«上一篇
文章快速检索    
  下一篇»
  中国地质  2016, Vol. 43 Issue (2): 650-661  
0
引用本文
胡元邦, 侯中健, 邓江红, 等. 滇西昌宁更戛乡下泥盆统向阳寺组硅质岩地球化学特征及构造环境探讨[J]. 中国地质, 2016, 43(2): 650-661.
HU Yuan-bang, HOU Zhong-jian, DENG Jiang-hong, et al. Geochemical characteristics and tectonic environment discussion of chert from the Lower Devonian Xiangyangsi Formation in Gengga, Changning,Western Yunnan[J]. Geology in China, 2016, 43(2): 650-661(in Chinese with English abstract).

滇西昌宁更戛乡下泥盆统向阳寺组硅质岩地球化学特征及构造环境探讨
胡元邦1, 侯中健1 , 邓江红1, 李峥1, 林寿海2, 杨蜜蜜1    
1. 成都理工大学地球科学学院, 四川 成都 610059;
2. 四川省地矿局区域地质调查队, 四川 成都610213
提要: 滇西昌宁更戛乡下泥盆统向阳寺组位于冈瓦纳大陆与泛华夏大陆间昌宁-孟连结合带北段西侧.文章首次发现向阳寺组中存在硅质岩,并对其硅质岩的地球化学特征等进行了深入研究.硅质岩中发育海百合茎、放射虫及硅藻.地球化学分析表明,向阳寺组硅质岩SiO2质量分数为85.43%~93.50%,Al/(Al+Fe+Mn)平均值为0.77,处于生物成因范畴;硅质岩稀土元素分析结果为其REE总量平均值为53.208×10-6,稀土元素北美页岩标准化配分曲线相对平坦,δCe平均值为1.02,δEu平均值为1.01,LaN/CeN平均值为0.99,LaN/YbN平均值为0.84,表明硅质岩形成于近大陆边缘的深海沉积环境.随着早泥盆世昌宁-孟连洋的快速扩张,保山地块边缘区域性同沉积断裂发育,造成了更戛乡向阳寺组大面积的硅质岩沉积.结合硅质岩地球化学特征的分析与古生物研究,认为更戛乡向阳寺组硅质岩属冈瓦纳大陆保山地块边缘亲昌宁-孟连古特提斯洋的深海沉积的产物.
关键词: 古特提斯    昌宁-孟连带    下泥盆统向阳寺组    硅质岩    地球化学    构造环境    
中图分类号:P534.44;P595            文献标志码:A             文章编号:1000-3657(2016) 02-0650-12
Geochemical characteristics and tectonic environment discussion of chert from the Lower Devonian Xiangyangsi Formation in Gengga, Changning,Western Yunnan
HU Yuan-bang1, HOU Zhong-jian1 , DENG Jiang-hong1, LI Zheng1, LIN Shou-hai2, YANG Mi-mi1    
1. Institute of Earth Science, Chengdu University of Technology, Chengdu 610059, Sichuan, China;
2. Regional Geological Surveying Party, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610213, Sichuan, China
Fund support: Supported by Education Office of Sichuan Province Program (No. 80303- KZY006), China Geological Survey Program (No. 12120113048700), Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation and National Keystone (Education) Discipline of Chengdu University of Technology.
About the first author: HOU Zhong−jian, male, born in 1966,associate professor; E−mail:houzj@cdut.edu.cn.
Abstract: The Lower Devonian Xiangyangsi Formation is located in the west of Changning-Menglian suture belt at the junction of the Gondwanaland and the Pan-Cathaysian continent in Gengga, Changning, western Yunnan. The chert was discovered in the Xiangyangsi Formation for the first time, and the geochemistry of the chert was studied. Crinoidal stems with radiolarians and diatoms are distributed in chert. An analysis of the data of major elements shows that the values of SiO2 are relatively high, being in the range of 85.43%-93.50%, the average ratio of Al/(Al + Fe + Mn) obtained in chert is 0.77, suggesting that the chert of the Xiangyangsi Formation is characteristic of biogenesis activity, along with some chemical activity. An analysis of the data of REE shows that the values of REE are 53.208×10-6, δ Ce has a value of 1.02, and δEu has a value of 1.01. The average ratio of LaN/YbN and LaN/YbN is 0.99 and 0.84, suggesting the continental margin and deep-sea environment. With the rapid expansion of Changning- Menglian Ocean, a wide chert deposition took place due to the regional synsedimentary fault on the continental margin of Baoshan massif from Early Devonian. In combination with the characteristics of chert geochemical and the paleontological research, the authors hold that the Xiangyangsi Formation in Gengga is characterized by deep-sea deposition on the continental margin of Baoshan massif of Gondwanaland close to Changning-Menglian Paleo-Tethys Ocean.
Key words: Paleo-Tethys    Changning-Menglian belt    lower Devonian Xiangyangsi Formation    chert    sedimentary geochemistry    tectonic environment    

滇西昌宁—孟连带是亲冈瓦纳大陆的保山地块与泛华夏大陆的结合带,是研究古特提斯最理想的地区之一,前人在该区做了大量的地层-构造-火山-成矿方面的研究,取得了若干重要的研究成果[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

