«上一篇
文章快速检索    
  下一篇»
  中国地质  2016, Vol. 43 ;Issue (3): 751-767  
0

doi:10.12029/gc20160104
引用本文
朱小辉, 王洪亮, 杨猛. 祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义[J]. 中国地质, 2016, 43(3): 751-767.
ZHU Xiao-hui, WANG Hong-liang, YANG Meng. Zircon U-Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qilian Mountain[J]. Geology in China, 2016, 43(3): 751-767(in Chinese with English abstract).

祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义
朱小辉1, 王洪亮1, 杨猛2    
1. 国土资源部岩浆作用成矿与找矿重点实验室, 中国地质调查局西安地质调查中心, 陕西 西安 710054;
2. 西北有色地质勘查局, 陕西 西安 710054
提要: 文章对祁连地块南缘柴达木山复式岩体中部的似斑状二长花岗岩以及二长花岗岩进行了详细的岩石学、地球化学及锆石U-Pb年代学研究,结果表明似斑状二长花岗岩为富钾弱过铝质S型花岗岩,是杂砂岩在温度约820℃,压力0.8~0.9Gpa的条件下,经黑云母脱水引发部分熔融形成,形成于同碰撞环境,时代为(456.2±3)Ma;二长花岗岩为富钾准铝质S型花岗岩,是砂泥质沉积岩在温度约750℃,压力<0.8Gpa的条件下,经白云母脱水引发部分熔融形成,形成于伸展背景下,时代为(437.2±1.5)Ma。结合前人的研究成果,认为柴达木山复式岩体是一个挤压到伸展等多种构造体制下形成的岩体。
关键词: 祁连地块    柴北缘    柴达木山    锆石U-Pb定年    
中图分类号:P588.12;P597+.3            文献标志码:A             文章编号:1000-3657(2016)03-0751-17
Zircon U-Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qilian Mountain
ZHU Xiao-hui1, WANG Hong-liang1, YANG Meng2    
1. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, Xi'an Center of Geological Survey, CGS, Xi'an, Shaanxi, China 710054;
2. Northwest Mining and Geology Group Co. , Ltd. , for Nonferrous Metals NWME, Shaanxi, China, 710054
Fund support:Supported by China Geological Survey Program (DD20160345-16,12120113033003,121201011000150004) and National Natural Science Foundation of China (No. 41402051).
About the first author: ZHU Xiao-hui, male, born in 1986, engineer; E-mail: zhuxiaohui_012@163.com.
Abstract: Based on integrated studies of petrography, geochemical and geochronology of the porphyritic monzogranite and monzogranite from the middle segment of the Qaidam Mountain composite granite, the authors hold that the porphyritic monzogranite is a K-rich peraluminous S-type granite formed by the biotite partial melting of greywacke under the condition of higher pressure (0.8-0.9 Gpa) and temperature (about 820℃), and resulted from continent-continent collision in (456.2±3) Ma; The monzogranite is a K- rich metaluminous S- type granite, which was formed by the muscovite partial melting of meta politicarenaceous sedimentary rocks under the condition of lower pressure (<0.8 Gpa) and temperature (about 750℃), and was formed in an extension geological setting in (437.2 ± 1.5) Ma. Combined with the results of previous studies, the authors consider that the Qaidam Mountain composite granite was formed in a complex plate tectonic system which transformed from contraction to extension.
Key words: Qilian massif    North Qaidam    Qaidam Mountain    LA-ICP-MS U-Pb dating    

柴北缘构造带位于祁连地块南缘,是一条在早古生代经历过陆壳深俯冲形成的高压-超高压变质岩带,人们已经发现了多种类型的高压-超高压变质岩石[1-9],这引起了人们对本地区早古生代构造背景的广泛关注。沿祁连地块南缘以及柴北缘高压-超高压变质带分布有大量的古生代花岗岩,为了揭示陆壳深俯冲过程中的岩浆响应事件及柴北缘构造带的形成与演化,人们已对这些花岗岩开展了大量的年代学、地球化学和成因等方面的研究工作[10-22]。柴达木山复式岩体是分布在祁连地块南缘规模最大的岩体之一,有人认为该岩体形成于陆-陆碰撞环境,时代为436~446 Ma[11, 21],有人则认为该岩体应形成在后碰撞或后造山环境,时代为440 Ma[18-19]。为准确限定该岩体的成因、源区性质、形成时代和构造环境,本文在前人研究的基础上,对柴达木山复式岩体开展了进一步的岩石学、地球化学和锆石LAICP-MS U-Pb 年代学研究,以期为探讨柴达木山复式岩体的成因及形成环境,并为进一步探讨区内构造演化历史提供重要约束。

1 地质背景和岩石学特征

祁连地块位于青藏高原东北部,其南北分别以宗务隆—青海南山断裂及野牛台—托莱河南侧—门源—白银断裂为界与柴北缘构造带及北祁连俯冲-增生杂岩带相邻。该地块具有三重结构,其中早前寒武纪结晶基底由西段的北大河岩群、托赖岩群,中段的湟源群以及东段的马衔山群组成,岩石类型主要为角闪岩相的副片麻岩和花岗质片麻岩,中、上部则由中元古界变质火山岩-沉积岩组成的变质基底以及新元古界碎屑岩-碳酸盐岩组成的沉积盖层构成。柴北缘构造带以乌兰—鱼卡断裂为界可划分为南北两部分,北带发育有完整的基底和沉积盖层双层结构,陆松年等[23]称之为“欧龙布鲁克微板块”。其基底主要由德令哈杂岩和达肯大坂群组成,沉积盖层由中元古代万洞沟群和新元古代全吉群共同构成[24-25]。南带位于柴北缘构造带靠近柴达木盆地一侧,为早古生代形成的俯冲碰撞杂岩带,主要由岛弧火山岩、岛弧深成岩和经历了高压-超高压变质作用的深俯冲板片组成。

