«上一篇
文章快速检索    
  下一篇»
  中国地质 2016, Vol. 43 Issue (1): 306-318  
0
引用本文
王文之, 杨跃明, 文龙, 等 微生物碳酸盐岩沉积特征研究——以四川盆地高磨地区灯影组为例[J]. 中国地质, 2016, 43(1): 306-318. 
WANG Wen-zhi, YANG Yue-ming, WEN Long, et al A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan basin[J]. Geology in China, 2016, 43(1): 306-318.(in Chinese with English abstract).  

微生物碳酸盐岩沉积特征研究——以四川盆地高磨地区灯影组为例
王文之1, 杨跃明1, 文龙1, 罗冰1, 罗文军1, 夏茂龙1, 孙赛男2     
1. 西南油气田分公司勘探开发研究院, 四川 成都 610051;
2. 中国石油华北油田分公司勘探开发研究院, 河北 任丘 062552
提要: 四川盆地震旦系灯影组属于新元古界最后一套地层,也是四川盆地第一套沉积岩盖层。岩性以质纯色浅的白云岩为主,并且经历了多期复杂的成岩作用,因此其沉积环境始终是研究的难点和争议的焦点。本文以盆地周缘的野外剖面、钻井岩心、测井资料及分析化验等资料为基础,以岩石学、沉积学和石油地质学等理论为指导,并结合现代叠层石沉积特征,对灯影组岩石学特征、沉积环境进行了综合分析。研究表明:①灯影组的岩石类型可分为3个亚类和12个微类,其中贫藻段主要由晶粒云岩、凝块状云岩、粒屑云岩等组成,通常发育于一个完整沉积旋回的早-中期;富藻段主要由层纹状云岩、叠层状云岩、泡沫状云岩组成,通常形成于一个沉积旋回中-晚期; ②四川盆地灯影组沉积相主要为浅水局限台地相,可细分为藻丘、颗粒滩、台坪、潟湖4个亚相。研究区以藻丘亚相为主,藻丘可进一步细分为丘基、丘核、丘盖3个微相; ③优质储层受相控特征明显,台内颗粒滩相和藻丘相储集物性最好,尤其是两者叠合形成的"丘滩复合体"。总之,四川盆地震旦系灯影组的天然气勘探将围绕着微生物岩展开。
关键词: 微生物岩    沉积特征    四川盆地    震旦系    灯影组    
中图分类号:P534.1            文献标志码:A             文章编号:1000-3657(2016)01-0306-13
A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan basin
WANG Wen-zhi1, YANG Yue-ming1, WEN Long1, LUO Bing1, LUO Wen-jun1, XIA Mao-long1, SUN Sai-nan2     
1. Eploration and Development Research Institute of Southwest Oil & Gas Field Company, PetroChina, Chengdu 610051, Sichuan, China ;
2. Eploration and Development Research Institute, Huabei Oilfield Company, PetroChina, Renqiu 062552, Hebei, China
Fund support: Supported by National Science and Technology Major Project (No.2011ZX 05004-005,No.2013E-050208) .
About the first author: WANG Wen- zhi, male, born in 1984, doctor candidate, majors in the study of sedimentology and sedimentary geochemistry; E-mail: 55060319@qq.com.
Abstract: Z2dn of Sichuan basin belongs to the last set of Neoproterozoic strata, and it is also the first sedimentary cover for Sichuan. The main lithology is the pure dolomite in light color, which underwent a complicated diagenesis, so its depositional environment is a topic of much controversy. Based on the field section in the periphery of the basin, drilling core, well logging data and analysis of analytical data, guided by petrology, sedimentology and petroleum geology theory, and combined with the modern stromatolites sedimentary characteristics, the authors analyzed characteristics of petrology, sedimentary environment of Dengying Formation. Some conclusions have been reached:① The rocks of Dengying Formation can be divided into 3 types and 12 subtypes. Poor algal section is mainly composed of dolomicrite, clotted dolomite and grained dolostone, mostly occurring at the early-middle stage of a complete sedimentary cycle. Rich alga section is mainly composed of straticulate dolostone, laminated dolomite and foam dolomite, mostly occurring at the middle-late stage of a complete sedimentary cycle. ② The sedimentary facies of Z2dn of Sichuan basin is mainly shallow-water restricted platform facies, and it can be subdivided into 4 subfacies, i.e., algal mound, grain beach, flat and lagoon. The sedimentary facies of the study area is mainly algal mound, and the algal mound may be further subdivided into base, core, cap 3 microfacies. ③ Comprehensive analysis shows that the high quality reservoirs is obviously controlled by facies. In platform, the reservoirs of grained beach and algal mound, especially the composite body of "mound and beach complex", are of the best physical property, and gas exploration of Z2dn should be carried out around the microbolite in Sichuan basin.
Key words: microbolite    sedimentary characteristics    Sichuan basin    Sinian    Dengying Formation    

四川盆地上震旦统灯影组属于隐生宙地层,1964年四川盆地发现了震旦系灯影组气藏,使得灯影组成为了世界上最古老的天然气储层之一[1]。此外,在灯影组中还发现了铅锌矿[2-4]、锌矿、汞矿、金银矿、磷矿及锑矿等固体矿产,基于微生物碳酸盐岩的巨大能源前景、古环境意义和钙化机理引起了地质勘探工作者对灯影组的极大兴趣,并取得了丰硕的成果[1-12]。2010年川中地区高石 1井灯影组获高产工业气流后,再次引起众多学者对隐生宙地层灯影组的关注,同时也涌现出众多的疑难点和争议,灯影组的沉积环境便是其中之一,特殊的岩石学特征是造成这些难点的主要原因之一。