研究区内泥盆系的研究程度较低,前人对下泥盆统向阳寺组(D1x)的研究主要集中在施甸县向阳寺组的碎屑岩[13]中,或系一套含砂泥质碳酸盐岩[8]。笔者在研究区内首次发现向阳寺组中存在硅质岩,发育于保山地块东缘、即昌宁—孟连结合带北段西侧(图1)。众所周知,硅质岩是由化学作用、生物和生物化学作用以及某些火山作用所形成的富含二氧化硅(一般超过70%)的岩石,其中也包括在盆地内经机械破碎再沉积的硅质岩。硅质岩数量不多,但分布广泛[14, 15, 16]。笔者根据1∶25万凤庆县幅区域地质图[9]所划出向阳寺组的出露位置,测制了2 条岩性剖面:一条位于保山市施甸县摆榔乡,为一套碎屑岩-碳酸盐岩建造;一条位于保山市昌宁县更戛乡,为一套碎屑岩-硅质岩建造。两条剖面的岩性差别巨大,使我们近一步探究向阳寺组的特征。

图1 研究区地质简图及剖面位置(据1∶25万凤庆幅修改[9] 1—三叠系;2—向阳寺组;3—志留系;4—泥盆—石炭系;5—元古宇;6—二长花岗岩;7—地层界线;8—断层;9—褶皱轴迹;10—摆榔乡向阳寺组剖面位置;11—更戛乡向阳寺组剖面位置;12—花岗岩;13—变质基底;14—研究区范围;BS—保山地块;CM—昌宁—孟连结合带;YZ—扬子地块;KJw—柯街断裂西支;XQ—习谦断裂;a—施甸地层小区;b—耿马地层小区;c—澜沧地层小区;Ⅰ—扬子板块;Ⅱ—兰坪—思茅微地块;Ⅲ—藏滇板块;Ⅳ—中甸微板块 Fig.1 Geological sketch map of the study area and location of Xiangyangsi Formation 1-Triassic; 2-Xiangyangsi Formation; 3-Silurian; 4- Devonian - Carboniferous; 5-Proterozoic; 6-Monzonitic granite; 7-Stratigraphic boundary; 8-Fault; 9- Axial trace of fold; 10-Location of Xiangyangsi Formation in Bailang; 11-Location of Xiangyangsi Formation in Gengga; 12-Granite; 13- Metamorphosed basement; 14-Study area; BS—Baoshan massif; CM-Changning - Menglian suture belt; YZ-Yangtze block; KJw-West side of Kejie fault; XQ-Xiqian fault; a-Shidian strata area; b-Gengma strata area; c-Lancang strata area; Ⅰ-Yangtze block; Ⅱ-Lanping-Simao massif; Ⅲ-Tibet-Yunnan massif; Ⅳ-Zhongdian massif

由于向阳寺组硅质岩的首次发现,本文结合野外剖面实测、室内镜下鉴定和化学样品分析的前提下,对滇西保山市昌宁县更戛乡下泥盆统向阳寺组进行了系统的岩石学、构造地质学解析,并结合向阳寺组中硅质岩沉积地球化学特征及其保存的生物化石进行了综合分析研究,初步探讨了向阳寺组形成时的区域构造环境。

1 区域地质简况

更戛乡向阳寺组剖面位于保山地块(图1)东缘、施甸地层小区(图1-a)。其中,有硅质岩发育的向阳寺组地层位于施甸地层小区东部,东侧为耿马地层小区、澜沧地层小区(图1-b、c)。

施甸地层小区中沉积的地层较为完整,自奥陶纪至古近纪基本均有发育,其岩性囊括了砾岩、砂岩、泥岩、碳酸盐岩、硅质岩、火山碎屑岩等,发育少量火山岩。耿马地层小区发育基性火山岩与碎屑岩组合、浊积岩、碳酸盐岩等,沉积间断,并且先存的孟定街岩群、温泉组均有不同程度的多期变质变形。澜沧地层小区内主要出露碎屑岩,并发育二叠纪、三叠纪、白垩纪岩体。

研究区内构造变形强烈,可见绵延数十千米的短轴褶皱,划分小型构造单元、横跨研究区的南北向推覆断层等大型构,柯街断裂、习谦断裂发育;也可见露头中发育的叠加褶皱及各种线状、面状构造。

2 更戛乡向阳寺组地层及硅质岩组构特征

更戛乡下泥盆统向阳寺组(D1x)的岩石组合为石英砂岩、泥质岩、硅质岩。向阳寺组下伏地层为中—上志留统栗柴坝组(S2-3l),岩性为碎屑岩、碳酸盐岩,与向阳寺组地层整合接触;向阳寺组未见顶,与下二叠统卧牛寺组(P1w)断层接触。向阳寺组在该地区与栗柴坝组地层形成背斜,位于背斜翼部。

