«上一篇
文章快速检索    
  下一篇»
  中国地质 2016, Vol. 43 Issue (1): 153-173  
0
引用本文
张雄, 曾佐勋, 刘伟, 等 湘南-桂东北地区寒武-奥陶纪沉积岩碎屑锆石U-Pb年代学特征及其地质意义[J]. 中国地质, 2016, 43(1): 153-173. 
ZHANG Xiong, ZENG Zuo-xun, LIU Wei, et al Detrital zircon geochronology of Cambrian—Ordovician sedimentary rocks in southern Hunan—Northeast Guangxi area and its tectonic implications[J]. Geology in China, 2016, 43(1): 153-173.(in Chinese with English abstract).  

湘南-桂东北地区寒武-奥陶纪沉积岩碎屑锆石U-Pb年代学特征及其地质意义
张雄1,2, 曾佐勋1, 刘伟1, 潘黎黎1, 杨宝忠1, 刘建雄3, 魏运许4, 贺赤诚1, 李绍凡1     
1. 中国地质大学(武汉)地球科学学院华中构造力学研究中心, 湖北武汉 430074;
2. 重庆地质矿产研究院, 重庆 400042;
3. 广东省佛山地质局, 广东佛山 528000;
4. 中国地质调查局武汉地质调查中心, 湖北武汉 430205
提要: 本文利用LA-ICP-MS分析技术,对湘南-桂东北地区寒武纪和奥陶纪沉积岩进行了碎屑锆石U-Pb年代学研究。获得有效年龄数据239组,年龄值变化范围较大(3146~474 Ma),主要集中分布于2633~2473 Ma(峰值2500Ma),1880~1521 Ma(峰值1650 Ma),1146~911 Ma(峰值970 Ma),896~720 Ma(峰值800 Ma)和682~474 Ma(峰值520 Ma)5个时间段。4件样品均记录了古太古代-中太古代年龄信息,同时以1146~911 Ma和896~720 Ma两个时间段年龄最集中,反映全球Grenville造山事件和全球Rodinia超大陆裂解事件对研究区影响显著。此外,本次还获得大量泛非期(520 Ma左右)锆石年龄,认为全球泛非事件对华夏地块及其邻区影响显著,反映华夏地块与冈瓦纳大陆可能有一定亲缘性。结合前人资料,认为研究区位于华夏地块和扬子地块西南段碰撞拼合带,研究区地层同时接受两地块物质沉积,物源主要来自华夏地块。
关键词: 碎屑锆石U-Th-Pb 同位素    华夏地块    扬子地块    湘南-桂东北    
中图分类号:P588.21;P597            文献标志码:A             文章编号:1000-3657(2016)01-0153-21
Detrital zircon geochronology of Cambrian—Ordovician sedimentary rocks in southern Hunan—Northeast Guangxi area and its tectonic implications
ZHANG Xiong1,2, ZENG Zuo-xun1, LIU Wei1, PAN Li-li1, YANG Bao-zhong1, LIU Jian-xiong3, WEI Yun-xu4, HE Chi-cheng1, LI Shao-fan1     
1. Huazhong Tectonomechanical Research Center, Faulty of Earth Sciences, China University of Geosciences(Wuhan) ;
2. Chongqing Institute of Geology and Mineral Resources, Chongqing 400042 China ;
3. Guangdong Foshan Geological Survey, Foshan 528000, Guangdong, China ;
4. Wuhan Center of Geological Survey, China Geological Survey. Wuhan 430223, Hubei, China
Fund support: Supported by State Key Program of National Natural Science Foundation of China (No.41230206) and China Geological Survey Program (No.1212011120824,No.12120113061700).
About the first author: ZHANG Xiong,male,born in 1990,master candidate,mainly engages in the study of structural geology and geochemistry;E-mail:zhangxiong305@163.com.
About the corresponding author: ZENG Zuo-xun,male,born in 1954,supervisor of doctor candidates,engages in structural geology and ore-forming structure;E-mail:zuoxun.zeng@126.com .
Abstract: In this paper, the authors studied detrital zircon geochronology of the Cambrian-Ordovician sedimentary rocks sampled from the southern Hunan to northeastern Guangxi area by using LA-ICP-MS and obtained 239 groups of effective age data, with the ages ranging from 3146 Ma to 474 Ma. Most of the data are concentrated in five periods, i.e., 2633-2473 Ma (peak value around 2500 Ma), 1880-1521 Ma (peak value around 1650 Ma), 1146-911 Ma (peak value around 970 Ma), 896-720 Ma (peak value around 800 Ma) and 682-474 Ma (peak value around 520 Ma). All the four samples recorded Paleoarchean-Mesoarchean information, and their ages are concentrated on 1146-911 Ma and 896-848 Ma, suggesting that the Grenville and Rodinia orogeny events profoundly influenced the study area. Moreover, the authors obtained a large number of ages representing the Pan-African time, implying that the global Pan-African event significantly affected the Cathaysia Block and its adjacent regions. Combined with previous researches, the authors hold that the study area is located in the southeast of the southwestern section of the collision orogenic belt between the Yangtze block and the Cathaysia block. The strata in the study area received material sources from the two blocks with the material from the Cathaysia block being dominant.
Key words: U-Th-Pb isotopic compositions of detrital zircons    Yangtze block    Cathaysia block    southern Hunan- northeast Guangxi    

华南板块由扬子地块和华夏地块拼贴而成,北西为扬子地块,南东为华夏地块,新元古代之前两地块并非统一大陆,具有不同的前寒武纪地壳演化历史[1-12]。华南板块以中生代秦岭—大别—苏鲁造山带为北界与华北板块分隔,北西以中生代−新生代的龙门山断裂为界与松潘甘孜地块相邻,南西以新生代的哀牢山—红河断裂为界与印支板块相邻,南东以新生代的东海和南海大陆斜坡为界。大量研究表明华南板块特别是华夏地块前寒武纪地壳演化与Columbia 超大陆、Rodinia 超大陆、Gondwana大陆等超大陆的循环密切相关[6, 11, 13-15]。虽然华南板块在各超大陆上的位置存在争议,但都位于碰撞或裂解的重要部位,对华南前寒武纪地质演化历史的研究显得尤为重要。

华夏地块前寒武纪演化历史以及华夏地块和扬子地块的碰撞聚合时间和界线位置,一直是华南基础地质关键科学问题。目前大部分学者认为扬子地块和华夏地块于中—新元古代(1.0 Ga左右)开始汇聚拼合,加里东运动后形成统一板块,其东段碰撞聚合界线为江绍断裂带[16-24]。但是,由于没有发现典型蛇绿岩套和构造混杂带等直接证据,加上显生宙以来多期的造山运动和岩浆活动,使得大量前寒武地质记录发生强烈的叠加和改造,区域构造变形十分复杂,扬子地块和华夏地块西南段碰撞聚合界线仍存在许多不同观点。如,钦州—岑溪—罗定—云浮构造混杂岩带[25];茶陵—郴州断裂[26];滇东南—黔西南的弥勒−师宗—罗平—兴义—望谟—罗甸一线[27, 28];萍乡—衡阳东—北海一线[29];钦杭结合带[30];郴州—临武断裂[31, 32];荔浦断裂[33];苗儿山与金鸡岭之间[34, 35]等。