Folk (1959)提出巨厚的隐藻类碳酸盐岩为生物岩这一概念,Burne(1987)在前人研究的基础上,首次提出了微生物岩(microbolite)是由底栖微生物群落(BMC)捕获和黏结碎屑沉积物,并且(或者)形成矿物沉淀位点,通过这种方式加积的生物成因沉积即为微生物沉积岩 [13]。该类岩石中的微生物(microbes)一般为结构简单的单细胞,少数为多细胞(Wu et al,2007),包括细菌、真菌类、小型低等藻类和原生动物 [14-15]。最新研究表明微生物岩在地史时期和现代生物礁的建造过程中皆为常见,微生物群落约占地球现代生物圈中生物总量的 80%,也约占地球生命史时间段的 80% [16]。元古宙迄今的叠层石礁、凝块石礁仅为类型单调的蓝藻菌类形成。因此在以白云岩为主,缺乏颗粒岩和古生物标志的灯影组地层中,对蓝藻菌形态、遗迹等沉积特征的研究就显得特别重要,也是隐生宙地层沉积环境分析最重要的切入点之一。

1 区域地质概况

研究区位于四川盆地川中古隆平缓构造区的威远至龙女寺构造群,东至广安构造,西邻威远构造,南与川东南中隆高陡构造区相接。属川中古隆平缓构造区向川东南高陡构造区的过渡地带(图 1)。根据全国地层委员会 2002年对震旦系的重新厘定,将原震旦系下统(莲沱组和南沱组)归入新建立的南华系,震旦系现只包括下统陡山沱组和上统灯影组,时限定义为 570 Ma至 710 Ma;大致相当于Gradstein等(2003)所定义的埃迪卡拉系。根据岩性组合、电性特征自上而下将灯影组分为四段:灯四段厚度 260~350 m,为一套砂屑白云岩及藻白云岩,见硅质条带,少含菌藻类及叠层石,偶含胶磷矿;灯三段厚度 50~100 m,主要为一套砂岩、泥岩,常夹白云岩、凝灰岩,含疑源类;灯二段厚度 440~520 m,上部为微晶白云岩,含少量菌藻类;下部葡萄-花边构造藻格架白云岩发育,富含菌藻类;灯一段厚度 20~70 m含泥质泥-粉晶白云岩、含少量菌藻类白云岩,局部含膏盐岩。其中灯二、四段也是微生物蓝藻菌最为发育的层位,也是灯影组天然气的主力产层。

图 1 四川盆地构造分区、 灯影组岩性特征及研究区位置图 Fig.1 Tectonic partition, lithological characteristics of Dengying Formation and location of the study area in Sichuan basin

张荫本 (1996) [17]针对四川盆地灯影组,明确提出粘结岩这一术语,并将灯影组富含藻类的白云岩分为层纹、叠层、棉层和粘连4种基本类型,再以形态特征细分为若干亚类,这种方法摆脱了单纯以蓝藻化石作为名称分类依据的束缚。Riding (2000) [14-15]提出将微生物碳酸盐岩划分为 4类:叠层石、凝块石、树形石、均一石。方少仙(2003)[18]首次提出了四川盆地震旦系白云岩非叠层生态系蓝细菌的概念,即主要为球状椭球状蓝细菌组成的微生物系统在本区白云岩中广泛存在,其生长发育贯穿白云岩沉积期、准同生、同生期、表生期,由此可见,灯影组的岩石类型划分较显生宙地层更为特殊和复杂。对于其沉积环境,一般认为灯影组沉积期四川盆地沉积水体较浅并受限,具有向东变开阔的趋势,沉积相类型包括台坪、潮坪及缓坡、台地等[19-21];陈洪德、田景春等(2002)[19]认为上扬子地区灯影组主要为局限台地相沉积;梅冥相等(2006)[22]则认为灯影组主要为缓坡相沉积与潮坪相沉积交互沉积;洪海涛(2011) [23]认为盆内以水体浅、相对闭塞的局限台地相沉积为主,并进一步细分为潟湖、潮坪、台内滩 3个亚相。本文将以张荫本[1]的分类方法为基础,依据威远、资阳、安岳及野外露头等大量的岩心、薄片、电镜、测试分析资料,结合现代叠层石沉积的特征,探讨灯影组各类沉积环境,为沉积环境分析、储层特征研究提供参考。

2 岩石学特征

四川盆地震旦系灯影组碳酸盐岩复杂多样,在前人研究的基础上[24-30],大体可分为晶粒云岩、粒屑云岩和藻类云岩三大类(表 1),其中藻云岩可分为隐藻类云岩和富藻类云岩,富藻类云岩按形态可细分为层纹状云岩、叠层状云岩、泡沫状云岩、核形石云岩等,隐藻类云岩主要是凝块状云岩,本文着重描述几种常见的主要岩石类型,探讨其成因及其沉积环境。

表 1 四川盆地震旦系灯影组主要岩石类型 Table 1 The main rock types of Sinian Dengying Formation in Sichuan basin
2.1 层纹状云岩

层纹状云岩也称层纹石、纹理石,在手标本或镜下均可见到近于平直的暗色藻纹层组构,识别标志有三:首先,纵向上藻纹层较为稀疏,层与层间夹有薄层的泥-粉晶云岩且致密(图 2-ab);其次,藻纹层横向上断续,起伏不大,较为平直;最后,镜下观察各纹层之间缺乏空腔结构,而常见鸟眼结构(图 2-c)。这说明其沉积环境处于潮间-潮上带的浅水低能环境。

