«上一篇
文章快速检索    
  下一篇»
  中国地质  2016, Vol. 43Issue (2): 380-394  
0
引用本文
李敏, 李敏, 程银行, 等. 内蒙古东乌旗晚古生代闪长岩、二长花岗岩年代学特征及岩石成因[J]. 中国地质, 2016, 43(2): 380-394.
Li Min, Li Min, CHENG Yin-hang, LI Yan-feng, et al. Chronology and petrogenesis of the diorite and monzonitic granite in Dong Ujimqin Banner, Inner Mongolia[J]. Geology in China, 2016, 43(2): 380-394(in Chinese with English abstract).

内蒙古东乌旗晚古生代闪长岩、二长花岗岩年代学特征及岩石成因
李敏, 李敏, 程银行, 任邦方, 李艳锋, 张天福    
天津地质矿产研究所, 天津 300170
提要: 为了解晚古生代西伯利亚板块南缘增生造山过程中的岩浆活动特征及其对贺根山洋盆闭合时间的制约,对东乌旗巴彦都兰闪长岩、二长花岗岩岩相学、锆石U-Pb年代学、锆石Hf同位素和岩石地球化学进行了研究,并讨论了岩石成因和构造环境.闪长岩、二长花岗岩锆石U-Pb同位素年龄依次为(319.8±0.9)Ma、(300.8±1.7)Ma,分别侵位于晚石炭世、早二叠世地层.闪长岩以正的锆石εHf(t)(13.5~17.1)为特征,具有年轻的锆石地壳模式年龄(tDMc)(335~466Ma),明显富集Rb、K等大离子亲石元素(LILE),亏损Ba、Sr,相对亏损Ta、Nb和Ti等高场强元素(HFSE),为洋壳俯冲阶段,地幔楔混入并与年轻洋壳部分熔融形成.二长花岗岩以高钾、富碱、弱过铝质为特征,富集部分大离子亲石元素(LREE、Rb、K等);Zr弱负异常、Hf弱正异常,亏损Sr、Nb、Ta、P、Ti,显示后造山花岗岩特征.二长花岗岩形成于伸展构造环境,是贺根山洋盆闭合后后造山阶段的产物,为洋壳俯冲形成的先成地壳部分熔融而成.
关键词: 晚古生代    地球化学    锆石U-Pb年龄    锆石Hf同位素    岩石成因    
中图分类号:P597+.3;P595            文献标志码:A             文章编号:1000-3657(2016)02-0380-15
Chronology and petrogenesis of the diorite and monzonitic granite in Dong Ujimqin Banner, Inner Mongolia
Li Min, Li Min, CHENG Yin-hang, LI Yan-feng, REN Bang-fang, ZHANG Tian-fu    
Tianjin Institute of Geology and Mineral Resources, Tianjian 300170, China
Fund support: Supported by China Geological Survey Program (No. 1212011220446, 12120114064601).
About the first author: LI Min, male, born in 1986, master and engineer, engages in regional geological survey, mineral exploration study; E-mail:563158856@qq.com.
Abstract: In order to understand the characteristics of magma activities in the southern part of Siberian plate and their influence on the closing time of Hegenshan Ocean during Late Palaeozoic, the authors studied petrography, zircon U-Pb chronology, zircon Hfisotope and geochemistry of the diorite and monzonitic granite to constrain the genesis and tectonic setting of the rock in Bayan Dulan of Dong Ujimqin Banner, Inner Mongolia. The zircon U-Pb dating results show that the diorite was formed at 319.8±0.9 Ma (Late Carboniferous), and the monzonitic granite was formed at 300.8±1.7 Ma (Early Permian). The εHf(t) values and the crust model ages (tDMc) of diorite are14.6-17.1 Ma and 335-466 Ma respectively. The Bayan Dulan diorite is enriched in such LILE as Rb and K and depleted in Ba, Sr, Ta、Nb and Ti. The formation of diorite resulted from partial melting of juvenile oceanic crust mixed with mantle wedge during the subduction of the oceanic crust from Middle-Ordovician to Early-Carboniferous. The monzonitic granite is enriched in K and alkali, suggesting the weak peraluminous feature. The monzonitic granite is also enriched in some LILE and LREE, Rb and K with weak negative Zr anomaly and weak positive Hf anomaly, and depleted in Sr, Nb, Ta, P and Ti, suggesting characteristics of post-orogenic granite. The monzonitic granite was produced in an extension environment,and was formed by post-orogenic evolution after closing of Hegenshan Ocean.In addition, the formation of the rock was caused by partial melting of juvenile continental crust resulting from subducted oceanic crust.
Key words: Late Palaeozoic    geochemistry    zircon U-Pb dating    zircon Hf isotope    lithogenesis    