本次研究区位于湘南—桂东北地区,该区出露地层以古生代地层为主,零星分布少量元古宙地层,区内出露不同时代岩浆岩岩体,其中以古生代—中生代中酸性岩体为主,如花山、姑婆山、连山、九嶷山、海洋山、都庞岭等。由于出露古老变质基底较少,区域构造变形强烈,且未发现确凿证据的蛇绿岩,故相对于华南东部研究程度较低。研究区位于扬子地块和华夏地块碰撞结合带附近,北西侧为扬子地块西南缘,南东侧为华夏地块西北缘,是研究扬子地块与华夏地块碰撞聚合带的有利场所。本文试图通过对研究区寒武纪和奥陶纪沉积岩中碎屑锆石U−Th−Pb同位素研究,结合前人资料,对比华夏地块和扬子地块前寒武纪锆石年龄分布特征,判断研究区基底组成与扬子地块和华夏地块的亲缘性差异,进而为限定扬子地块和华夏地块西南段边界位置以及为二者之间的构造演化提供依据。

1 地质概况及样品描述

研究区位于湘南—桂东北地区,区域上位于南华裂谷盆地内桂东凹陷带,是扬子地块和华夏地块西南段边界交接地带。研究区地层以古生代地层为主,零星分布中元古代和中生代到第四纪地层。区内出露岩体较多,其中湘东南地区以燕山期花岗岩为主,桂东北地区以加里东期花岗岩为主,如海洋山、都庞岭等加里东期花岗闪长岩;九嶷山燕山期花岗闪长岩;花山—婆姑山、金鸡顶等燕山期花岗岩;以及岩鹰嘴等加里东期小型斑岩岩体[26, 36-38]。研究区断裂构造发育,为多期构造运动结果,控制着区内的沉积活动和岩浆活动,主要断裂有NE 向的新资断裂带,龙胜断裂和荔浦断裂等。

本文4件样品均采自湖南江永—广西富川地区寒武纪和奥陶纪地层,奥陶纪地层包括黄隘组(O1h)、桥亭子组(O1-2q)和天马山组(O3t),主要为大陆边缘,前陆海盆相碎屑岩,发育水平层理、波状层理、透镜状层理、小型交错层理、火焰状构造、底模构造等沉积构造;寒武纪地层(∈b)主要为浅海相碎屑岩,发育正粒序层理、水平层理、小型单向斜层理等。样品H06采自桃川镇北部天马山组(O3t)地层,为绢云母凝灰质细砂岩,碎屑成分主要为零散均匀分布的棱角状碎屑石英和岩屑(图 2−a);样品H03采自桃川镇鸡笼山西北侧桥亭子组(O1-2q)地层,为伊利石−绢云母凝灰质细砂岩,碎屑成分主要为零散分布的次棱角状石英细砂及粉砂(图 2−b);样品H08采自源口瑶族乡西南侧黄隘组(O1h)地层,为凝灰质细−粉砂岩,碎屑成分主要为零散均匀分布的棱角状−次棱角状碎屑石英(图 2−c);样品H09采自鸟源山附近边溪组(∈b)地层,为凝灰质细砂岩,碎屑成分为零散均匀分布的次棱角状碎屑石英(图 2−d),4件样品磨圆度和分选性均较差,反映物质搬运距离较近,为近源沉积。

图 2 湘南-桂东北地区寒武纪及奥陶纪沉积岩显微照片(5倍正交镜下照相) Fig.2 Microscopic photos of Cambrian and Ordovician clastic sedimentary rocks in southern Hunan-northeastern Guangxi(crossed nicols,x5) a—奥陶纪天马山组绢云母凝灰质细砂岩(H06);b—奥陶纪桥亭子组伊利石-绢云母凝灰质细砂岩(H03);c—奥陶纪黄隘组凝灰质细-粉砂岩(H08);d—寒武纪边溪组凝灰质细砂岩(H09);Q—石英;Ser—绢云母;Ⅰ11—伊利石 a-Sericite fine tuffaceous sandstone from Ordovician Tianmashan Formation (H06);b-Illite-sericite tuffaceous sandstone from OrdovicianQiaotingzi Formation (H03);c-Tuffaceous fine-siltstone from Ordovician Huangai Formation (H08);d-Tuffaceous sandstone from CambrianBianxi Formation (H09)Q-Quartz;Ser-Sericite;Ⅰ11-Illite
2 样品分析方法

样品在河北廊坊诚信地质服务有限公司进行粉碎,并用人工重砂法从样品中分选出锆石。其后工作均在中国地质大学(武汉)显微镜室和地质过程与矿产资源国家重点实验室完成。锆石CL阴极发光图片拍摄所使用仪器为JXA−8100电子探针,U−Pb同位素定年和微量元素含量分析利用LA−ICP−MS 同时完成。激光剥蚀系统为193 mm Geolas2005,ICP−MS 为Agilent 7700a,激光剥蚀中采用氦气作为载气、氩气作为补偿气以调节灵敏度。激光剥蚀方式为单点剥蚀,直径为32 μm,时间分析数据包括20 s 的空白信号和35 s 的分析信号。分析仪器校正采用标准参考物质SRM610,数据年龄以国际标准锆石91500为外标。对数据的离线处理使用了软件ICPMSDataCal8.3[39, 40],普通Pb校正采用Andersen 的方法进行[41]。单个数据点的误差均为1σ ,样品年龄加权平均值的误差为2σ ,锆石样品的U−Pb年龄谐和图绘制和年龄权重平均计算均采用Ludwig的Isoplot程序完成[42]

大量的研究数据证明,当年龄<1000 Ma 时,206Pb/238U的年龄精度高于207Pb/206Pb的年龄精度;当年龄>1000 Ma时,207Pb/206Pb比值受Pb丢失影响小,保持稳定,故以207Pb/206Pb的年龄作为锆石结晶年龄[43]。在本文中,对于<1000 Ma的锆石,选择206Pb/238U 年龄做分析,对于>1000 Ma 的锆石选择207Pb/206Pb年龄做分析,同时对于谐和度<90%或>110%的数据,视为不和谐,不参与下文讨论。

3 分析结果与解释

研究区寒武纪和奥陶纪沉积岩中含有大量碎屑锆石,锆石多为无色透明,晶形较完整,形态上多呈长柱状,粒径50~250 μm,长宽比1:1~3:1,多具有一定程度的磨圆。锆石阴极发光(CL)图像见图 3,图中标出了部分代表性锆石分析点的序号和表面年龄。CL图像显示,大部分锆石自形程度较高,具有明显的震荡环带,显示岩浆锆石特征,部分锆石具有薄的增生边,少部分锆石具有残留核,反映锆石成因具有多样性。4件样品共测试锆石252粒,得到有效年龄239组,测试结果见表 1,碎屑锆石U−Pb年龄谐和图和年龄频率直方图见图 4

图 3 湘南—桂东北地区寒武纪及奥陶纪沉积岩中部分碎屑锆石CL图像 Fig.3 Feature of partially detrital zircons (CL) of Cambrian and Ordovician in south Hunan-northeast Guangxi
表 1 湘南—桂东北地区寒武纪及奥陶纪沉积岩中碎屑锆石U−Th−Pb同位素分析 Table 1 U−Th−Pbisotopic analyses for the detrital zircons of Cambrian and Ordovician in southern Hunan-northeasternGuangxi area
图 4 湘南—桂东北地区寒武纪及奥陶纪沉积岩中碎屑锆石U−Pb年龄谐和图和年龄频率直方图 Fig.4 Zircon U−Pbconcordia diagrams and histogram diagrams of Cambrian and Ordovician in southern Hunan-northeastern Guangxi area

本次测试239个有效锆石点,Th/U 比值分布范围为0.019~3.413,其中74%的Th/U比值大于0.4,且锆石自形程度较高,具有明显震荡环带,显示岩浆成因锆石特征[44, 45]