柴达木山复式岩体位于祁连地块南缘,柴北缘构造带的北侧(图 1图 2),岩体规模很大,面积可达2000 km2,其北部、东部均被新生代沉积物覆盖,西南部及东南部则有较强韧性剪切带通过,为祁连地块南部边界的一部分。该岩体南部主要为一套浅灰白色-肉红色粗粒-巨粒环斑花岗岩,周边被中粗粒正长花岗岩、似斑状正长花岗岩和粗粒二长花岗岩等围绕;中部主要由中-细粒二长花岗岩、二长花岗斑岩、正长花岗岩等组成;北部则以中粗粒正长花岗岩、似斑状正长花岗岩和粗粒二长花岗岩为主[18-19]。本文主要对分布于柴达木山岩体中部的似斑状二长花岗岩以及中-细粒二长花岗岩进行了研究。其中似斑状二长花岗岩(图 3-a)呈灰白色,(似)斑状结构,块状构造。斑晶(约25%)主要由长石和石英组成,其中斜长石呈半自形板状,含量约40%;钾长石呈半自形板状、粒状,含量约35%;石英呈半自形-他形粒状,含量约25%。基质(约75%)主要由细粒半自形-他形长英质矿物及少量黑云母等副矿物组成。中-细粒二长花岗岩(图 3-b)呈灰白色,中-细粒花岗结构,块状构造。主要由钾长石(约45%)、斜长石(约20%)、石英(约30%)以及黑云母(约4%)组成,其中钾长石和斜长石呈半自形板状,斜长石可见弱绿帘石化、绢云母化;石英呈半自形-他形粒状;黑云母主要呈片状集合体产出,具弱的绿泥石化。

图1 柴北缘地质简图[1] Ⅰ—宗务隆—青海南山断裂;Ⅱ—乌兰—鱼卡断裂;Ⅲ—柴北缘断裂;Ⅳ—哇洪山—温泉断裂;Ⅴ—阿尔金走滑断裂 Fig.1 Simplified geological map of northern marginal Qaidam[1] Ⅰ-Zongwulong-Qinghainanshan fault; Ⅱ-Wulan-Yuka fault; Ⅲ-North Qaidam fault; Ⅳ-Wahongshan-Wenquan fault; Ⅴ-Altun strike-slip fault
图2 柴达木山岩体地质简图[19] Fig.2 Geological map of the Qaidam Basin[19]
图3 柴达木山似斑状二长花岗岩(a)及二长花岗岩(b)显微岩石学照片 Kfs—钾长石; Pl—斜长石; Bi—黑云母; Q—石英 Fig.3 Microstructures of porphyritic monzogranite (a) and monzogranite (b) from Qaidam Basin Kfs-K-feldspar; Pl-Plagioclase; Bi-Biotite; Q-Quartz
2 分析方法

本文涉及的所有分析测试皆在西北大学大陆动力学国家重点实验室完成。主量元素分析在荧光光谱仪(XRF)上测定,元素分析误差<5%。微量元素和稀土元素测定在电感耦合等离子质谱仪(ICP-MS)上进行,Co、Ni、Zn、Ga、Rb、Y、Zr、Nb、Hf、Ta、REE(除Hf 和Lu)等元素分析精度优于5%,其他低浓度元素的分析精度为5%~10%。详细的分析方法见Gao等[26]

锆石的CL 图像分析由加载英国Gatan 公司的Mono CL3+型阴极荧光探头的电子显微扫描电镜完成。LA-ICP-MS分析在Hewlett Packard 公司的Agilient 7500a ICP-MS和德国Lambda Physik 公司的ComPex102 Excimer 激光器(工作物质ArF,波长193 nm)、MicroLas公司的GeoLas 200 M光学系统的联机上进行。实验中采用He作为剥蚀物质的载气,锆石年龄采用国际标准锆石91500 作为外标标准物质,元素含量采用NIST SRM610 作为外标,29Si 作为内标。详细试验步骤及数据处理方法见Yuan et al[27]

3 岩石地球化学 3.1 主量元素

本地区似斑状二长花岗岩及二长花岗岩的地球化学分析结果见表 1

表1 柴达木山似斑状二长花岗岩、二长花岗岩主量元素(%)、微量元素(10-6)分析结果 Table 1 Major element (%) and trace element (×10-6) compositions of porphyritic monzogranite and monzogranite from Qaidam Basin