兴蒙造山带北部的二连—东乌旗晚古生代构造岩浆岩带位于兴蒙造山带北部,属于西伯利亚板块东南缘古生代陆缘增生带[1, 2, 3, 4, 5, 6, 7],其中保存的大量晚古生代构造岩浆岩不仅记载了华北克拉通与西伯利亚地台汇聚的历史,也保留了古亚洲洋扩张、消亡及其与古大陆碰撞对接的痕迹,因此,备受广大地质学者的关注。兴蒙造山带北部晚古生代岩浆活动主要集中于270~ 320 Ma[8, 9, 10, 11, 12, 13, 14, 15, 16]。简平等[17]在贺根山蛇绿岩中获取的微晶辉长岩和斜长花岗岩的年龄分别为354 Ma 和333 Ma,代表蛇绿岩构造侵位于早石炭世;辛后田等[7]在晚古生代宝力高庙组安山岩中获得320.1 Ma 的成岩年龄,认为其为造山阶段的产物;程银行等[13]在东乌旗狠麦温都尔获得的二长花岗岩、正长花岗岩年龄分别为307 Ma和299Ma,认为其为后碰撞早期伸展阶段的产物;李可等[18]在内蒙古巴彦乌拉地区获得花岗闪长岩、花岗斑岩岩墙年龄分别为312 Ma、286 Ma,认为其分别形成于后造山阶段和造山后期更广泛的伸展环境;洪大卫等[16]在白音乌拉—东乌旗一带识别出大量晚古生代造山后岩浆作用事件,提出在286~276 Ma大量发育的碱性花岗岩标志着造山作用的结束。张玉清等[15]在东乌旗京斯台一带获得碱性花岗岩年龄为284.8 Ma,形成于后造山伸展阶段。在二连—贺根山蛇绿混杂带南侧,刘建峰等[19]在西乌旗获得适应闪长岩岩体的年龄分别为325 Ma、322 Ma,并指出两者都具有俯冲带特征;陈斌等[2]在苏尼特左旗南获得弧岩浆岩锆石SHRIMP U-Pb 年龄为310Ma,认为该时期仍为大洋俯冲阶段;施光海等[20]在锡林浩特市南约10 km 处发现面积约45 km2的晶洞A 型花岗岩,U-Pb 测年结果显示该岩体的侵位年龄为276 Ma,属造山后伸展作用的产物。

尽管诸多学者对这一区域花岗岩做了较为详尽的工作,但对于兴蒙造山带北部晚古生代岩浆活动时空格架和构造背景等相关问题还未达成统一的认识。笔者基于1∶5 万区域地质调查野外路线调查,借助当前高精度分析测试手段,对东乌旗巴彦都兰片麻状闪长岩、二长花岗岩开展岩石学、岩相学及锆石U-Pb 年代学、地球化学研究,深入分析该岩体的岩浆成因、演化及构造背景,为完善二连—东乌旗晚古生代构造岩浆岩带岩浆作用和构造认识提供新的资料,并为兴蒙造山带北部晚古生代岩浆活动时空格架和构造背景等相关问题提供新的证据。

1 区域地质背景及岩体特征 1.1 区域地质背景

研究区位于贺根山断裂带以北的二连—东乌旗晚古生代构造岩浆岩带上(图1)。区内地层从泥盆系到第四系出露较全,主要有中下泥盆统泥鳅河组、中上泥盆统塔尔巴格特组、上石炭统宝力高庙组、格根敖包组、下侏罗统红旗组。泥盆系,特别是泥鳅河组地层含有较多的腕足、珊瑚、海百合等海相化石,夹有薄层灰岩透镜体,为一套稳定的滨浅海相沉积;上石炭统宝力高庙组与安格尔音乌拉组呈平行不整合接触,为陆相火山岩-碎屑岩建造;格根敖包组与宝力高庙组同时异相,下部为一套海相火山岩,上部为碎屑岩建造。红旗组为一套河流相粗碎屑岩。侵入岩以晚古生代花岗岩为主,侵入到早期地层,被下侏罗统红旗组底部砾岩、含砾粗砂岩不整合覆盖。区内火山岩非常发育,晚古生代火山活动强烈。巴彦都兰、塔本陶包格、架斯图乌拉等地可见花岗岩侵入到泥鳅河组地层中,其与岩体接触部位泥质成分较高的泥质粉砂岩发生接触-热变质,形成宽数厘米至几十厘米的斑点角岩,局部可见花岗岩捕掳泥鳅河组地层。

图1 东乌旗巴彦都兰地区地质简图(改自程银行等(❶程银行,李艳锋,李敏,等. 内蒙古1∶5 万奥尤特等六福区域地质矿产图. 2014.)) Fig.1 Geological sketch map of Bayan Dulan area in Dong Ujimqin Banner (modified after Cheng Yinhang et al.(❶程银行,李艳锋,李敏,等. 内蒙古1∶5 万奥尤特等六福区域地质矿产图. 2014.))
1.2 岩体特征

闪长岩整体呈NE向展布,岩株状产出,边部变形强烈。岩体北侧和南侧分别被中细粒二长花岗岩和中粗粒正长花岗岩侵入,岩体内发育一组NEE向辉绿岩脉,规模较大,延伸数百米。闪长岩中片麻状构造被二长花岗岩和中粗粒正长花岗岩岩体截切,据此可以判定闪长岩侵位更早。岩体片麻状构造是由长英质矿物石英、长石与镁铁质矿物云母、角闪石定向平行排列组成(图2-a),长英质矿物一般厚度为0.2~3 cm,镁铁质矿物较薄,厚度一般小于2 cm。薄片鉴定特征:片麻状闪长岩。主要由斜长石组成,含少量石英、角闪石、黑云母。斜长石呈半自形板状—他形粒状定向分布(图2-b)。

图2 研究区闪长岩、二长花岗岩的野外照片、正交偏光显微照片a—闪长岩;b—闪长岩正交偏光显微照片;c—二长花岗岩;d—二长花岗岩正交偏光显微照片Pl—斜长石;Q—石英;Bi—黑云母;Am—角闪石;Kf—钾长石 Fig.2 Field photos and photomicrographs of diorite and monzonitic granites in the study areaa-Diorite;b-Photomicrographs of diorite;c-Monzonitic granites;d-Photomicrographs of monzonitic granitesPl-Plagioklase;Q-Quartz;Bi-Biotite;Am-Amphibole;Kf-K-feldspar