对采自寒武纪地层样品H09中60粒锆石进行了U−Pb年龄测试。在锆石U−Pb年龄谐和图上,所有分析点均落在谐和线上或其附近,这些谐和线上的锆石年龄即可代表其真实形成年龄,少数数据投影点偏离谐和线,它们的真实年龄应老于206Pb/207Pb表面年龄[46]。U−Pb年龄值分布于3146~474 Ma,数据年龄变化区间较大,说明岩石中的锆石是多源的,包含了丰富的古地质构造−岩浆事件信息。H09样品年龄主要集中在5个时间段,分别为:2633~2473 Ma、1880~1521 Ma、1146~911 Ma、896~848Ma、536~474 Ma,其中有58.3%的数据落在1146~911 Ma时间段,这与全球Grenville 造山运动时间一致,反映Grenville 造山事件对研究区及邻区影响较大。此外,在每个时间段内都具有一个或多个峰值,可能反映相应时间段内发生过构造−岩浆事件。值得注意的是,在这些数据中存在两组大于3000 Ma 的年龄数据,206Pb/207Pb年龄分别是(3040±32)Ma 和(3146±39)Ma,这两粒锆石磨圆度较高,反映经历了较远距离的搬运;锆石震荡环带明显,分析点均位于环带边缘,表明该锆石源区存在太古宙时期岩浆作用信息,这可以为研究华夏地块太古宙历史提供依据。

对采自奥陶纪地层样品H06、H03、H08中192粒锆石进行了U−Pb年龄测试,得到有效年龄数据179组,在锆石U−Pb年龄谐和图上,所有分析点均落在谐和线上或其附近。3件样品年龄变化区间均较宽:H06:3602~518 Ma;H03:3243~523 Ma;H08:2902~502 Ma,年龄分布特征相似,都主要分布于2600~2100 Ma、1800~1500 Ma、1200~900 Ma、900~700 Ma、700~500 Ma 这五个时间段内。其中均以1200~900 Ma 年龄段的锆石年龄最多,H06占41.2%,H03占30.3%,H08占36.7%,反映Grenville造山期地质事件对研究区具有重大意义,Grenville期构造−岩浆事件可能为研究区奥陶纪地层提供主要物源。同时,3件样品锆石年龄频率直方图中出现多个相似的年龄峰值:520 Ma、790 Ma、990 Ma、1110 Ma、2120 Ma、2500 Ma、2890 Ma,可能反映3件样品具有相似的物源。

此外,奥陶纪地层3件样品均捕捉到了太古宙信息,共获得大于2500 Ma的数据18组。其中最老的年龄来是自于H06的锆石H06−01,年龄为3602Ma,属始太古宙。由于华夏地块至今未有关于太古宙结晶基底的报道,推测可能来自华夏地块或扬子地块未出露的太古宙基底,当然也不排除来自曾经与华夏地块相邻的具有太古宙结晶基底大陆的可能性,具体成因尚待深入研究。同时,3件样品中均发现一定数量650~500 Ma的锆石,时间上与全球泛非事件对应,推测是全球泛非事件的年龄信息,反映华夏地块与冈瓦纳大陆可能具有亲缘性。

4 讨论

沉积岩中的碎屑矿物(如锆石、石榴子石、磷灰石、白云石等)都曾被用于识别沉积物源区和反演古老大陆演化历史[18, 47]。其中锆石最为稳定,受岩石风化、剥蚀、搬运、分选和沉积过程影响小,其U−Th−Pb同位素体系封闭温度高,受后期构造热事件影响小,碎屑锆石年龄谱系特征可以直接反映沉积物源区年龄组成[48-51]。同时,碎屑锆石的年龄结构不受沉积循环分馏过程影响,即使锆石经历沉积再循环,其年龄特征也与区域构造−岩浆事件相对应[52]

4.1 碎屑锆石年龄特征

4件样品中锆石年龄均在1200~900 Ma时间段出现最高峰,峰值为970 Ma 左右,与全球Grenville造山期地质事件基本一致。目前,在华夏地块以及扬子地块南部都发现大量的Grenville 造山期岩浆锆石年龄,如粤中和平县古寨花岗闪长岩中发现大量1070~910 Ma 的锆石[46];福建建瓯叶坑变石英角斑岩中发现(1100±19)Ma 年的岩浆锆石[53];江西永丰县潭头群变石英角斑岩锆石蒸发法206Pb/207Pb年龄为(1027±36)Ma[54];戈阳铁砂街群变流纹岩中锆石U-Pb年龄为(1147±18)Ma [24] 等。此外在粤中[55]、赣南[46]、广西东部大瑶山—大明山[56]、湘中大乘山[57]、湘东湘乡—醴陵和湘东南桂阳[34]、湘桂交界的苗儿山和湘南金鸡岭[35]等地区,沉积岩碎屑锆石中均发现大量Grenville 造山期年龄。综合大量的锆石年龄数据,推测华南南部曾经存在一个Grenville 造山带,为扬子和华夏地块接合带沉积区提供主要物源。

本次测年数据次高峰值位于520 Ma左右,与全球泛非事件时间一致。泛非事件指大约(550±100)Ma 前发生的一次重要的深成事件,是莫桑比克洋闭合,东、西冈瓦纳逐步聚合,并形成冈瓦纳大陆的过程[58, 59]。前人研究中也发现大量的泛非期碎屑锆石[34, 46],同时在粤东和平县发现了(507±17)Ma 的古寨岩体[60],认为研究区受泛非事件影响比较显著。此外,Yang et al (2004)通过对古地磁数据分析,认为在晚新元古代—早古生代期间,华南应该位于澳大利亚东部或者位于澳大利亚西部与印度之间[61];Metcalfe(2011)通过对比古生物分布特征,认为早古生代期间生物群是贯穿华南和印度—喜马拉雅的[62];Jiang et al (2003)研究印度板块和扬子地块新元古代—早古生代地层,认为两者具有相似性[63];Li et al (2014)和Yao et al (2014)通过统计分析华夏地块及其他地块碎屑锆石形态特征,年龄谱分布特征,以及Hf 同位素特征等,认为华夏地块寒武纪沉积岩碎屑锆石一部分来自印度北部,一部分来自华夏地块泛非期火成岩[13, 14]。本文的结果与Li et al(2014)和Yao et al (2014)的研究结果对比,认为华夏地块与冈瓦纳大陆可能具有亲缘性,研究区寒武纪和奥陶纪地层中520 Ma左右的碎屑锆石可能有一部分来自Gandwana 大陆时期与其相邻的印度北部,一部分来自华夏地块内部泛非期火成岩。

本次测试得到在900~700 Ma年龄段范围内的锆石也占很大一部分,在频率直方图上此年龄段形成一个较宽的峰,峰值位于800 Ma左右,这与全球Rodinia 超大陆裂解事件一致。扬子地块周缘和华夏地块东部发育大量新元古代中期830~750 Ma的岩浆岩和火山-沉积盆地,岩浆岩以大规模的花岗岩和酸性火山岩为主,其次为玄武岩和基性侵入体[11, 64-69]。对扬子地块周缘裂谷盆地及其中岩浆岩地质特征分析表明,华南与Rodinia 超大陆关系密切,新元古代中期,华南位于Rodinia 超大陆裂解重要位置[11, 70-72]。在地幔柱作用下,华南与Rodinia 超大陆同步裂解,Rodinia 的聚合和裂解决定了华南新元古代晚期和早古生代的洋陆格局与构造演化。

在谐和性较好的数据中包含了相当数量的新太古代晚期—古元古代早期(2600~2100 Ma)信息,与全球范围内新太古代晚期岩浆活动和高级变质时代一致。对比近年来华夏地块大量新太古代岩浆活动和高级变质作用事件[46, 57, 73, 74]推测新太古代可能是华夏地块前寒武纪地壳物质形成期之一,本次测试捕捉到这个信息,对研究华夏地块基底形成演化有借鉴价值。

