带(图 3d、f)。含锂辉石 花岗伟晶岩脉产出于距离产锂岩体 500 m~5 km 的 范围内(图 3b、e), 矿体定位距离和产状受到先存构 造与岩体之间关系共同控制。值得指出的是,中国 花岗伟晶型锂矿的围岩主要为中浅变质的云母(石 英)片岩,少量为(含绿帘石绿泥石)斜长角闪片岩、 片麻岩及大理岩。

在"再填图"过程中,着重填绘区域性构造,岩 体各侵入单元、花岗岩伟晶岩脉及二者与围岩的关 系。复式岩体各岩性单元的产出关系对花岗伟晶 型锂矿找矿潜力的评价至关重要。若复式岩体为 "侧向侵入",即晚阶段侵位的二云母花岗岩、白云 母花岗岩或钠长(花岗)岩产出于复式岩体的边部, 尤其是沿区域构造线延伸方向的远端,该岩体外接 触带具有较大的找矿潜力。如果为"中心式侵入", 则表明花岗伟晶岩型锂矿的成矿作用集中于岩体 顶部,虽然成矿作用更为强烈,但是已被剥蚀的可

质

中

能性较大,找矿潜力有限。为了寻找保存良好的花 岗伟晶岩型锂矿,前人提出的"雪线找锂"(王登红 等,2022)、"喜马拉雅地区向更远端、更高处找锂" (秦克章等,2021)的找矿思路,取得了良好的找矿效 果,也为开发利用过程中综合成本管控提出了新的 研究课题。或许,相对经济可采的花岗伟晶岩型锂 矿也应注意"界山找矿",即作为行政单位界线的高 山可能是花岗伟晶岩型锂矿的另一个找矿方向。 如川陕、滇黔、湘渝、渝鄂及湘赣粤等省之间的界 山,不仅同期有多阶段花岗岩广泛分布,还发育有 较好的 Li 地球化学异常晕圈(王学求等,2020)。

7.3 实施综合找矿工作方案

"就矿找矿"和"相似类比"一直都是矿床学研 究和矿产勘查领域常用的方法。赵鹏大等(2003)提 出从成矿可能地段(1:100万)→找矿可行地段 (1:50万)→找矿有利地段(1:20万)→资源潜在 地段(1:1万)→矿体远景地段(1:1000)的"5P"靶 区逐步逼近法开展成矿预测。在"全国重要矿产资 源潜力评价"项目执行过程(2006—2013年)中,陈 毓川等基于矿床成矿系列提出了"矿床预测类型" (陈毓川等, 2010; 王登红等, 2013), 并发展出"全位 成矿,缺位找矿"理念,在铂族(王登红等,2007)、金 矿(毕伏科等,2006)、斑岩—浅成低温矿床(唐菊兴 等,2014)、铀矿(赵如意等,2020)找矿勘查中得到 了应用,并取得了找矿勘查进展和突破。叶天竺等 (2007)基于地球动力学、成矿动力学和成矿系列理 论,提出了矿床模型综合地质信息预测技术体系。 针对花岗伟晶岩型锂矿,在川西厚覆盖地区,甲基 卡矿田综合找矿模型(付小方等, 2019)、"3定 2参"填图找矿(刘善宝等, 2020)和马尔康矿田高密 度电法(马圣钞等, 2020)等找矿勘查技术方法取得 了较好的进展与成果。这些找矿思路和勘查技术 方法针对某些区域都有一定的可行性和借鉴意义。

随着高精度、新技术、新方法不断应用于地学 实验测试分析,积累了可靠的大数据有利于综合分 析各类矿床形成的构造背景、成矿规律、控矿因素 和成矿条件等信息,这为有针对性地选择勘查技术 方法提供了依据。对比前人找矿预测理论,综合对 比已有花岗伟晶岩型锂矿的构造背景、矿床特征、 成因机制、成矿规律、控矿因素等研究成果,全面解 析找矿预测区可能存在的成矿条件和物探、化探、 遥感及自然重砂等综合信息, 拟定了中国花岗伟晶 型锂矿综合找矿工作方案。具体流程如下:

第一步,依据资料搜集整理结果和综合分析 "先找矿":①选择底图,依据工作区范围选择一张 比例尺适当的地质底图。②底图编绘,搜集比例尺 较大的地质矿产图,并将之编绘至底图中,重点对 花岗岩和构造格架及其形态进行编绘,如韧性断 层、构造穹隆、大型背斜等。③花岗岩编绘, 搜集整 理后碰撞至非造山构造环境下产出的花岗岩,尤其 是二云母花岗岩、白云母花岗岩、A 型花岗岩、碱 性岩及花岗伟晶岩脉资料,并将之编绘于底图中。 ④遴选产锂花岗岩,结合已有地质、矿产和花岗岩 的矿物学、年代学、地球化学资料,遴选产锂花岗 岩,重点关注二级构造单元的从挤压向舒展转换的 "Z"形或"S"形转折端产出的S型花岗岩。⑤优选 找矿远景区,根据花岗岩各单元的侵入接触关系、 岩体的形态产状、矿物学、地球化学和矿化蚀变特 征等优选找矿远景区,重点关注沿构造延伸方向呈 波浪状、舌状侵入的岩体外接触带的 500 m~5 km 范 围内。

第二步,找矿远景区"GGR"优化:①物探 (Geophysical Prospecting),根据U、Th、K放射性异 常场和重、磁、电负异常场优选产锂花岗岩。②化 探(Geochemical Prospecting),通过地球化学异常晕 及其组合、水化学异常晕,结合自然重砂分散晕优 化花岗伟晶型锂矿的找矿远景区。③遥感(Remote Sensing),使用高分辨率遥感影像、钾和钠及锂元素 光谱特征,优选产锂花岗岩,并尝试解译可能存在 的锂辉石花岗岩伟晶岩脉。④筛选找矿靶区,综合 地质、矿产、地球物理、地球化学、遥感地质资料, 筛选成矿最有利的部位,作为找矿靶区。

第三步, "GGR"异常检查及找矿靶区"再填 图":①依据筛选出的找矿靶区范围和找矿勘查工 作阶段,选择比例尺适当的地形图作为底图,为便 于野外工作可将修编地质图作为参考。②产锂花 岗岩填图,穿越法和追索法相结合,填绘花岗岩的 空间分布、岩性岩相、结构构造、蚀变矿化、糜化破 碎、接触关系,并为成矿时代、构造背景、岩矿成因 研究和找矿潜力分析采集系统的标本和样品。 ③围岩填图,穿越法为主填绘围岩的空间展布,矿 物(岩屑)组成、结构构造、岩性组合、变质相带、构 造变形、蚀变矿化和产状的变化特征。④花岗伟晶 岩脉填图,以追索法为主填绘花岗伟晶岩脉的空间 形态、矿物组成、矿物组合与结构分带、蚀变矿化, 尤其关注有成矿指示意义的标志性矿物填绘。 ⑤构造地质填图,穿越法和追索法相结合填绘构造 穹隆、背斜、脆韧性断层、逆冲走滑断层的产状和 形态及其对其他地质体的控制作用。⑥圈定找矿 靶区,通过花岗伟晶型锂矿找矿专项地质填图和主 干(解析)剖面测制,依据地质、矿产、物化遥和科研 资料,综合分析花岗伟晶岩型锂矿成矿条件最佳地 段,圈定已发现或预期可发现含锂花岗伟晶岩脉的 区域,作为下一步工作的找矿靶区。