2.2 叠层状云岩

叠层状云岩也称为叠层石,其发现距今已有两百多年历史(Monty,1977),在这两百多年中,人们对叠层石的认识在不断地深化。Kalkowsky(1908)创造了 “叠层石(stromatolite)”名称,他注意到许多叠层石在生长形态上相似于珊瑚和海绵,认为这些穹形纹层的叠加和分叉柱体的生长趋向是生物寻求光线和食物的反映,因此其形态能对古地貌、古水流向、沉积环境分析等提供一定的参考[23]

叠层状云岩按形态可分为锥状、波状、柱状、半球状等形态,研究区以波状叠层状云岩为主,也是灯影组最易识别的一类岩石(图 2-def),其识别标志为:纵向上藻纹层较为密集,各藻纹层起伏趋势基本一致;其次,横向上较为连续,有起伏(图 2-gh);第三,各藻纹层间常见空腔结构,可见叠层石的藻纹层其实是由众多藻粒呈串珠状相连的 (图 2-i),这与现代蓝藻菌颇为相似(图 3-a)。结合现代沉积观察(图 3),推测其沉积环境主要为潮间带下部-潮下带上部的中-低能环境[33]

图 2 四川盆地典型富藻类岩石 Fig.2 The typical rich algae rocks in Sichuan basin a—层纹状云岩, 藻席极为发育, 先锋剖面, 灯二段; b、 c—层纹状云岩, 见藻纹层、 鸟眼构造发育, GS18, 灯四段, 5136.43 m; d—叠层状云岩, 呈脑纹状, 有凹凸感, MX51井, 灯四段, 5334.96 m;e—叠层状云岩, 呈波状, MX51井, 灯四段, 5351.28 m; f—叠层状云岩, 呈波状, 先锋, 灯四段;g—叠层状云岩, 层间被硅质充填, MX51井, 灯四段, 5334.96 m; h—叠层状云岩, 呈波状, MX51井, 灯四段, 5351.28 m; i —叠层状云岩, 由藻粒组成的藻纹层, 先锋, 灯四段; j—泡沫状藻砂屑云岩, Z4井,4556 m, 灯二段; k—泡沫状藻砂屑云岩, GS7, 灯四下段, 5261.5 m; l—泡沫状藻云岩, MX51,灯四段, 5383.78 m ; m—泡沫状藻云岩, 见内碎屑颗粒漂浮在藻粒中, 资 4井,4556 m; n—泡沫状砂屑云岩, 见内碎屑颗粒漂浮在藻粒中, GS7,灯四段, 5261.5m; o—泡沫状藻砂屑云岩, 藻粒腔体内大部分被硅质充填, 少部分被沥青充填, MX51,灯四段, 5383.78 m; a-Layer of grain dolomite, with well-developed algal mat, Xianfeng section, Z2dn2; b,c-Layer of grain dolomite, algae laminae, algae laminae and bird’s-eye structure are developed, GS18 well, Z2dn4; d-Laminated dolomite, as the brain grain, sense of concavo-convex, MX51well, Z2dn4,5334.96 m; e-Laminated dolomite, like ripples, MX51 well, Z2dn4, 5351.28 m;f-Laminated dolomite, like ripples, Xianfeng section, Z2dn4; g-Laminated dolomite, the layers were filled by siliceous , MX51well, Z2dn4, 5334.96m;h- Laminated dolomite, like ripples, MX51 well, Z2dn4,5351.28 m; i-Laminated dolomite, algae laminae is composed of algal grains; Xianfeng section, Z2dn4; j-Algal-dolarenite, Z4 well, ,4556m, Z2dn4;k-Algal-dolarenite, GS7 well, Z2dn4, 5261.5m; l-Algal-dolarenite, MX51 well, Z2dn4, 5383.78mm; m-Algal-dolarenite, clastic particles floating in the algal grains, Z4,4556m; n-Algal-dolarenite, clastic particles floating in the algal grains, GS7well, Z2dn4, 5261.5 m; o-Algal-dolarenite, most of algae cavity body is filled with siliceous matter and asphalt, MX51 well, Z2dn4, 5383.78 m
图 3 西澳大利亚鲨鱼湾哈梅林浦现代澡类及叠层石 (据David L.Alles)) Fig.3 The modern algal mats and stromatolites, Hamelin Pool, Shark Bay, Western Australia a—显微镜下的现代的蓝细菌藻链; b—现代沉积的蓝细菌藻席; c—叠层石剖面, 见同生期葡萄花边结构; d—处于不同成长阶段的叠层石;e—潮下带浅水区的叠层石, 其高度通常小于 1.5 m; f—潮间带浅水区的叠层石群 a- Modern cyanobacteria algae chain under a microscope; b- Modern sedimentary yanobacteria algae; c- Stromatolite profile, development of grape lace structure in syngenetic period; d-In different growth phases of the stromatolites;e- Stromatolite of stromatolite with shallow water , its height is usually less than 1.5 m; f-Stromatolite group of the intertidal zone
2.3 泡沫状云岩

该类岩石在威 117井、资 4井、GS7井、MX51井均有发育,其中以资阳地区最为发育。泡沫状云岩在手标本上较为特殊,如同一个一个的小棉球(图 2-jkl),镜下可见大量泡沫状藻类腔体结构,在本段岩心的中下部可观察到藻粒间 “悬浮”着内碎屑颗粒,从接触关系上看,藻粒呈颗粒支撑结构 (图 2-mno)。以资 4井为例,在 4563~4480 m井段内有多个正粒序结构,每一个结构由下至上内碎屑颗粒逐渐减少,藻粒逐渐增多,这说明该类岩石形成于一种稳定的中—高能沉积环境。笔者认为灯影组泡沫状棉层云岩是微生物对水体能量的一种响应特征,可以作为中—高能相带的相标志之一。

