内蒙古东乌珠穆沁旗京格斯台
碱性花岗岩年龄及意义

张玉清 许立权 康小龙 宝音乌力吉
（内蒙古自治区地质调查院，内蒙古 呼和浩特 010020）

提要：东乌珠穆沁旗京格斯台碱性花岗岩出露于中蒙边界附近的京格斯台地区，120万区域地质调查归之于华力西晚期（K γ1）和印支期（γ2）侵入体，是兴蒙造山带南部碱性花岗岩的一部分。该岩石具高硅、高钾，低铝、低镁钙，SiO2含量为74.80%～78.74%，K2O>Na2O，全碱含量大于8.00%，属于过碱性和碱性花岗岩类（PAG）。岩石稀土总量偏低，轻重稀土元素分配不明显，（La/Yb）N值0.898.84～5.168，δEu为0.07～0.89，铕强烈亏损。为后造山伸展环境下的产物。采用单颗粒锆石U-Pb同位素稀释法测定京格斯台碱性花岗岩的年龄，206Pb/238U表面年龄加权平均值为（284.8±1.1）Ma，为早二叠世造山活动的产物。

关键词：碱性花岗岩；A型；后造山；锆石；U-Pb年龄；东乌珠穆沁旗京格斯台

中图分类号：P588.12 文献标志码：A 文章编号：1000-3657（2009）05-0988-08

研究区位于中蒙边界的东乌旗境内，北距国界线约20km。大地构造归属兴蒙造山带的中四，属巨型中亚造山带的东部，其中具εNd(t)值花岗岩的成因受地质学者的关注。带内发育两条A型碱性花岗岩带（图1），构成全球出露面积最大的碱性花岗岩区域，其中北带从蒙古到俄罗斯外贝加尔东，以正长岩体为主；南带从新疆北部经南蒙古直至内蒙古，形成时代从晚石炭世到早三叠世。近年来，随着区域—东乌旗地区1：25万区域地质调查的开展，在东乌旗京格斯台等地发现一套含霓石钠闪石的碱性花岗岩，呈北东向带状分布。该岩体在1：20万区域地质调查报告中被定为华力西期（K γ1）和燕山期（γ2），同时被划分为不同的成因类型，对这套碱性花岗岩的岩石化学、地球化学及年代等进行详细研究，对其形成的大地构造背景和侵入时代提供证据。

图1 亚—东亚部分晚古生代—中三叠世碱性花岗岩分布略图

1 京格斯台碱性花岗岩的地质特征与岩石学特征

京格斯台碱性花岗岩与晚生界宝力高庙组呈
侵入接解触，与早二叠世正长花岗岩呈断层接触，侵入到中下奥陶统铜山组（O₁₅₋₆）中，其他侵入体间多呈侵入接触，个别地段为断层接触。区域上多被中新生成界角度不整合覆盖（图2），呈大小不等的长轴状岩基，岩株状产出，南东向断续展布。区域上延伸较远，向西向北延申至蒙古人民共和国。

该碱性花岗岩体节理十分发育，以层状节理最为显著，向西向斜倾，倾角10°~20°，岩体外貌呈层状叠状，球状风化强烈，构成险峻而壮观的北方石林地貌。

碱性花岗岩呈肉红色或砖红色，风化表面为黄褐色。其中粒花岗结构，块状构造。主要矿物组成：正长石（55%~70%），不规则粒状或半自形宽板状，具卡氏双晶，部分发生了泥化，部分颗粒见有少量钠长石化分解条纹，粒度多在3.0~4.0 mm；石英（25%~35%），他形粒状，粒径2.0~5.0 mm；斜长石（>10%），他形粒状及柱状，0.5~1.0 mm，大部分蚀变成褐铁矿，仅少量残留，负延性，具蓝绿色~淡黄绿色多色性，c 与α=13°；钠碱石（1%左右），0.2~1.0 mm 的柱状，具深蓝色~蓝色多色性。同时见有晚期细粒状钠长石呈犬牙状分布于粗大正长石晶体的边缘，但含量很少，不足1%。