此外,本次测试还获得了9组大于2800 Ma 且谐和性较好的数据,其中4组大于3000 Ma,最老的年龄为3602 Ma,这是湘南—桂东北地区至今发现的最古老的年龄信息。在前人的研究中也普遍发现了太古宙碎屑锆石的存在。如在研究区东侧华夏和扬子地块碰撞接合带东段,广东南部增城地区,北部檀溪地区和四堡造山带内均存在大于3000Ma的碎屑锆石[75, 76];在研究区西南部钾镁煌斑岩捕掳晶锆石和潭溪片麻岩中也有3000 Ma的年龄信息记录[73, 77]。由于在华夏地块至今没有真正的太古宙结晶基底的报道,对于这些太古宙碎屑锆石现在主要有两种观点:一种是以Li et al. (2014)为代表的,认为这些太古宙碎屑锆石来自其他曾经与华夏地块相邻的外来地块[13];另一种是以张国伟等(2013)为代表的,认为华南大陆存在分布较广的太古宙结晶基底,同时还有冥古宙物质信息,这些太古宙碎屑锆石来自华夏陆块本身未初露/未厘定的太古宙结晶基底[72]。本次在湘南—桂东北地区太古代碎屑锆石的发现,有助于研究华夏地块太古代演化历史,但是对于这部分锆石的具体来源,还有待进一步的研究。

4.2 沉积物源区分析

本次将研究区样品碎屑锆石年龄频率直方图与扬子地块和华夏地以及邻区湘南、湘东南地区碎屑锆石年龄频率直方图做对比(图 5),希望可以识别沉积物的来源。

图 5 A−扬子地块南部碎屑锆石统计年龄频率直方图(数据来自文献[34,79-83]);B−华夏地块碎屑锆石统计年龄频率直方图(数据来自文献[46,56,57,75,76,8487]);C−湘东南地区早古生代碎屑锆石年龄频率直方图(数据来自文献[88]);D−湘南震旦纪地层碎屑锆石年龄频率直方图(数据来自文献[34]);E−本文研究区(湘南桂东北地区)碎屑锆石统计年龄频率直方图 Fig.5 A−Detrital zircon age frequency histogram of SouthYangtze Block (data after references [34,79-83]);B−Detritalzircon age frequency histogram of Cathaysia Block (data after references [46,56,57,75,76,8487]);C−Detrital zircon agefrequency histogram of Early Paleozoic in south HunanProvince (data after reference [88]);D−Detrital zircon agefrequency histogram of Sinian in southern Hunan Province(data after reference [34]);E−Detrital zircon age frequency histogram of this study

CL图像中(图 3),样品中碎屑锆石普遍具有一定程度的磨圆,年龄较大的锆石,特别是太古宙锆石,古元古代锆石磨圆程度较高,反映经历了较远距离的搬运作用。但是,在样品薄片显微照片中,4件样品中碎屑矿物(石英)的磨圆度和分选性均较差,多位棱角−次棱角状,反映物质搬运距离较近,为近源沉积。综合分析认为,研究区寒武纪—奥陶纪地层中碎屑锆石特别是年龄较老的锆石经历了二次或多次搬运作用,由其最初的物源区经过一次或多次的搬运作用沉积在研究区附近,再经过最后一次近距离的剥蚀搬运作用在现今的地方沉积下来。其中2.5 Ga左右的碎屑锆石可能来自华夏地块与扬子地块未岀露太古宙基底物质,也不排除来自曾经与华夏地块相邻的具有太古宙结晶基底大陆的可能;1.77 Ga左右的碎屑锆石可能来自扬子地块或华夏地块自身或劳伦古陆,澳大利亚和东南极这些曾经与华夏地块相邻的古陆;而1.0~0.75 Ga的碎屑锆石可能来自华夏地块或扬子地块或同时来自两个地块同期的花岗岩[13, 14]

由于华夏地块和扬子地块具有不同的前寒武纪演化历史,在新元古代之前,它们并不是统一的大陆,其岩石组成,时代组合,地球化学以及后期地质演化等,存在明显差异,华夏地块和扬子地块前寒武纪锆石年龄具有不同的分布特征。对华夏地块粤中、赣南、广西东部、湘中、湘东、湘东南、湘桂交界等地区[14, 34, 35, 46, 55-57]新元古代到中生代沉积岩研究表明,华夏地块以包含大量Grenville 期(1.0 Ga左右)和新太古代(2.5 Ga 左右)碎屑锆石为特征。而扬子地块则以大量Rodinia 裂解期(860~780 Ma)岩浆事件为标志,这期事件在华夏地块反映不明显,仅限于华夏东部的北武夷地区,同时,扬子地块发育2.0 Ga 左右的岩浆活动,而华夏地块却未发现这些事件记录,故年龄谱上860~780 Ma 和2.0 Ga处形成的峰也可以作为扬子地块特征。扬子地块虽然也有1.0 Ga 左右锆石报道,但主要位于扬子地块西缘,离研究区较远,且在扬子地块西缘的岩浆活动中也不占主导地位。

本次研究碎屑锆石存在800 Ma、970 Ma、1100Ma、1650 Ma、2500 Ma 等年龄峰,华夏地块和扬子地块碎屑锆石特征峰在本次研究中均有体现,说明研究区寒武纪—奥陶纪地层可能接受来自两地块物质沉积。

华南在Rodinia 期裂解形成南华裂谷系后,经晚寒武世—早奥陶世的郁南运动,云开地块由南向北运动与桂滇—北越地块发生碰撞(图 1−B),造成了云开地区褶皱隆升和由南向北的推覆构造[78],在研究湘东南泗洲山地区南华系和震旦系地层时得出古水流方向为南东至北西向[35],证明沉积物主要由华夏地块提供。古地理方面,研究区位于荔浦断裂南东侧桂东凹陷,寒武纪时期桂东地区位于扬子古地理体系和华夏古地理体系之间,物源主要来自华夏古陆,少量来自扬子地块西南的滇中古陆和牛首山岛[33]。此外,王鹏鸣等在研究湘东南地区南华纪和震旦纪沉积岩时,也认为物源主要来自华夏地块[34, 35]。结合前人资料认为,湘南—桂东北地区寒武纪—奥陶纪地层物源主要来自华夏地块,少量来自扬子地块,研究区与华夏地块亲缘性更高。

图 1 A−华南古陆残块分布图(据文献[9]改编);B−湘南−桂东北及邻区晚寒武世−早奥陶世古地理示意图(据文献[38]改编);C−研究区区域地质简图及采样位置图(据1:250万地质图改编) Fig.1 A−Sketch map showing distribution of continental blocks in South China (modified after [9]);B−Palaeogeographic map ofsouthern Hunan-northeastern Guangxi and adjacent areas in the Late Cambrian to Early Ordovician (modified after [38]);C−Sketch geological map of the study area and sampling location (modified after 25 00000 geological map)
4.3 华夏地块与扬子地块西南段边界初步探讨