2.4 凝块状云岩

凝块状云岩也称凝块石 ,来源于希腊字thrombos,意思是血凝块,Aitken(1967)首次提出凝块石(thrombolite)的概念,“一种与叠层石有关的、但缺乏纹层的、具有宏观凝块结构的隐藻结构”,他认为是后生动物对叠层石扰动是凝块石形成的直接原因。此观点被 Kennard et al(1986)否定,他认为 “凝块石为一种完全不同于叠层石的微生物岩,若干个中小型凝块结构(mesoclots)构成了宏观的凝块石,这些中小型凝块结构以钙化球状蓝细菌为主,由不连续的生物群落组成”。刘效曾(1978)、张荫本(1996)对四川盆地灯影组详细研究后[17, 31],认为 “凝块石是蓝藻成因的,没有层纹而有凝块状结构的、由重碳酸钙分解反应使其成为一个围绕藻体黏液层的生物作用的产物,很难有其自身独特的内部结构或外部形态”,总之,该类岩石属于隐藻类微生物岩。这类岩石其表面通常为疙瘩状、皱纹状或雪花状,浅色的斑块部分一般是泥-粉晶云岩,而较暗色部分多由细粉晶云岩构成(图 4-abc)。镜下,在凝块状云岩中发现常见粉晶结构的砂屑云岩(图 4-fi),这说明其沉积环境与台内颗粒滩相邻或有间歇性颗粒滩的迁移至凝块状云岩的沉积环境。此外,国内学者等利用扫描电镜在凝块状云岩的晶面上发现呈丝状、链球状的白云石,并认为这是蓝细菌的矿化物及其 EPS[27]。笔者通过 35块凝块状云岩、21块砂屑云岩、28块泥晶云岩的碳、氧同位素分析,结果表明:凝块状云岩的δ13CPDB平均值为2.0,较砂屑云岩的δ13CPDB平均值 0.2高出了一个数量级,泥晶云岩的δ13CPDB平均值为 1.1 (表 2),这说明以砂屑云岩为代表高能颗粒滩相缺乏微生物活动,而以泥晶云岩为代表的浅水低能环境生物欠发育,位于两个亚相之间的沉积环境正是微生物较为发育藻丘相。其次,三类岩石的 C、O同位素分布于三个区间 (图 5),又存有叠合的部分,这说明这三类岩石所代表的沉积环境是相邻的,并受控于海平面的升降而发生横向上的迁移,这恰好解释了为什么凝块状云岩中常见到砂屑云岩和微晶结构的凝块。

图 4 四川盆地灯影组典型凝块状类岩石 Fig.4 Typical thrombolite of Dengying Formation in Sichuan basin a—凝块状云岩, 泥晶凝块<10%, MX11,灯四段,5140.55 m; b—凝块状云岩, 泥晶凝块<50%, MX11,灯四段,5140.62 m; c—凝块状云岩, 泥晶凝块>70%, MX11,灯四段, 5140.66 m; d、 e—凝块状云岩, GS7井, 灯四段,5299.95 m, f —凝块状云岩中局部含有亮晶砂屑云岩, GS7, 灯四段, 5299.95 m; g、 h—凝块状云岩, 威 117,灯四段, 2995.32 m; i—凝块状云岩中局部部含有亮晶砂屑云岩, 威 117,灯四段, 2995.32 m a-Clotted limestone, content of clot <10%, MX11, Z2dn4, 5140.55 m; b-Clotted limestone, content of clot <50%, MX11, Z2dn4,5140.62 m;c- Clotted limestone, content of clot <70%, MX11, Z2dn4 , 5140.66 m; d, e- Clotted limestone, GS7 well, Z2dn4, 5299.95m; f -Clotted limestone containing dolarenite, GS7 well, Z2dn4 , 5299.95 m; g, h- Clotted limestone, W117 well, Z2dn4, 2995.32 m; i- Clotted limestone containing
表 2 研究区主要岩石类型 C和 O同位素测试结果 Table 2 C and O isotope analytical results of the main rock types in the study area
图 5 研究区灯影组主要岩类的δ13CPDBδ18OPDB同位素散点图 Fig.5 Isotope scatter plot of δ13CPDB and δ18OPDB of the main rocks, Dengying Formation in the study area
3 主要沉积相类型及特征

在前人研究的基础上 [33-34],结合野外露头、威远、资阳、高磨地区大量的取心资料,笔者认为四川盆地在灯影期主要表现出浅水型局限台地相的沉积特征,并且可进一步细分为藻丘、颗粒滩、台坪、潟湖 4个亚相 (表 3),而研究区内主要发育藻丘和颗粒滩亚相。

表 3 四川盆地灯影组沉积相类型 Table 3 Types of sedimentary facies of Dengying Formation in Sichuan basin
3.1 藻丘亚相

形成于水动力较弱,沉积环境稳定且开放的环境。该沉积环境,岩石类型十分丰富,主要发育凝块状云岩、层纹状云岩、叠层状云岩等。可细分为丘基、丘核、丘盖,丘基通常由层纹状云岩或砂屑云岩组成,丘核主要由凝块状云岩和泥晶云岩构成,丘盖主要由层纹状云岩或叠层状云岩组成,常发育同生期小型葡萄花边结构。在研究区 MX51井灯四段发育多个完整藻丘,从 “丘基—丘核—丘盖”叠置发育的沉积演化模式(图 6)。在岩心上,丘基岩性通常较为致密,偶见针孔发育,丘核则表现为孔洞较为发育,而丘盖则以发育针孔为主,局部见溶蚀孔洞;在地震剖面上,藻丘呈现出弱反射或杂乱反射的丘状结构。