锆石呈浅黄色，透明状，金刚光泽，性脆，硬度大于5，紫外灯下发萤光。部分锆石晶体中含浅黄色粒状，质点状，针状，柱状包体。锆石长轴0.08~0.45 mm，长宽比多数为2:1，部分2:1.5，由111，110组成四方双锥柱体，自形程度高。副矿物有钛磁铁矿（853.5 g/t）、钛铁矿（48 g/t）、锆石（74.6 g/t）、萤石（24.6 g/t）、锆石（26.9 g/t）及微量磷灰石。

图2 京格斯台地区地质简图

1—第四系, 2—阿巴嘎组, 3—宝格达乌拉组, 4—侏罗系—白垩系, 5—宝力高庙组, 6—安格尔达乌拉组, 7—泥鳅河组, 8—武都河组, 9—铜山组, 10—早二叠世花岗岩; 11—早二叠世碱性花岗岩; 12—早二叠世正长花岗岩; 13—早二叠世二长花岗岩; 14—晚石炭世二长花岗岩; 15—泥盆纪花岗岩长石; 16—泥盆纪石英长石; 17—同位素样品位置; 18—断层; 19—变质不整合接触界线及地质界线

Fig.2 Geological sketch map of Jinggestai area

1—Quaternary; 2—Abaga Formation; 3—Baogedawula Formation; 4—Jurassic—Cretaceous; 5—Baoligeomiao Formation; 6—Aigerynmula Formation; 7—Niquuhe Formation; 8—Wodehu Formation; 9—Tongshan Formation; 10—Early Permian granite porphyry; 11—Early Permian alkali–granite; 12—Early Permian syenogranite; 13—Early Permian monzogranite; 14—Late Carboniferous monzogranite; 15—Devonian granodiorite; 16—Devonian quartz diorite;
17—Location of isotopic sample; 18—Fault; 19—Measured unconformity and geological boundary
2 岩体年代

2.1 样品采集、处理

样品选自远离裂隙、变形相对较弱的地段(样重20 kg, 编号 3TW5129-1)。全岩样品经内蒙古自治区地质调查院岩矿鉴定室破碎，在选分选出的锆石中选取纯净透明、无裂纹和包体、未被质化化的颗粒进行 U–Pb 年龄测定。

锆石 U–Pb 年龄采用同位素稀释法测定，锆石的溶解和 U, Pb 的分离在超净化化学实验室中进行，采用的稀释剂为 209/238U 混合稀释剂。锆石清洗后在加了钢套的聚四氟乙烯罐中用纯化的 HF 溶解、蒸发后，用硅酸–磷酸溶液与样品的 U, Pb 混合后加在同一单馏带上。在 VG54 型热离质谱仪上用高灵敏度 Daly 检测器进行铀–铅同位素测定。所有铀–铅同位素数据均进行了质量歧视效应和系统误差校正，误差以 2σ 表示。实验室全流程 Pb 空白为 0.05 ng, U 空白为 0.002 ng。实验数据用 PDBAT 和 ISOPLOT 程序计算处理。

2.2 测试结果

京格斯台花岗岩 U–Pb 同位素测试结果(表 1)表明，两株锆石均落在谐和线上（图 3），样品中放射成因铅没有扩散，丢失[5]。其 209/238U 年龄值与 206/238U 年龄值基本一致，206/238U 表面年龄加权平均值为 (284.8±1.1)Ma。结合区域地质资料分析，岩石形成后未遭受明显后期构造–热事件影响，这一年龄值是可信的[8]，为锆石结晶年龄。因锆石结晶温度为 700℃左右，高于全岩的固结温度[9]，亦可将上述年龄作为碱性花岗岩的结晶年龄。该岩体属早二叠世的产物。该年龄值与洪大平等在该带上碱性花岗岩中获得的全岩 Sm–Nd 同位素结果（白音乌拉岩体 286 Ma, 祖横得楞岩体 284 Ma, 276 Ma, 扎那乌拉岩体 277 Ma）基本一致[13]。