二长花岗岩呈岩基状侵位,内部闪长质包体发育,整体呈北东向展布,南侧侵入到晚石炭世片麻状闪长岩中。岩石学特征如下:新鲜面为灰白色,风化面为浅肉红色,中细粒花岗结构(图2-c),块状构造。岩石由钾长石(30%)、斜长石(35%)、石英(30%)、黑云母(5%)组成。钾长石呈半自形板状—他形粒状,粒度一般为0.4~2 mm,少数粒度为2~3mm,杂乱分布。

斜长石呈半自形板状,粒度一般为0.3~2 mm,少数粒度为2~3 mm,杂乱分布,高岭土化、绢云母化,粒内聚片双晶发育,并见双晶弯曲现象(图2-d),选取代表性的斜长石进行了电子探针测试分析(表1),得到的斜长石牌号在0.99~1.73,反映其成分为钠长石。

表1 东乌旗中细粒二长花岗岩(4437)中斜长石电子探针分析结果(%) Table 1 Results of EPMA analysis of plagioclase in monzonitic granites in Dong Ujimqin Banner(%)
2 LA-ICP-MS锆石U-Pb定年

本文闪长岩、二长花岗岩样品采自窑勒地区,分别选择1件样品用于锆石U-Pb年代学测试。

锆石分选工作由河北省廊坊地质调查研究所完成。样品按照常规粉碎淘洗,经磁选和重液分离,然后在双目镜下人工挑选纯度在99%以上的锆石。锆石的制靶和透射光、反射光、阴极发光照相在北京锆年领航科技有限公司完成。样品4528、4437 的测年工作在天津地质矿产研究所完成,采用LA-MC-ICP-MS 进行锆石U-Pb 同位素定年测试,ICP-MS为Agilent 7500 a,分析中采用的激光束斑直径为35 μm,以氦气作为剥蚀物质的载气,分析流程见文献[21]。最终测试数据的离线处理采用软件ICPMASDataCal[22],U-Pb 年龄谐和图绘制和年龄权重平均计算均采用ISOPLOT3.0程序[23]

通过透射光、反射光和阴极发光图像对样品4528、4437 分别选取无裂纹发育、无包裹体发育、晶形、阴极发光特征典型的锆石进行了LA-ICP-MSU-Pb分析,分析结果见表2

表2 东乌旗闪长岩、二长花岗岩LA-MC-ICP-MS U-Pb同位素分析结果 Table 2 Zircon LA-MC-ICP-MS U-Pb dating result of the diorite and monzonitic granite in Dong Ujimqin Banner

本文2 件样品锆石表面光滑,自形程度较好,呈长柱状,部分为短柱状,长轴150~250 μm,长宽比为1.5∶1~4∶1。锆石阴极发光(CL)图像(图3)显示出岩浆型锆石的振荡/韵律环带结构,属于岩浆结晶的产物[24]。样品4528-1、4437-1 锆石Th/U 比值分别为0.2~0.7、0.4~2.0,大于变质成因锆石(一般小于0.1),反映其为岩浆成因[25, 26, 27]

图3 东乌旗闪长岩、二长花岗岩锆石阴极发光图像及年龄 Fig.3 CL images of zircons for diorite and monzonitic granite in Dong Ujimqin Banner

样品4528(闪长岩)(图4)有33 粒锆石测点,各测值的206Pb/238U 非常均一((315±2)~(331±2))Ma,其中20 粒锆石可能是由于普通Pb 加入造成偏离谐和线较远。33 粒锆石206Pb/238U表面年龄加权平均值为(319.8±0.9)Ma(MSDW=1.7)。综上认为,该年龄可以代表样品4528的成岩年龄。

图4 东乌旗闪长岩(4528)、二长花岗岩(4437)的LA-MC-ICP-MS锆石U-Pb年龄谐和图 Fig.4 Zircon LA-MC-ICP-MS U-Pb concordia diagram of the diorite (4528) and monzonitic (4437) granite in Dong UjimqinBanner

样品4437 中14 个分析点年龄分布较为集中(图4),都位于谐和线上,其206Pb/238U表面年龄在置信度95% 时的加权平均值为(300.8 ± 1.7)Ma(MSWD=0.031)。因被测锆石为岩浆成因锆石,且被测点均位于锆石震荡环带,故该年龄应代表样品4437 锆石的结晶年龄,即中细粒黑云二长花岗岩的侵位时代为早二叠世早期。

3 地球化学

对8 件样品进行主微量元素分析,分析结果见表3,测试分析在天津地质矿产研究所完成。首先对新鲜样品去除风化壳,然后用破碎机粉碎。粉碎样品用球磨仪研磨至粉末状(>200 目),用于主量元素和微量元素分析。主量元素用X射线荧光光谱法(XRF)测试,FeO 应用氢氟酸-硫酸溶样、重铬酸钾滴定的容量法,分析精度优于2%,微量元素使用ICP-MS测试,分析精度优于5%。

表3 东乌旗闪长岩、二长花岗岩主量元素(%)、微量元素(10-6)分析结果 Table 3 Major (%) and trace elements (10-6) compositions of the monzonitic granite in Dong Ujimqin Banner
3.1 闪长岩