图 6 四川盆地高磨地区 MX51井震旦系灯四上亚段沉积相柱状图 Fig.6 Histogram of sedimentary facies of Z2dn24 of MX51 well, Gaomo area, Sichuan basin
3.2 颗粒滩亚相

颗粒滩相的沉积环境具有水体浅,水动力条件相对较强的特点,主要岩石类型为砂屑云岩、藻砂屑云岩、核形石云岩等,可细分滩核、滩翼、滩间等微相,也是对储层最有利的沉积相带,滩核通常由分选性较好的砂屑云岩组成,滩翼则主要有粉屑云岩组成。以 MX105为例,受海平面升降的影响,台内颗粒滩频繁迁移并侵蚀前期沉积的藻丘,致使藻丘的丘盖欠发育,在纵向上形成了颗粒滩与丘核不等厚互层(图 7)。在岩心上,丘核表现为孔洞较为发育,而颗粒滩则主要表现为针孔;在地震剖面上,颗粒滩相一般呈 “亮点”的响应模式。

图 7 四川盆地高磨地区 MX105井震旦系灯四上亚段沉积相柱状图 Fig.7 Histogram of sedimentary facies of Z2dn24 of MX105 well, Gaomo area, Sichuan basin
3.3 台坪亚相

该亚相主要由泥晶云岩、层纹状云岩、粉晶云岩组成,常具有水平层理、鸟眼、干裂等沉积构造。通常发育于地势平坦,沉积水体较浅的高部位,沉积界面处于平均海平面附近,周期性或长期暴露于大气之下,潮汐和波浪作用较弱。根据沉积物质的差异,台坪亚相可识别出云坪、泥云坪、藻云坪等微相,在研究区内台坪欠发育,故不作详细介绍。

4 微生物岩主控因素及沉积模式

在前人研究的基础上[35-36],结合野外剖面、钻井岩心等资料,笔者认为:四川盆地灯影组微生物岩的沉积主要受沉积旋回、潮汐、陆源物质、古水深等共同控制。其贫藻段的岩石主要处于一个完整旋回的早—中期,即海侵体系域,也是颗粒滩相较为发育的阶段;富藻段主要发育在一个完整沉积旋回的中—晚期,即高水位体系域。潮下带以发育砂屑云岩、凝块状云岩、泡沫状藻砂屑云岩、核形石云岩等为主,以及少量锥状叠层石。潮间带以发育各类叠层状云岩、富含鸟眼构造的层纹状云岩、泥晶云岩为主,这与澳大利亚鲨鱼湾以及巴哈马台地观察到的沉积特征基本一致[34]。此外,在盆地的西北缘陕西宁强地区,靠近古陆的沉积区,藻类云岩发育程度明显降低[38-42],很明显陆源物质不利于各藻类云岩的发育。

乐山—龙女寺古隆起是四川盆地发育最古老、规模最大、持续演化时间最长的大型同沉积兼剥蚀性古隆起[35],研究区位于乐山—龙女寺古隆起的东段高部位,以灯四段为例,实钻井资料揭示研究区具有西低东高的古地貌特征,砂屑云岩、凝块状云岩自西向东有减少的趋势;层纹状云岩、泥质云岩、泥晶云岩有增加的趋势;在东侧局部井段见到了石膏假晶、干裂等暴露标志,而在西侧尚未发现等,建立了灯影组微生物岩沉积模式图 (图 8) :①灯四沉积期,研究区内由于无陆源碎屑物质注入,因此研究区内微生物岩较为发育,主要受研究区古地貌以及海平面升降的双重控制。②纵向上看,越靠近研究区西侧砂屑云岩越发育,前期沉积的藻丘遭受后期砂屑云岩侵蚀和改造而发育不完整,东侧藻丘的发育相对较为完整。③平面上看,藻丘在西侧呈南北向带状展布特征,向东侧龙女寺地区逐渐收缩,在研究区内藻丘呈 “△”形展布。④四川盆地是典型浅水型局限台地相,因此广泛发育微生物岩(藻丘)和颗粒滩亚相,两亚相之间并无明显的界限,易形成 “丘滩复合体”,因此,灯影组油气勘探将重点围绕微生物岩展开。该模式的建立,为揭示隐生宙微生物岩的沉积特征、主控因素及储层研究提供一定的地质依据。

图 8 四川盆地灯影组微生物岩沉积模式 Fig.8 Sedimentary model of microbolite of Dengying Formation in Sichuan basin
5 结论

1)灯影组碳酸盐岩可大致分为晶粒云岩、藻类云岩、粒屑云岩 3个亚类以及若干个微类,其中层纹状云岩、叠层状云岩、泡沫状云岩等是构成了富藻段的主要岩石类型,晶粒云岩、凝块状云岩、砂屑云岩等是构成了灯影组贫藻段的主要岩石类型。

2)纵向上,贫藻段通常发育于一个完整沉积旋回的早—中期,即海侵体系域,沉积环境相对不稳定,易形成晶粒云岩、凝块状云岩及砂屑云岩等贫藻类岩石;富藻段通常形成于一个沉积旋回中—晚期,即高水位体系域,沉积环境相对稳定,易形成层纹状云岩、叠层状云岩、泡沫状云岩等富藻类岩石。

3)通过对岩心、薄片、测井等测试分析资料的详细研究,砂屑云岩沉积环境的水体能量最强,泥质泥晶云岩沉积环境的水体能量最弱,各类岩石沉积环境水体能量由强至弱的序列为:砂屑云岩>泡沫状云岩>凝块状云岩>叠层状云岩>层纹状云岩>粉晶云岩>泥质泥晶云岩。