似斑状二长花岗岩SiO2 含量变化于68.61%~70.11%,Al2O3含量为14.07%~14.09%,铝饱和指数A/CNK=1.04~1.07,在A /CNK-A /NK 图解(图 4-a)中,样品点全部落在过铝质范围内,属于弱过铝质花岗岩;样品的Na2O 含量为2.56%~2.61%,K2O 含量为5.41% ~5.68% ,Na2O + K2O 含量为8.02% ~8.24%,K2O/Na2O为2.07~2.22,里特曼指数为2.37~2.65,在SiO2-K2O图上(图 4-b),样品点全部落在钾玄岩系列岩石范围内;岩石的铁含量较高,Fe2O3T为3.02%~3.14%,TiO2含量为0.34%~0.37%,MgO含量为0.56%~0.90%,Mg#=30~40,平均为35。上述特征表明柴达木山似斑状二长花岗岩具有富硅、铝、钾、铁、镁的特点,总体显示了富钾弱过铝质花岗岩的特征。

图4 柴达木山似斑状二长花岗岩及二长花岗岩A/CNK-A/NK图解(a)[28]与SiO2-K2O图解(b)[29] Fig.4 A/CNK-A/NK diagram (a)[28] and SiO2-K2O diagram (b)[29] for porphyritic monzogranite and monzogranite from Qaidam Basin

二长花岗岩SiO2含量变化于72.52%~75.34%,Al2O3含量为11.58%~12.93%,铝饱和指数A/CNK=0.91~0.99,属于准铝质花岗岩(图 4-a);样品Na2O含量为2.44% ~2.87% ,K2O 含量为5.31% ~6.42% ,Na2O+K2O含量为8.16%~9.06%,K2O/ Na2O为1.86~2.50,里特曼指数为2.08~2.78,在SiO2-K2O图上(图 4-b),样品点全部落在钾玄岩系列岩石范围内;二长花岗岩铁含量较低,Fe2O3T为1.94%~2.59%,TiO2含量为0.09%~0.17%,MgO 含量为0.18%~0.49%,Mg#=15~37,平均为23。上述特征表明柴达木山二长花岗岩具有富硅、铝、钾,贫铁、镁的特点,总体具有富钾准铝质花岗岩的特征。

3.2 微量元素

似斑状二长花岗岩稀土元素总量较高,ΣREE=249.19×10-6~259.92×10-6,(La/Sm)N=3.92~3.91,(La/Yb)N=12.05~12.69,(Gd/Yb)N=1.91~1.99,具有轻稀土富集,重稀土平坦的稀土配分模式(图 5-a),同时显示了轻微的Eu 负异常(δ Eu=0.45~0.48);微量元素原始地幔标准化蛛网图显示(图 5-b),似斑状二长花岗岩富集大离子亲石元素(如Rb、Th、U、K等),亏损高场强元素(如Nb、Ta、Ti 等),具有轻微的Ba以及明显的Sr 负异常,Zr、Hf无明显分异。

图5 柴达木山似斑状二长花岗岩及二长花岗岩石球粒陨石标准化稀土配分模式图(a、c)和微量元素原始地幔标准化蛛网图(b、d)(标准化数值据[30]) Fig.5 Chondrite-normalized REE-patterns (a,c) and primitive-mantle normalized spider diagram (b、d) for porphyritic monzogranite and monzogranite from Qaidam Basin (normalized data after reference [30])

二长花岗岩稀土元素总量相对较低,ΣREE=108.73×10-6~186.22×10-6,(La/Sm)N=2.02~3.36,(La/Yb)N=1.62~5.17,(Gd/Yb)N=0.62~1.13,具有轻稀土略微富集,重稀土平坦型稀土配分模式(图 5-c),同时具有明显的Eu 负异常(δEu=0.06~0.27);微量元素原始地幔标准化蛛网图上(图 5-d),二长花岗岩富集大离子亲石元素(如Rb、Th、U、K等),亏损高场强元素(如Nb、Ta、Ti等),具有明显的Sr、Ba负异常。

4 锆石U-Pb年代学

似斑状二长花岗岩中的锆石为多为无色、淡黄色,以半自形-自形长柱状为主,长宽比介于3∶1~1.5∶1,边界清晰、平直,柱面发育,发育明显的岩浆震荡环带。微量元素分析结果显示(表 2表 3),测点的U、Th含量分别为35.0×10-6~290×10-6、35.2×10-6~125×10-6,Th/U 值在0.28~1.39,绝大部分大于0.4(平均为0.64),且均具有较高的稀土元素总量和重稀土含量(ΣREE=464×10-6~1835×10-6、ΣHREE=440×10-6~1798×10-6),(Gd/Yb)N<1,指示这些锆石为岩浆成因锆石[31]。利用LA-ICP-MS 锆石U-Pb 定年方法,对似斑状二长花岗岩中的锆石共进行22 次分析(表 3),锆石U-Pb 表面年龄为438~479 Ma,其中有21个测点在谐和线上构成了一个年龄集中区,其206Pb/238U加权平均年龄为(456.2±3)Ma(图 8-a),代表了似斑状二长花岗岩的结晶年龄。

表2 柴达木山似斑状二长花岗岩、二长花岗岩锆石稀土元素分析结果(10-6 Table 2 REE concentrations of zircons from porphyritic monzogranite and monzogranite from Qaidam Basin(10-6
表3 柴达木山似斑状二长花岗岩、二长花岗岩锆石LA-ICP-MS 定年分析结果 Table 3 LA-ICP-MS zircon dating results for porphyritic monzogranite and monzogranite from Qaidam Basin
图6 柴达木山似斑状二长花岗岩锆石CL图像 Fig.6 CL images of the zircons of porphyritic monzogranite from Qaidam Basin
图7 柴达木山二长花岗岩锆石CL图像 Fig.7 CL images of the zircons of monzogranite from Qaidam Basin
图8 柴达木山似斑状二长花岗岩及二长花岗岩锆石U-Pb年龄谐和图 Fig.8 Zircon U-Pb concordia diagram of the porphyritic monzogranite (a) and monzogranite (b) from Qaidam Basin