闪长岩SiO2 含量为55.74%~61.95%,TiO2 为0.71% ~1.12% ,Al2O3 为16.07% ~16.96% ,CaO 为4.76%~5.92%,MgO 为2.00%~3.88%。ALK(K2O+Na2O)介于5.68% ~6.40% 。DI=52.42~64.61,SI=14.6~21.5,表明岩浆经历了较低程度的相对偏低的分异演化;FL=49.7~56.0,MF=66.7~74.0,表明岩浆分离结晶作用中等。

闪长岩大部分样品在岩浆系统全碱-硅(TAS)图解(图5-a) 中位于亚碱性系列的辉石闪长岩、闪长岩区,σ(里特曼指数)为1.93~3.22,表现出钙碱性岩石系列;AR 为1.68~1.83,为钙碱性岩,铝饱和指数A/CNK为0.89~0.94,A/NK为1.86~2.08,为准铝质岩石(图5-b);在岩石系列SiO2-K2O图解(图略)中显示其属于高钾钙碱性系列。

图5 东乌旗闪长岩、二长花岗岩硅-碱(a)和A/CNK-A/NK(b)图解(底图据文献[28, 29] Fig.5 Diagram of the total ALKalis versus silica (TAS) (a) and A/CNK-A/NK (b) for diorite and monzonitic granite in Dong UjimqinBanner (after references [28, 29])

在稀土元素配分曲线图(图6-a)上,呈轻稀土元素富集的右倾型曲线特征,弱负Eu 异常,暗示斜长石的堆晶作用。由表可知,微量元素Rb的含量为53.1×10-6~88.7×10-6,Ba 为444×10-6~600×10-6,U为0.89×10-6~1.60×10-6,Sr 为345×10-6~420×10-6。Sr(平均值为378.75×10-6),接近大陆地壳Sr 平均含量325×10-6,说明样品中的Sr 来自于地壳,主要继承其源区特征。微量元素蛛网图(图6-b)显示出曲线相似的特征,表明微量元素具有共同的地球化学行为和共同的源区性质;与相邻元素相比,岩石富集大离子亲石元素(LILE)Rb、K 等,亏损P、Ba,相对亏损高场强元素(HFSE)Ta、Nb和Ti。

图6 东乌旗闪长岩、二长花岗岩稀土元素球粒陨石标准化配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(球粒陨石标准化值、原始地幔标准化值据文献[30]) Fig.6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) of the diorite andmonzonitic granite in Dong Ujimqin Banner (chondrite-normalized values and primitive mantle-normalized values aferreference [30])
3.2 二长花岗岩

二长花岗岩SiO2 含量为71.56%~74.22%,TiO2为0.13%~0.17%,Al2O3 为14.69%~16.38%,CaO 为0.59%~1.01%,MgO 为0.20%~0.36%。ALK(K2O+Na2O)介于8.05% ~9.29% 。DI=91.01~93.75,SI=2.01~3.73,表明岩浆经历了较高程度的相对偏高的分异演化;FL=88.9~94.1,MF=77.6~81.9,表明岩浆分离结晶作用较高。

二长花岗岩样品在岩浆系统全碱-硅(TAS)图解(图5-a) 中位于亚碱性系列的花岗岩区,σ 为2.12~3.02,表现出钙碱性岩石系列;AR为3.10~3.59,为钙碱性岩,铝饱和指数A/CNK 为1.12~1.18,A/NK 为1.24~1.31,为弱过铝质岩石;在岩石系列SiO2-K2O图解(图5-b)中显示其属于高钾钙碱性系列。

在稀土元素配分曲线图(图6-a)上,呈轻稀土元素富集的右倾型曲线特征,负Eu 异常,暗示斜长石的堆晶作用。由表可知,微量元素Rb 的含量为97.5×10-6~117×10-6,Ba 为471×10-6~680×10-6,U 为0.98×10-6~1.77×10-6,Sr 为90.3×10-6~129×10-6。Sr(平均值为101.4×10-6),小于大陆地壳Sr 平均含量325×10-6。微量元素蛛网图(图6-b)显示,与相邻元素相比,岩石富集大离子亲石元素(LILE)Rb、K 等,Zr 弱负异常、Hf 弱正异常,亏损Sr、P、La、Ce,相对亏损高场强元素(HFSE)Zr、Ta、Nb和Ti。

4 锆石Hf同位素

锆石Hf 同位素的测定是在天津地质矿产研究所同位素实验室中,采用NEPTUNE(MC-ICPMS)系统,在U-Pb 定年分析的同一位置上进行的。测试的激光束直径为35 μm,激光脉冲频率为8~10Hz。分析条件及流程见耿建珍等[31]。在分析过程中,使用εHf(t)值是根据测点的锆石U-Pb 年龄计算的,采用的176Lu衰变常数为1.867×10-11a-1[32],球粒陨石176Hf/177Hf比值为0.282785,176Lu/177Hf比值为0.0336[33]。亏损地幔模式年龄(tDM)的计算参考现今亏损地幔176Hf/177Hf比值0.28325,176Lu/177Hf 比值0.0384[34]。假设每颗锆石的母岩浆来自平均大陆地壳,采用176Lu/177Hf比值为0.015[35]计算锆石Hf 同位素的地壳模式年龄(tDMc)。

闪长岩锆石Hf 同位素数据见表4,闪长岩4528的15 个测点的(176Hf/177Hf)i值为0.282956~0.283057,εHf(t)值为14.6~17.1,测点2、3、6、7、8 的地壳模式年龄值比岩石U-Pb 年龄小,为试验测试误差所致,闪长岩地壳模式年龄(tDMc)为335~466 Ma。同位素数据显示,晚石炭世早期闪长岩以正的锆石εHf(t)(14.6~17.1)为特征,具有年轻的锆石地壳模式年龄335~466 Ma。