第四步,评价找矿潜力:①槽探,对第四系覆 盖<3 m 的找矿有利部位进行揭露。②剥土,适用于 因风化形成的斜坡坎、断层三角面上保存的,或修 路过程中揭露的,只有一壁出露有花岗伟晶岩脉的 露头。③浅井,对揭穿点埋深<20 m 的找矿有利部 位进行揭露,有时可改为浅钻控制。④钻探,为了 解花岗伟晶岩脉的分布和延伸情况,获取深部矿产 地质信息,开展钻探揭露;在找矿评价过程中遵循 "三边原则",即"边施工、边研究、边调整";在深切 割地区的钻孔和山地工程布设时应避免"V"字形法 则对脉体走向图面表达的影响,尽量保证"法线勘 查"。⑤样品采集,为准确获取锂矿化品位,对山地 工程开展刻槽取样,岩心进行劈心取样,取样时做 到"三不跨",即不跨岩性、不跨回次、不跨矿化品 级。⑥资源量估算,采用几何法、SD法、地质学统 计法等方法对山地工程和钻孔控制的矿体估算资 源量。⑦综合评价找矿潜力、落实矿产地,综合分 析所有资料,全面分析花岗伟晶岩型锂矿的成矿条 件和找矿潜力,圈定找矿靶区(估算 Li₂O 资源量达 到 6667 t 以上者为矿产地)。

8 结 论

(1)中国花岗伟晶岩型锂矿主要产出于古生代 以来的后碰撞构造背景,其成矿作用可以延续至非 造山环境,成矿元素组合大多数具有 LCT 型伟晶岩 特征。

(2)与伟晶岩型锂矿有关的花岗岩(产锂花岗岩)主要为同期多阶段复式岩体,其在晚阶段产出的与锂矿关系最为密切的高分异花岗岩具有浅

色、富含 K、Na、P、F、Rb、U、Th,高氧逸度,高 Rb/Sr、低 Nb/Ta 和 Zr/Hf 等特征。

(3)中国花岗伟晶岩型锂矿大规模聚集式产出 于印支晚期,产出的含锂花岗伟晶岩构成了国内规 模最大的巨型锂成矿带,极具找矿潜力。广泛发育 的燕山期和加里东期花岗岩还有很大的找矿潜力, 晋宁期、吕梁期花岗伟晶岩型锂矿的发现也值得期 待。甚至稳定的地台区,尤其是绿岩带内,也可能 会有古老的花岗伟晶岩型锂矿的存在。

(4)在"全位成矿,缺位找矿"理念指导下,依据 锂矿预测类型"先找矿、后优化、再填图",有望在 二级构造单元从挤压向舒展转换的"界山"花岗岩, 特别是其侵入边界呈波浪状、舌状产出的岩体外接 触带 500 m~5 km 范围内,取得花岗伟晶岩型锂矿 的找矿突破。

致谢:感谢中国地质科学院矿产资源研究所杨 岳清老师和匿名审稿人在审稿过程提出的建设性 意见。

References

- Bai Hongyang, Wang He, Yan Qinghe, Wang Saimeng, Wang Zhenhong, Gao Hao, Qin Yan. 2022. Columbite-tantalite and cassiterite ages of Xuefengling lithium deposit in West Kunlun, Xinjiang and their geological significance[J]. Acta Petrological Sinica, 38(7): 2139–2152 (in Chinese with English abstract).
- Bi Fuke, Xiao Wenxian, Yan Tongsheng. 2006. Location–vacancy of metallogenic series and its application to metallogenic prognosis[J]. Mineral Deposit, 25(6): 735–742 (in Chinese with English abstract).
- Cao H W, Pei Q M, Yu X, Cao A B, Chen Y, Liu H, Zhang K, Liu X, Zhang X F. 2023. The long–lived partial melting of the Greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals[J]. China Geology, 6: 303–321.
- Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 43(6): 2005–2026.
- Che X D, Wang R C, Wu F Y, Zhu Z Y, Zhang W L, Hu H, Xie L, Lu J J, Zhang D. 2019. Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite–tantalite U–Pb dating[J]. Ore Geology Reviews, 105: 71–85.
- Che X D, Wu F Y, Wang R C, Gerdes A, Ji W Q, Zhao Z H, Yang J H, Zhu Z Y. 2015. In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS[J]. Ore Geology Reviews, 65: 979–989.
- Chen Guangyuan, Sun Daisheng, Yin Huian. 1987. Genetic Mineralogy and Prospecting Mineralogy[M]. Chongqing: Chongqing Publishing

House, 1-867 (in Chinese).

- Chen Guojian. 2014. Geological characteristics and genesis of the Nanping granitic pegmatite type Ta–Nb deposit, Fujian Province[J]. Geological Bulletin of China, 33(10): 1550–1561 (in Chinese with English abstract).
- Chen Yuchuan, Wang Denghong, Li Houmin, Xiong Xianxiao, Gao Lan, Xu Zhigang, Sheng Jifu, Xu Jue, Yuan Zhongxin, Bai Ge, Zhu Mingyu, Rui Zongyao, Ye Huitao, Liu Xifang, Zhang Changqing, Chen Zhenghui, Wang Chenghui, Wang Yonglei, Ying Lijuan, Zhang Jian. 2010. Division for Prospecting Types of Important Mineral Resources in China[M]. Beijing: Geological Publishing House, 1–222 (in Chinese).
- Dai H Z, Wang D H, Liu L J, Yu Y, Dai J J. 2019. Geochronology and geochemistry of Li (Be)– bearing granitic pegmatites from the Jiajika superlarge Li–polymetallic deposit in Western Sichuan, China[J]. Journal of Earth Science, 30(4): 707–727.
- Dai Hongzhang, Wang Denghong, Liu Lijun, Yu Yang, Dai Jingjing, Fu Xiaofang. 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, Western Sichuan, China[J]. Earth Science, 43(10): 3664–3681 (in Chinese with English abstract).
- Ding Kun, Liang Ting, Zhou Yi, Feng Yonggang, Zhang Ze, Ding Liang, Li Kan. 2020. Petrogenesis of Dahongliutan biotite monzogranite in western Kunlun orogen: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 53(1): 24-34 (in Chinese with English abstract).
- Fei Guangchun, Yang Zheng, Yang Jiyi, Luo Wei, Deng Yun, Lai Yutao, Tao Xinxin, Zheng Luo, Tang Wenchun, Li Jian. 2020. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province: Evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J]. Acta Geologica Sinica, 94(3): 836–849 (in Chinese with English abstract).
- Feng Y G, Liang T, Zhang Z, Wang Y Q, Zhou Y, Yang X Q, Gao J G, Wang H, Ding K. 2019. Columbite U–Pb geochronology of Kalu' an lithium pegmatites in Northern Xinjiang, China: Implications for genesis and emplacement history of rare–element pegmatites[J]. Minerals, 9(8): 456.
- Feng Yonggang, Liang Ting, Lei Ruxiong, Ju Minghui, Zhang Zhongli, Gao Jinggang, Zhou Yi, Wu Changzhi. 2021. Relationship between undercooling and emplacement of rare–element pegmatite–Thinking based on field observations and pegmatite geochronology[J]. Journal of Earth Science and Environment, 43(1): 100–116 (in Chinese with English abstract).
- Feng Yonggang, Wang Yiqian, Zhang Ze, Liang Ting, Zhou Yi, Gao Jianggang, Teng Jiaxin. 2019. Geochemistry of triphylite in Dahongliutan lithium pegmatites, Xinjiang: Implications for pegmatite evolution[J]. Acta Geologica Sinica, 93(6): 1405–1421 (in Chinese with English abstract).
- Fu Xiaofang, Huang tao, Hao Xuefeng, Zou Fuge, Xiao Ruiqing, Yang Rong, Pan Meng, Tang Yi, Zhang Chen. 2019. Application of

comprehensive prospecting model to rare lithium metal exploration in Jiajika concealed ore deposit[J]. Mineral Deposits, 38(4): 751–770 (in Chinese with English abstract).