二长花岗岩所选锆石为无色、淡黄色,以半自形-自形短柱状为主,长宽比在1∶1~1.5∶1,边界清晰、平直,柱面发育,同样发育明显的岩浆震荡环带。微量元素分析结果(表 2表 3)显示,测点的U、Th 含量分别为136×10-6~812×10-6、70.2×10-6~913×10-6,Th/U值在0.28~1.39,绝大部分大于0.4(平均为0.47),具有较高的稀土元素总量和重稀土含量( ΣREE=470×10-6~2324×10-6、ΣHREE=443×10-6~2279×10-6),(Gd/Yb)N<1,指示这些锆石为岩浆成因锆石[31]。利用LA-ICP-MS 锆石U-Pb 定年方法,对似斑状二长花岗岩中的锆石共进行25 次分析(表 3),锆石U-Pb 表面年龄为435~700 Ma,含有中奥陶世(466.4±6.3)Ma 及新元古代南华纪(700±4)Ma捕掳锆石年龄信息,其中有20 个测点在谐和线上构成了一个年龄集中区,其206Pb/238U加权平均年龄为(437.2±1.5)Ma(图 8-b),代表了二长花岗岩的结晶年龄。

5 讨论 5.1 岩浆源区性质

柴达木山复式岩体中的似斑状二长花岗岩及二长花岗岩主要由碱性长石、斜长石、石英和黑云母组成,无角闪石;同时具有高硅、高碱,低钛、铁、镁、钙的特点,K2O/Na2O>1.43,FeOT/CaO>1,为准铝质-弱过铝质钾玄岩系列岩石,与S 型花岗岩的矿物组合及岩石地球化学特征相似[32-33]。研究表明,Ⅰ 型花岗岩的P2O5与SiO2呈明显的负相关关系,S 型花岗岩的P2O5将随着SiO2的增加而呈增高或基本不变的趋势,这一方法已被成功地用于区分Ⅰ 型和S 型花岗岩[34-35]。柴达木山复式岩体中的似斑状二长花岗岩及二长花岗岩P2O5 含量较为稳定,随SiO2含量的增加基本保持不变,指示似斑状二长花岗岩及二长花岗岩为S型花岗岩。

实验岩石学研究证明花岗岩的源区具有多样性,中基性岩石部分熔融通常会形成化学成分偏中性的花岗闪长质的准铝质花岗岩类[36-37],碎屑沉积岩类部分熔融则会形成偏酸性的过铝质花岗岩类[36, 38],而泥砂质沉积岩类部分熔融则可能形成强烈富铝和富钾的花岗岩[36, 39]。柴达木山似斑状二长花岗岩与二长花岗岩均为富Al 的钾玄质系列花岗岩(A/CNK分别为1.04~1.07 和0.91~0.99,K2O含量分别为5.41%~5.68%和5.31%~6.42%,K2O/Na2O分别为2.07~2.22和1.86~2.50),暗示其源岩可能为泥砂质沉积岩类。Sylvester[40]研究表明,花岗岩的CaO/Na2O比值能够有效示踪其源区成分,一般来说贫长石、富黏土的泥质岩部分熔融产生的熔体CaO/Na2O较低(<0.30),而富长石、贫黏土的砂质岩部分熔融产生的熔体CaO/Na2O较高(>0.30)。柴达木山似斑状二长花岗岩的CaO/Na2O值为0.64~0.67,在C/MF-A/MF图解(图 9-a)和Rb/Ba-Rb/Sr 图解中(图 9-b),2 个样品点均落在砂质岩源岩范围内;而二长花岗岩的CaO/Na2O 较低,介于0.28~0.51,平均为0.36,在C/MF-A/MF 图解(图 9-a)和Rb/Ba-Rb/Sr 图解中(图 9-b),样品点落在或接近泥质岩源岩的范围,个别落在砂质岩源岩范围。因此,柴达木山似斑状二长花岗岩与二长花岗岩的源区可能存在差异,其中前者可能为地壳杂砂质沉积岩部分熔融的产物,而二长花岗岩的源岩泥质含量更高,可能为砂泥质沉积岩部分熔融形成。

图9 柴达木山似斑状二长花岗岩及二长花岗岩的C/MF-A/MF图解(a) [41]和Rb/Sr-Rb/Ba图解(b) [40] Fig.9 C/MF-A/MF diagram (a) and Rb/Sr-Rb/Ba diagram (b) of porphyritic monzogranite and monzogranite from Qaidam Basin[39]
5.2 部分熔融条件

