阿尔泰山脉南部线性花岗岩锆石 SHRIMP U–Pb 定年及其地质意义

孙桂华 1,2 李锦轶 2 杨天南 2 李亚萍 2,3 朱志新 2,4 杨之青 2,5

(1. 国土资源部广州海洋地质研究所, 广东 广州 510760 ; 2. 中国地质科学院地质研究所, 北京 100037 ;
3. 中国地质局发展研究中心, 沈阳 110037 ; 4. 新疆维吾尔自治区地质矿产勘查开发局第一区域地质队, 新疆 乌鲁木齐 830011 ; 5. 北京离子探针中心, 北京 100037)

摘要：在阿尔泰山脉南部发育长轴呈 NW–SE 走向的小型线性花岗岩，它们的围岩分别为遭受强烈左行韧性剪切变
形的泥盆纪和石炭纪火山沉积岩系。构造变形特征显示，这些线性花岗岩是与次区左行韧性剪切变形同步侵位的。本
文报道了对来自其中的阿勒泰南黑云母花岗岩和沙尔布拉克南二云母花岗岩样品的锆石进行 SHRIMP U–Pb 定年
的研究结果, 根据地质、岩石学和构造变形等方面特征，将沙尔布拉克南二云母花岗岩的(275±1.7)Ma 年龄解释为该岩体的侵位时代，据此推测该区左行韧性剪切作用可能开始于 Ma 前后。结合
已有资料，还对阿尔泰山脉南部二叠纪的构造演化进行了初步讨论。

关键词：阿尔泰山脉南部；线性花岗岩；锆石 SHRIMP U–Pb 定年；额尔齐斯断裂带；二叠纪构造演化

阿尔泰山脉位于北亚造山区之南部，以额尔齐
斯断裂带作为其与准噶尔地区的构造界限，以红山
嘴—诺尔特断裂和库布铁堡—库尔特断裂为界，进
一步划分为北、中、南阿尔泰山(图 1–A)。该山脉形
成演化，经历了新元古代晚期至寒武纪沉积时代弹
绕阶段、奥陶纪至石炭纪中期活动大陆边缘、石炭
纪晚期碰撞造山[2,9]、二叠纪后碰撞阶段[2,3,7–11] 和中生
代晚以来的陆内造山作用。

花岗岩在阿尔泰山脉中出露面积达 40%以上，
是该山脉地壳的重要组成部分。已有资料显示，阿尔
泰山脉中的花岗岩分别形成于奥陶纪至志留纪、晚
泥盆世、二叠纪和三叠纪至侏罗纪等时代时期[12–19]。
在这些花岗岩中，一部分为不规则圆形，椭圆形，岩
体地质及其年代学研究显示它们为典型的后碰撞花
岗岩，如喀喇昆仑岩、哈拉苏岩体等[5,7,19]；一部分为沿
区域构造线呈线状展布的小型花岗岩体，主要发育
在强烈左行韧性剪切带内，如阿勒泰南、沙尔布拉克
南和富蕴南等线性小型花岗岩体。富蕴南线性花岗
岩体侵入到石炭纪黑云母片岩、片麻岩中，部分岩体具
有与区域构造线一致的片麻理，侵位年龄为 (281±5)
Ma(变形岩体) 和 (275±2)Ma(不形变岩体)[3]。阿勒泰
南和沙尔布拉克南线性花岗岩群侵入到泥盆纪地层
中，部分岩体发育与区域构造线一致的片麻理；从微
测地质产状可以清晰地看出这两个岩体是与左行韧
性剪切变形大体上形成于同一侵入体，但是其侵入时
代目前还没有确切的年代学资料加以约束。

额尔齐斯断裂带是北亚造区内一条非常重要的
大型左行滑断层带，前人对该断裂带活动历史的
年代学研究主要是采用 Ar–Ar 定年技术，对同变
质、变位的云母类单矿物进行了年龄测定，获得的资
料主要给该带变形峰期时代提供了约束[20–23]。该带
左行韧性剪切变形开始于何时，以及阿尔泰山脉南
部普遍发育的左行韧性剪切变形时代，还都没有确
切的年代学资料。阿勒泰南和沙尔布拉克南 2 个线
性花岗岩体侵入到强烈左行韧性剪切变形的岩层并遭受了左行剪切变形,其侵位年龄的测定,有可能为额尔齐斯断裂带变形启动时限,以及阿尔泰山脉南部韧性变形的时代确定,提供约束和依据。因此,阿勒泰南和沙尔布拉克南2个线形花岗岩体的精确定年研究,对于深入了解和研究额尔齐斯断裂带,阿尔泰山脉中花岗岩的年代、成因和该区构造演化等,均具有重要意义。