3 岩石地球化学特征

3.1 主量元素

京格斯台地区碱性花岗岩 SiO2 含量为 74.80~78.74%(表 2)。在 Q–A–P 图解（图解略）中一部分样品落入正长花岗岩区，另一部分样品落入碱长花岗岩区，其中 1,9,11,12 号样品正好落在 Q–A 线上。Al2O3 含量 9.77%~12.82%，数据比较集中，主要在 11%~12%，Al2O3/(Na2O+K2O) =Al2O3/(CaO+Na2O+K2O) 图解中所有样品均落在正长斑和锥状的过渡区。K2O 含量为 4.28%~5.26%，在 K2O–SiO2 图解中所有样品均落入高钾区。Na2O 为 2.78%~4.73%，Na2O/K2O 绝大部分<1.0。只有 GS3007 一个样的值>1，为 1.04。CaO 含量很低，为 0.0~0.58%；MgO 含量也不高，绝大部分<1.0%。铁含量低，Fe2O3 为 0.35%~2.83%，主要集中在 1.0%~2.0%；FeO 为 0.15%~1.50%，绝大部分在 0.5%左右；A/ CNK 为 0.95~1.08，<1.1 时 (Na2O+K2O)/Al2O3（分子比）主要集中在 0.9~11.14。反映该碱性花岗岩具高硅，富碱，酸铝，贫铁镁钙的特征，属造山期后 A 型花岗岩类中的碱

<table>
<thead>
<tr>
<th>点号</th>
<th>样品类型</th>
<th>重量(μg)</th>
<th>浓度</th>
<th>普通铅含</th>
<th>同位素原子比率</th>
<th>表面年龄/Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>铀黄色柱型柱</td>
<td>39</td>
<td>565</td>
<td>47</td>
<td>0.430</td>
<td>0.1093</td>
</tr>
<tr>
<td>2</td>
<td>黄色柱状物</td>
<td>50</td>
<td>414</td>
<td>28</td>
<td>0.280</td>
<td>0.1095</td>
</tr>
</tbody>
</table>

表 1 京格斯台碱性花岗岩锆石 U–Pb 同位素分析结果

Table 1 Single–zircon U–Pb analytical result of Jinggesitai alkali–granite

注: 209Pb/204Pb 已对实验空白(Ph=0.050 ng, U=0.002 ng)及稀释剂作了校正，其他比率中的铅同位素均为放射成因铅同位素，括号内数字为 2σ 绝对误差，例如 0.04518±0.00019(2σ)。1~2 号点 209Pb/204U 表面年龄加权平均值: (284.8±1.1) Ma。由天津地质矿产研究所实验室李惠民校核(2006 年)。
表 2 京格斯台碱性花岗岩岩石化学分析结果（10^{-2}）