研究表明,花岗岩的地球化学特征不仅与其源区成分密切相关,同时还与源区岩石发生熔融时的温压条件有关。Brown[42]指出变质沉积岩的熔融作用主要有饱和水固相线上的熔融、白云母脱水熔融和黑云母脱水熔融3 种机制,不同的部分熔融机制通常会产生不同类型的熔体。通常由白云母脱水熔融产生的熔体具有较低Fe、Mg、Ti 以及较高的K含量[43],同时熔体的Rb/Sr 比值较高[44-45];而黑云母脱水熔融产生的熔体通常具有较高的Fe、Mg以及Ti 含量,Rb/Sr 值普遍较低(一般小于4.5)[46]。柴达木山似斑状二长花岗岩具有较高的TFe2O3+MgO+TiO2 含量(3.95~4.38,平均为4.17),以及低的Rb/Sr值(1.46~1.53,平均为1.50),K2O 含量较低(5.41%~5.68%,平均为5.55%);而二长花岗岩的TFe2O3+MgO+TiO2含量相对偏低(2.42~2.88,平均为2.71),Rb/Sr 值以及K2O含量较高(Rb/Sr 值为7.80~20.91,平均为15.6;K2O 含量为5.31%~6.42%,平均为5.82%)。这说明二者源岩的部分熔融机制也存在差异,其中似斑状二长花岗岩可能主要经黑云母脱水熔融形成,而二长花岗岩的形成可能以白云母脱水熔融为主。

锆石是花岗岩中较早结晶的副矿物,而锆石中Zr 的分配系数对温度十分敏感,其在岩浆中的含量与温度存在相关性,因而岩浆中锆的饱和温度可近似代表花岗质岩石近液相线的温度[47-48],另外花岗岩大多是绝热上升就位的,岩浆早期结晶时的温度即可近似代表岩浆起源时的温度[49]。笔者利用Miller et al[50]修正后的全岩锆石饱和温度计对似斑状二长花岗岩以及二长花岗岩的形成温度进行了估算(表 4图 10)。结果显示晚奥陶世形成的似斑状二长花岗岩的起源温度较高,两个样品的平均温度为818℃;而早志留世形成的二长花岗岩的平均起源温度为743℃;这说明两类花岗岩的起源温度也存在差异。斜长石是沉积岩中重要的组成矿物,微量元素Eu、Sr 在斜长石中的分配系数远远高于其他矿物,柴达木山似斑状二长花岗岩的Eu、Sr 负异常较弱(δ Eu=0.15~0.16,δ Sr=0.13~0.15),而二长花岗岩则具有较强的Eu、Sr 负异常(δ Eu=0.03~0.09,δ Sr=0.03~0.13),暗示两类花岗岩的源岩在发生部分熔融时在源区可能均有斜长石的残留,但是似斑状二长花岗岩的源区斜长石只是部分残留,其压力应位于斜长石的不稳定区,而二长花岗岩的起源压力可能位于斜长石稳定区。另外,石榴石是一种强烈富集HREE的矿物(D ? 1),似斑状二长花岗岩以及二长花岗岩均具有较为平坦的HREE配分模式((Gd/Yb)N分别为1.91~1.99 和0.62~1.13),这说明二者的源区残留矿物均没有石榴石。实验岩石学资料显示700~800℃ 时斜长石不稳定的压力介于0.8~1.3GPa[51],而石榴石稳定线则在0.9~1.4 GPa 内变化[52]。指示似斑状二长花岗岩可能是在0.8~0.9GPa 的压力条件下形成的,而二长花岗岩的形成压力则<0.8 Gpa。

表4 柴达木山似斑状二长花岗岩、二长花岗岩的锆石饱和温度计 Table 4 Results from saturated Zr thermometer of porphyritic monzogranite and monzogranite from Qaidam Basin
图10 柴达木山似斑状二长花岗岩以及二长花岗岩锆饱和温度计投点 Fig.10 Plots of saturated Zr thermometer for porphyritic monzogranite and monzogranite from

综上所述,可以推断柴达木山似斑状二长花岗岩是在温度约820℃,压力0.8~0.9 Gpa的条件下,由杂砂岩经黑云母脱水引发部分熔融形成;而二长花岗岩则是在温度约750℃,压力<0.8 Gpa的条件下,由砂泥质沉积岩经白云母脱水引发部分熔融形成。

5.3 构造意义

柴达木山岩体是柴北缘最大的复式岩体之一,前人已做了一定的研究工作,但对其形成时代和成因等上存在不同认识。吴才来等[11]认为该岩体形成于陆-陆碰撞环境,其形成时代为446 Ma。周宾等[21]通过进一步的工作,认为柴达木山岩体的形成时间介于436~446 Ma,是陆-陆碰撞环境下岩浆多期侵位形成的产物。而卢欣祥等[18]则认为分布在柴达木山复式岩体南部的塔塔楞环斑花岗岩应形成于造山运动由挤压造山向后碰撞拉张体制的转折构造环境,时代为440 Ma。胡能高[19]则将柴达木山岩体划分成由早期的黑云母二长花岗岩、中期的正长花岗岩和晚期的环斑花岗岩组成复式岩体,并认为这3 期侵入体具有同源演化的关系,可能形成于后碰撞或后造山环境。

近年来,详细的年代学研究确定柴北缘高压-超高压变质带不同地段的峰期变质时代介于420~458 Ma[2,5-9],同时人们还获得带内麻粒岩相或高角闪岩相退变质时代以及超高压地体折返形成的浅色脉体的时代介于397~435 Ma[53-58]。这说明虽然柴北缘地区在早古生代发生了陆壳深碰撞-俯冲-折返事件,但是不同地段的构造体制还是存在差异的,即局部地段先发生俯冲,随后才发生大规模的深俯冲事件;局部地段先行折返,随后又发生了大规模的陆壳折返。另外,吴才来等[12,14-15]对柴北缘地区古生代花岗岩的研究结果表明,本地区岩浆活动时代主要有以下几个阶段:460~490 Ma、440~450Ma、395~410 Ma 以及370~380 Ma。其中Ⅰ 期岩浆活动对应于洋壳俯冲,形成在岛弧或活动大陆边缘环境;Ⅱ 期为陆陆碰撞形成的同碰撞S 型花岗岩;Ⅲ、Ⅳ 期形成于碰撞后陆壳减薄阶段,兼具Ⅰ 型和S型花岗岩的双重特征。