向阳寺组按照岩性可划分为4段:1段为硅质岩,厚约15 m;2 段为中层细粒石英砂岩-含泥砂岩或含砂泥岩-硅质岩的正粒序,也可见泥岩夹硅质岩夹层或硅质岩透镜体,该段厚284.72 m;3段为中层细粒、中粒石英砂岩-生物碎屑硅质岩、硅质岩的正粒序,该段厚81.085 m;4段为泥质粉砂岩、泥质细砂岩,该段厚161.306 m;测制总厚度为541.811 m。向阳寺组硅质岩多为深灰色-灰黑色、结构致密的隐晶质硅质岩,表面风化色可见灰色、浅红色、灰白色、灰绿色等,单层厚度一般为1~3 cm,为微-薄层状构造,局部有后期的石英脉充填。该处沉积的硅质岩为层状硅质岩[15],厚度小,分布广泛,总体产状稳定。硅质岩主要由隐晶质玉髓和蛋白石组成,表面可见蛋白石风化后残留的白色粉末,另在薄片中可见硅质岩有碳酸盐化,即表示含有黏土及碳酸盐。硅质岩产状较陡,可见硅质岩层面近竖直(图2-a),层内强烈变形、弯曲,较为破碎,形成层内褶皱(图2-b)。某些分层内的硅质岩有很弱的重结晶作用,可见沿破裂面蚀变后的褐铁矿化,或者顺层劈理发育,劈理面同样近竖直。在该组硅质岩中采集的化石标本主要为海百合茎,其他的生物化石,包括三叶虫(残片)、腕足类、双壳类,多保存在粉砂岩、泥岩中。

图2 向阳寺组硅质岩露头及镜下照片 a—灰黑色薄层状硅质岩,向阳寺组,镜向45°;b—灰绿色硅质岩层内褶皱,向阳寺组,镜向195°;c—生物碎屑硅质岩,向阳寺组,单偏光,可见放射虫及海绵骨针;d—生物碎屑硅质岩,向阳寺组,正交偏光;e—泥质硅质岩,向阳寺组,正交偏光;f—生物碎屑硅质岩,向阳寺组,正交偏光 Fig.2 Outcrop pictures and photomicrographs of the chert from Xiangyangsi Formation in Gengga a-Thin-layer chert, Xiangyangsi Formation, direction: 45°; b-Folds in chert, Xiangyangsi Formation, direction: 195°; c-Bioclastic chert (with radiolarian and calthrop), Xiangyangsi Formation, plainlight; d-Bioclastic chert, Xiangyangsi Formation, crossed nicols; e-Argillic chert, Xiangyangsi Formation, crossed nicols; f-Bioclastic chert, Xiangyangsi Formation, crossed nicols

硅质岩类型主要有生物碎屑硅质岩(图2-c图2-d、f)、泥质硅质岩(图2-e)和碳酸盐化硅质岩等。泥质硅质岩主要分布于剖面中部靠下,岩石具微晶结构,矿物成分以自生石英为主,含大量黏土矿物,可见少量黄铁矿;石英(70%),粒径0.01~0.04mm,呈漂浮状;粘土矿物(25%),充填于石英空隙中,局部可见水云母(图2-e)。生物碎屑硅质岩分布于剖面中部靠上、剖面上部石英砂岩夹层中,岩石具微晶结构,矿物成分以自生石英为主,含生物碎屑及少量黏土质;石英(75%),粒径0.02~0.05mm,无定向性,具不规则自形;生物碎屑(15%),球形放射状,主要为放射虫(图2-c、d),属泥盆纪最早期的Monograptus uniformis[17, 18, 19],也可见球形、轮廓为裙边状生物,为硅藻(图2-f),部分层位可见海绵骨针。

3 硅质岩地球化学特征 3.1 样品与分析

选取更戛乡向阳寺组5 个分层中的裂隙较少、后期蚀变较弱的硅质岩样品,采样位置见图3图4,进行了主量元素、微量元素及稀土元素的分析。测试仪器为等离子体质谱仪(010)和Optima5300v电感耦合等离子体光谱仪,测试条件为温度23℃,湿度62%,使用方法为等离子体发射光谱法、质谱法以及容量法。

图3 更戛乡下泥盆统向阳寺组剖面图 1—向阳寺组;2—栗柴坝组;3—石英砂岩;4—泥质粉砂岩;5—粉砂质泥岩;6—泥质岩;7—硅质岩;8—生物碎屑硅质岩;9—分层线;10—岩层产状;11—样品位置及编号 Fig.3 Geological section of Xiangyangsi Formation in Gengga 1-Xiangyangsi Formation; 2-Lichaiba Formation; 3-Quartz sandstone; 4-Argillic siltstone; 5-Silty mudstone; 6-Pelite; 7-Chert; 8-Bioclastic chert; 9-Stratification line; 10-Attitude; 11-Sampling location and its serial number
图4 更戛乡下泥盆统向阳寺组柱状图、硅质岩岩性段及硅质岩样品采样位置 1—石英砂岩;2—泥质砂岩;3—泥质粉砂岩;4—粉砂质泥岩;5—泥质岩;6—硅质岩;7—生物碎屑硅质岩 Fig.4 Lithological section and sampling location of the chert along Xiangyangsi Formation in Gengga 1-Quartz sandstone; 2-Argillic sandstone; 3-Argillic siltstone; 4-Silty mudstone; 5-Pelite; 6-Chert; 7-Bioclastic chert
3.2 主量元素特征