基于上述分析,笔者在野外调查和室内显微镜下观察的基础上,对采自阿勒泰南和沙尔布拉克南线性花岗岩体的样品,进行锆石SHRIMP U-Pb定年研究,本文报道这一研究成果,并就相关地质问题进行了讨论。

1 地质背景与样品特征

研究区出露的地质体主体是泥盆纪地层,其次

是少量石炭纪地层。研究区发育大量侵入岩,其岩石类型主要有斑长岩、花岗岩和辉绿岩。从岩体的外形上可以分为3类:呈扇状分布的,侵位年龄集中分布在370~400 Ma[9];呈圆形分布的哈拉苏和喇嘛昭岩体侵位时代为280 Ma左右[15,16];呈线性分布的花岗岩体,从阿勒泰沿SE方向延伸到富蕴一带。构造上研究区发育大量NW走向的断裂,多以左行韧性剪切为主,属于额尔齐斯断裂带的分支断裂;同时发育大量NE走向的左行脆性走滑断裂,其明显切过NW走向的断裂(图1-B)。

样品D05124采自沙尔布拉克南2 km处的小型线性黑云母花岗岩体,样品采集位置:47°33.063’N,88°38.902’E。该岩体呈肉红色,与其围岩一起卷入枢纽向SE方向侧伏的A型褶皱变形,褶皱枢纽产状为160°,62°;岩体围岩为棱锥中拉伸线理和A型褶皱发育,均为NW走向。显微镜下,该黑云母花

图1 阿尔泰山脉南部线性花岗岩地质图

Fig.1 Geological map of linear granite in southern Altay Mountains
岩岗为中－粗粒花岗结构，主要由石英和长石组成，暗色矿物主要有黑云母和白云母，副矿物主要有铁质不透明矿物。石英具波状消光；长石双晶比较发育，且发生轻微变形，钾长石含量明显多于斜长石；黑云母含量较多，解理完全，干涉色不均匀；白云母分两种，一种为原生的，颗粒比较大，晶形完整，另一种为长石蚀变的产物，局部还见到鳞片结构（图2－A）。这些特征表明，该黑云母花岗岩经历了变质、变形作用的改造。

2 样品测试与结果分析

锆石按照常规方法分选，然后在双目镜下进一步选出分样的锆石颗粒，并和标样一起置于环氧树脂中做成样品靶。将靶上锆石磨至一至，以便锆石内部暴露，接着进行锆石透射光、反射光、CL的照射和分析。抛光、清洗、镀金然后进行 SHRIMP 分析。锆石的阴极发光照相在北京离子探针中心进行，所测定的锆石 CL 图像特点如图 3 和图 4 所示。

样品 D05124 的大部分锆石呈短柱状，小部分为长柱状（图 3 中 5.1, 9.1, 11.1 和 15.1），个别锆石不完整（图 3 中 4.1 和 8.1）。多数锆石岩浆结晶环带比较发育，少部分锆石没有明显的岩浆结晶环带（图 3 中 2.1, 5.1, 6.1, 10.1 和 15.1）。锆石晶形、内部结构特征等差别较大，很可能暗示这些锆石不是同一个环境下的结晶产物。

样品 D05126-1 的大部分锆石呈短柱状，少数为长柱状（图 4 中 5.1, 9.1 和 13.1）。大部分锆石晶形比较完整，个别残缺不全，多数锆石岩浆结晶环带比较发育，少部分锆石岩浆结晶环带不发育（图 5 中 5.1, 13.1 和 14.1），少数锆石含有一个光性特征明显不同的核部（图 4 中 11.1, 12.1 和 14.1），部分锆石发育一个很窄的生边（图 4 中 1.1, 3.1, 4.1, 10.1 和

![图 2 阿尔泰山脉南部线性花岗岩显微照片](Fig.2 Microphotographs of linear granites from southern Altay Mountains)

Bi—黑云母；Mus—白云母；Qz—石英；Pl—斜长石；Pf—钾长石；Chl—绿泥石
图3 样品D05124黑云母花岗岩锆石阴极发光图像
Fig.3 Zircon CL images of sample D05124 of biotite granite