表4 东乌旗闪长岩锆石(4528)Hf同位素数据 Table 4 Zircon Hf isotopic data of the diorite (4528) in Dong Ujimqin Banner
5 讨论 5.1 两期岩浆年代学意义

一些学者在研究内蒙古缝合带的构造演化、兴蒙造山带北部晚古生代构造-岩浆活动时认为[36, 37, 38, 39],古亚洲洋于晚泥盆世—早二叠世沿南部的二连—贺根山一线闭合。也有学者认为古亚洲洋最终于晚二叠世沿索伦山—西拉木伦河一线闭合[40, 41, 42, 43],但并不否认研究区已于晚石炭世之前造山隆起的事实[11]

东乌旗地区大面积出露的晚古生代岩浆岩是由大量花岗质岩浆岩及少量中基性侵入岩组成。通过本次研究获得的定年结果显示,片麻状闪长岩LA-ICP-MS锆石U-Pb 年龄为(319.8±0.9)Ma,与东乌旗宝力高庙组下段安山岩夹层年龄(320.1±7.2)Ma一致;二长花岗岩LA-ICP-MS锆石U-Pb年龄为(300.8±1.7)Ma,与东乌旗宝力高庙组上段流纹岩(303.4±6.7)Ma、英安质晶屑凝灰岩(304.9±3.1)Ma 年龄一致。片麻状闪长岩、二长花岗岩均与上石炭统宝力高庙组陆缘弧火山岩相伴生,代表2 期岩浆活动。在Pearce et al.[44]( Y+Nb)-Rb花岗岩构造环境判别图上(图7),二长花岗岩样品均投影于后碰撞(post-collision)构造区。野外1∶5 万地质调查发现,片麻状闪长岩的原生就位片麻理非常发育,片麻理产状较为稳定,局部具有弱的矿物定向,局部呈揉皱产出(图2-a),表明其侵位时具有一定的压力,揉皱枢纽产状为54°∠23°,枢纽倾伏向为北东向,且倾伏角度较低,枢纽倾伏特征与晚古生代地层中枢纽具有相同的构造线。而闪长岩边部具片麻状构造,而岩体中心不发育“片麻理”,表明该片麻理应为岩浆就位时形成,而非后期区域构造作用的产物。与晚古生代地层中枢纽具有相同的构造线暗示洋壳沿NE-SW向俯冲碰撞,岩浆侵位时受到来自NE-SW向的压应力,同时,研究区闪长岩富集大离子亲石元素(Rb、K),相对亏损高场强元素(Nb、Ta、P、Ti),显示出活动大陆边缘弧岩浆岩的地球化学特征,表明该期闪长质岩浆为洋壳俯冲晚期产物。图2-d显示二长花岗岩正交偏光下,斜长石聚片双晶发生弯曲变形,这与后造山花岗岩常发育弱变形[45]相符,且强烈挤压背景向后造山转换阶段有利于大规模岩体的形成[46]。由此得出两期岩浆分别为晚古生代洋壳俯冲晚期、后造山期的产物。

图7 东乌旗二长花岗岩的(Y+Nb)-Rb图解 VAG—火山弧花岗岩;WPG—板内花岗岩;Syn-COLD—同碰撞花岗岩;Post-COLD—后碰撞花岗岩;ORG—洋中脊花岗岩 Fig.7 (Y+Nb)-Rb dimgram of the monzonitic granite in DongUjimqin Banner
5.2 岩石成因

闪长岩明显富集Rb、K 等大离子亲石元素(LILE),亏损Sr,相对亏损Ta、Nb、P、Ti 等高场强元素(HFSE),显示出俯冲带幔源岩石的成分特点[47],也指示出岩浆或源区具有与地壳物质混染的印记。其中Nb、Ta、Hf 等的亏损反映岩浆的壳源特征;明显的Ti、Nb、Ta 负异常反映出消减带岩浆岩特征。另外,一些微量元素比值也较好地反映出了源区特点。闪长岩微量元素中Zr/Hf 比值为33.40~42.63(平均值为38.44),接近原始地幔值(36.27±2.0)[48];Rb/Sr 比值为0.15~0.26,平均值为0.18,高于原始地幔的Rb/Sr 比值(平均值为0.025);Nb/Ta 比值为10.94~16.07,平均13.67,略低于原始地幔的Nb/Ta 比值(14.0~22.5,平均值为(17.5±2.0))。Nb/U 和Nb/La 值与源区物质有关,而与岩浆过程无关,样品的Nb/U 值为4.24~10.11,平均值为6.21,明显低于大陆壳(中国东部地壳Nb/U 比值为9.6);原始地幔和MORB 的Nb/La 值大于1.0,而大陆地壳平均值Nb/La 为0.7 左右;样品的Nb/La 值为0.40~0.45,低于大陆地壳平均值,且结晶分异不会导致Nb/La 值降低(Nb比La 更不相容)[49],再次说明壳源岩浆可能混入了地幔楔,也说明闪长岩可能为洋壳部分熔融产物。