4)综合研究认为四川盆地灯影组为浅水型局限台地相,主要发育藻丘、颗粒滩、潟湖、台坪 4个亚相,各亚相并可进一步细分若干个微相。平面上,峨边—威远发育台坪相为主;威远—资阳地区发育颗粒滩相为主;高石梯—磨溪地区发育 “丘滩复合体”为主。

5)灯影组属于浅水型局限台地,“丘滩复合体”在四川盆地广泛发育,是四川盆地震旦系灯影组最为有利的勘探相带,尤其是表生岩溶改造后的 “丘滩复合体”能形成四川盆地灯影组最优质的储层。

参考文献(References)
[1] 戴金星. 威远气田成藏期及气源[J]. 石油实验地质,2003, 25 (5) : 473 –480.
Dai Jingxing. Pool-forming periods and gas sources of Wei Yuan gasfield[J]. Petroleum Geology and Experiment,2003, 25 (5) : 473 –480. (in Chinese) (0)
[2] 汤朝阳, 段其发, 邹先武, 等. 鄂西-湘西地区震旦系灯影期岩相古地理与层控铅锌矿关系初探[J]. 地质论评,2009, 55 (5) : 712 –720.
Tang Chaoyang, Duan Qifa, Zou Xianwu, et al. Preliminary approach on the stratabound lead-zinc deposits and lithofacies palaeogeographic framework of the Deng Yingxia age, Sinian (Edicarian), in Western Hinan-western Hubei area[J]. Geological Review,2009, 55 (5) : 712 –720. (in Chinese) (0)
[3] 刘圣德, 李方会, 廖宗明, 等. 鄂西铅锌矿成矿规律及区域成矿模式[J]. 资源环境与工程,2008, 22 (4) : 418 –422.
Liu Shengde, Li Fanghui, Liao Zongming, et al. Metalogeny and regional metallogenic model of lead-zinc in western Hubei[J]. Resources environment and Engineering,2008, 22 (4) : 418 –422. (in Chinese) (0)
[4] 冯镜权, 李勇, 刘文周. 会理天宝山铅锌矿矿床地质特征及控矿条件浅析[J]. 四川地质学报,2009, 29 (4) : 426 –431.
Feng Jingquan, Li Yong, Liu Wenzhou. Geological features and ore control conditions for the Tianbaoshan Pb-Zn deposit in Huili[J]. Acta Geologica Sichuan,2009, 29 (4) : 426 –431. (in Chinese) (0)
[5] 李厚民, 陈毓川, 王登红, 等. 陕西南郑地区马元锌矿的地球化学特征及成矿时代[J]. 地质通报,2007, 26 (5) : 546 –552.
Li Houmin, Chen Yuchuan, Wang Denghong, et al. Geochemical characteristics and metallogenic epoch of zinc ore of Nanzheng area, in Shaanxi[J]. Geological Bulletin of Chian,2007, 26 (5) : 546 –552. (in Chinese) (0)
[6] 林长谦, 胡明, 何洪涛. 湖北武当地区银金多金属矿控矿条件及找矿方向[J]. 地质找矿论丛,2006, 21 (2) : 546 –552.
Lin Changqian, Hu Ming, He Hongtao. Ore-control condition and ore-searching direction of Ag-Au polymetal deposits in Wudang area, Hubei Province[J]. Contributions to Geology and Mineral Resouces Research,2006, 21 (2) : 546 –552. (in Chinese) (0)
[7] 张廷山, 沈昭国, 兰光志, 等. 四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用[J]. 沉积学报,2002, 20 (2) : 243 –247.
Zhang Tingshan, Shen Zhaoguo, Lan Guangzhi, et al. Microbial fossils and their biosedimentation and buildup in Paleozoic mud mounds, Sichuan Basin[J]. Acta Sedimentologica Sinica,2002, 20 (2) : 243 –247. (in Chinese) (0)
[8] Robin G C. Stromatactis-origin related to submarine-cemented crusts in Paleozoic mud mounds[J]. Geology,1980, 8 : 131 –134. (0)
[9] Archer W A. Microbioherms of the Waldron Shale(Silurian, Indiana):Implications for organic framework in Silurian Reefs of the Great Lakes Area[J]. The Society of Economic Paleontologists and Mineralogists,1986 (1) : 133 –140. (0)
[10] Krause F F, Scotese C R, Nieto C, et al. Paleozoic stromatactis and zebra carbonate mud-mounds:Global abundance and paleogeographic distribution[J]. Geology,2004, 32 (3) : 181 –184. (0)
[11] Bassett D J, Boling K R. Carbon and oxygen isotope analysis of a carbonate mud-mound in Southwest Missouri[R]. Colorado:GSAAnnual Meeting, 2011. (0)
[12] 王建坡, 李越, 张园园, 等. 新疆巴楚晚奥陶世礁丘中的蓝菌群落[J]. 微体古生物学报,2009, 26 (2) : 139 –147.
Wang Jianpo, Li Yue, Zhang Yuanyuan, et al. Cyanobacterial community from the reef mound of the Lianglitag Formation (upper Ordovician), Bachu, Xinjiang[J]. Acta Micropalaeontologica Sinica,2009, 26 (2) : 139 –147. (in Chinese) (0)
[13] Burne R V, Moore L S. Microbialites:Organosedimentary deposites of benthic communities[J]. Palaios,1987, 2 : 241 –254. (0)
[14] Riding R. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology,2000, 47 (Supp.1) : 179 –214. (0)
[15] Riding R. Calcified cyanobacteria[C]//Encyclopedia of Geobiology, Encyclopedia of Earth Science Series. Hei-delberg:Springer, 2011:211-223. (0)