- Fu Xiaofang, Liang Bin, Zou Fuge, Hao Xuefeng, Hou Liwei. 2021. Discussion on metallogenic geological characteristics and genesis of rare polymetallic ore fields in western Sichuan[J]. Acta Geologica Sinica, 95(10): 3054–3068 (in Chinese with English abstract).
- Gao Y B, Zhao X M, Bagas L, Wang Y L, Jin M S, Zhang J W, Lu L, Gao Y J, Yan Z Q, Teng J X, Yang Z Q. 2021. Newly discovered Ordovician Li–Be deposits at Tugeman in the Altyn–Tagh orogen, NW China[J]. Ore Geology Reviews, 139: 104515.
- Hao Xuefeng, Fu Xiaofang, Liang Bin, Yuan Linping, Pan Meng, Tang
 Yi. 2015. Formation ages of granite and X03 pegmatite vein in
 Jiajika, western Sichuan, and their geological significance[J].
 Mineral Deposits, 34(6): 1199–1208 (in Chinese with English abstract).
- Hatert F, Roda–Robles E, Ottolini L, Schmid–Beurmann P, Baijot M, Dal Bo F. 2016. Triphylite–Sarcopside Miscibility Gap in the FeO–MnO–Li₂O–P₂O₅–H₂O system: Experimental investigation and thermometric application to granitic pegmatites[J]. The Canadian Mineralogist, 54(4): 827–845.
- He Hanhan, Arkin Tukin, Wang Denghong, Wang Ruijiang, Chen Zhenyu. 2020. Mineralogical characteristics and TIMS U–Pb dating of Tantalite–(Mn) from the Bieyesamas rare metal deposit, Xiangjiang[J]. Rock and Mineral Analysis, 39(4): 609–619 (in Chinese with English abstract).
- Heron A M. 1922. Geological results of Mount Everet expedition, 1921[J]. The Geographical Journal, 59(6): 418–431.
- Hou Jianglong, Li Jiankang, Wang Denghong, Dai Hongzhang, Liu Lijun. 2020. Geochemistry and hydrogen–oxygen isotope compositions of Jiajika two–mica granite, Sichuan Province, and their geological significance[J]. Geoscience, 34(5): 1058–1066 (in Chinese with English abstract).
- Hou Liwei, Fu Xiaofang. 2002. Dome Shaped Metamorphic Geological Body in the Eastern Margin of the Songpan Ganzi Orogenic Belt[M]. Chengdu: Publishing House of Sichuan University (in Chinese).
- Hu Jun. 2015. Ore–forming Age, Metallogenic Geodynamic Setting and Genesis of the Dahongliutan Iron Ore Deposit West Kunlun, Xinjiang[D]. Beijing: The University of Chinese Academy of Sciences, 1–173 (in Chinese with English abstract).
- Huang Zhibiao, Li Peng, Zhou Fangchun, Liu Xiang, Li Jiankang, Xiao Guoqiang, Zhang Liping, Chen Hu, Wang Xuanmin. 2018. Geochemical characteristics and genesis of the Neoproterozoic granite in Mufushan area[J]. Journal of Guilin University of Technology, 38(4): 614–624 (in Chinese with English abstract).
- Ji W B, Lin W, Faure M, Chen Y, Chu Y and Xue Z H. 2017. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (middle Yangtze region), South

China: Geodynamic implications for the Paleo–Pacific subduction[J]. Journal of Asian Earth Sciences, 141: 174–193.

- Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P, Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48(5): 55–69.
- Li Changyuan. 2022. Geological and geochemical characteristics of biotite monzonite granites from Mufushan in northeast Hunan Province[J]. Nonferrous Metals of the World, 26(16): 147–151 (in Chinese with English abstract).
- Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jianggang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be–W–Sn polymetallic deposit in Himalayan metallogenic belt, Southern Tibet[J]. Mineral Deposits, 36(4): 103–108 (in Chinese with English abstract).
- Li Hang, Hong Tao, Yang Zhiquan, Chen Jianzhong, Ke Qiang, Wang Xuehai, Niu Lei, Xu Xingwang. 2020. Comparative studying on zircon, cassiterite and coltan U–Pb dating and ⁴⁰Ar/³⁹Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 36(9): 2869–2892 (in Chinese with English abstract).
- Li Hang, Hong Tao, Yang Zhiquan, Liu Shanke, Wang Xuehai, Ma Yince, Niu Lei, Xu Xingwang. 2022. Multi-stage magmatism-mineralization and tectonic setting of the North Tugeman granitic pegmatite lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 38(10): 3085-3103 (in Chinese with English abstract).
- Li Jiangkang. 2006. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China[D]. Beijing: China University of Geosciences (Beijing), 1–225 (in Chinese with English abstract).
- Li Jiangkang, Liu Xifang, Wang Denghong. 2014. The metallogenic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88(12): 2269–2283 (in Chinese with English abstract).
- Li Kan, Gao Yongbao, Teng Jiaxin, Jin Moushun, Li Wei. 2019. Metallogenic geological characteristics, mineralization age and resources potential of the granite-pegmatite-type rare metal deposit in Dahongliutan area, Hetian county, Xianjiang[J]. Northwestern Geology, 52(4): 206–221 (in Chinese with English abstract).
- Li Leguang, Wang Lianxun, Zhu Yuxiang, Ma Changqian, She Zhenbing, Cao Liang, Leng Shuangliang, Yan Yuqiao. 2022. Metallogenic age and process of rare metal-bearing pegmatites from the northern part of Mufushan complex, South China[J]. Earth Science, 48(9): 3221–3244 (in Chinese with English abstract)
- Li Peng, Li Jiangkang, Pei Rongfu, Leng Shuangliang, Zhang Xu, Zhou Fangchun, Li Shengmiao. 2017. Multistage magmatic evolution and Cretaceous peak metallogenic epochs of Mufushan composite granite mass: Constrains from geochronological evidence[J]. Earth

Science, 42(10): 1684–1696 (in Chinese with English abstract).

- Li Peng, Zhou Fangchun, Li Jiankang, Liu Xiang, Huang Zhibiao, Zhang Liping. 2020. Zircon U–Pb ages and Hf isotopic compositions of the concealed granite of Renli–Chuanziyuan deposit, NE Hunan and geological significance[J]. Geotectonica et Metallogenia, 44(3): 486–500 (in Chinese with English abstract).
- Li Peng, Zhang Liping, Li Jiankang, Huang Zhibiao, Zhou Fangchun, Jiang Pengfei. 2021. Metallogenic regularity of rare metal deposits in Mufushan area of Central China, and its application in ore prospecting[J]. Mineral Deposits, 40(4): 819–841 (in Chinese with English abstract).
- Li Pengchun. 2006. Magmatism of Phanerozoic Granitoids in southeastern Hunan Province, China, and its Evolution Regularity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1–101 (in Chinese with English abstract).
- Li X, Zheng Y C, Yang Z S, Hou Z Q, Wu C D, Xu P Y, Wang L, 2022. Discovery of Miocene pegmatite type Be–Nb–Ta(–Rb) mineralization in the Yangbajain of Central Lhasa subterrane, Tibet[J]. China Geology, 5: 768–770.
- Li Xiaofeng, Wei Xinglin, Zhu Yiting, Li Zufu, Deng Xuanchi. 2021. Rare metal deposits in South China: Types, characteristics, distribution and tectonic setting[J]. Acta Petrologica Sinica, 37(12): 3591–361 (in Chinese with English abstract).
- Liang Bin, Fu Xiaofang, Tang Yi, Pan Meng, Yuan Linping, Hao Xuefeng. 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan[J]. Journal of Guilin University of Technology, 36(1): 42–49 (in Chinese with English abstract).
- Liang Ting, Teng Jiaxin, Wang Denghong, Feng Yonggang, Zhang Ze, Wang Yiqian, Tan Xijuan, Zhou Yi, Yang Xiuqing, Gao Jinggang, Li Kan, Li Jiankang, Dingliang, Gao Yongbao, San Jinzhu, Yan Zhouquan. 2021. Li–Be Rare Metal Deposit of Dahongliutan, Xinjiang[M]. Beijing: Geology Publishing House, 1–262 (in Chinese).
- Liu C, Wang R C, Wu F Y, Xie L, Liu X C, Yang L, Li X J. 2020. Spodumene pegmatite from the Pushila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith[J]. Lithos, 358: 105421.
- Liu Chen, Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi. 2021.
 Lithium mineralization in Qomolangma: First report of elbaite lepidolite subtype pegmatite in the Himalaya leucogranite belt[J].
 Acta Petrologica Sinica, 37(11): 3287–3294 (in Chinese with English abstract).
- Liu Lijun, Fu Xiaofang, Wang Denghong, Hao Xuefeng, Yuanlinping, Pan Meng. 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits[J]. Mineral Deposits, 34(6): 1187-1198 (in Chinese with English abstract).
- Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and

foreign lithium mine[J]. China Geolgy, 44(2): 263–278 (in Chinese with English abstract).