向阳寺组层状硅质岩化学成分以SiO2为主,质量分数为85.43% ~93.50% ,其次为Al2O3、K2O、Fe2O3,它们的质量分数分别为1.90%~6.94%、0.43%~2.50%、0.16%~2.23%,其他较多的成分有FeO、MgO、CaO、Na2O(表1)。Bostrom 等[20]提出,海相沉积岩中Al/(Al+Fe+Mn)比值是衡量沉积岩中热水沉积含量的标志,该比值随着远离扩张中心距离的增加而增大。Adachi 等[21]和Yamamoto 等[22]在系统研究了热液成因与生物成因的硅质岩后,认为Al/(Al+Fe+Mn)比值与热水沉积的含量成反比,热水成因的硅质岩比值为0.01,而深海生物沉积的硅质岩比值为0.60,并且所有热水沉积的元素比值均落入Al-Fe-Mn三角成因判别图的富Fe 端,而非热水成因的元素比值落入判别图的富铝端。根据Al、Fe、Mn的质量分数所得到的三角判别图(图5)所示,除X-01和X-02 落入富Al 端,受陆源碎屑物质的影响,其余的3件样品均落入Ⅱ区(生物成因硅质岩)。研究区5件向阳寺组硅质岩样品Al/(Al+Fe+Mn)比值分别为:0.83、0.85、0.77、0.76、0.65(表1),5 件样品平均值为0.77,处于生物化学成因硅质岩的范畴,与岩石薄片中鉴定出的生物碎屑硅质岩相互印证。

表1 滇西昌宁更戛乡向阳寺组硅质岩化学成分及部分比值(%) Table 1 Major element values of the chert and ratios in Xiangyangsi Formation of Gengga, Changning, western Yunnan (%)
图5 向阳寺组硅质岩Al-Fe-Mn三角判别图 Fig.5 Al-Fe-Mn diagram of the chert in Xiangyangsi Formation in Gengga

MgO在现代大洋中脊热水体系的严重亏损[23],但在向阳寺组硅质岩中MgO质量分数较高。同时,受热液作用硅质岩的K2O/Na2O比值小于1,生物化学沉积成因的硅质岩的K2O/Na2O比值大于1[24],而研究区5 件样品的K2O/Na2O均大于1(表1),这也印证了上述生物成岩硅质岩观点。

3.3 稀土元素特征

稀土元素是一组特殊的微量元素,具有独特的地球化学性质,同时也是区别热水和非热水沉积的重要方法。据Shimizu 等[25]研究成果:热水成因的硅质岩δ Ce 值为负异常,平均值为0.29;非热水成因的硅质岩δ Ce 值为正异常,平均值为1.2。Fleet 等[26]系统研究了热水成因的金属沉积与非热水成因的金属沉积中REE的研究成果:前者REE总量低,Ce 为负异常;后者REE总量高,Ce 为正异常,HREE不富集。据Murray[27]研究表明:热水沉积的硅质岩δ Eu值大于1;从大陆边缘—广海平原—大洋中脊,硅质岩的稀土总量具有正态分布的特点,LaN /CeN值分别为0.5~1.5、1.0~2.5 和约3.5;轻稀土元素则由弱富集逐渐变为明显亏损;LaN /YbN 值在大陆边缘为1.1~1.4,洋中脊附近其平均值约0.3,深海平原硅质岩该值介于两者之间。

向阳寺组硅质岩稀土元素分析结果(表2)表明其REE总量平均值为53.208×10-6;轻稀土元素/重稀土元素(LREE/HREE)比值大于5,变化范围为5.89×10-6~7.81×10-6,LREE含量范围为23.31×10-6~92.41×10-6,平均值为46.12,HREE含量范围为3.48×10-6~15.70×10-6,平均值为7.09,轻稀土富集;δ Ce 值变化范围为0.87~1.16,平均值为1.02,无明显的正负异常;δ Eu 值变化范围为0.88~1.12,平均值为1.01,无明显的正负异常。向阳寺组硅质岩稀土元素北美页岩标准化配分曲线相对平坦(图6),其REE总量较高,HREE不太富集。LaN /CeN平均值为0.99,LaN /YbN平均值为0.84,表明向阳寺组硅质岩的形成位置应为近大陆边缘的深海沉积环境[28, 29, 30]

表2 滇西昌宁—孟连地区硅质岩稀土元素含量(10-6)及部分比值 Table 2 REE values of the chert and ratios in Changning-Menglian area, western Yunnan
图6 向阳寺组硅质岩Fe2O3/TiO2与Al2O3/(Al2O3+Fe2O3)比值示意图 Fig.6 Fe2O3/TiO2 versus Al2O3/(Al2O3+Fe2O3) diagram of the chert in Xiangyangsi Formation in Gengga
图7 向阳寺组硅质岩稀土元素北美页岩标准化分布型式图 (标准化值据文献[31],40 个北美页岩平均,1984 年测出的数据) Fig.7 NASC-normalized REE patterns of the chert in Xiangyangsi Formation in Gengga, western Yunnan
4 硅质岩成岩构造环境探讨