由于锆石稳定性较强,同时具有较高的Hf 质量分数和极低的176Lu/177Hf值,并且其形成后基本没有放射性成因Hf 的积累,使得锆石Hf 同位素研究成为目前示踪岩浆源区的重要手段之一[32, 50, 51]。本次研究所测得样品εHf(t)值为14.6~17.1,数据点均落在球粒陨石Hf 同位素演化线、1.8 Ga平均地壳演化线和亏损地幔演化线之间,少量样品位于亏损地幔演化线上(图8),二阶段Hf同位素模式年龄tDMc变化范围为335~466 Ma。高的εHf(t)值和年轻的二阶段Hf同位素模式年龄表明,本区闪长岩显示新生地壳成因特征。但样品中锆石Hf 同位素组成显示出不均一性(变化范围达2.5),由于锆石Hf 同位素比值不会随部分熔融或分离结晶而变化,因此其不均一性很可能指示了一个开放体系,与更具放射性成因Hf的幔源物质的加入有关[52]

图8 东乌旗闪长岩的锆石Hf同位素特征 Fig.8 Zircon Hf isotopic features of the diorite in DongUjimqin Banner

综上分析,这套具有过铝质特征的高钾钙碱性系列的闪长岩的来源物质具有新生地壳特征,可能为中奥陶世—早石炭世洋壳俯冲阶段,地幔楔混入并与年轻洋壳部分熔融形成。

二长花岗岩矿物组成中未见白云母和石榴子石,可见绿泥石化、绢云母化,副矿物富含磷灰石、榍石,岩石地球化学具有高硅、富碱(K2O+ Na2O=8.05%~9.29%)、高钾(3.57%~4.35%)、低磷和钛的特征,属弱过铝质高钾钙碱性系列。样品中K2O/Na2O小于1,Na2O含量大于4.35%;二长花岗岩中暗色包体发育。上述特征说明本文二长花岗岩为Ⅰ型花岗岩,其FeOT/MgO 比值为3.26~4.16,与Ⅰ 型花岗岩铁镁比值的特征吻合[53]。微量元素同样具有Ⅰ型花岗岩的特征,如较高的Rb、K 、Th、U、Hf 含量和较低的Sr 和Ba 含量。综合地质学者对本区花岗岩同位素的研究,二长花岗岩(300.8±1.7)Ma 以正的锆石εHf(t)为特征,具有年轻的锆石地壳模式年龄(tDMc)。因此,这套具有弱过铝质特征的Ⅰ 型花岗岩的来源物质具有新生地壳特征,可能是古亚洲洋俯冲的洋壳转化而成的年轻地壳部分熔融形成。

6 结论

(1)巴彦都兰闪长岩、二长花岗岩为两期岩浆活动产物,两者分别为岩株、岩基产出,二长花岗岩侵入闪长岩中,两者锆石U-Pb 同位素年龄依次为(319.8±0.9) Ma、(300.8±1.7) Ma,分别侵位于晚石炭世早期、早二叠世早期。

(2)闪长岩明显富集Rb、K等大离子亲石元素(LILE),亏损Ba、Sr,相对亏损Ta、Nb和Ti 等高场强元素(HFSE);二长花岗岩以高钾、富碱、弱过铝质为特征,富集部分大离子亲石元素(LREE、Rb、K等);Zr 弱负异常、Hf 弱正异常,亏损Sr、Nb、Ta、P、Ti,二长花岗岩正交偏光下,斜长石聚片双晶发生轻微弯曲变形,显示后造山花岗岩特征。

(3)本文闪长岩εHf(t)值为13.5~17.1,地壳模式年龄(tDMc)为(335~466)Ma,具新生地壳特征。综上,这套具有过铝质特征的高钾钙碱性系列的闪长岩的来源物质具有新生地壳特征,可能为中奥陶世—早石炭世洋壳俯冲阶段,地幔楔混入并与年轻洋壳部分熔融形成;二长花岗岩为具有弱过铝质特征的Ⅰ 型花岗岩,物质来源具有地幔特征,亏损Nb、Ta指示其具壳源特征,可能是古亚洲洋俯冲的洋壳转化而成的年轻地壳部分熔融形成。

参考文献(References)