- Liu Shanbao, Wang Chenghui, Wang Denghong, Dai Hongzhang, Ma Shengchao, Yu Yang, Pan Meng, Hao Xuefeng, Yang Rong. 2020. The "3D2R–BP" large scale mapping method for blocks of pegmatite in Jiajika deposit, western Sichuan, and significance of its application in the Qinghai–Tibet Plateau[J]. Acta Geologica Sinica, 94(1): 326–332 (in Chinese with English abstract).
- Liu Xiang, Zhou Fangchun, Huang Zhibiao, Li Jiankang, Zhou Houxiang, Xiao Guoqiang, Bao Yunhe, Li Peng, Tan Liming, Shi Kewei, Su Junnan, Huang Xiaoqiang, Chen Hu, Wang Xuanmin, 2018. Discovery of Renli superlarge pegmatite–type Nb–Ta polymetallic deposit in Pingjiang, Hunan Province, and its significances[J]. Geotectonica et Metallogenia, 42(2): 235–243 (in Chinese with English abstract).
- Liu Xiang, Zhou Fangchun, Li Jiangkang, Huang Zhibiao, Shi Kewei, Huang Xiaoqiang, Zhang Liping, Su Junnan. 2019. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 38(4): 771–791 (in Chinese with English abstract).
- Liu Xiaochi, Wu Fuyuan, Wang Rucheng, Liu Zhichao, Wang Jiamin, Liu Chen, Hu Fangyang, Yang Lei, He Shaoxiong. 2021. Discovery of spodumene bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen[J]. Acta Petrologica Sinica, 37(11): 3295–3304 (in Chinese with English abstract).
- London D. 2008. Pegmatites[J]. Canadian Mineralogist, Special Publication, 10: 347.
- Lü Z H, Zhang H, Tang Y, Liu Y L, Zhang X. 2018. Petrogenesis of syn–orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U–Pb age and Hf isotope[J]. Ore Geology Reviews, 95(1): 161–181.
- Ma Shengchao, Wang Denghong, Liu Shanbao, Wang Chenghui, Dai Hongzhang, Rao Kuiyuan, Ding Xiaoping, Zhu Haiyang, Deng Ziqing, Guo Weipeng. 2020. The application of comprehensive prospecting methods on the hard rock type lithium deposit: a case study of Jiada lithium mine in Maerkang rare metals ore field[J]. Acta Geologica Sinica, 94(8): 2341–2353 (in Chinese with English abstract).
- Ma Zhanlong, Zhang Hui, Tang Yong, Lü Zhenghang, Zhang Xin, Zhao Jingyu. 2015. Zircon U–Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite[J]. Geochimica, 44(1): 9–26 (in Chinese with English abstract).
- Mou Baolei. 1999. Element Geochemistry[M]. Beijing: Peking University Publishing House, 1–227 (in Chinese).
- Peng Hailian, He Ningqiang, Wang Mancang, Du Biao, Li Wujie, Liu Youqi. 2018. Geological characteristics and metallogenic regularity of west track 509 rare polymetallic deposit in Dahongliutan region, Hetian, Xinjiang[J]. Northwestern Geology, 51(3): 146–154 (in

Chinese with English abstract).

质

- Qiao G B, Wu Y Z, Liu T. 2021. Zircon U–Pb age of pegmatite veins in Dahongliutan lithium deposit, western Kunlun[J]. China Geology, 4: 185–187.
- Qiao Gengbiao, Zhang Hande, Wu Yuezhong, Jin Moushun, Du Wei, Zhao Xiaojian, Chen Denghui. 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP zircon U–Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 89(7): 1180–1194 (in Chinese with English abstract).
- Qin Kezhang, Zhao Junxing, He Changtong, Shi Ruizhe. 2021.
 Discovery of the Qiongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrology Sinica, 37(11): 3277–3286 (in Chinese with English abstract).
- Ren Baoqin, Zhang Hui, Tang Yong, Lü Zhenghang. 2011. LA–ICPMS U–Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica, 31(3): 587–596 (in Chinese with English abstract).
- Shi Kewei, Zhou Fangchun, Liu Xiag, Li Peng, Huang Zhibiao, Wen Chunhua, Chen Moran, Su Junnan, Huang Xiaoqiang, Zhang Zongdong, Zhang Liping, Chen Hu, Liu Junfeng, Hu Xiaofang. 2020. Geological characteristics and the prospecting significance of the spodumene–muscovite pegmatite in the Renli ore–field, Hunan Province[J]. Acta Geologica Sinica, 94(3): 817–835 (in Chinese with English abstract).
- Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035–1053 (in Chinese with English abstract).
- Sun Wenli, Liu Yi, Zhang Zhaowei. 2022. Research progresson petrogenesis of LCT-type granitic pegmatite and lithium enrichment mechanism[J]. Northwestern Geology, 55(2): 35–55 (in Chinese with English abstract).
- Tan Kebin, Guo Qiming, Guo Yongming. 2021. The U–Pb age and its significance of granite in Li Be polymetallic deposit of western 509 Daoban in Hetian County, Xinjiang[J]. Xinjiang Nonferrous Metals, 44(2): 6–10 (in Chinese with English abstract).
- Tang Juxing, Wang Qin, Yang Chao, Ding Shuai, Lang Xinghai, Liu Hongfei, Huangyong, Zheng Wenbao, Wang Liqiang, Gao Yiming, Feng Jun, Duan Jilin, Song Yang, Wang Yiyun, Lin Bin, Fang Xiang, Zhang Zhi, Yang Huanhuan. 2014. Two porphyry epithermal deposit metallogenic subseries in Tibetan Plateau: Practice of "absence prospecting" deposit metallogenic series[J]. Mineral Deposits, 33(6): 1151–1170 (in Chinese with English abstract).
- Tang Y, Zhao J Y, Zhang H, Cai D W, Lü Z H, Liu Y L, Zhang X. 2017. Precise columbite–(Fe) and Zircon U–Pb Dating of the Nangping No. 31 pegmatite vein in northeastern Cathaysia Block, SE China[J]. Ore geology Reviews, 83: 300–311.
- Tu Qijun, Han Qiong, Li Ping, Wang Denghong, Li Jiankang. 2019. Basic characteristics and exploration progress of the spodumene ore

deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 93(11): 2862–2873 (in Chinese with English abstract).