对于华夏地块和扬子地块西南段界线问题,学术界存在较多观点。殷鸿福等(1999)从多岛洋体系出发,认为华夏与扬子南段界线应该以云开地块的北界为界线,即钦州—岑溪—罗定—云浮构造混杂岩带[25];Xu et al. (2007)从地层学方面分析,认为扬子地块与华夏地块的分界线应以在华南板块出露的板溪群的南部边缘为界[89];张国伟等(2002)和Guo et al. (2009)对滇东南火山岩和花岗岩的研究,认为滇东南—黔西南的弥勒—师宗—罗平—兴义—望谟—罗甸一线为扬子地块与华夏地块的碰撞带[27, 28];杨明桂等(2009)认为扬子地块和华夏地块晋宁期西南段结合带位于萍乡—衡阳东—北海一线[29];Zhang and Wang (2007)通过对华南地区地壳地震波分析,认为华夏地块和扬子地块西南段边界断裂应为吴川—四会断裂[90];饶家荣等(2012)通过研究深部地球物理资料,认为扬子地块和华夏地块深部结合带北西边界大致在安徽歙县—南昌—湖南大围山—沩山—城步—广西河池一线,南东边界大致在江山—绍兴—新余—萍乡—衡东—双牌—桂林—柳州一线,在湖南位于钦杭结合带[30];付建民等(2004)认为茶陵—郴州断裂为华夏地块与扬子地块在湖南段的界线[26];张建新等(2000)和Wang Y et al. (2010)通过分析郴州—临武断裂两侧地球化学特征以及岩体特征,认为郴州—临武断裂为华夏地块和扬子地块西南段边界断裂[18, 31];陈懋弘等(2006)通过解析桂北—桂东地区古地理特征,提出以荔浦断裂作为扬子地块与华夏地块西南端界线断裂[33];王鹏鸣等(2012,2013)认为扬子地块和华夏地块西南地区的分界线位于苗儿山与金鸡岭之间[34, 35],等等。本次研究区位于上述几种观点重合部位,结合沉积岩物源分析,本文认为研究区位于华夏地块与扬子地块碰撞结合带内,但具体界线位置还有待进一步研究。

5 结论

(1)本文通过对湘南—桂东北地区寒武纪和奥陶纪地层碎屑锆石年代学研究,获得了丰富的年龄信息,有效U−Pb年龄值位于3146~474 Ma,主要集中分布于2633~2473 Ma、1880~1521 Ma、1146~911 Ma、896~720 Ma、536~474 Ma这5个时间段,反映物源区古太古代到奥陶纪经历了多期构造−岩浆事件。

(2)大量970 Ma 左右和800 Ma左右的年龄表明全球Grenville造山事件和Rodinia超大陆裂解事件对华南影响显著,大量泛非期(520 Ma 左右)年龄,表明华夏地块可能与冈瓦纳关系密切。

(3)研究区与扬子地块和华夏地块都具有亲缘性,研究区地层同时接受华夏地块和扬子地块物质沉积,物源大部分来自华夏地块,少部分来自扬子地块,结合前人资料,认为研究区应位于华夏地块和扬子地块碰撞拼合带内。

致谢: 匿名审稿人提出的建设性意见对本文的修改提供了重要帮助,编辑部李亚萍老师在本文修改中提出许多宝贵的意见,在此一并表示衷心的感谢!