根据上述向阳寺组地层、硅质岩组构及硅质岩地球化学特征,更戛乡向阳寺组硅质岩为生物化学成因、形成条件为近大陆边缘的深海沉积环境。对比向阳寺组硅质岩与昌宁—孟连洋盆其他地区的硅质岩地球化学特征(丁林等[32]在昌宁、孟连地区采集的下泥盆统硅质岩,其δ Ce 平均值为0.96,δ Eu 平均值为0.75,有弱负异常,LaN /CeN 平均值为1.06,LaN /YbN平均值为1.58,表明早泥盆世为一套逐步加深的近陆源沉积;段向东[33]采集的泥盆系曼信组硅质岩,其δ Ce 平均值为0.97,δ Eu 平均值为1.01,LaN /CeN平均值为1.08,LaN /YbN平均值为1.23,表明曼信组硅质岩硅质来源于大陆边缘),发现δ Ce、δ Eu、LaN /CeN平均值区别不大,但对比硅质岩的LaN/YbN值,表明洋盆硅质岩的物源反而来自于大陆边缘。为此,笔者进行了进一步的探讨。

古生代时期,昌宁—孟连洋盆下古生界发育的孟定街岩群可能是洋盆的初始扩张脊而发育少量火山岩,在同时期的其他地区没有岩浆活动的记录。加里东运动后,洋盆处于持续的快速扩张时期,各大陆和其间的洋盆分布发生了改组,保山地块等从冈瓦纳大陆边缘裂离,冈瓦纳大古陆与泛华夏大陆之间正逐渐形成古特提斯洋。部分学者将昌宁—孟连结合带作为冈瓦纳大陆与扬子地块的主缝合线或将昌宁—孟连洋作为古特提斯洋主洋盆[1, 2, 4, 10, 34, 35, 36, 37, 38, 39]。洋盆中既有稳定的扩张脊[40],也有浊积岩的沉积,表明向阳寺组不应属于洋盆系统,而是属于保山地块边缘。

保山地块边缘具有被动大陆边缘的古构造环境,沉积的下古生界奥陶系表现出西部海水较浅、向东部海水加深的沉积环境变化,显示西部靠近大陆地块、东部靠近海洋地块的古地理特征[1]。自奥陶系至志留系,上下地层接触关系均为整合接触或平行不整合接触,表明在向阳寺组沉积时期,保山地块东缘仍为自西向东海水加深的环境特征。

向阳寺组总厚度接近千米,暗示向阳寺组物源丰富且稳定,保山地块处于持续隆升的过程,除洋盆的持续扩张外没有十分明显的构造活动的表现。摆榔乡向阳寺组为一套碎屑岩-碳酸盐岩建造、为陆缘斜坡环境形成,更戛乡向阳寺组为碎屑岩-硅质岩建造、为深海盆地环境形成,造成了横向上的跳相;同时,更戛乡向阳寺组内碎屑岩与硅质岩的交错出现,造成了纵向上的跳相。

对上述问题笔者认为造成横向与纵向相变的主要因素可能是由于保山地块边缘区域性同沉积断裂的阶段性发育。对保山地块东缘的柯街断裂[41]研究后,笔者并没有找到及街断裂在古生代活动及柯街断裂具同沉积断裂性质的证据,但根据保山地块边缘环境演化趋势的跳跃性,由此推测:(1)保山地块的持续隆升与昌宁—孟连洋的快速扩张导致保山地块边缘的差异活动,形成区域性的同沉积断裂,改变了大陆边缘大陆斜坡的古地理特征,形成陡崖。保山地块的稳定期与同沉积断裂发育的间歇阶段,海水较为宁静,硅质岩在海底经生物化学作用形成;(2)在保山地块的宽缓前滨沉积向阳寺组,同时伴随同沉积断裂的发育,造成向阳寺组沉积跳相;(3)由于柯街断裂喜马拉雅向东的冲断推覆及三叠纪残余盆地沉积的共同影响,造成现今向阳寺组缺失的浅海—半深海过渡相被断失或为上三叠统湾甸坝组(T3wd)掩盖,湾甸坝组(图1)位于摆榔乡向阳寺组东侧、更戛乡向阳寺组西侧。

更戛乡向阳寺组中硅质岩处于地层中上部,其LaN /YbN值表明硅质来源于大洋盆地,暗示早泥盆世晚期洋盆发育成熟,洋盆处于相对的宁静期,故此时保山地块边缘海底既有稳定的硅质来源,也有沉积硅质岩的环境条件。而随着中泥盆世海山的发育,洋盆环境较为动荡,不能提供稳定的硅质来源,故地球化学特征显示其硅质来源于陆缘。

由于缺乏一套系统地层连续性的研究,无法证明更戛乡向阳寺组沉积相的大跨度的跳跃性是否存在区域性的统一特征,也没有找到能够支撑上述同沉积断裂发育的观点的证据。就向阳寺组的特征来讲,笔者认为其整体是一套以碎屑岩为主的地层,在更戛乡发育区域性同沉积断裂的影响下形成硅质岩,同沉积断裂的规模可能不大。