图4 样品D05126-1二云母花岗岩锆石阴极发光图像
Fig.4 Zircon CL images of sample D05126-1 of two-mica granite

13.1), 5.1 和 13.1 两粒锆石的光性特征明显区别于其他锆石。这些特征显示它们的形成环境及时代可能都是不同的。

锆石 SHRIMP 定年分析在北京离子探针中心 SHRIMP II 上进行, 按照标准测温流程**完成**。数据处理及 U–Pb 谱图绘制采用 Ludwig 编写的 Squid 1.01 和 ISOPLOT 2.49 h。使用的标准锆石为 SL13(U 含量 238×10^-6, 年龄为 572 Ma) 和 TEM(年龄为 417 Ma), 前者用于标定 U 的含量, 后者用于校正年。TEP 和未知样品的分析按照 1:3 进行,分析结果见表 1、图 5 和图 6。表 1 中同位素比值的误差为 1σ(相对误差), 单个点的年龄误差为 1σ(绝
对 D05124 样品测定了 15 粒锆石，每个锆石 1 个点。从表 1 和图 5 可以看出，年龄数据比较分散，最老的为 (815.0±8.2) Ma (10.1)，最年轻的为 (226.7±3.2) Ma (2.1); 并且大部分年龄数据均不在谱线上 (只有 1.1、2.1、8.1 和 13.1 个数据在谱线上)。结合锆石的 CL 图像特征，该样品的锆石学和构造变形特征，以及前人获得的阿尔泰地区花岗岩的分布和年代资料[13-18]，对该样品锆石定年结果的初步理解是，所分析的大部分锆石可能是该岩浆源区残留锆石或其岩浆侵位过程中的捕获锆石，并且普遍遭受了后期构造变形事件不同程度的改造。因此对所测年龄数据进行加权平均计算是无意义的。不过，这一分析结果中的一些年龄数据，还是提供了该区地壳组成的重要信息。例如，10.1 点的 (815.0±8.2) Ma 年龄的锆石，揭示出阿尔泰山脉中可能存在前寒武纪的古老地质体；1.1 点的 (370.3±4.0) Ma、3.1 点 (391.2±4.7) Ma、4.1 点的 (363.7±3.7) Ma、6.1 点的 (398.0±4.3) Ma、7.1 点的 (382.1±4.0) Ma、8.1 点的 (351.2±4.9) Ma、11.1 点的 (393.5±3.9) Ma、12.1 点的 (378.0±4.0) Ma、13.1 点的 (388.7±4.5) Ma 和 14.1 点的 (397.9±4.1) Ma 等 10 个锆石年龄数据集中分布在 350~400 Ma, 揭示出阿尔泰山脉南部发育泥盆纪的岩浆活动。

对 D05126-1 样品测定了 14 粒锆石，其中 12.1 和 12.2 为同一锆石，其余每个锆石 1 个点，共得到 15 个数据。从表 1 可以看出，年龄数据可以分为 3 个年龄段：244.4~277.1 Ma (7 个点)，363.6~451.1 Ma (7 个点) 和 552.3 Ma (1 个点)。此外，所有测定锆石的 Th/U 值均比较高 (除 14.1 外)，显示所测锆石为岩浆成因。根据锆石的阴极发光图像和上述测试结果，结合区域资料，作者认为第 1 年龄段中 12.1 点的 (244.4±1.9) Ma 很可能代表该岩体经历了后期构造热事件的影响，将该年龄段的其余 6 个数据进行 209Pb/238U 年龄平均，得到年龄值为 (275.1±1.7) Ma (MSWD=0.98) (图 6); 第 2 年龄段的数据变化比较大，部分不在谱线上，将年龄比较接近且在谱线上的 3 个点 (4.1、7.1 和 11.1) 进行加权平均，得到 209Pb/235U 年龄值为 (447.4±3.4) Ma (MSWD=1.05) (图 6)。结合锆石特征和样品所代表的岩体岩石学及其围岩时代为泥盆纪等资料，作者认为 (275.1±1.7) Ma 应该就是会二云母花岗岩体的侵位年龄，老于这个年龄的锆石可能是岩浆上侵过程中捕获围岩 (通道) 的，指示该区发育奥陶纪晚期
表 1 阿尔泰山脉南部线性花岗岩锆石 SHRIMP U–Pb 年龄结果