参考文献(References)
[1] Zheng J, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos,2004, 74 (1/2) : 41 –65. (0)
[2] Yu J, Wang L, O Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research,2009, 174 (3/4) : 347 –363. (0)
[3] Li H, Jia D, Wu L, et al. Detrital zircon provenance of the Lower Yangtze foreland basin deposits:constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China[J]. Geological Magazine,2013, 150 (6) : 916 –959. (0)
[4] Li L, Sun M, Wang Y, et al. U-Pb and Hf isotopic study of detrital zircons from the meta-sedimentary rocks in central Jiangxi Province, South China:Implications for the Neoproterozoic tectonic evolution of South China Block[J]. Journal of Asian Earth Sciences,2011, 41 (1) : 44 –55. (0)
[5] Li X, Li Z, He B, et al. The Early Permian active continental margin and crustal growth of the Cathaysia Block:In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons[J]. Chemical Geology,2011, 328 : 195 . (0)
[6] 郑永飞, 张少兵. 华南前寒武纪大陆地壳的形成和演化[J]. 科学通报,2007, 52 (1) : 1 –10.
Zheng Yongfei, Zhang Shaobing. The formation and evolution of the Precambrian continental crust in South China[J]. Chinese Science Bulletin,2007, 52 (1) : 1 –10. (in Chinese) (0)
[7] 于津海, 王丽娟, 魏震洋, 等. 华夏地块——一个由古老物质组成的年轻陆块[C]//2006年全国岩石学与地球动力学研讨会.中国江苏南京, 2006.
Yu Jinhai, Wang Lijuan, Wei Zhengyang, et al. Cathaysia block:A young continent composed of ancient materials[C]//Geological Journal of China Universities, 2006. (0)
[8] 于津海, 王丽娟, 魏震洋, 等. 华夏地块显生宙的变质作用期次和特征[J]. 高校地质学报,2007 (03) : 474 –483.
Yu Jinhai, Wang Lijuan, Wei Zhengyang, et al. The metamorphism times of Huaxia plot Phanerozoic and Characteristics[J]. Geological Journal of China Universities,2007 (03) : 474 –483. (in Chinese) (0)
[9] 舒良树. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报,2006, 12 (4) : 418 –431.
Shu Liangshu. Predevonian tectonic evolution of South China:from Cathaysian block to Caledonian period folded Orogenic belt[J]. Geological Journal of China Universities,2006, 12 (4) : 418 –431. (in Chinese) (0)
[10] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学(D辑),2013, 56 (10) : 1804 –1828.
Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science in China (Series D),2013, 56 (10) : 1804 –1828. (in Chinese) (0)
[11] 李献华, 李武显, 何斌. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J]. 矿物岩石地球化学通报,2012, 31 (6) : 543 –559.
Li Xianhua, Li Wuxian, He Bin. The observation, explanation and examination of the forming of Chinasouth continent and the amalgamating-cracking of Rodninia super continent[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2012, 31 (6) : 543 –559. (in Chinese) (0)
[12] 高林志, 刘燕学, 丁孝忠, 等. 江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义[J]. 中国地质,2012 (01) : 12 –20.
Gao Linzhi, Liu Yanxue, Ding Xiaozhong, et al. SHRIMP dating of Cangshuipu Group in the middle part of the Jiangnan Orogen and its implications for tectonic evolutions[J]. Geology in China,2012 (01) : 12 –20. (in Chinese) (0)
[13] Li X, Li Z, Li W. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China:A synthesis[J]. Gondwana Research,2014, 25 (3) : 1202 . (0)
[14] Yao W, Li Z, Li W, et al. From Rodinia to Gondwanaland:A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science,2014, 314 (1) : 278 –313. (0)
[15] 舒良树. 华南构造演化的基本特征[J]. 地质通报,2012, 31 (7) : 1035 –1053.
Shu Liangshu. An analysis of principal features of Tectonic evolution in South China Block[J]. Geological Bulletin of China,2012, 31 (7) : 1035 –1053. (in Chinese) (0)
[16] Ye M, Li Z, Li W, et al. SHRIMP zircon U-Pb geochronological and whole-rock Geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the Southeastern margin of the Yangtze Block[J]. Gondwana Research,2007, 12 (1) : 144 –156. (0)
[17] Li Z, Li X, Wartho J, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, Southeastern South China:new age constraints and pressure-temperature conditions[J]. The Geological Society of America Bulletin,2010, 112 (5/6) : 772 . (0)
[18] Wang Y, Zhang F, Fan W, et al. Tectonic setting of the South China Block in the early Paleozoic:Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics,2010, 29 (6) : 6016 –6020. (0)
[19] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology,2011, 39 (4) : 299 –302. (0)
[20] 李献华, 周国庆, 赵建新. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义[J]. 地球化学,1994, 23 (2) : 125 –131.
Li Xianhua, Zhou Guoqing, Zhao Jianxin. SHRIMP microprobe zircon U-Pb age of the NE Jiangxi ophiolite and its tectonic implications[J]. Geochimica,1994, 23 (2) : 125 –131. (in Chinese) (0)
[21] 耿元生, 杨崇辉, 王新社, 等. 扬子地台西缘结晶基底的时代[J]. 高校地质学报,2007, 13 (3) : 429 –441.
Geng Yuansheng, Yang Chonghui, Wang Xinshe, et al. Age of crystalline basement in western margin of Yangtze Terrane[J]. Geological Journal of China Universities,2007, 13 (3) : 429 –441. (in Chinese) (0)
[22] 杜利林, 郭敬辉, 耿元生, 等. 扬子西南缘盐边群时代及构造环境:来自碎屑沉积岩的约束[J]. 岩石学报,2013, 29 (2) : 641 –672.
Du Lilin, Guo Jinghui, Geng Yuansheng, et al. Age and tectonic setting of the Yanbian Group in the southwestern Yangtze Block:Constraints from clastic sedimentary rocks[J]. Acta Petrologica Sinica,2013, 29 (2) : 641 –672. (in Chinese) (0)
[23] 杜利林, 杨崇辉, 耿元生, 等. 扬子地台西南缘高家村岩体成因:岩石学、地球化学和年代学证据[J]. 岩石学报,2009, 25 (8) : 1897 –1908.
Du Lilin, Yang Chonghui, Geng Yuansheng, et al. Petrogenesis of the Gaojiacun mafic-ultramafic pluton at the Southwestern margin of Yangtze Block:Evidence from Petrology, Geochemistry and Geochronology[J]. Acta Petrologica Sinica,2009, 25 (8) : 1897 –1908. (in Chinese) (0)
[24] 高林志, 刘燕学, 丁孝忠, 等. 江山-绍兴断裂带铁沙街组变流纹岩SHRIMP锆石U-Pb测年及其意义[J]. 地质通报,2013, 32 (7) : 996 –1005.
Gao Linzhi, Liu Yanxue, Ding Xiaozhong, et al. Geochronographic dating of the Tieshajie formation in the Jiangshan-Shaoxing fault zone and its implications[J]. Geological Bulletin of China,2013, 32 (7) : 996 –1005. (in Chinese) (0)
[25] 殷鸿福, 吴顺宝, 杜远生, 等. 华南是特提斯多岛洋体系的一部分[J]. 地球科学,1999, 24 (1) : 3 –14.
Yin Hongfu, Wu Shunbao, Du Yuansheng, et al. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science——Journal of China University of Geosciences,1999, 24 (1) : 3 –14. (in Chinese) (0)
[26] 付建明, 马昌前, 谢才富, 等. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义[J]. 大地构造与成矿学,2004, 28 (4) : 370 –378.
Fu Jianming, Ma Changqian, Xie Caifu, et al. SHRIMP U-Pb zircon dating of the Jiuyishan composite granite in Hunan and its geological significance[J]. Geotectonica et Metallogenia,2004, 28 (4) : 370 –378. (in Chinese) (0)
[27] 张国伟, 朱炳泉, 常向阳, 等. 滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约[J]. 岩石学报,2002, 18 (1) : 37 –46.
Zhang Guowei, Zhu Bingquan, Chang Xiangyang, et al. Geochemistry of the basalts from north of the Shizong-Mile belt, eastern Yunnan Province:Constraints on the tectonic framework of the South China Continent[J]. Act Petrologica Sinica,2002, 18 (1) : 37 –46. (in Chinese) (0)
[28] Guo L, Liu Y, Li C, et al. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, Southeastern Yunnan Province, China:Implications for the collision between the Yangtze and Cathaysia Blocks[J]. Geochemical Journal,2009, 43 (2) : 101 –122. (0)
[29] 杨明桂, 黄水保, 楼法生, 等. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质,2009, 36 (3) : 528 –543.
Yang Minggui, Huang Shuibao, Lou Fasheng, et al. Lithospheric structure and large-scale metallogenic process in southeast China continental area[J]. Geology in China,2009, 36 (3) : 528 –543. (in Chinese) (0)
[30] 饶家荣, 肖海云, 刘耀荣, 等. 扬子、华夏古板块会聚带在湖南的位置[J]. 地球物理学报,2012, 55 (2) : 484 –502.