从测制的剖面可以看出更戛乡向阳寺组中碎屑岩与硅质岩交错出现,沉积相上表现出滨、浅海相与深海相反复出现的现象,结合硅质岩地球化学特征及硅质岩中少量发育的古生物,表明更戛乡向阳寺组在快速隆升期由机械作用沉积碎屑岩,在相对稳定期由生物化学作用形成硅质岩,硅质来源于昌宁—孟连洋,硅质岩属冈瓦纳大陆保山地块边缘亲昌宁—孟连古特提斯洋的深海沉积的产物。

5 结论

(1)更戛乡下泥盆统向阳寺组中心发现的硅质岩地球化学特征表明,SiO2 质量分数为85.43%~93.50%,Al/(Al+Fe+Mn)平均值为0.77,处于生物化学成因范畴。

(2)更戛乡下泥盆统向阳寺组硅质岩REE总量平均值为53.208×10-6,LREE/HREE大于5,HREE不太富集,稀土元素北美页岩标准化配分曲线相对平坦,δ Ce平均值为1.02,δ Eu平均值为1.01,均无明显的正负异常,LaN /CeN平均值为0.99,LaN /YbN平均值为0.84,由此显示,向阳寺组硅质岩应为保山地块东缘的深海沉积环境。

(3)根据更戛乡下泥盆统向阳寺组硅质岩地球化学特征的分析,结合古生物研究,认为更戛乡向阳寺组硅质岩属冈瓦纳大陆保山地块边缘亲昌宁—孟连古特提斯洋的深海沉积的产物。

致谢:文章撰写过程中得到了刘显凡教授、林雄副教授及赵甫峰讲师的悉心指导,以及湾甸—勐统—凤庆区域地质调查“雪山”项目组学生们的热情帮助,在此表达感谢。

参考文献(References)