本文获得柴达木山似斑状二长花岗岩的形成时代为(456.2±3)Ma,二长花岗岩的形成时代为(437.2±1.5)Ma,同时二者的源区特征,源岩部分熔融的温度、压力以及熔融机制也存在明显差异,暗示本地区的构造体制在这一阶段可能发生了较大变化。柴达木山似斑状二长花岗岩的形成时代与柴北缘高压-超高压变质带的峰期变质时代及Ⅱ 期岩浆活动时限一致,指示该岩石应形成在同碰撞环境。而二长花岗岩的形成时限滞后似斑状二长花岗岩约20 Ma,其形成环境可能已由挤压背景转换为伸展背景。

6 结论

(1) 岩石学和地球化学研究表明,柴达木山复式花岗岩体中的似斑状二长花岗岩具有富硅、铝、钾、铁、镁的特点,总体显示了富钾弱过铝质S型花岗岩的特征,是杂砂岩在温度约820℃,压力0.8~0.9 Gpa的条件下,经黑云母脱水引发部分熔融形成;二长花岗岩具有富硅、铝、钾,贫铁、镁的特点,总体显示富钾准铝质S 型花岗岩的特征,是砂泥质沉积岩在温度约750℃,压力<0.8 Gpa的条件下,经白云母脱水引发部分熔融形成。

(2) 利用LA-ICP-MS微区原位锆石U-Pb定年获得该似斑状二长花岗岩的形成时代为(456.2±3)Ma,二长花岗岩的形成时代为(437.2±1.5)Ma,结合前人研究成果,认为似斑状二长花岗岩应形成在同碰撞环境,而二长花岗岩形成在伸展背景下。

参考文献(References)