[16] 史晓颖, 王新强, 蒋干清, 等. 贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识[J]. 地质论评,2008, 54 (5) : 577 –589.
Shi Xiaoying, Wang Xinqiang, Jiang Ganqin, et al. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates:An example from the Huangqikou Formation (ca 1.6 Ga) in Helan Mountains, NW China[J]. Geological Review,2008, 54 (5) : 577 –589. (in Chinese) (0)
[17] 张荫本, 唐泽尧, 陈季高. 粘结岩分类及应用[J]. 天然气勘探与开发,1996, 19 (4) : 24 –33.
Zhang Yinben, Tang Zeyao, Chen Jigao. Bond rock classification and Application[J]. Natural Gas Exploration and Development,1996, 19 (4) : 24 –33. (in Chinese) (0)
[18] 方少仙, 侯方浩, 董兆雄. 上震旦统灯影组中非叠层石生态系蓝细菌白云岩[J]. 沉积学报,2003, 21 (1) : 96 –105.
Fang Shaoxian, Hou Fanghao, Dong Zhaoxiong. Nonstromatolite ecologic system cyanobacteria dolostone in Dengying formation of Upper-Sinian[J]. Acta Sedmentologica Sinica,2003, 21 (1) : 96 –105. (in Chinese) (0)
[19] 李凌, 谭秀成, 曾伟, 等. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义[J]. 石油勘探与开发,2013, 40 (6) : 666 –674.
Li Ling, Tan Xiucheng, Zeng Wei, et al. Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin[J]. Petroleum Exploration and Development,2013, 40 (6) : 666 –674. (in Chinese) (0)
[20] 陈洪德, 田景春, 刘文均, 等. 中国南方海相震旦系-中三叠统层序划分与对比[J]. 成都理工学院学报,2002, 29 (4) : 355 –379.
Chen Hongde, Tian Jingchun, Liu Wenjun, et al. The sequence division and correlation of the Sinian-middle Triassic of southern marine, in China[J]. Acta of the Chengdu College of Technology,2002, 29 (4) : 355 –379. (in Chinese) (0)
[21] 王兴志, 黄继祥, 侯方浩, 等. 四川资阳及邻区震旦系灯影组储层段沉积及层序地层学特征[J]. 西南石油学院学报,1996, 18 (3) : 1 –5.
Wang Xingzhi, Huang Jixiang, Hou Fanghao, et al. Characteristics of deposition and sequence stratigraphy of reservoir interval in Sinian Dengying Formation in Ziyang and its neighbouring area[J]. Journal of Southwest Petroleum University,1996, 18 (3) : 1 –5. (in Chinese) (0)
[22] 梅冥相, 周鹏, 张海, 等. 上扬子区震旦系层序地层格架及其形成的古地理背景[J]. 古地理学报,2006, 8 (2) : 219 –231.
Mei Mingxiang, Zhou Peng, Zhang Hai, et al. Sequence stratigraphic framework and its palaeogeographical background for the Sinian of Upper Yangtze region[J]. Journal of Palaeogeography,2006, 8 (2) : 219 –231. (in Chinese) (0)
[23] 洪海涛, 谢继容, 吴国平, 等. 四川盆地震旦系天然气勘探潜力分析[J]. 地质与勘探,2011, 31 (11) : 37 –41.
Hong Haitao, Xie Jirong, Wu Guoping, et al. Potential of gas exploration in the Sinian reservoirs, Sichuan Basin[J]. Geology and Exploration,2011, 31 (11) : 37 –41. (in Chinese) (0)
[24] 陈宗清. 四川盆地震旦系灯影组天然气勘探[J]. 石油地质,2010, 15 (4) : 1 –14.
Chen Zongqing. Gas exploration in Sinian Dengying Formation, Sichuan Basin[J]. Petroleum Geology,2010, 15 (4) : 1 –14. (in Chinese) (0)
[25] 刘家洪, 杨平, 汪正江, 等. 黔北震旦系灯影组顶部古风化壳特征及油气意义[J]. 中国地质,2012, 39 (4) : 931 –938.
Liu Jiahong, Yang Ping, Wang Zhenjiang, et al. Paleoweathering crust at the top of Sinian Dengying Formation in Northern Guizhou and its petroleum exploration significance[J]. Geology in China,2012, 39 (4) : 931 –938. (in Chinese) (0)
[26] 赵文智, 杨晓萍, KershawS. 四川盆地南部志留系碳酸盐泥丘储层发育特征[J]. 地质学报,2006, 85 (10) : 1615 .
Zhao Wenzhi, Yang Xiaoping, Kershaw S. Characteristics of carbonate mud-mound reservoir in Silurian in the southern Sichuan Basin[J]. Acta Geologica Sinica,2006, 85 (10) : 1615 . (in Chinese) (0)
[27] 曹瑞骥, 元训来. 中国叠层石研究进展[J]. 古生物学报,2009, 48 (3) : 314 –321.
Cao Ruiji, Yuan Xunlai. Advances of stromatolite study in China[J]. Acta Palaeontologica Sinica,2009, 48 (3) : 314 –321. (in Chinese) (0)
[28] 彭瀚霖. 川西南-川中地区上震旦统灯影组储层特征研究[D]. 成都理工大学, 2014.
Peng Hanling. The Characteristics of the Upper Sinian Dengying Formation Reservoir Rocks in the Southwestern to Central Sichuan Basin[D]. Chengdu University of Technology, 2014(in Chinese with English abstract). (0)
[29] 常玉光, 黄华州, 郑伟, 等. 河南华北型寒武系馒头组微生物岩沉积特征研究[J]. 中国矿业大学学报,2013, 42 (2) : 236 –242.