- Wang Bingzhang, Han Jie, Xie Xianglei, Chen Jiang, Wang Tao, Xue Wangxiang, Bai Zonghai, Li Shanping. 2020. Discovery of the Indosinian (Bery-bearing) spodumene pegmatitic dike swarm in the Chakabeishan area in the northeastern margin of the Tibetan Plateau: Implications for Li–Be mineralization[J]. Geotectonica et Metallogenia, 44(1): 69–79 (in Chinese with English abstract).
- Wang Chenghui, Wang Denghong, Liu Shanbao, Xu Jianxiang, Qin Jinhua, Qin Yan, Liu Jinyu, Zhao Zheng, Feng Wenjie, Liu Zhanqing, Zhao Ruyi, Guo Chunli. 2022. New discovery and regional prospecting potentiality of greisen-type lithium mineralization in the Shilei tungsten and tin deposit, southern Jiangxi Province[J]. Geology in China, 49(6): 1834–1844 (in Chinese with English abstract).
- Wang Denghong. 2002. A Study on the Metallogenic Series and Metallogenic Regularity of Altay Metallogenic Province[M]. Beijing: Atomic Energy Publishing House, 1–493 (in Chinese).
- Wang Denghong. 2019. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and directions of exploration[J]. Acta Geologica Sinica, 93(6): 1189–1209 (in Chinese with English abstract).
- Wang Denghong, Chenyunchuan, Xu Zhigang. 2001. Chronological study of Caledonian metamorphic pegmatite muscovite deposits in the Altay Mountains, Northwestern China, and its significance[J]. Acta Geologica Sinica, 75(3): 419–425 (in Chinese with English abstract).
- Wang Denghong, Chen Yuchuan, Xu Zhigang. 2003. ⁴⁰Ar/³⁹Ar isotope dating on muscovite from Indosinian rare metal deposits in central Altay, Northwestern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 22(1): 14–17 (in Chinese with English abstract).
- Wang Denghong, Li Jiankang, Fu Xiaofang. 2005. ⁴⁰Ar/³⁹Ar dating for the Jiajika pegmatite–type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 34(6): 541–547 (in Chinese with English abstract).
- Wang Denghong, Li Jiankang, Ying Lijuan, Chen Zhenghui, Chen Yuchuan. 2007. The thinking of prospecting for PGEs in using the idea of "all sites mineralizing and absence prospecting"[J]. Acta Mineralogica Sinica, 27(S1): 460–462 (in Chinese with English abstract).
- Wang Denghong, Chen Yuchuan, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Liu Xifang, Zhang Changqing, Wang Chenghui, Wang Yonglei. 2013. Prediction type of mineral resources and its application in the assessment work of mineral resources potential[J]. Journal of Jilin University, 43(4): 1092–1110 (in Chinese with English abstract).
- Wang Denghong, Fu Xiaofang. 2013. The breakthrough of lithium prospecting in peripheral areas of Jijika, Sichuan[J]. Rock and Mineral Analysis, 32(6): 987 (in Chinese with English abstract).

- Wang Denghong, Wang Ruijiang, Fu Xiaofang, Sun Yan, Wang Chenghui, Hao Xuefeng, Liu Lijun, Pan Meng, Hou Jianglong, Dai Jingjing, Tian Shihong, Yu Yang. 2016. A discussion on the major problems related to geological investigation and assessment for energy metal resources base: A case study of the Jiajika large lithium mineral resource base[J]. Acta Geoscientica Sinica, 37(4): 471–480 (in Chinese with English abstract).
- Wang Denghong, Dai Hongzhang, Yu Yang, Liu Lijun, Dai Jingjing, Liu Shanbao, Xiong Xin, Wang Yuxian, Fu Xiaofang, Hao Xuefeng, Yang Rong, Pan Meng, Qin Yan, Wang Chenghui, Hou Jianglong, Yuan Linping, Wang Wei, Tang Yi, Feng Yonglai, Rao Kuiyuan, Luo Guanghua, Tian Shihong. 2021. Theory, Method, and Practice of Investigation and Evaluation of Large Lithium Resource Bases: An example of the Methyl Ka Ultra Large Lithium Mine in Western Sichuan as an Example[M]. Beijing: Geology Publishing House, 1–458 (in Chinese with English abstract).
- Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Lipeng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743–764 (in Chinese with English abstract).
- Wang D H, Dai H Z, Liu S B, Wang C H, Yu Y, Dai J J, Liu L J, Yang Y Q, Ma S C. 2020b. Research and exploration progress on lithium deposits in China[J]. China Geology, 3: 137–152.
- Wang H, Gao H, Zhang X Y, Yan Q H, Xu Y G, Zhou K L, Dong R, Li P. 2020a. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 360/361(5): 105449.
- Wang He, Huang Liang, Bai Hongyang, Wang Kunyu, Wang Zhenhong, Gao Hao, Zhou Jinsheng, Qin Yan, Wang Yan. 2022. Types, distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 46(5): 848–866 (in Chinese with English abstract).
- Wang He, Xu Yigang, Yan Qinghe, Zhang Xiaoyu. 2021. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 95(10): 3085–3098 (in Chinese with English abstract).
- Wang L X, Ma C Q, Zhang C, Zhang J Y, Marks M A W. 2014. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China[J]. Lithos, 206: 147–163.
- Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China Earth Sciences, 47(8): 871–880 (in Chinese with English abstract).
- Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 797–806 (in Chinese with English

质

abstract).

- Wang Yan, Xing Shuwen, Xiao Keyan. 2016. Metallogenic features and resources potential of the West Kunlun to Altun Fe–Pb–Zn–Au–Rare metals metallogenic belt[J]. Acta Geologica Sinica, 90(7): 1353–1363 (in Chinese with English abstract).
- Wang Zhen, Chen Zhenyu, Li Jiangkang, Li Peng, Xiong Xin, Yang Han, Zhou Fangchun. 2019. Indication of mica minerals for magmatic–hydrothermal evolution of Renli rare metal pegmatite deposit[J]. Mineral deposits, 38(5): 1039–1052 (in Chinese with English abstract).
- Waters D J, Law R D, Searle M P, Jessup M J. 2019. Structural and thermal evolution of the South Tibetan Detachment shear zone in the Mt Everest region, from the 1933 sample collection of L. R. Wager[J]. Geological Society, London, Special Publications, 478(1): 335.
- Wei Xiaopeng. 2018. Spatial-temporal Pattern, Petrogenesis and Tectonic Implications of the Triassic Granitoids from the Western Kunlun Orogen, Northwestern China[D]. Beijing: University of Chinese Academy of Sciences, 1–181 (in Chinese with English abstract).
- Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1–36 (in Chinese with English abstract).
- Xi Jinping. 2022. The reply to all geological workers of the sixth geological brigade of Shandong Provincial bureau of geology and mineral resources[N/OL]. Xinhua Network,http://m.news.cn/2022-10/04/c_1129050616.htm (in Chinese).
- Xiong Y Q, Jiang S Y, Wen C H, Yu H Y. 2020. Granite–pegmatite connection and mineralization age of the giant Renli Ta–Nb deposit in South China: Constraints from U–Th–Pb geochronology of coltan, monazite, and zircon[J]. Lithos, 358–359: 105422.
- Xu Chang, Li Jiangkang, Shi Guanghai, Li Peng, Liu Xiang, Zhang Liping. 2019. Zircon U–Pb age and Hf isotopic composition of porphyaceous biotite granite in south margin of Mufushan and their geological implications[J]. Mineral Deposits, 38(5): 1053–1068 (in Chinese with English abstract).
- Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. 2020. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn Tagh[J]. Acta Petrologica Sinica, 36(12): 3572–3592 (in Chinese with English abstract).
- Xu Xingwang, Li Hang, Shi Fupin, Yao Fojun, Chen Jianzhong, Yang Zhiquan, Hong Tao, Ke Qiang. 2019. Metallogenic characteristics and prospecting of granitic pegmatite–type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica, 35(11): 3303–3316 (in Chinese with English abstract).
- Yan Junwu, Liu Feng, Shen Ying, Zhang Zhixin. 2020. Constraints on timing of magmatic activity and formation of pegmatite in the Koktokay pegmatite field, Xinjiang[J]. Acta Geoscientica Sinica,

41(5): 663-674 (in Chinese with English abstract).