Table 1 Zircon SHRIMP U–Pb analytical results of linear granite from southern Altay Mountains

<table>
<thead>
<tr>
<th>点号</th>
<th>U/10^6</th>
<th>Th/10^6</th>
<th>Th/U</th>
<th>207Pb</th>
<th>206Pb</th>
<th>同位素比值</th>
<th>年龄/Ma</th>
<th>误差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>207Pb / 206Pb</td>
<td>相对误差/%</td>
<td>207Pb / 238U</td>
<td>相对误差/%</td>
<td>206Pb / 238U</td>
</tr>
<tr>
<td>D05124</td>
<td>黑云母花岗岩</td>
<td>1.1</td>
<td>307</td>
<td>154</td>
<td>0.52</td>
<td>15.7</td>
<td>0.47</td>
<td>0.0528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>153</td>
<td>53</td>
<td>0.36</td>
<td>4.82</td>
<td>2.15</td>
<td>0.0524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1</td>
<td>674</td>
<td>383</td>
<td>0.63</td>
<td>33.6</td>
<td>0.23</td>
<td>0.0546</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>389</td>
<td>273</td>
<td>0.73</td>
<td>19.4</td>
<td>0</td>
<td>0.05547</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>127</td>
<td>89</td>
<td>0.72</td>
<td>4.38</td>
<td>0.49</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>187</td>
<td>107</td>
<td>0.59</td>
<td>10.2</td>
<td>0.19</td>
<td>0.0682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1</td>
<td>308</td>
<td>168</td>
<td>0.56</td>
<td>16.2</td>
<td>0.12</td>
<td>0.0598</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.1</td>
<td>119</td>
<td>86</td>
<td>0.74</td>
<td>5.82</td>
<td>1.23</td>
<td>0.0534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.1</td>
<td>700</td>
<td>231</td>
<td>0.34</td>
<td>29.6</td>
<td>0.1</td>
<td>0.0861</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.1</td>
<td>211</td>
<td>119</td>
<td>0.58</td>
<td>24.4</td>
<td>0.03</td>
<td>0.09455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.1</td>
<td>644</td>
<td>338</td>
<td>0.54</td>
<td>34.9</td>
<td>0.06</td>
<td>0.05552</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.1</td>
<td>305</td>
<td>142</td>
<td>0.48</td>
<td>15.8</td>
<td>0</td>
<td>0.06175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
<td>165</td>
<td>97</td>
<td>0.61</td>
<td>8.82</td>
<td>0.12</td>
<td>0.0593</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.1</td>
<td>289</td>
<td>280</td>
<td>1</td>
<td>15.8</td>
<td>0</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.1</td>
<td>201</td>
<td>165</td>
<td>0.85</td>
<td>7.32</td>
<td>0.22</td>
<td>0.0663</td>
</tr>
</tbody>
</table>
续表 1