| 序号 | 样号 | SiO₂ | TiO₂ | Al₂O₃ | Fe₂O₃ | FeO | MnO | MgO | Na₂O | CaO | K₂O | P₂O₅ | 烧失量 | 总量 | A/CNK | Na₂O/ K₂O | K/N/A |
|------|------|------|------|-------|-------|-----|-----|-----|-------|-----|-----|-------|-------|-------|-------|-------|-------|-------|
| 1 | P7-11| 75.12| 0.02| 12.18| 2.51 | 0.57| 0.06| 1.27| 3.84 | 0.00| 4.58| 0.16 | 0.95 | 101.26| 1.08 | 0.84 | 0.93 |
| 2 | P7-13| 75.12| 0.30| 12.48| 1.89 | 0.66| 0.06| 0.22| 3.52 | 0.57| 4.50| 0.16 | 1.18 | 100.66| 1.07 | 0.78 | 0.85 |
| 3 | P7-16| 75.45| 0.10| 12.78| 1.72 | 0.49| 0.00| 0.27| 3.62 | 0.40| 4.84| 0.06 | 0.85 | 100.58| 1.07 | 0.75 | 0.88 |
| 4 | P7-20| 76.41| 0.30| 12.17| 1.96 | 0.41| 0.02| 0.16| 3.30 | 0.33| 4.84| 0.06 | 0.85 | 100.81| 1.08 | 0.68 | 0.88 |
| 5 | P7-3 | 75.07| 0.10| 11.16| 2.83 | 0.57| 0.10| 0.35| 3.52 | 0.07| 5.10| 0.16 | 1.16 | 99.69 | 0.98 | 0.69 | 1.01 |
| 6 | GS2331| 76.89| 0.02| 11.82| 1.21 | 0.98| 0.02| 0.19| 3.62 | 0.29| 4.46| 0.06 | 1.01 | 100.57| 1.05 | 0.81 | 0.91 |
| 7 | GS100-1| 76.41| 0.04| 12.82| 1.18 | 0.25| 0.02| 0.25| 2.78 | 0.57| 5.26| 0.26 | 1.23 | 101.07| 1.13 | 0.53 | 0.80 |
| 8 | GS2333-1| 77.22| 0.13| 12.16| 1.45 | 0.18| 0.03| 0.27| 3.9 | 0.55| 4.96| 0.025| 0.12 | 101.0 | 0.95 | 0.79 | 0.97 |
| 9 | GS8063| 78.74| 0.12| 9.77 | 1.25 | 0.15| 0.03| 0.19| 3.35 | 0.36| 5.16| 0.028| 0.22 | 99.37 | 0.83 | 0.65 | 1.14 |
| 10 | GS5129-1| 76.17| 0.12| 11.98| 0.35 | 1.51| 0.40| 0.10| 3.59 | 0.58| 4.43| 0.055| 0.65 | 99.94 | 1.02 | 0.81 | 0.89 |
| 11 | GS8063-1| 74.80| 0.27| 12.58| 1.78 | 0.64| 0.08| 0.13| 4.73 | 0.20| 4.54| 0.064| 0.68 | 100.50| 0.96 | 1.04 | 1.01 |
| 12 | GS2023| 77.65| 0.25| 11.04| 1.91 | 0.27| 0.05| 0.07| 3.96 | 0.08| 4.28| 0.045| 0.36 | 99.95 | 0.98 | 0.93 | 1.01 |

注：序号 1-5 来源于 1:20 万区域地质调查报告白音吉日根拉大会，白音乌拉图(1980)；6-7 来源于 1:20 万区域地质调查报告乌力吉腾包乌音图嘎图(1979)；8-12 由地质矿产部内蒙古自治区中西部室在原子吸收分光光度计日立 508 YX-01 下测试(2005)。

图 3 京格斯台碱性花岗岩锆石 U-Pb 同位素年代图
Fig.3 Zircon U-Pb concordia diagram of alkali-granite in Jinggesaitai