[1] 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1-217.
Zhong Dalai. The Paleo-Tethy Orogenic Belt in Western Sichuan and Yunnan[M]. Beijing: Science Press, 1998: 1-217 (in Chinese).(3)
[2] 中国地质调查局成都地质调查中心. 青藏高原及邻区大地构造图说明书[R]. 北京:地质出版社, 2013: 80-90.
Chengdu Institute of Geology and Mineral Resources. Instructions of the Qinghai-Tibet Plateau and Adjacent Areas Tectonic Map[R]. Beijing: Geological Publishing House, 2013: 80-90 (in Chinese).(2)
[3] 李文昌, 潘桂棠, 侯增谦, 等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京:地质出版社, 2010: 1-133.
Li Wenchang, Pan Guitang, Hou Zengqian, et al. Metallogenic Theory and Exploration Technology of Island Arc Basin and Collision Orogeny in"Sanjiang"Area, South-West China[M]. Beijing: Geological Publishing House, 2010: 1-133 (in Chinese).(1)
[4] 刘增乾, 李兴振, 叶庆同."三江"地区构造岩浆带的划分与矿产分布规律[M]. 北京: 地质出版社, 1993: 1-62.
Liu Zengqian, Li Xingzhen, Ye Qingtong. Division of Tectonic Magmatic Belt and Mineral Distribution in"Sanjiang"Area[M]. Beijing: Geological Publishing House, 1993: 1-62 (in Chinese).(2)
[5] 杨开辉, 侯增谦, 莫宣学. 青藏-"三江"地区冈瓦纳与欧亚大陆地幔的界限及其板块构造问题[M]. 北京:地质出版社, 1995: 1-49.
Yang Kaihui, Hou Zengqian, Mo Xuanxue. Mantle Boundury of Gondwana and Eurasia and Plate Tectonic[M]. Beijing: Geological Publishing House, 1995: 1-49 (in Chinese).(1)
[6] 许志琴, 杨经绥, 李文昌, 等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6):1847-1860.
Xu Zhiqin, Yang Jingsui, Li Wenchang, et al. Paleo-Tethys system and accretionary orogen in the Tibet Plateau[J]. http://geochina.cgs.Acta Petrologica Sinica, 2013, 29(6): 1847-1860 (in Chinese with English abstract).(1)
[7] 曹仁关. 云南西部古生物地理与大地构造演化[J]. 中国地质科学院院报,1986,13: 37-49.
Cao Renguan. Palaeo-biogeography and tectonic evolution of western Yunnan[J]. Bullentin of The Chinese Academy of Geological Sciences, 1986,13: 37-49 (in Chinese with English abstract).(1)
[8] 张远志. 云南省岩石地层[M]. 武汉:中国地质大学出版社, 2008: 24-210.
Zhang Yuanzhi. Yunnan Litho-Stratigraphic[M]. Wuhan: China University of Geosciences Press, 2008: 24-210 (in Chinese).(2)
[9] 云南省地质调查院. 1:25万凤庆县幅区域地质调查报告[R]. 云南: 云南省地质调查院, 2006: 1-45.
Yunnan Geological Survey. Project Report of 1:250000 Regional Geological Survey in Feng Qing[R]. Yunnan: Yunnan Geological Survey, 2006: 1-45 (in Chinese).(3)
[10] 从柏林, 吴根耀, 张旗, 等. 中国滇西古特提斯构造带岩石大地构造演化[J]. 中国科学(B 辑),1993,23(11): 1201-1207.
Cong Bailin, Wu Genyao, Zhang Qi, et al. Rock tectonic evolution of Paleo-Tethys tectonic belt in western Yunnan, China[J]. Science in China(Series B),1993,23(11): 1201-1207 (in Chinese).(2)
[11] 梅冥相, 曾萍, 初汉明, 等. 滇黔桂盆地及邻区泥盆纪层序地层格架及其古地理背景[J]. 吉林大学学报(地球科学版),2004,34 (4): 546-554.
Mei Mingxiang, Zeng Ping, Chu Hanming, et al. Devonian sequence -stratigraphic framework and its paleo-geographical background in the Dianqiangui Basin and its adjacent areas[J]. Journal of Jilin University(Earth Science Edition),2004,34(4): 546-554 (in Chinese with English abstract).(1)
[12] 钟大赉, 丁林. 从三江及邻区特提斯带演化讨论冈瓦纳大陆离散与亚洲大陆增生: 亚洲的增生[M]. 北京: 地震出版社, 1993: 5-8.
Zhong Dalai, Ding Lin. Tethys Belt Evolution to Discuss Gondwanaland Breakup and Asia Continent Accretion: Accretion of Asia[M]. Beijing: Seismological Press, 1993: 5-8 (in Chinese).(1)
[13] 彭成龙, 黄文俊, 郝家羽. 滇西施甸地区泥盆系向阳寺组混合沉积研究[J]. 贵州地质, 2012, 29(3): 192-196.
Peng Chenglong, Huang Wenjun, Hao Jiayu. Reaearch of Mixed Sedimentation of Xiangyangsi Formation of The Devonian System in Shidian Area of Western Yunnan[J]. Guizhou Geology, 2012, 29(3): 192-196 (in Chinese with English abstract).(1)
[14] 曾允孚, 夏文杰. 沉积岩石学[M]. 北京:地质出版社, 1986: 190-199.
Zeng Yunfu, Xia Wenjie. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 1986: 190-199 (in Chinese).(1)
[15] 冯彩霞, 刘家军. 硅质岩的研究现状及其成矿意义[J]. 世界地质, 2001, 20(2): 119-123.
Feng Caixia, Liu Jiajun. The latest research progress of Chert and metallogenic significance[J]. Global Geology, 2001, 20(2): 119-123 (in Chinese with English abstract).(2)
[16] 姚旭, 周瑶琪, 李素, 等. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展,2013,28(11): 1189-1200.
Yao Xu, Zhou Yaoqi, Li Su, et al. Research status and advances in chert and Permian chert event[J]. Advances in Earth Science,2013, 28(11): 1189-1200 (in Chinese with English abstract).(1)
[17] 杜远生, 童金南, 等. 古生物地史学概论[M]. 武汉:中国地质大学出版社, 2010: 142-160.
Du Yuansheng, Tong Jinnan, et al. Paleontology and Historical Geology[M].Wuhan: China University of Geosciences Press, 2010: 142-160 (in Chinese).(1)
[18] 吴浩若, 李红生. 滇西孟连地区的石炭纪和二叠纪放射虫化石[J]. 微体古生物学报, 1989, 6(4):337-343.
Wu Haoruo, Li Hongsheng. Carboniferous and Permian Radiolaria in the Menglian area, western Yunnan[J]. Acta Micropalaeontological Sinica, 1989, 12, 6(4): 337-343 (in Chinese with English abstract).(1)
[19] Chen Xu, Quan Quiqi. Earliest Devonian graptolites from Ximeng, southwestern Yunnan, China[J]. Alcheringa: An Australasian Journal of Paleontology, 1992, 16(3): 181-187(1)
[20] Bostrom K, Rydell H, Joensuu O, et al. Langbank: an exhalative sedimentary deposit[J]. Economical Geology, 1979, 74(5): 1002-1011.(1)
[21] Adachi M, Yamamoto K, Suigiski R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2):125-148.(1)