<table>
<thead>
<tr>
<th>点号</th>
<th>U</th>
<th>Th</th>
<th>Th/U</th>
<th>$^{206}\text{Pb}^{*}$</th>
<th>^{206}Pb</th>
<th>同位素比值</th>
<th>$^{206}\text{Pb}^{*}$/238U 相对误差/%</th>
<th>$^{207}\text{Pb}^{*}$/235U 相对误差/%</th>
<th>^{208}Pb 相对误差/%</th>
<th>年龄 / Ma</th>
<th>^{206}Pb 相关系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>157</td>
<td>76</td>
<td>0.5</td>
<td>8.76</td>
<td>0.587</td>
<td>4.2</td>
<td>0.522</td>
<td>0.06453</td>
<td>0.95</td>
<td>403±1.3</td>
<td>546±98</td>
</tr>
<tr>
<td>2.1</td>
<td>535</td>
<td>282</td>
<td>0.54</td>
<td>20.2</td>
<td>0.0513</td>
<td>2.9</td>
<td>0.3602</td>
<td>0.04369</td>
<td>0.67</td>
<td>275±1.8</td>
<td>250±68</td>
</tr>
<tr>
<td>3.1</td>
<td>673</td>
<td>297</td>
<td>0.46</td>
<td>52</td>
<td>0.0583</td>
<td>2.1</td>
<td>0.719</td>
<td>0.08945</td>
<td>0.55</td>
<td>552±2.9</td>
<td>540±45</td>
</tr>
<tr>
<td>4.1</td>
<td>342</td>
<td>211</td>
<td>0.64</td>
<td>21.2</td>
<td>0.055</td>
<td>2.8</td>
<td>0.544</td>
<td>0.07169</td>
<td>0.67</td>
<td>446±2.9</td>
<td>409±64</td>
</tr>
<tr>
<td>5.1</td>
<td>106</td>
<td>70</td>
<td>0.68</td>
<td>4.01</td>
<td>0.051</td>
<td>26</td>
<td>0.298</td>
<td>0.04248</td>
<td>1.9</td>
<td>268±5.0</td>
<td>231±590</td>
</tr>
<tr>
<td>6.1</td>
<td>265</td>
<td>112</td>
<td>0.44</td>
<td>10.3</td>
<td>0.0495</td>
<td>18</td>
<td>0.299</td>
<td>0.04383</td>
<td>1.2</td>
<td>276±3.2</td>
<td>172±410</td>
</tr>
<tr>
<td>7.1</td>
<td>537</td>
<td>245</td>
<td>0.47</td>
<td>33.1</td>
<td>0.05803</td>
<td>1.5</td>
<td>0.5722</td>
<td>0.07152</td>
<td>0.67</td>
<td>445±2.9</td>
<td>531±33</td>
</tr>
<tr>
<td>8.1</td>
<td>176</td>
<td>80</td>
<td>0.47</td>
<td>8.87</td>
<td>0.0584</td>
<td>5.2</td>
<td>0.467</td>
<td>0.05803</td>
<td>0.91</td>
<td>363±3.2</td>
<td>546±110</td>
</tr>
<tr>
<td>9.1</td>
<td>1264</td>
<td>775</td>
<td>0.63</td>
<td>50.7</td>
<td>0.0587</td>
<td>11</td>
<td>0.351</td>
<td>0.04338</td>
<td>0.71</td>
<td>273±8.1</td>
<td>557±230</td>
</tr>
<tr>
<td>10.1</td>
<td>281</td>
<td>152</td>
<td>0.56</td>
<td>15.4</td>
<td>0.0593</td>
<td>7.9</td>
<td>0.497</td>
<td>0.06082</td>
<td>0.93</td>
<td>380±3.5</td>
<td>577±170</td>
</tr>
<tr>
<td>11.1</td>
<td>291</td>
<td>173</td>
<td>0.61</td>
<td>18.3</td>
<td>0.055</td>
<td>3.2</td>
<td>0.55</td>
<td>0.07249</td>
<td>0.72</td>
<td>451±3.1</td>
<td>413±71</td>
</tr>
<tr>
<td>12.1</td>
<td>229</td>
<td>105</td>
<td>0.47</td>
<td>8.57</td>
<td>0.0535</td>
<td>6.3</td>
<td>0.319</td>
<td>0.04326</td>
<td>0.88</td>
<td>273±2.3</td>
<td>350±140</td>
</tr>
<tr>
<td>12.2</td>
<td>328</td>
<td>198</td>
<td>0.62</td>
<td>11</td>
<td>0.0464</td>
<td>5</td>
<td>0.247</td>
<td>0.03863</td>
<td>0.81</td>
<td>244±1.9</td>
<td>418±98</td>
</tr>
<tr>
<td>13.1</td>
<td>211</td>
<td>180</td>
<td>0.88</td>
<td>12.1</td>
<td>0.0551</td>
<td>4.4</td>
<td>0.505</td>
<td>0.06643</td>
<td>0.8</td>
<td>414±3.2</td>
<td>323±87</td>
</tr>
<tr>
<td>14.1</td>
<td>849</td>
<td>25</td>
<td>0.03</td>
<td>323</td>
<td>0.0529</td>
<td>3.8</td>
<td>0.32</td>
<td>0.04392</td>
<td>0.62</td>
<td>277±1.7</td>
<td>20±120</td>
</tr>
</tbody>
</table>