[1] 杨经绥, 宋述光, 许志琴, 等. 柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物-柯石英[J]. 地质学报, 2001, 75(21): 175-179.
Yang Jingsui, Song Shuguang, Xu Zhiqin, et al. Discovery of coesite in the north Qaidam Early Paleozoic Ultra-High-Pressure (UHP-HP) metamorphic belt, NW China[J]. Acta Geolgica Sinica, 2001, 75(21): 175-179(in Chinese with English abstract).(2)
[2] Song S G, Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh- pressure belt, Northern Tibetan Plateau, NW China[J]. American Mineralogist, 2004, 90: 1330-1336.
[3] Zhang J X, Meng F C, Li J P, et al. Coesite in eclogite from the North Qaidam Mountains and its implications[J]. Chinese Science Bulletin, 2009, 54(6): 1105-1110.
[4] Zhang R Y, Liou J G, Iizuka Y, et al. First record of K-cymrite in North Qaidam UHP eclogite, Western China[J]. American Mineralogist, 2009, 94: 222-228.
[5] Song S G, Zhang L F, Niu Y L, et al. Evolution from oceanic subduction to continental collision: A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. Journal of Petrology, 2006, 47: 435-455.
[6] Mattinson C G, Wooden J L, Liou J G, et al. Age and duration of eclogite- facies metamorphism, North Qaidam HP/UHP terrane, western China[J]. American Journal of Science, 2006, 306: 683- 711.
[7] Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U- Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3-4): 259-272.
[8] Zhang G B, Ellis D J, Christy A G, et al. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China[J]. European Journal of Mineralogy, 2009, 21(6):1287-1300.
[9] Zhang J X, Mattinson C G, Yu S Y, et al. U- Pb zircon geochronology of coesite- bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology, 2010, 28: 955-978.(1)
[10] 吴才来, 杨经绥, Ireland T, 等. 祁连南缘嗷唠山花岗岩SHRIMP 锆石年龄及其地质意义[J]. 岩石学报, 2001, 17(2): 215-221
Wu Cailai, Yang Jingsui, Ireland T, et al. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance[J]. Acta Petrologica Sinica, 2001, 17(2): 215-221(in Chinese with English abstract).(1)
[11] 吴才来, 杨经绥, Wooden J L, 等. 柴达木山花岗岩锆石SHRIMP 定年[J]. 科学通报, 2001, 46(20): 1743-1737.
Wu Cailai, Yang Jingsui, Wooden J L, et al. Zircon SHRIMP dating of granite from Qaidamshan, NW China[J]. Chinese Science Bulletin, 2001, 46(20): 1743-1737(in Chinese).(2)
[12] 吴才来, 杨经绥, 许志琴, 等. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用[J]. 地质学报, 2004, 78(5): 658-674.
Wu Cailai, Yang Jingsui, Xu Zhiqin, et al. Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China[J]. Acta Geologica Sinica, 2004, 78(5): 658- 674(in Chinese with English abstract).
[13] 吴才来, 郜源红, 吴锁平, 等. 柴北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007, 23(8): 1861-1875.
Wu Cailai, Gao Yuanhong, Wu Suoping, et al. Zircon SHRIMP U- Pb dating of granites from the Da Aaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1861-1875 (in Chinese with English abstract).
[14] Wu C L, Joseph L, Wooden J L, et al. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam[J]. Science China: Earth Sciences, 2009, 52(11): 1771-1790.
[15] Wu C L, Gao Y H, Li Z L, et al. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China[J]. Science China: Earth Sciences, 2014, 57(12): 2945-2965.
[16] 史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003, 22 (3): 229-236.
Shi Rendeng, Yang Jingsui, Wu Cailai. The discovery of adakitic dacite in Early Palaeozoic island arc volcanic rocks on the northern margin of Qaidam basin and its geological significance[J]. Acta Petrologica et Mineralogica, 2003, 22(3): 229-236.
[17] 肖庆辉, 卢欣祥, 王菲, 等. 柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J]. 中国科学D辑: 地球科学, 2003, 33(12): 1193- 1200.
Xiao Qinhui, Lu Xinxiang, Wang fei, et al. Zircon U-Pb age of the granite of Yingfengshan from the northern margin of Qaidam Basin and its geological significances[J]. Science China: Earth Sciences, 2003, 33(12): 1193-1200(in Chinese).
[18] 卢欣祥, 孙延贵, 张雪亭, 等. 柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄[J]. 地质学报, 2007, 81(5): 626-634.
Lu Xinxiang, Sun Yangui, Zhang Xueting, et al. The SHRIMP age of Tatalin Rapakivi granite at the North margin of Qaidam basin[J]. Acta Geolgica Sinica, 2007, 81(5): 626-634(in Chinese with English abstract).(3)
[19] 胡能高, 王晓霞, 孙延贵, 等. 柴达木盆地北缘塔塔楞环斑花岗岩的岩相学和地球化学特征[J]. 地质通报, 2008, 27(11): 1923- 1932.
Hu Nenggao, Wang Xiaoxia, Sun Yangui, et al. Petrography and geochemistry of the Tataleng rapakivi granite on the northern margin of the Qaidam basin, northwestern China[J]. Geological Bulletin of China, 2008, 27(11):1923- 1932(in Chinese with English abstract).(4)
[20] Yu Shengyao, Zhang Jianxin, Pablo G D R. Geochemistry and zircon U- Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny[J]. Gondwana Research, 2012, 21(1): 167- 179.
[21] 周宾, 郑有业, 许荣科, 等. 青海柴达木山岩体LA-ICP-MS锆石U- Pb 定年及Hf 同位素特征[J]. 地质通报, 2013, 32(7): 1027-1034.
Zhou Bin, Zhen Youye, Xu Rongke, et al. LA- ICP-MS zircon U- Pb dating and Hf isotope geochemical characteristics of Qaidamshan intrusive body[J]. Geological Bulletin of China, 2013, 32(7): 1027-1034(in Chinese with English abstract).(2)
[22] 朱小辉, 陈丹玲, 刘良, 等. 柴北缘西段团鱼山花岗闪长岩的地球化学特征、锆石U-Pb 定年及Hf 同位素示踪[J]. 高校地质学报, 2013, 19(2): 233-244.
Zhu Xiaohui, Chen Danling, Liu Liang, et al. Geochemical, zircon U- Pb dating and Hf isotope compositions studies of the Tuanyushan granodiorite from western segment of the North Qaidam[J]. Geological Journal of China Universities, 2013, 19(2): 233-244(in Chinese with English abstract).(1)
[23] 陆松年, 王惠初, 李怀坤, 等.柴达木盆地北缘"达肯大坂群"的再厘定[J]. 地质通报, 2002, 21(1): 19-23.
Lu Songnian, Wang Huichu, Li Huaikun, et al. Redefinition of the "Dakendaban Group"on the northern margin of the Qaidam basin[J]. Geological Bulletin of China, 2002, 21(1): 19- 23(in Chinese with English abstract).(1)
[24] 辛后田, 郝国杰, 王惠初, 等. 柴北缘前震旦纪地层系统的新认识[J]. 前寒武纪研究进展, 2002, 25(2): 113-119.
Xin Houtian, Hao Guojie, Wang Huichu, et al. New idea on Presinian Strata in the northern margin of Qaidam massif[J]. Progress in Precambrian Research, 2002, 25(2): 113- 119(in Chinese with English abstract).(1)
[25] 郝国杰, 陆松年, 王惠初, 等. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J]. 地学前缘, 2004, 11(3): 115-122.
Hao Guojie, Lu Songnian, Wang Huichu, et al. The Pre- Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo- block[J]. Earth Science Frontiers, 2004, 11(3): 115- 122(in Chinese with English abstract).(1)