Chang Yuguang, Huang Huazhou, Zhen wei, et al. Sedimentary characteristics of microbialites of the North China type in Mantou formation Cambrian, Henan[J]. Journal of China University of Mining and Technology,2013, 42 (2) : 236 –242. (in Chinese) (0)
[30] 王月, 沈建伟, 杨红强, 等. 微生物碳酸盐岩沉积及其研究意义[J]. 地球科学进展,2011, 26 (10) : 1038 –1048.
Wang Yue, Shen Jianwei, Yang Hongqiang, et al. Microbial carbonates and its research significance[J]. Advances in Earth Science,2011, 26 (10) : 1038 –1048. (in Chinese) (0)
[31] 魏国齐, 沈平, 杨威, 等. 四川盆地震旦系大气田形成条件与勘探远景区[J]. 石油勘探与开发,2013, 40 (2) : 129 –138.
Wei Guoqi, Shen Ping, Yang Wei, et al. Formation conditions and exploration prospects of Sinian large gas fields, Sichuan Basin[J]. Petroleum Exploration and Development,2013, 40 (2) : 129 –138. (in Chinese) (0)
[32] 罗贝维, 魏国齐, 杨威, 等. 四川盆地晚震旦世古海洋环境恢复及地质意义[J]. 中国地质,2013, 40 (4) : 1099 –1111.
Luo Beiwei, Wei Guoqi, Yang Wei, et al. Reconstruction of the late Sinian Paleo-ocean environment in Sichuan basin and its geological significance[J]. Geology in China,2013, 40 (4) : 1099 –1111. (in Chinese) (0)
[33] 朱亮, 赵林多, 刘刚, 等. 大运河沉积微生物群落结构特征分析[J]. 中国矿业大学学报,2010, 39 (2) : 295 –301.
Zhu Liang, Zhao Linduo, Liu Gang, et al. Reserch on seasonal and spatial shifts in river sediments microbial community structure[J]. Journal of China University & Technology,2010, 39 (2) : 295 –301. (in Chinese) (0)
[34] Adnres M S, Reid R P. Growth morphologies of modern marine stomatolites:A case study from Highborne Cay, Bahamas[J]. Sedimentary Geology,2006, 185 (3) : 319 –328. (0)
[35] 金振奎, 石良, 高白水, 等. 碳酸盐岩沉积相及相模式[J]. 沉积学报,2013, 6 (31) : 965 –979.
Jin Zhenkui, Shi Liang, Gao Baishui, et al. Carbonate facies and facies models[J]. Acta Sedimentologica Sinica,2013, 6 (31) : 965 –979. (in Chinese) (0)
[36] 余谦, 牟传龙, 张海全, 等. 上扬子北缘震旦纪-早古生代沉积演化与储层分布特征[J]. 岩石学报,2011, 27 (3) : 672 –680.
Yu Qian, Mu Chuanlong, Zhang Haiquan, et al. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic[J]. Acta Petrologica Sinica,2011, 27 (3) : 672 –680. (in Chinese) (0)
[37] 洪庆玉. 乐山-龙女寺古隆起形成及其剥蚀与沉积状态研究[J]. 西南石油学院学报,1993, 4 (15) : 1 –10.
Hong Qinyu. Study of formation, erosion and deposition of Leshan-Longnvsi Paleo-Uplift[J]. Journal of Southwestern Petroleum Institute,1993, 4 (15) : 1 –10. (in Chinese) (0)
[38] 沈建伟, 毛家仁. 桂林中、晚泥盆世微生物碳酸盐沉积、礁和丘及层序地层、古环境和古气候的意义[J]. 中国科学(D辑):地球科学,2005, 48 (11) : 1900 –1912.
Shen Jianwei, Teng Jianbin, Pedoja K. Middle and late Devonian microbial carbonates, reefs and mounds in Guilin, South China and their sequence stratigraphic, paleoenvironmental and paleoclimatic significance[J]. Science in China(Series D):Earth Sciences,2005, 48 (11) : 1900 –1912. (in Chinese) (0)
[39] Erik Flugel, 马永生主译, 碳酸盐岩微相-分析、解释及应用[M]. 北京:地质出版社, 2004.
Erik Flugel, translated by Ma Yongsheng, et al. Carbonate Microfacies——Analysis, Interpretation and Application[M]. Beijing:Geological Publishing House, 2008(in Chinese). (0)
[40] 张录易. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究[J]. 中国地质科学院西安地矿所所刊,1986, 13 : 67 –88.
Zhang Luyi. Discovery of the late Sinian biota and preliminary study in Gao Jiashan of Ning Qiang area, Shaanxi[J]. Bull. Xi'an Inst. Geol. Min. Res., Chinese Acad. Geol. Sci.,1986, 13 : 67 –88. (in Chinese) (0)
[41] 王晓伟. 汉中宁强县灯影组高家山段沉积环境及年代学研究[D]. 西北大学, 2014.
Wang Xiaowei. The Study of Sedimentary Environment and Chronology of the Gaojiashan member of the Dengying Formation in Ning Qiang, Hanzhong[D]. Northwest University, 2014(in Chinese with English abstract). (0)
[42] 莫静, 王兴志, 冷胜远, 等. 川中地区震旦系灯影组储层特征及其主控因素[J]. 中国地质,2013, 40 (5) : 1505 –1513.
Mo Jin, Wang Xinzhi, Leng Shengyuan, et al. Reservoir characteristics and control Factors of Sinian Denying Formation in central Sichuan[J]. Geology in China,2013, 40 (5) : 1505 –1513. (in Chinese) (0)