注：年龄误差为 1σ; Pb^{*} 和 Pb 分别表示普通铅和放射成因铅; 采用实测 ^{208}Pb 进行普通铅校正。
3 问题讨论

（1）阿尔泰山脉南部岩浆活动和地壳组成
阿尔泰山脉是否存在古老的地质体，以及该区的岩浆活动期次及其时代，一直是地质界关注的重点地质构造问题。

笔者研究的两个岩体的围岩，即它们侵入的地层时代都是泥盆纪的，以及它们都遭受了额尔齐斯断裂带左右走滑构造变形的改造，所以笔者获得的阿勒泰南和沙尔布拉克南2个小型线性花岗岩体的锆石SHRIMP U-Pb定年资料，275 Ma左右的

203Pb/206Pb加权平均年龄，很可能代表了所研究岩体的侵位时代；一些较年轻的锆石年龄，显然是后期构造变形对已有锆石改造的结果；较老的锆石年龄揭示出该区可能发育泥盆纪、奥陶纪晚期至志留纪早期（450 Ma左右）和前南华纪岩浆活动。结合前人报道的二叠纪花岗岩的时空分布资料，笔者推测二叠纪中期275 Ma前后在阿尔泰山脉南部地区普遍发育富钾富铝的花岗质岩浆活动；笔者获得的前南华纪岩浆活动信息，与前人获得的阿尔泰山脉花岗质片麻岩等的同位素年代学资料，都表明在阿尔泰山脉可能存在前南华纪地质体。

本项研究获得的这些资料还显示，阿尔泰山脉南部基本不发育石炭纪和老于450 Ma的岩浆岩；至少是在阿尔泰山脉南部，很可能不存在前奥陶纪地质体。

（2）关于额尔齐斯断裂带和阿尔泰山脉南部左行走滑变形的时限

关于额尔齐斯断裂带构造变形时代，前人把对同位素、变形的云母类单矿物Ar-Ar定年获取的244-265 Ma[21,22]和236 Ma[23]，以及该断裂带的期次活动时代。而本文研究确定的沙尔布拉克南和阿勒泰南小型线性花岗岩体的275 Ma的侵位年龄，对阿尔泰山脉南部左行走性剪切变形的时代，提供了有力的约束，同时也可以作为额尔齐斯断裂带左行走滑运动开始时限的下限，也就是说，阿尔泰山脉南部和额尔齐斯断裂带左行走滑运动可能都始自中二叠世早期。

（3）关于阿尔泰山脉南部二叠纪地质演化

阿尔泰山脉及其邻区，同样发育这一期次的后碰撞幔源岩浆活动，前人对此做了大量研究工作（表2）。从该地区后碰撞岩浆活动的时限来看，集中分布在280-300 Ma，少数岩体稍小280 Ma，这与阿尔泰山脉以外的新疆北部其他地区后碰撞岩浆活动的时限相当。说明新疆北部及其邻区在早二叠世期间处于后碰撞演化背景，这与笔者等在新疆东部哈

表2 阿尔泰山脉及其邻区后碰撞岩浆活动的时限

<table>
<thead>
<tr>
<th>岩体</th>
<th>岩性</th>
<th>时代/Ma</th>
<th>来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>乌恰河</td>
<td>基性岩</td>
<td>268±6，271±6，279±6</td>
<td>[43]</td>
</tr>
<tr>
<td>乌恰河</td>
<td>岩浆岩</td>
<td>257±5，280±5</td>
<td>[44]</td>
</tr>
<tr>
<td>喀拉通克</td>
<td>表层</td>
<td>287±5</td>
<td>[45]</td>
</tr>
<tr>
<td>阿拉阿依</td>
<td>表层</td>
<td>283±5，290±7</td>
<td>[45]</td>
</tr>
<tr>
<td>喀拉通克</td>
<td>火山岩</td>
<td>294</td>
<td>[35]</td>
</tr>
<tr>
<td>喀拉通克</td>
<td>火山岩</td>
<td>296</td>
<td>[35]</td>
</tr>
<tr>
<td>喀拉通克</td>
<td>火山岩</td>
<td>298</td>
<td>[35]</td>
</tr>
<tr>
<td>阿拉阿依</td>
<td>火山岩</td>
<td>300</td>
<td>[16]</td>
</tr>
<tr>
<td>乌恰河</td>
<td>火山岩</td>
<td>300</td>
<td>[16]</td>
</tr>
<tr>
<td>阿拉阿依</td>
<td>火山岩</td>
<td>330</td>
<td>[16]</td>
</tr>
<tr>
<td>阿拉阿依</td>
<td>火山岩</td>
<td>290</td>
<td>[16]</td>
</tr>
<tr>
<td>佳木斯</td>
<td>火山岩</td>
<td>290</td>
<td>[16]</td>
</tr>
<tr>
<td>虫沟</td>
<td>花岗岩</td>
<td>230</td>
<td>[46]</td>
</tr>
<tr>
<td>沙尔布拉克</td>
<td>岩浆岩</td>
<td>290</td>
<td>[47]</td>
</tr>
<tr>
<td>布尔根</td>
<td>岩浆岩</td>
<td>290</td>
<td>[47]</td>
</tr>
<tr>
<td>布尔根</td>
<td>岩浆岩</td>
<td>290</td>
<td>[47]</td>
</tr>
<tr>
<td>布尔根</td>
<td>岩浆岩</td>
<td>250</td>
<td>[47]</td>
</tr>
<tr>
<td>二台</td>
<td>岩浆岩</td>
<td>250</td>
<td>[47]</td>
</tr>
<tr>
<td>二台</td>
<td>岩浆岩</td>
<td>250</td>
<td>[47]</td>
</tr>
<tr>
<td>二台</td>
<td>岩浆岩</td>
<td>250</td>
<td>[47]</td>
</tr>
<tr>
<td>维尔德</td>
<td>岩浆岩</td>
<td>300</td>
<td>[48]</td>
</tr>
</tbody>
</table>
尔里克山地区识别的早二叠世期间伸展变形资料相吻合（Ar-Ar 年龄为 280~300Ma，笔者将另文发表）。