[22] Yamamoto K. Geochemical characteristics and deposition environment of cherts and associated rocks in the Franciscan and Shimena terranes[J]. Sedimentary Geology, 1987, 52:65-108.(1)
[23] Edmond J M, Damm K V. Hotspring at the Seafloor[J]. Science, 1983(8):37-50.(1)
[24] 张汉文. 秦岭泥盆系的热水沉积岩及其与矿产的关系-概论秦岭泥盆纪的海底热水作用[J]. 中国地质科学院西安地质矿产研究所所刊, 1991:15-42.
Zhang Hanwen. On Hydrothermal Sedmentary rocks and their Relationships with Mineral Resources in Devonian Period of Qingling area, China[J]. Bullentin of Xi'an Institute of Geological Mineral Research of Chinese Academy of Geological Sciences, 1991: 15-42 (in Chinese with English abstract).(1)
[25] Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of it formation[J]. Nature, 1977, 266:346-348.(1)
[26] Fleet A J. Hydrothermal and hydrogenous ferromanganese deposits[C]// Rona P A, et al. Hydrothermal Process at Sea Floor Spreading Centres. Amsterdam: Elsevier Science Publishers B V, 1983:537-570.(1)
[27] Murray R W. Chemical criteria to identify the depositional environment of chert general principles and applications[J]. Sediment Geology, 1994, 90: 213-223.(1)
[28] 林良彪, 陈洪德, 朱利东. 重庆石柱吴家坪组硅质岩地球化学特征[J]. 矿物岩石, 2010, 30(3): 52-58.
Lin Liangbiao, Chen Hongde, Zhu Lidong. Geochemical characteristics of silicalites from Wujiaping Formation in Shizhu, Chongqing[J]. Mineral. Petrol., 2010, 30(3): 52-58 (in Chinese with English abstract).(1)
[29] 邓昆, 周立发, 曹欣, 等. 香山群狼嘴子组硅质岩地球化学特征及形成环境[J]. 中国地质,2007,34(3): 497-505.
Deng Kun, Zhou Lifa, Cao Xin, et al. Geochemical characteristics and tectonic setting of cherts in the Langzuizi Formation of the Xiangshan Group[J]. Geology in China, 2007, 34(3): 497-505 (in Chinese with English abstract).(1)
[30] 常华进, 储雪蕾, 冯连君, 等. 湖南安化留茶坡硅质岩的REE 地球化学特征及其意义[J]. 中国地质, 2008, 35(5): 879-887.
Chang Huajin, Chu Xuelei, Feng Lianjun, et al. REE geochemistry of the Liuchapo chert in Anhua, Hunan[J]. Geology in China, 2008, 35(5): 879-887(in Chinese with English abstract).(1)
[31] Haskin M A, Haskin L A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H (ed.). Origin and Distribution of the Elements. Oxford: Pergamon, 1968, 1:889-911.(1)
[32] 丁林, 钟大赉. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J]. 中国科学(B 辑), 1995, 25(1): 93-100.
Ding Lin, Zhong Dalai. Characteristics of rare earth elements and cerium anomalies in cherts from the Paleo-Tethys in Changning-Menglian belt, western Yunnan, China[J]. Science in China(Series B), 1995,25(1): 93-100 (in Chinese).(1)
[33] 段向东. 滇西南耿马地区昌宁-孟连带盆地演化研究[D]. 北京: 中国地质大学, 2013: 47-65.
Duan Xiangdong. Research of Changning-Menglian belt Basin Evelution in Gengma, South-west Yunnan[D]. Beijing: China University of Geosciences,2013: 47-65 (in Chinese with English abstract).(1)
[34] 李兴振, 刘文均, 王义昭, 等. 西南"三江"地区特提斯构造演化与成矿(总论)[M]. 北京: 地质出版社, 1999: 10-75.
Li Xingzhen, Liu Wenjun, Wang Yizhao, et al. Tethys Tectonic Evelution and Mineralization in"Sanjiang"area (Pandect) [M]. Beijing: Geological Publishing House, 1999: 10-75 (in Chinese).(1)
[35] 陈炳蔚, 曲景川. 三江地区地质构造研究的新成果[R]. 地质矿产部,1992,1: 15-17.
Chen Binwei, Qu Jingchuan. Results of tectonic research in Sanjiang area[J]. Ministry of Geology and Mineral Resources, 1992,1: 15-17 (in Chinese).(1)
[36] Liu Benpei, Feng Qinglai, Fang Nianqiao, et al. Tectono -paleogeographic framework and evolution of the Paleotethyan archipelagoes ocean in Changning -Menglian belt, western Yunnan, China[C]//Fang Nianqiao, Feng Qinglai, et al(Directed by Liu Benpei). Devonian to Triassic Tethys in Western Yunnan, China.Wuhan: China University of Geosciences Press, 1996.(1)
[37] Fang Nianqiao. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan[J]. Journal of Southeast Asian Earth Sciences, 1994, 9(4):363-374.(1)
[38] 王义昭. 滇西昌宁-孟连带地质构造特征及构造环境分析[J]. 特提斯地质, 1997, 21: 31-55.
Wang Yizhao. Analysis of Characteristics of tectonic and tectonic environment in Changning-Menglian belt, western Yunnan[J]. Tethyan Geology, 1997, 21: 31-55 (in Chinese with English abstract).(1)
[39] 潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘,2004,11(4): 371-382.
Pan Guitang, Zhu Dicheng, Wang Liquan, et al. Bangong Lake-Nu River suture zone- the northern boundary of Gondwanaland: Evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4): 371-382 (in Chinese with English abstract).(1)
[40] 张旗, 周德进, 赵大升, 等. 滇西古特提斯造山带的威尔逊旋回: 岩浆活动记录和深部过程讨论[J]. 岩石学报, 1996,12(1): 17-28.
Zhang Qi, Zhou Dejin, Zhao Dasheng, et al. Wilson cycle of the Paleo-Tethyan orogenic belt in Western Yunnan: Record of magmatism and discussion on mantle processes[J]. Acta Petrologica Sinica, 1996, 12(1): 17-28 (in Chinese with English abstract).(1)
[41] 张宪依, 唐菊兴, 钟康惠, 等. 滇西保山地体东缘断裂带变形特征及运动学意义[J]. 成都理工大学学报(自然科学版), 2005,32 (3): 315-321.
Zhang Xianyi, Tang Juxing, Zhong Kanghui, et al. Deformation features and kinematic meaning of fault zones on the east margin of the Baoshan terrane, Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2005, 32(3): 315-321 (in Chinese with English abstract).(1)