- Yan Q H, Qiu Z W, Wang H, Wang M, Wei X P, Li P, Zhang R Q, Li C Y, Liu J P. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite–(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561–573.
- Yang Fuquan, Zhang Zhongli, Wang Rui, Li Qiang, Ding Jiangang, Su Zhenhua, Ma Kun. 2018. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xijiang[J]. Geotectonica et Metallogenia, 42(6): 1010–1026 (in Chinese with English abstract).
- Yang Yueqing, Wang Denghong, Liu Shanbao, Liu Lijun, Wang Chenghui, Guo Weiming. 2020. The co-occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajika, Sichuan Province[J]. Acta Geologica Sinica, 94(1): 287–302 (in Chinese with English abstract).
- Ye Tianzhu, Xiao Keyan, Yan Guangsheng. 2007. Methodology of deposit modeling and mineral resources potential assessment using in-tegrated geological information[J]. Earth Science Frontiers, 14(5): 11–19 (in Chinese with English abstract).
- Yuan F, Carranza J M E, Zhang S, Zhai D G, Wang G W, Zhang H Y, Sha Y Z, Yang S S. 2018. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation–fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China[J]. Lithos, 4521: 302–303, 20–36.
- Zeng Wei, Sun Fengyue, Zhou Hongying, Wang Jiaying, Li Zhidan, Chen Junqiang, Bi Junhui, Cui Yurong. 2021. Cassiterite U–Pb Age, Geochemistry and their geological significances of rare metal pegmatites in Guanpo area, North Qinling, China[J]. Earth Science, 48(8): 2851–2871 (in Chinese with English abstract).
- Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D, 2022. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5: 734–767.
- Zhang Hui, Lü Zhenghang, Tang Yong. 2019. Metallogeny and prospecting models as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt Xinjiang[J]. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract).
- Zhang Hui, Lü Zhenghang, Tang Yong. 2021. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 95(10): 2955–2970 (in Chinese with English abstract).
- Zhang Liping, Li Peng, Huang Zhibiao, Liu Xiang, Li Jiangkang, Huang Xiaoqiang, Su Junnan, Zhou Fangchun, Zeng Le, Chen Hu, Jiang Pengfei. 2021. Geochemical characteristics and metallogenic age of the No. 206 spodumene pegmatite vein in Renli rare metal ore field, Hunan Province[J]. Mineral Deposits, 40(6): 1267–1284 (in Chinese with English abstract).

Zhang Zhi, Li Guangming, Zhang Linkui. 2022. Exploration and research progresses of rare metals in Himalaya belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 42(2): 176–188 (in Chinese with English abstract).

第51卷第1期

- Zhao Junxing, He Changtong, Qin Kezhang, Shi Ruizhe, Liu Xiaochi, Hu Fangyang, Yu Kelong, Sun Zhenghao. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite–type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 37(11): 3325–3347 (in Chinese with English abstract).
- Zhao Pengda, Chen Jianping, Zhang Shouting. 2003. The new development of "Three Components" quantitative mineral prediction[J]. Earth Science Frontiers, 10(2): 455–463 (in Chinese with English abstract).
- Zhao Ruyi, Li Weihong, Jiang Changyi, Wang Jiangbo, Wang Bangyao, Hui Zhengbo. 2013. The U-bearing granitic pegmatite age and its tectonic significance in Danfeng area, Shaanxi Province[J]. Acta Mineralogica Sinica, 33(S2): 880–882 (in Chinese with English abstract).
- Zhao Ruyi, Wang Denghong, Chen Yunchuan, Leng Chengbiao, Qin Jinhua, Zhao Chenhui. 2020. Geological characteristics, metallogeny and geospatial mineralization model of uranium in the Nangling metallogenic belt[J]. Acta Geologica Sinica, 94(1): 149–160 (in Chinese with English abstract).
- Zhou Fangchun, Li Jiankang, Liu Xiang, Li Peng, Huang Zhibiao, Shi Kewei, Su Junnan, Chen Hu, Huang Xiaoqiang. 2019. Geological characteristics and genetic significance of orebodies in Renli Nb–Ta deposit, Hunan Province[J]. Acta Geologica Sinica, 93(6): 1392–1404 (in Chinese with English abstract).
- Zhou Q F, Qin K Z, Tang D M. 2021. Mineralogy of columbite–group minerals from the rare–element pegmatite dykes in the East–Qinling orogen, central China: Implications for formation times and ore genesis[J]. Journal of Asian Earth Sciences, 218(1): 104879.
- Zou Tianren, Li Qingchang. 2006. The Deposits of Rare Metal and Rare Earth Elements in Xinjiang, China[M]. Beijing: Geology Publishing House, 1–280 (in Chinese).

附中文参考文献

- 白洪阳, 王核, 闫庆贺, 王赛蒙, 王振宏, 张晓宇, 高昊, 秦艳. 2022. 新 疆西昆仑雪凤岭锂矿床铌钽铁矿、锡石年龄及其地质意义[J]. 岩 石学报, 38(7): 2139-2152.
- 毕伏科,肖文暹,阎同生.2006.成矿系列的缺位问题及其在成矿预 测中的应用[J].矿床地质,25(6):735-742.
- 陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1-867.
- 陈国建. 2014. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因[J]. 地质通报, 33(10): 1550-1561.
- 陈毓川,王登红,李厚民,熊先孝,高兰,徐志刚,盛继福,徐珏,袁忠 信,白鸽,朱明玉,芮宗瑶,叶会寿,刘喜方,张长青,陈郑辉,王成

辉, 王永磊, 应立娟, 张建. 2010. 重要矿产预测类型划分方案[M]. 北京: 地质出版社, 1-222.

- 代鸿章, 王登红, 刘丽君, 于扬, 代晶晶, 付小方. 2018. 川西甲基卡 308 号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科 学, 43(10): 3664-3681.
- 丁坤,梁婷,周义,凤永刚,张泽,丁亮,李侃. 2020. 西昆仑大红柳滩 黑云母二长花岗岩成因:来自锆石 U-Pb 年龄及 Li-Hf 同位素的 证据[J]. 西北地质, 53(1): 24-34.
- 费光春,杨峥,杨继忆,罗伟,邓运,赖宇涛,陶鑫鑫,郑硌,唐文春,李 剑. 2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代 的限定:来自 LA-MC-ICP-MS 锡石 U-Pb 定年的证据[J]. 地质 学报,94(3): 836-849.
- 风永刚,梁婷,雷如雄,鞠明辉,张忠利,高景刚,周义,吴昌志. 2021. 稀有金属伟晶岩过度冷却与侵位之关系——基于野外地质观察 及年代学的思考[J]. 地球科学与环境学报,43(1):100-116.
- 风永刚, 王艺茜, 张泽, 梁婷, 周义, 高景刚, 滕嘉欣. 2019. 新疆大红 柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩演 化的指示意义[J]. 地质学报, 93(6): 1405-1421.
- 付小方, 黄韬, 郝雪峰, 邹付戈, 肖瑞卿, 杨荣, 潘蒙, 唐屹, 张晨. 2019. 综合找矿模型在甲基卡隐伏区稀有锂金属找矿中的应用[J]. 矿 床地质, 38(4): 751-770.
- 付小方,梁斌,邹付戈,郝雪峰,侯立玮.2021.川西甲基卡锂等稀有 多金属矿田成矿地质特征与成因分析[J].地质学报,95(10): 3054-3068.
- 郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩 和 新 三 号 矿 脉 的 形 成 时 代 及 意 义 [J]. 矿 床 地 质, 34(6): 1199-1208.
- 何晗晗, 艾尔肯·吐尔孙, 王登红, 王瑞江, 陈振宇. 2020. 新疆别也萨 麻斯矿区钽锰矿的矿物学特征及其 TIMS U-Pb 定年[J]. 岩矿测 试, 39(4): 609-619.
- 侯江龙,李建康,王登红,代鸿章,刘丽君.2020.四川甲基卡锂矿区 二长花岗岩的地球化学、氢氧同位素组成及其地质意义[J].现代 地质,34(5):1059-1066.
- 侯立玮, 付小方. 2002. 松潘-甘孜造山带东缘穹隆状变质地质体[M]. 成都: 四川大学出版社.
- 胡军. 2015. 西昆仑大红柳滩铁矿床成矿时代、动力学背景及其成因 研究[D]. 北京: 中国科学院大学, 1-173.
- 黄志飚,李鹏,周芳春,刘翔,李建康,肖国强,张立平,陈虎,汪宣民. 2018. 幕阜山地区新元古代花岗岩地球化学特征及成因探讨[J]. 桂林理工大学学报,38(4): 614-624.
- 李昌元. 2022. 湘东北地区幕阜山燕山早期黑云母二长花岗岩地球 化学特征与成岩机制探讨[J]. 世界有色金属, 26(16): 147-151.
- 李光明,张林奎,焦彦杰,夏祥标,董随亮,付建刚,梁维,张志,吴建 阳,董磊,黄勇.2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨 多金属矿床的发现及意义[J].矿床地质,36(4):103-108.
- 李杭,洪涛,杨智全,陈建中,柯强,王学海,牛磊,徐兴旺.2020.稀有 金属花岗伟晶岩锆石、锡石与铌钽铁 矿 U-Pb 和白云母⁴⁰Ar/³⁹ Ar 测年对比研究:以阿尔金中段吐格曼北锂铍矿床为例[J].岩 石学报,36(9):2869-2892.