笔者研究获得阿尔泰山脉南部小型线性花岗岩体的侵位年龄为 275 Ma 左右，结合上述阿尔泰山脉后碰撞岩浆活动的年代学资料，笔者推测，阿尔泰山脉在 300~270 Ma 期间的后碰撞伸展结束以后，紧接着二叠系中晚期就发生了 NW 走向的左行韧性剪切作用，在额尔齐斯断裂带内，期构造变形可能持续到二叠系晚期。

4 结 论

（1）阿尔泰山脉南部侵入额尔齐斯断裂带并遭受左行韧性剪切作用改造的沙尔布拉克南小型线性花岗岩体的侵位时代为 275 Ma 左右。

（2）阿尔泰山脉南部和额尔齐斯断裂带左行韧性剪切作用很可能在 275 Ma 前后开始，标志着该区发生在早二叠世 (300~280 Ma) 后的碰撞伸展演化阶段的结束。

致谢：本研究中使用了部分新疆地矿局 1:20 万资料；野外工作期间，得到了新疆第一区域地质调查大队的大力支持和帮助；同位素测试得到了北京离子探针中心的帮助；匿名审稿人也为我们提出了宝贵的意见，本文对上述单位和相关人员表示衷心的感谢。

参考文献（References）：

张前锋，胡黎明，张国新，等。阿尔泰地区中生代岩浆活动的
Zircon SHRIMP U–Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications

SUN Gui-hua1,2, LI Jin-yi2, YANG Tian-nan2, LI Ya-ping3,4, ZHU Zhi-xin4, YANG Zhi-qing5

Abstract: In southern Altay Mountains, some NW–SE striking small linear granite plutons are exposed, which were intruded into Devonian and Early Carboniferous volcano-sedimentary sequences that had undergone intense sinistral ductile shearing. Structural deformation of these granites implies that their intrusion occurred simultaneously with shearing deformation. This paper describes SHRIMP dating data of zircons from two of these granites, namely the southern Altay biotite granite body and the southern Shaerbulake two-mica granite body. Zircons form the southern Shaerbulake intrusive body yield an apparent 206Pb/238U age of (275.1±1.7) Ma, which is interpreted as the intrusive age of the granite pluton, as evidenced by geological, petrological and deformational characteristics of the granite plutons and related zircon CL images. Based on the new dating data, the authors infer that the sinistral ductile shear deformation of Erqis faulted zone and southern Altay Mountains probably occurred posterior to 275 Ma. In combination with available data, this paper deals briefly with the Permian tectonic evolution in southern Altay Mountains.

Key words: southern Altay Mountains; linear granite; zircon SHRIMP U–Pb dating; Erqis faulted belt; sinistral ductile shearing; Permian tectonic evolution

About the first author: SUN Gui-hua, male, born in 1977, Ph.D, engineer, mainly engages in the study of structural geology, marine geology and petroleum geology; E-mail: sunguinha790327@126.com.