[1] 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4): 584-605.
Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal tectonic division and evolution of the southern part of the north Asian orogenic region and its adjacent areas[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(4): 584-605(inChinese with English abstrac).(1)
[2] 陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 2001, 47( 4) : 361-367.
Chen Bin, Zhao Guochun, Wilde S A, Subduction and collisionrelated granitoids from southern sonidzuoqi, Inner Mongolia: Isotopic ages and tectonic implications[J]. Geological Review, 2001, 47(4): 361-367(inChinese with English abstract).(2)
[3] Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model[J]. Journal of Asian Earth Sciences, 2004, 23(5): 761-779.(1)
[4] Xiao Wenjiao, Windley B F, Hao Jie, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6), 1069:1-21.(1)
[5] Li Jinyi. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006,26(3-4):207-224.(1)
[6] Jian Ping, Liu Dunyi, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3-4): 233-259.(1)
[7] 辛后田, 滕学建, 程银行. 内蒙古东乌旗宝力高庙组地层划分及其同位素年代学研究[J]. 地质调查与研究, 2011, 34(1): 1-9.
Xin Houtian, Teng Xuejian, Cheng Yinhang. Stratigraphic subdivision and isotope geochronology study on the Baoligaomiao Formation in the East Ujimqin County, Inner Mongolia[J]. Geological Survey and Research , 2011, 34(1): 1-9.(2)
[8] Zhang Xiaohui, Zhang Hongfu, Tang Yanjie, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249(3-4): 262-281.(1)
[9] Zhang Xiaohui, Wilde S A, Zhang Hongfu, et al. Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China: geochemistry, origin and tectonic implications[J]. Journal of Geological Society, 2011, 168: 525-543.(1)
[10] Zhang Xiaohui, Yuan Lingling, Xue Fuhong, et al. Early Permian A-type granite from central Inner Mongolia, North China: Magmatic trace of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2014, 28(1): 311-327.(1)
[11] 梁玉伟, 余存林, 沈国珍, 等. 内蒙古东乌旗索纳嘎铅锌银矿区花岗岩地球化学特征及其构造与成矿意义[J]. 中国地质, 2013, 40(3): 767-779.
Liang Yuwei, Yu Cunlin, Shen Guozhen, et al. Geochemical characteristics of granites in the Suonaga Pb-Zn-Ag deposit of Dong Ujimqin Banner, Inner Mongolia, and their tectonic and ore-forming implications[J]. Geology in China, 2013, 40(3): 767-779(in Chinese with English abstract).(2)
[12] 何付兵, 徐吉祥, 谷晓丹, 等. 内蒙古东乌珠穆沁旗阿木古楞复式花岗岩体时代、成因及地质意义[J]. 地质论评, 2013, 59(6): 1150-1164.
He Fubing, Xu Jixiang, Gu Xiaodan, et al.Age, origin and geological implications of the Amuguleng composite granite in East Ujimqin Banner, Inner Mongolia[J]. Geological Review, 2013, 59(6): 1150-1164(inChinese with English abstract).(1)
[13] 程银行, 滕学建, 辛后田, 等. 内蒙古东乌旗狠麦温都尔花岗岩 SHRIMP 锆石U-Pb 年龄及其地质意义[J]. 岩石矿物学杂志, 2012, 31(3): 323-334.
Cheng Yinhang, Teng Xuejian, Xin Houtian, et al. SHRIMP zircon U-Pb dating of granites in Mahonondor area, East Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica Et Mineralogica, 2012, 31(3): 323-334(inChinese with English abstract).(2)
[14] 程银行, 李艳锋, 李敏, 等. 内蒙古东乌旗碱性侵入岩的时代、成因及地质意义[J]. 地质学报,2014, 88(11): 2086-2096.
Cheng Yinhang, Li Yanfeng, Li Min, et al. Geochronology and petrogensis of the alkaline pluton in Dong Ujimqi, Inner Mongolia and its tectonic implications[J]. Acta Geologgica Sinica, 2014, 88(11): 2086-2096(inChinese with English abstract).(1)
[15] 张玉清, 许立权, 康小龙, 等. 内蒙古东乌珠穆沁旗京格斯台碱性花岗岩年龄及意义[J]. 中国地质,2009, 36(5): 988-995.
Zhang Yuqing, Xu Liquan, Kang Xiaolong, et al. Age dating of alkali granite in Jingesitai area of Dong Ujimqin Banner, Inner Mongolia, and its significance[J]. Geology in China, 2009, 36(5): 988-995(in Chinese with English abstract).(2)
[16] 洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3) :219-230.
Hong Dawei, Huang Huaizeng, Xiao Yijun, et al. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance[J]. Acta Geologica Sinica, 1994, 68(3): 219-230 (inChinese with English abstract).(2)
[17] Jian Ping, Kröner A, Windley B F, et al. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral"Hegenshan ophiolite"[J]. Lithos, 2012, 142-143: 48-66.(1)
[18] 李可, 张志诚, 冯志硕, 等. 兴蒙造山带中段北部晚古生代两期岩浆活动及其构造意义[J]. 地质学报, 2015, 89(2): 272-288.
Li Ke, Zhang Zhicheng, Feng Zhishuo, et al. Two-phase magmatic events during Late Paleozoic in the north of the Central Inner Mongolia-Da Hinggan Orogenic Belt and its tectonic significance[J]. Acta Geologgica Sinica, 2015, 89(2): 272-288 (inChinese with English abstract).(1)
[19] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376.
Liu Jianfeng, Chi Xiaoguo, Zhang Xingzhou, et al. Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongola and its tectonic significance[J]. Acta Geologgica Sinica, 2009, 83(3): 365-376(in Chinese with English abstract).(1)
[20] 施光海, 苗来成, 张福勤, 等. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J]. 科学通报,2004, 49(4): 384-389.
Shi Guanghai, Miao Laicheng, Zhang Fuqin, et al. Age and regional tectonic significance of A type granite in Xilinhaote Inner Mongolia[J].Chinese Science Bulletin, 2004, 49(4): 384-389(in Chinese).(1)
[21] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablationinductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.(1)
[22] Liu Y S,Gao S,Gao C G,et al. Timing of melt-peridotite interactions in Xenoliths of the trans-North China Orogen: U-Pb dating,Hf isotopes and trace elements in zircon[J]. Journal of Petrology, 2009, 51: 537-571.(1)
[23] Ludwing K R. Isoplot/Ex Version 3.0 A-Geochronological Toolkit for Mircrosoft Excel[M]. Berkeley: Berkeley Geochronological Centre Special Publication, 2003.(1)
[24] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