Rao Jiarong, Xiao Haiyun, Liu Yaorong, et al. Yangtze-Cathaysia plate convergence in Hunan[J]. Chinese Journal of Geophysics,2012, 55 (2) : 484 –502. (in Chinese) (0)
[31] 张建新, 童潜明, 李荣清. 郴临深大断裂带及其两侧的地球化学特征[J]. 华南地质与矿产,2000 (3) : 17 –24.
Zhang Jianxin, Tong Qianming, Li Rongqin. Regional geochemical characteristics across the Chenzhou-Linwu deepseated fault[J]. Geology and Mineral Resources of South China,2000 (3) : 17 –24. (in Chinese) (0)
[32] Wang Y, Fan W, Guo F, et al. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China:implications for the lithospheric boundary between the Yangtze and Cathaysia Blocks[J]. International Geology Review,2003, 45 (3) : 263 –286. (0)
[33] 陈懋弘, 梁金城, 张桂林, 等. 加里东期扬子板块与华夏板块西南段分界线的岩相古地理制约[J]. 高校地质学报,2006, 12 (1) : 111 –122.
Chen Maohong, Liang Jincheng, Zhang Guilin, et al. Lithofacies paleogeographic constraints of Southwestern boundary between Yangtze and Cathaysia Plates in Caledonian[J]. Geological Journal of China Universities,2006, 12 (1) : 111 –122. (in Chinese) (0)
[34] 王鹏鸣, 于津海, 孙涛, 等. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义[J]. 岩石学报,2012, 28 (12) : 3841 –3857.
Wang Pengming, Yu Jinhai, Sun Tao, et al. Geochemistry and detrital zircon geochronology of Neoproterozoic sedimentary rocks in Eastern Hunan Province and their tectonic significance[J]. Acta Petrologica Sinica,2012, 28 (12) : 3841 –3857. (in Chinese) (0)
[35] 王鹏鸣, 于津海, 孙涛, 等. 湘桂震旦-寒武纪沉积岩组成的变化——对华南构造演化的指示[J]. 中国科学(D辑),2013 (11) : 1893 –1906.
Wang Pengming, Yu Jinhai, Sun Tao, et al. Composition variations of the Sinian-Cambrian sedimentary rocks in Hunan and Guangxi and their tectonic significance[J]. Science in China (Series D),2013 (11) : 1893 –1906. (in Chinese) (0)
[36] 冯佐海. 广西姑婆山-花山花岗岩体侵位过程及构造解析[D]. 中南大学, 2003.
Feng Zuohai. Emplacement process and structural analysis of Guposhan-Huashan granitic pluton, Guangxi[D]. Changsha:Central South University, 2003. (0)
[37] 刘耀荣, 李泽泓, 彭学军, 等. 九嶷山-铜山岭-都庞岭花岗岩带低钕模式年龄的成因探讨[J]. 华南地质与矿产,2004 (4) : 28 –32.
Liu Yaorong, Li Zhehong, Peng Xuejun, et al. Genetic study of low neodymium model ages of the Jiuningshan-Tongshanling-Dupangling grantie belt[J]. Geology and Mineral Resources of South China,2004 (4) : 28 –32. (in Chinese) (0)
[38] 刘伟, 曾佐勋, 李绍凡, 等. 广西富川岩鹰嘴W-Mo-Cu多金属矿区斑岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 中国地质,2014, 41 (3) : 797 –813.
Liu Wei, Zeng Zuoxun, Li Shaofan, et al. LA-ICP-MS zircon UPb dating of the granitic and granodioritic porphyries from the Yanyingzui W-Mo-Cu polymetalic ore distirict in Fuchuan area, Guangxi, and its Geological implications[J]. Geology in China,2014, 41 (3) : 797 –813. (in Chinese) (0)
[39] Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,2010, 51 (1/2) : 537 –571. (0)
[40] Liu Y, Hu Z, Gao C, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008, 257 (1) : 34 –43. (0)
[41] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,2002, 192 (1) : 59 –79. (0)
[42] Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[M]. Kenneth R. : Ludwig, 2003 . (0)
[43] Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology:A critical appraisal of four zircon standards[J]. Chemical Geology,2003, 200 (1) : 171 –188. (0)
[44] Bingen B, Austrheim H K, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway[J]. Contributions to Mineralogy and Petrology,2004, 147 (6) : 671 –683. (0)
[45] Hoskin P W O. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,2000, 18 (4) : 423 –439. (0)
[46] 向磊, 舒良树. 华南东段前泥盆纪构造演化:来自碎屑锆石的证据[J]. 中国科学:地球科学,2010, 40 (10) : 1377 –1388.
Xiang Lei, Shu Liangshu. Pre-devonian tectonic evolution of the eastern South China Block:Geochronology evidence from detrital zircons[J]. Science in China(Series D),2010, 40 (10) : 1377 –1388. (in Chinese) (0)
[47] Zhu W, Zhong H, Li X, et al. The early Jurassic mafic-ultramafic intrusion and A-type granite from northeastern Guangdong, SE China:Age, origin, and tectonic significance[J]. Lithos,2010, 119 (3) : 313 –329. (0)
[48] Drewery S, Cliff R A, Leeder M R. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons[J]. Nature,1987, 325 (6099) : 50 –53. (0)
[49] Geslin J K, Link P K, Fanning C M. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho[J]. Geology[H.W.Wilson-AST],1999, 27 (4) : 295 . (0)
[50] 苏慧敏, 张承帅. 赣东北贵溪地区片岩中碎屑锆石的U-Pb年龄、Hf同位素及其地质意义[J]. 中国地质,2012 (06) : 1577 –1592.
Su Huimin, Zhang Chengshuai. U-Pb ages and Hf isotopes of detrital zircons from mica quartz schist in Guixiarea of northeastern Jiangxi Province and their geological significance[J]. Geology in China,2012 (06) : 1577 –1592. (in Chinese) (0)
[51] 孟庆秀, 张健, 耿建珍, 等. 湘中地区冷家溪群和板溪群锆石UPb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J]. 中国地质,2013 (01) : 191 –216.
Meng Qingxiu, Zhang Jian, Geng Jianzhen, et al. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Banxi Groups in middle Hunan Province:implications for the Neoproterozoic tectonic evolutionin South China[J]. Geology in China,2013 (01) : 191 –216. (in Chinese) (0)
[52] Morton A C H. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology,1999, 124 (1) : 3 –29. (0)
[53] 甘晓春, 庄建民. 闽北前寒武纪基底的地质年代学研究[J]. 福建地质,1993, 12 (1) : 17 –32.
Gan Xiaochun, Li Jianming. Geochronology study on the Precambrian metamorphic basement in northern Fujian[J]. Geology of Fujian,1993, 12 (1) : 17 –32. (in Chinese) (0)
[54] 韩仲仁, 彭作荣, 谢代强. 江西中部新元古代潭头群的建立[J]. 中国区域地质,1998, 17 (2) : 2 –6.
Han Zhongren, Peng Zuorong, Xie Daiqiang. The establishment of the Neoproterozoic Tantou group in central Jiangxi[J]. Regional Geology of China,1998, 17 (2) : 2 –6. (in Chinese) (0)
[55] 王丽娟, 于津海, OReilly S Y, 等. 华夏南部可能存在Grenville期造山作用:来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息[J]. 科学通报,2008, 53 (14) : 1680 –1692.
Wang Lijuan, Yu Jinhai, O'Reilly S Y, et al. There may exist Greville orogeny in Southern China according to the zircon U-Pb dating and the Lu-Hf istope information from basal metamorphic rocks[J]. Cinese Science Bulletin,2008, 53 (14) : 1680 –1692. (in Chinese) (0)
[56] 李青, 段瑞春, 凌文黎, 等. 桂东早古生代地层碎屑锆石U-Pb同位素年代学及其对华夏陆块加里东期构造事件性质的约束[J]. 地球科学——中国地质大学学报,2009 (01) : 189 –202.
Li Qin, Duan Ruichun, Ling Wenli, et al. Detrital zircon U-Pb geochronology of the Early Guangxi and its constraints on the Caledonian tectonic nature of the Cathaysian continental block[J]. Earth Science——Journalof China University of Geosciences,2009 (01) : 189 –202. (in Chinese) (0)
[57] 杜秋定, 汪正江, 王剑, 等. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评,2013 (02) : 334 –344.
Du Qiuding, Wang Zhengjiang, Wang Jian, et al. LA-ICP-MS U-Pb ages of detrital zircons from the Neoproterozoic Chang'an formation in Central Hunan and its geological implications[J]. Geological Review,2013 (02) : 334 –344. (in Chinese) (0)
[58] Kennedy W Q. The structural differentiation of Africa in the Pan-African (±500 Ma) tectonic episode[J]. Leeds Univ. Res. Inst. Afr. Geol. Annu. Rep,1964, 8 : 48 –49. (0)
[59] 陆松年. 初论"泛华夏造山作用"与加里东和泛非造山作用的对比[J]. 地质通报,2004, 23 (9-10) : 952 –958.
Lu Songnian. Comparison of the Pan-Cathaysian orogeny with the Caledonian and Pan-African orogenies[J]. Geological Bulletin of China,2004, 23 (9-10) : 952 –958. (in Chinese) (0)
[60] 丁兴, 周新民, 孙涛. 华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息[J]. 地质论评,2005, 51 (4) : 382 –392.
Ding Xing, Zhou Xinming, Sun Tao. The episodic growth of the continental crustal basement in South China:Single zircon LAICP-MS U-Pb dating of Guzhai granodiorite in Guangdong[J]. Geological Review,2005, 51 (4) : 382 –392. (in Chinese) (0)