李杭,洪涛,杨智全,刘善科,王学海,马垠策,牛磊,徐兴旺. 2022 阿

地

质

中

尔金中段吐格曼北花岗伟晶岩型锂铍矿床多阶段岩浆-成矿作用[J]. 岩石学报, 38(10): 3085-3103.

- 李建康. 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学 背景[D]. 北京: 中国地质大学, 1-225.
- 李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269-2283.
- 李侃,高永宝,滕家欣,金谋顺,李伟. 2019. 新疆和田县大红柳滩一 带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方 向[J]. 西北地质, 52(4): 206-221.
- 李乐广,王连训,朱煜翔,马昌前,佘振兵,曹亮,冷双梁,闫育养. 2022. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程 [J]. 地球科学, 48(9): 3221-3244.
- 李鹏,李建康,裴荣富,冷双梁,张旭,周芳春,李胜苗.2017.幕阜山 复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学 依据[J].地球科学,42(10):1684-1696.
- 李鹏,周芳春,李建康,刘翔,黄志飚,张立平.2020.湘东北仁里-传 梓源铌钽矿床隐伏花岗岩锆石 U-Pb 年龄、Hf 同位素特征及其 地质意义[J].大地构造与成矿学,44(3):486-500.
- 李鹏,张立平,李建康,黄志飚,周芳春,姜鹏飞.2021.江南造山带中 段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J].矿床 地质,40(4):819-841.
- 李鹏春. 2006. 湘东北地区显生宙花岗岩岩浆作用及其演化规律[D]. 广州: 中国科学院广州地球化学研究所, 1-101.
- 李晓峰, 韦星林, 朱艺婷, 李祖福, 邓宣驰. 2021. 华南稀有金属矿床: 类型、特点、时空分布与背景[J]. 岩石学报, 37(12): 3591-3614.
- 梁斌, 付小方, 唐屹, 潘蒙, 袁蔺平, 郝雪峰. 2016. 川西甲基卡稀有金属矿区花岗岩岩石地球化学特征[J]. 桂林理工大学学报, 36(1): 42-49.
- 梁婷, 滕家欣, 王登红, 凤永刚, 张泽, 王艺茜, 谭细娟, 周义, 杨秀清, 高景刚, 李侃, 李建康, 丁亮, 高永宝, 三金柱, 燕洲泉. 2021. 新疆 大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社, 1-262.
- 刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石--锂云母型伟晶岩[J]. 岩石学报, 37(11): 3287-3294.
- 刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有 金属矿床的地质特征与成矿规律 [J]. 矿床地质, 34(6): 1187-1198.
- 刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿 主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263-278.
- 刘善宝, 王成辉, 王登红, 代鸿章, 马圣钞, 于扬, 潘蒙, 郝雪峰, 杨荣. 2020. 四川甲基卡锂矿伟晶岩转石分布区"3 定 2 参"大比例尺 填图法及其在青藏高原应用的意义[J]. 地质学报, 94(1): 326-332.
- 刘翔,周芳春,黄志飚,李建康,周厚祥,肖国强,包云河,李鹏,谭黎 明,石威科,苏俊男,黄小强,陈虎,汪宣民.2018.湖南平江县仁 里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J].大地构 造与成矿学,42(2):235-243.
- 刘翔,周芳春,李鹏,李建康,黄志飚,石威科,黄小强,张立平,苏俊 男.2019.湖南仁里稀有金属矿田地质特征、成矿时代及其找矿

意义[J]. 矿床地质, 38(4): 771-791.

- 刘小驰,吴福元,王汝成,刘志超,王佳敏,刘晨,胡方泱,杨雷,何少 雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有 金属成矿作用研究的启示[J]. 岩石学报, 37(1): 3295-3304.
- 马圣钞,王登红,刘善宝,王成辉,代鸿章,饶魁元,丁晓平,朱海洋, 邓子清,郭玮鹏.2020.综合勘查方法在硬岩型锂矿找矿中的应 用:以马尔康稀有金属矿田加达锂矿为例[J].地质学报,94(8): 2341-2353.
- 马占龙,张辉,唐勇,吕正航,张鑫,赵景宇.2015.新疆卡鲁安矿区伟 晶岩锆石 U-Pb 定年、铪同位素组成及其与哈龙花岗岩成因关 系研究[J]. 地球化学,44(1):9-26.
- 牟保磊. 1999. 元素地球化学[M]. 北京: 北京大学出版社, 1-227.
- 彭海练, 贺宁强, 王满仓, 杜彪, 李武杰, 刘幼骐. 2018. 新疆和田县大 红柳滩地区 509 道班西稀有多金属矿地质特征与成矿规律探讨 [J]. 西北地质, 51(3): 146-154.
- 乔耿彪,张汉德,伍跃中,金谋顺,杜玮,赵晓健,陈登辉.2015.西昆 仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报,89(7):1180-1194.
- 秦克章, 赵俊兴, 何畅通, 施睿哲. 2021. 喜马拉雅琼嘉岗超大型伟晶 岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277-3286.
- 任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其 地质意义[J]. 矿物学报, 31(3): 587-596.
- 石科威,周芳春,刘翔,李鹏,黄志飚,文春华,陈阡然,苏俊男,黄小强,张宗栋,张立平,陈虎,刘俊峰,胡小芳.2020.湖南仁里矿田 锂辉石白云母伟晶岩地质特征及其找矿意义[J].地质学报, 94(3):817-835.
- 舒良树. 2012. 华南构造演化的基本特征 [J]. 地质通报, 31(7): 1035-1053.
- 孙文礼, 刘益, 张照伟. 2022. LCT 型花岗伟晶岩岩石成因和锂富集 机制研究进展[J]. 西北地质, 55(2): 35-55.
- 谭克彬,郭岐明,郭勇明. 2021. 新疆和田 509 道班西锂铍多金属矿
 床花岗岩 U-Pb 年龄及其构造意义[J]. 新疆有色金属, 44(2):
 6-10.
- 唐菊兴, 王勤, 杨超, 丁帅, 郎兴海, 刘鸿飞, 黄勇, 郑文宝, 王立强, 高 一鸣, 冯军, 段吉琳, 宋扬, 王艺云, 林彬, 方向, 张志, 杨欢欢. 2014. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其 "缺位找矿"之实践[J]. 矿床地质, 33(6): 1151-1170.
- 涂其军,韩琼,李平,王登红,李建康.2019.西昆仑大红柳滩一带锂 辉石矿基本特征和勘查新进展[J].地质学报,93(11):2862-2873.
- 王秉璋, 韩杰, 谢祥镭, 陈静, 王涛, 薛万祥, 白宗海, 李善平. 2020. 青 藏高原东北缘茶卡北山印支期 (含绿柱石) 锂辉石伟晶岩脉群的 发现及 Li-Be 成矿意义[J]. 大地构造与成矿学, 44(1): 69-79.
- 王成辉,王登红,刘善宝,许建祥,秦锦华,秦燕,刘金宇,赵正,冯文杰,刘战庆,赵如意,郭春丽. 2022. 赣南石雷钨锡矿云英岩型锂矿 找矿新发现及其区域成矿潜力分析[J]. 中国地质,49(6): 1834-1844.
- 王登红. 2002. 阿尔泰成矿省的成矿系列及成矿规律研究[M]. 北京: 原子能出版社, 1-493.
- 王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209.