Wu Yuanbao, Zheng Yongfei. Genetic mineralogy of zircons and its constraints to the age of U-Pb geochronology[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604(in Chinese with English abstract).(1)
[25] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Microscopy, 1993, 171: 223-232.(1)
[26] Williams I S,Buick A, Cartwright I. An extended Episode of early Mesoproterozoic metamorphic fluid flow in the Reynold region,central Australia[J]. Journal of Metamorphic Geology, 1996, 14: 29-47.(1)
[27] 李志昌, 路远发, 黄圭成. 放射性同位素地质学方法与进展[M]. 武汉: 中国地质大学出版社,2004: 160-164.
Li Zhichang, Lu Yuanfa, Huang Guicheng. Methodology and Progress in Radioactivity Isotope Geology[M]. Wuhan: China University of Geosciences Press, 2004: 160-164(inChinese).(1)
[28] Wilson M. Igneous Petrogenesis[M]. Kluwer Academic Publisher, 1989: 7-12.(2)
[29] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib Mineral and Petrol., 1976, 58: 63-81.(2)
[30] Sun S S,McDonough W F. Chemical and Isotopic Systematics of oceanic Basalts: Implications for Mantle Composition and Processes[C]//Sannders A D, Norry M J(eds.). Magnatism in Ocean Basins. London: Geological Society Special Publication, 1989: 313-345.(2
[31] 耿建珍, 李怀坤, 张剑, 等. 锆石Hf 同位素组成的LA-MCICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513.
Gen Jianzheng, Li Huaikun, Zhang Jian, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10):1508-1513(inChinese with English abstract).(1)
[32] Soderlund U, Patchett P J, Veroort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Percambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219:311-324.(2)
[33] Bouvier A, Vervoort J D, Patchett. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constrains from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 273: 48-57.(1)
[34] Griffin W L, Pearson N J, O'Reilly SY, et al. The Hf isotope compositon of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochemicaet Cosmochimica Acta, 2000, 64: 133-147.(1)
[35] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237-269.(1)
[36] Tang Kedong. Tectonic development of the Paleozoic foldbelts onthe northern margin of the Sino -Korean craton [J]. Tectonics, 1990, 9:249-260.(1)
[37] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京, 地质出版社, 1991:1-725.
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of Inner Mongolia Autonomous Region [M]. Beijing:Geological Publishing House, 1991:1-725(in Chinese with English abstract).(1)
[38] 邵济安. 中朝板块北缘中段地壳演化[M]. 北京:北京大学出版社, 1991:1-136.
Shao Ji'an. Crustal Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate [M]. Beijing:Peking University Press, 1991:1-136(in Chinese with English abstract).(1)
[39] 张臣, 李茂松. 内蒙古苏左旗地区晚古生代构造-岩浆活动及地壳演化特征[J]. 高校地质学报, 1997, 3(1): 31-39.
Zhang Chen, Li Maosong. The features of late Paleozoictec tonomagmatic activity and crustal revolution in the southern Suzuoqi area [J]. Geological Journal of China Universities, 1997, 3(1):31-39 (in Chinese with English abstract).(1)
[40] Hsu K J, Wang Q C, Li L, et al. Geological evolution of the Neimonides:A working hypothesis[J]. Eclogae Geol. Helv., 1991, 84:1-35.(1)
[41] Chen Bin, JahnBorming, Tian Wei. Evolution of the Solonkersuture zone:Constraints from zircon U-Pb ages, Hf isotopic ratiosand whole -rock Nd-Sr isotope compositions of subduction andcollision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34:245-257.(1)
[42] Miao Laicheng, Fan Weiming, Liu Dunyi, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late -stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China [J]. Journal of Asian Earth Sciences, 2008, 32: 348-370.(1)
[43] Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int. J. EarthSci. (GeolRundsch), 2009, 98:1189-1217.(1)
[44] Perrce J A, Cann R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, (19): 290-300.(1)
[45] 杨坤光, 杨巍然. 碰撞后的造山过程及造山带巨量花岗岩的成因[J]. 地质科技情报, 1997, 16(4): 16-22.
Yang Kunguang, Yang Weiran. Post-collision orogeny process and origin of huge quantity granites in Orogenic Belt[J]. Geological Science Technology Information, 1997, 16(4): 16-22 (in Chinese with English abstract).(1)
[46] 魏然, 王建国, 王义天, 等. 河北省撒岱沟门斑岩型钼矿床二长花岗岩的锆石U-Pb 年龄及其意义[J]. 中国地质, 2013, 40(6): 1736-1748.
Wei Ran, Wang Jianguo, Wang Yitian, et al. Zircon U-Pb dating of adamellite from the Sadaigoumen porphyry molybdenum deposit in Fengning, Hebei Province, and its significance[J]. Geology in China, 2013, 40(6): 1736-1748(in Chinese with English abstract).(1)
[47] Kepppler H. Constraints from partitioning experinents on the Compositionof subductoin-zone fluids[J]. Nature, 1996,(380): 237-240.(1)
[48] Stolz A I, Jochum K P, Spettel B, et al. Fluid-and melt-related enrichment in the subare mantle evidence from Nb/Ta variations inisland-arc basalts[J]. Geology, 1996, 24(7): 587-590.(1)
[49] Zhao Zhenhua, Zhou Lingdi. REE geochemistry of some alkalirich intrusive rocks in China[J]. Science in China(Ser. D), 1997, (2) : 146-157.(1)
[50] Ameilin Y, Lee D C, Halliiday A N, et al. Nature of the Earth's earliest crust from Hafninm isotopes in single detrital zircons[J]. Nature, 1999, 399:252-255.(1)
[51] 吴福元, 李献华, 郑永飞, 等. Lu-Hf 同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.
Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf isotopic systematics and their application in petrology[J]. Acta Petrologic Sinica, 2007, 23(2): 185-220(inChinese with English abstract).(1)
[52] Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O Isotopes in Zircon[J]. Science, 2007, 16: 980-983.(1)
[53] Whalen J B, Currie K L, Chappel l B W. A-type Granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419.(1)