[61] Yang Z, Sun Z, Yang T, et al. A long connection (750-380 Ma) between South China and Australia:Paleomagnetic constraints[J]. Earth and Planetary Science Letters,2004, 220 (3/4) : 423 –434. (0)
[62] Metcalfe I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications,2011, 355 (1) : 7 –35. (0)
[63] Jiang G, Sohl L E, Christie Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China):Paleogeographic implications[J]. Geology,2003, 31 (10) : 917 . (0)
[64] 李献华, 李寄嵎, 刘颖, 等. 华夏古陆古元古代变质火山岩的地球化学特征及其构造意义[J]. 岩石学报,1999, 15 (3) : 364 –370.
Li Xianhua, Li Jiyu, Liu Yin, et al. Geochemistry characteristics of the Paleoproterozoic meta-volcanics in the Cathaysia Block and its tectonic significance[J]. Acta Petrologica Sinica,1999, 15 (3) : 364 –370. (in Chinese) (0)
[65] 李献华, 李正祥, 葛文春, 等. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义[J]. 矿物岩石地球化学通报,2001, 20 (4) : 271 –273.
Li Xianhua, Li Zhengxiang, Ge Wenchun, et al. U-Pb zircon ages of the Neoproterozoic granitoids in South China and their tectonic implications[J]. Bulletin of Mineralogy, Bulletin of Mineralogy, Petrology and Geochemistry,2001, 20 (4) : 271 –273. (in Chinese) (0)
[66] 王孝磊, 周金城, 邱检生, 等. 桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约[J]. 岩石学报,2006, 22 (2) : 326 –342.
Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, et al. Petrogenesis of the Neoproterozoic strongly peraluminous granitoids from Northern Guangxi:Constraints from zircon geochronology and Hf isotopes[J]. Acta Petrologica Sinica,2006, 22 (2) : 326 –342. (in Chinese) (0)
[67] 柏道远, 贾宝华, 刘伟, 等. 湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束[J]. 地质学报,2010, 84 (12) : 1715 –1726.
Bai Daoyuan, Jia Baohua, Liu Wei, et al. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan:Constraints on the Neoproterozoic tectonic evolution of the Jiangnan orogenic belt[J]. Acta Geologica Sinica,2010, 84 (12) : 1715 –1726. (in Chinese) (0)
[68] 薛怀民, 马芳, 宋永勤, 等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报,2010, 26 (11) : 3215 –3244.
Xue Huaimin, Ma Fang, Song Yongqin, et al. Geochronology and geochemistry of the Neoproterozoic granitoid association from Eastern segment of the Jiangnan orogeny, China:Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia Blocks[J]. Acta Petrologica Sinica,2010, 26 (11) : 3215 –3244. (in Chinese) (0)
[69] 高林志, 黄志忠, 丁孝忠, 等. 赣西北新元古代修水组和马涧桥组SHRIMP锆石U-Pb年龄[J]. 地质通报,2012, 31 (7) : 1086 –1093.
Gao Linzhi, Huang Zhizhong, Ding Xiaozhong, et al. Zircon SHRIMP U-Pb dating of Xiushui and Majianqiao formations in Northwestern Jiangxi Province[J]. Geological Bulletin of China,2012, 31 (7) : 1086 –1093. (in Chinese) (0)
[70] 夏林圻, 夏祖春, 李向民, 等. 华南新元古代中期裂谷火山岩系:Rodinia超大陆裂谷化-裂解的地质纪录[J]. 西北地质,2009, 42 (1) : 1 –33.
Xia Linqi, Xia Zhuchun, Li Xiangmin, et al. Mid-Neoproterozoic rift-related volcanic rocks in South China geological records of rifting and break-up of the supercontinent Rodinia[J]. Northwestern Geology,2009, 42 (1) : 1 –33. (in Chinese) (0)
[71] 王敏. 黔东北梵净山地区晚元古代岩浆活动及其大地构造意义[D]. 北京:中国地质大学(北京), 2012.
Wang Ming. The Neoproterozoic Magamtism and Tectonic Implications, the Fanjingshan Mt., Northeast Guizhou Province[D]. Beijing:China University of Geosciences, 2012. (0)
[72] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013, 56 (10) : 1804 –1828.
Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science in China (Series D),2013, 56 (10) : 1804 –1828. (in Chinese) (0)
[73] 于津海, O'ReillyY.S, 王丽娟, 等. 华夏地块古老物质的发现和前寒武纪地壳的形成[J]. 科学通报,2007, 52 (1) : 1 –10.
Yu Jinhai, O'Reilly Y S, Wang Lijuan, et al. The finding of old materials in Cathaysia Block and the forming of Precambrian crust[J]. Cinese Science Bulletin,2007, 52 (1) : 1 –10. (in Chinese) (0)
[74] Wan Y, Liu D, Xu M, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research,2007, 12 (1) : 166 –183. (0)
[75] Li Z, Wartho J, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research,2007, 159 (1) : 79 –94. (0)
[76] Yu J, Oreilly S, Wang L, et al. Where was South China in the Rodinia supercontinent:Evidence from U-Pb geochronology and Hf isotopes of detrital zircons[J]. Precambrian Research,2008, 164 (1/2) : 1 –15. (0)
[77] 郑建平, GriffinWL, 汤华云, 等. 西部华夏地区深部可能存在与华北和扬子大陆相似的太古代基底[J]. 高校地质学报,2008, 14 (4) : 549 –557.
Zheng Jianping, Griffin W, Tang Huayun, et al. Archean basement similar to the North China and Yangtze continent may be existed beneath the Western Cathaysia[J]. Geological Journal of China Universities,2008, 14 (4) : 549 –557. (in Chinese) (0)
[78] 汤世凯, 马筱, 杨坤光, 等. 黔东桂北加里东期两类构造变形特征与成因机制探讨[J]. 现代地质,2014, 28 (1) : 109 –118.
Tang Shikai, Ma Xiao, Yang Kunguang, et al. Characteristics and genesis of two types of tectonic deformation during Caledonian in Eastern Guizhou and Northern Guangxi[J]. Geoscience,2014, 28 (1) : 109 –118. (in Chinese) (0)
[79] 李怀坤, 张传林, 姚春彦, 等. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J]. 中国科学(D辑),2013, 56 (8) : 1287 –1298.
Li Huaikun, Zhang Chuanlin, Yao Chunyan, et al. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the Western margin of the Yangtze massif[J]. Science in China(Series D),2013, 56 (8) : 1287 –1298. (in Chinese) (0)
[80] 王孝磊, 于津海, 舒徐洁, 等. 赣中周潭群副变质岩碎屑锆石UPb年代学[J]. 岩石学报,2013, 29 (3) : 801 –811.
Wang Xiaolei, Yu Jinhai, Shu Xujie, et al. U-Pb geochronology of detrital zircons from the parametamorphic rocks of the Zhoutan Group, Central Jiangxi Province[J]. Acta Petrologica Sinica,2013, 29 (3) : 801 –811. (in Chinese) (0)
[81] Wang X, Zhou J, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research,2007, 159 (1/2) : 117 –131. (0)
[82] Sun W, Zhou M, Gao J, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research,2009, 172 (1) : 99 –126. (0)
[83] Li H, Jia D, Wu L, et al. Detrital zircon provenance of the Lower Yangtze foreland basin deposits:constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China[J]. Geological Magazine,2013, 150 (6) : 916 –959. (0)
[84] 王果胜, 何付兵, 朱卫平, 等. 闽西南晚三叠世文宾山组碎屑锆石U-Pb年龄及地质意义[J]. 现代地质,2009, 23 (2) : 246 –255.
Wang Guosheng, He Hubing, Zhu Weiping, et al. U-Pb dating of deteital zircons from late Triassic Wenbinshan formation in Southwestern Fujian and its geological significance[J]. Geoscience,2009, 23 (2) : 246 –255. (in Chinese) (0)
[85] Li H, Jia D, Wu L, et al. Detrital zircon provenance of the Lower Yangtze foreland basin deposits:constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China[J]. Geological Magazine,2013, 150 (6) : 916 –959. (0)
[86] Li L, Sun M, Wang Y, et al. U-Pb and Hf isotopic study of detrital zircons from the meta-sedimentary rocks in central Jiangxi Province, South China:Implications for the Neoproterozoic tectonic evolution of South China Block[J]. Journal of Asian Earth Sciences,2011, 41 (1) : 44 –55. (0)
[87] Wang R, Wang X, Zhou J, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research,2007, 159 (1) : 117 –131. (0)
[88] Wang L, Griffin W L, Yu J, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research,2010, 177 (1) : 131 –144. (0)
[89] Xu X, O Reilly S Y, Griffin W L, et al. The crust of Cathaysia:Age, assembly and reworking of two terranes[J]. Precambrian Research,2007, 158 (1) : 51 –78. (0)
[90] Zhang Z, W Y. Crustal structure and contact relationship revealed from deep seismic sounding data in South China[J]. Physics of the Earth and Planetary Interiors,2007, 165 (1) : 114 –126. (0)