- 第51卷第1期
- 王登红, 陈毓川, 徐志刚. 2001. 阿尔泰加里东期变质成因伟晶岩型 白云母矿床的成矿年代证据及其意义[J]. 地质学报, 75(3): 419-425.
- 王登红, 陈毓川, 徐志刚. 2003. 新疆阿尔泰印支期伟晶岩的成矿年 代学研究[J]. 矿物岩石地球化学通报, 22(1): 14-17.
- 王登红,李建康,付小方.2005.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学,34(6):541-547.
- 王登红,李健康,应立娟,陈郑辉,陈毓川.2007.对运用全位成矿与 缺位找矿理念寻找铂族元素矿床的思考[J].矿物学报,(Z1): 460-462.
- 王登红, 陈毓川, 徐志刚, 盛继福, 朱明玉, 刘喜方, 张长青, 王成辉, 王永磊. 2013. 矿产预测类型及其在矿产资源潜力评价中的运用 [J]. 吉林大学学报 (地球科学版), 43(4): 1092-1110.
- 王登红, 付小方. 2013. 四川甲基卡外围锂矿找矿取得突破[J]. 岩矿 测试, 32(6): 987.
- 王登红,王瑞江,付小方,孙艳,王成辉,郝雪峰,刘丽君,潘蒙,侯江 龙,代晶晶,田世洪,于扬.2016.对能源金属矿产资源基地调查 评价基本问题的探讨——以四川甲基卡大型锂矿基地为例[J]. 地球学报,37(4):471-480.
- 王登红,代鸿章,于扬,刘丽君,代晶晶,刘善宝,熊欣,王裕先,付小 方,郝雪峰,杨荣,潘蒙,秦燕,王成辉,侯江龙,袁蔺平,王伟,唐 屹,冯永来,饶魁元,罗光华,田世洪.2021.大型锂资源基地调查 评价的理论、方法与实践——以川西甲基卡超大型锂矿为例 [M].北京:科学出版社,1-458.
- 王登红,代鸿章,刘善宝,李建康,王成辉,娄德波,杨岳清,李鹏. 2022.中国锂矿十年来勘查时间和理论研究的十个方面新进展 新趋势[J].地质力学学报,28(5):743-764.
- 王核, 黄亮, 白洪阳, 王堃宇, 王振宏, 高昊, 周金胜, 秦艳, 王焰. 2022. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 46(5): 848-866.
- 王核,徐义刚,闫庆贺,张晓宇.2021.新疆白龙山伟晶岩型锂矿床研 究进展[J].地质学报,95(10):3085-3098.
- 王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南 喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学 (地球科学), 47(8): 871-880.
- 王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化 学背景与空间分布: 远景区预测[J]. 地球学报, 41(6): 797-806.
- 王岩, 邢树文, 肖克炎. 2016. 西昆仑——阿尔金 Fe-Pb-Zn-Au-稀有金 属成矿带成矿特征及资源潜力[J]. 地质学报, 90(7): 1353-1363.
- 王臻,陈振,李建康,李鹏,熊欣,杨晗,周芳春.2019. 云母矿物对仁 里稀有金属伟晶岩矿床岩浆-热液演化过程的指示[J]. 矿床地质, 38(5): 1039-1052.
- 魏小鹏. 2018. 西昆仑造山带三叠纪花岗岩类时空分布、岩石成因及 其构造背景[D]. 北京: 中国科学院大学, 1–181.
- 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1-36.
- 习近平. 2022. 习近平给山东省地矿局第六地质大队全体地质工作 者的回信 [N/OL]. 新华网, http://m.news.cn/2022-10/04/c_112 9050616.htm.

- 许畅,李建康,施光海,李鹏,刘翔,张立平.2019.幕阜山南缘似斑状 黑云母花岗岩锆石 U-Pb 年龄、Hf 同位素组成及其地质意义[J]. 矿床地质,38(5):1053-1068.
- 徐兴旺,李杭,石福品,姚佛军,陈建中,杨智全,洪涛,柯强. 2019. 阿 尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预 测[J]. 岩石学报, 35(11): 3303-3316
- 徐兴旺,洪涛,李杭,牛磊,柯强,陈建中,刘善科,翟明国.2020.初论 高温花岗岩--伟晶岩锂铍成矿系统:以阿尔金中段地区为例[J]. 岩石学报,36(12):3572-3592.
- 闫军武,刘锋,申颖,张志欣. 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成[J]. 地球学报,41(5):663-674.
- 杨富全,张忠利,王蕊,李强,丁建刚,苏振华,麻坤.2018. 新疆阿尔 泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 42(6):1010-1026.
- 杨岳清,王登红,刘善宝,刘丽君,王成辉,郭唯明. 2020. 四川甲基卡 两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报,94(1): 287-302.
- 叶天竺, 肖克炎, 严光生. 2007. 矿床模型综合地质信息预测技术研究[J]. 地学前缘, 14(5): 11-19.
- 曾威,孙丰月,周红英,王佳营,李志丹,陈军强,毕君辉,崔玉荣. 2021.北秦岭官坡地区稀有金属伟晶岩锡石年代学、岩石地球化 学特征及地质意义[J].地球科学,48(8):2851-2871.
- 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属 矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792-814.
- 张辉, 吕正航, 唐勇. 2021. LCT 型伟晶岩及其锂矿床成因概述[J]. 地 质学报, 95(10): 2955-2970.
- 张立平,李鹏,黄志飚,刘翔,李建康,黄小强,苏俊男,周芳春,曾乐, 陈虎,姜鹏飞. 2021. 湖南仁里稀有金属矿田 206 号锂辉石伟晶 岩脉地球化学特征及其成矿时代[J]. 矿床地质,40(6): 1267-1284.
- 张志,李光明,张林奎. 2022. 西藏喜马拉雅带稀有金属矿勘查与研 究进展[J]. 沉积与特提斯地质, 42(2): 176-188.
- 赵俊兴,何畅通,秦克章,施睿哲,刘小驰,胡方泱,余可龙,孙正浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征 及分异特征[J]. 岩石学报, 37(11): 3325-3347.
- 赵鹏大, 陈建平, 张寿庭. 2003. "三联式" 成矿 预测新进展[J]. 地学前 缘, 10(2): 455-463.
- 赵如意,李卫红,姜常义,王江波,王邦耀,惠争卜.2013. 陕西丹凤地 区含铀花岗伟晶岩年龄及其构造意义[J]. 矿物学报,33(S2): 880-882.
- 赵如意, 王登红, 陈毓川, 冷成彪, 秦锦华, 赵晨辉. 2020. 南岭成矿带 铀矿地质特征、成矿规律与全位成矿模式[J]. 地质学报, 94(1): 149-160.
- 周芳春,李建康,刘翔,李鹏,黄志飚,石威科,苏俊男,陈虎,黄小强. 2019. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义[J]. 地 质学报,93(6): 1392-1404.
- 邹天人,李庆昌. 2006. 中国新疆稀有及稀土金属矿床[M]. 北京:地 质出版社, 1–280.