[26] Gao S, Ling W L, Qiu Y M, et al. Contrasting geochemical and Sm- Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimical et Cosmochimica Acta, 1999, 63: 2071- 2088(1)
[27] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation- inductively coupled plasma- mass spectrometry[J]. Geostandards and Geoanlytical Research, 2004, 11: 357-370.(1)
[28] Peccerillo R, Taylor S R. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81.(2)
[29] Rickwood P C.Boundary lines within petrologic diagram which use oxides of major and minor element[J]. Lithos, 1989, 22: 247- 263(2)
[30] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts implication for mantle composition and processes[J]. In: Saunders A D and Norry M J (eds.). Magmatism in Oceanic Basins Spec. Publ. Geol. Soc. Lond., 1989, 42: 313- 345.(2)
[31] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
Wu Yuanbao, Zheng Yongfei. Study on genesis of zircon and its constrains on interpretation of U- Pb age[J]. Chinese Science Bulletin, 2004, 49(16) : 1589-1604(in Chinese).(2)
[32] Whalen J B, Currie K L, Chappell B W. A- type granites: geochemical characteristics, discriminations and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1996, 95: 407-419.(1)
[33] Chappell B W, White A J R. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48: 489-499.(1)
[34] 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-991.
Li Xianhua, Li Wuxian, Li Zhengxiang. Rediscuss the genetic types and construct meaning of Early- Yanshan Epoch in Nanling[J]. Chinese Science Bulletin, 2007, 52(9): 981- 991(in Chinese).(1)
[35] Chappell B W. Aluminium saturation in I and S- type granites andthe characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551.(1)
[36] Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[M]. Berlin: Springer-Verlag, 1996.(2)
[37] Sisson T W, Ratajeski K, Hankins W B and Glazner A F. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2004, 148(6): 635- 661.(1)
[38] Patiño Douce A E, McCarthy T C. Melting of crustal rocks during continetal collision and subduction[C]//Hacker B R, Liou J G(ed.). When continents collide: Geodynamics of Ultra- high Pressure Rocks. Netherlands: Kluwer Academic Publishers, 1998, 27-55.(1)
[39] Castro A, Patiño Douce A E, Corretgé L G, et al. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 1999, 135(2-3): 255-276.(2)
[40] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44.(2)
[41] Gerdes A, Worner G, Henk A. Post-collisional granite generation and HAT-Lp metamorphism by radiogenic heating: the example from the Variscan South Bohemian Batholith[J]. J. Geological Society-London, 2000, 157: 577-587.(1)
[42] Brown M. Rertograde processes in migmatites and granulites revisited[J]. Journal of Metamorphic Geology, 2002, 20: 25-40.(1)
[43] McDermott F, Harris N B W, Hawkesworth C J. Geochemical constraints on crustal anatexis: A case study from the Pan- African granitoids of Namibia[J]. Contributions to Mineralogy and Petrology, 1996, 123: 406-423.(1)
[44] Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya[J]. Journal of Petrology, 1993, 34: 345-368.(1)
[45] HarrisonT M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya[J]. Journal of Petrology, 1999, 40: 3-19.(1)
[46] Visona D, Lombardo B. Two-mica and tourmaline leucogranites from the Everest- Makalu region ( Nepal- Tibet ). Himalayan leucogranite genesis by isobaric heating[J]? Lithos, 2002, 62: 25- 150.(1)
[47] King P L, White A J R, Chappell B W, et al. Characterization and origin of almnious A- type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38: 371- 391.(1)
[48] Calvin F M, McDowell S M, Mapes R W, et al. Granites? implication of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6): 529-532.(1)
[49] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报. 2007, 23(6): 1217-1238.
Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238 (in Chinese with English abstract).(1)
[50] Miller C, Schuster R, Klotzli U, et al. Post- collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr- Nd- Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of petrology, 1999, 40(9): 1399- 1424.(1)
[51] Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218: 339-359.(1)
[52] Vielzeuf D, Schmidt M W. Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts[J]. Contributions to Mineralogy and Petrology, 2001, 141(3): 251-267.(1)
[53] Song S G, Zhang L F, Su L, et al. Geochronology of diamondbearing zircons in garnet peridotite in the North Qaidam UHPM belt, North Tibetan Plateau: A record of complex histories associated with continental collision [J]. Earth and Planetary Science Letters, 2005, 234:99-118.(1)
[54] 孟繁聪, 张建新, 杨经绥. 柴北缘锡铁山早古生代HP/UHP 变质作用后的构造热事件-花岗岩和片麻岩的同位素与岩石地球化学证据[J]. 岩石学报, 2005, 21: 45-56.
Meng Fancong, Zhang Jianxin, Yang Jingsui. Tectono- thermal event of post- HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: Isotopic and geochemical evidence of granite and gneiss[J]. Acta Petrologica Sinica, 2005, 21: 45-56(in Chinese with English abstract).
[55] 孟繁聪, 张建新. 柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性[J]. 岩石学报, 2008, 24: 1585-1594.
Meng Fancong, Zhang Jianxin. Contemporaneous of Early Palaeozoic granite and high temperature metamorphism, North Qaidam Mountains, western China[J]. Acta Petrologica Sinica, 2008, 24: 1585-1594(in Chinese with English abstract).
[56] Zhang J X, Mattinson C G, Meng F C, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, Western China: Evidence from Zircon U-Pb Geochronology[J]. Geol. Soc. Amer. Bull., 2008, 120: 732-749.
[57] Chen D L, Liu L, Sun Y, et al. Felsic veins within UHP eclogite at Xitieshan in the North Qaidam, NW China: Partial melting during exhumation[J]. Lithos, 2012, 136-139: 187-200.
[58] 陈丹玲, 曹玉亭, 刘良. 柴北缘西段超高压地体折返过程中的部分熔融: 榴辉岩及其退变产物中的浅色脉体研究[J]. 科学通报, 2013, 58: 2209-2214.
Chen Danling, Cao Yuting, Liu Liang. Partial melting of UHP terranes in the western segment of the North Qaidam during exhumation: constraints from studies of leucocratic veins within eclogite/retrograde eclogite[J]. Chinese Science Bulletin, 2013, 58: 2209-2214(in Chinese).(1)