表 3 京格斯台碱性花岗岩稀土元素含量（10^{-2}）及特征参数

<table>
<thead>
<tr>
<th>样号</th>
<th>XT5129-1</th>
<th>XT3007</th>
<th>XT2023</th>
<th>XT3233-1</th>
<th>XT8063</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>18.3</td>
<td>47.6</td>
<td>25.9</td>
<td>10.7</td>
<td>12.6</td>
</tr>
<tr>
<td>Ce</td>
<td>64.0</td>
<td>90.2</td>
<td>52.7</td>
<td>44.3</td>
<td>98.4</td>
</tr>
<tr>
<td>Pr</td>
<td>5.41</td>
<td>11.0</td>
<td>6.3</td>
<td>4.07</td>
<td>4.25</td>
</tr>
<tr>
<td>Nd</td>
<td>19.4</td>
<td>44.2</td>
<td>25.4</td>
<td>15.9</td>
<td>16.1</td>
</tr>
<tr>
<td>Sm</td>
<td>5.58</td>
<td>7.22</td>
<td>5.53</td>
<td>4.14</td>
<td>3.3</td>
</tr>
<tr>
<td>Eu</td>
<td>0.12</td>
<td>0.52</td>
<td>0.91</td>
<td>0.24</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>5.0</td>
<td>7.52</td>
<td>7.37</td>
<td>4.42</td>
<td>3.47</td>
</tr>
<tr>
<td>Tb</td>
<td>0.98</td>
<td>1.1</td>
<td>1.16</td>
<td>1.02</td>
<td>0.58</td>
</tr>
<tr>
<td>Dy</td>
<td>6.09</td>
<td>6.43</td>
<td>7.83</td>
<td>7.91</td>
<td>3.78</td>
</tr>
<tr>
<td>Ho</td>
<td>1.31</td>
<td>1.59</td>
<td>1.85</td>
<td>1.77</td>
<td>0.79</td>
</tr>
<tr>
<td>Er</td>
<td>4.03</td>
<td>4.82</td>
<td>5.58</td>
<td>6.25</td>
<td>2.66</td>
</tr>
<tr>
<td>Tm</td>
<td>0.71</td>
<td>0.95</td>
<td>1.06</td>
<td>1.19</td>
<td>0.5</td>
</tr>
<tr>
<td>Yb</td>
<td>4.67</td>
<td>6.21</td>
<td>6.61</td>
<td>8.03</td>
<td>3.48</td>
</tr>
<tr>
<td>Lu</td>
<td>0.71</td>
<td>1.14</td>
<td>1.12</td>
<td>1.26</td>
<td>0.6</td>
</tr>
<tr>
<td>Y</td>
<td>27.6</td>
<td>36.3</td>
<td>42.8</td>
<td>52.2</td>
<td>18.0</td>
</tr>
<tr>
<td>ΣREE</td>
<td>163.91</td>
<td>266.8</td>
<td>192.12</td>
<td>163.4</td>
<td>168.61</td>
</tr>
<tr>
<td>LREE/HREE</td>
<td>4.8</td>
<td>6.75</td>
<td>3.58</td>
<td>2.49</td>
<td>8.5</td>
</tr>
<tr>
<td>(La/Yb)N</td>
<td>2.642</td>
<td>5.168</td>
<td>2.642</td>
<td>0.898</td>
<td>2.441</td>
</tr>
<tr>
<td>(Gd/Yb)N</td>
<td>0.864</td>
<td>0.977</td>
<td>0.9</td>
<td>0.444</td>
<td>0.805</td>
</tr>
<tr>
<td>δEu</td>
<td>0.07</td>
<td>0.21</td>
<td>0.44</td>
<td>0.57</td>
<td>0.09</td>
</tr>
</tbody>
</table>

注：由中国地质科学院地球物理地球化学勘查研究所测试，分析方法为等离子体质谱法(ICP-MS)，2005。

长一碱性花岗岩亚类^{10,11}，相当于 Bararin(1999)岩石分类中过碱性和碱性花岗岩类 (PAG)^{12}。

岩石成分与大地构造环境有着密切关系，这一点为大多数地质学家所接受^{13-17}，许多学者从不同的角度提出了大量有效的构造环境判别图解。在 R1-R2 多阳离子构造环境判别图解中 (图 4)，大部分样品落入高“非造山”的“花岗岩区 (相当的岩石为碱性和过碱性岩石) ，部分样品落入“造山期后的“花岗岩区。在 Maniar 等(1989) 的 4 组图解中 (图 5)，所有样
点几乎全部落入后造山花岗岩区，表明该花岗岩带形成于后造山构造环境中。

3.2 稀土元素和微量元素

京格斯台碱性花岗岩稀土总量较低（表 3），介于 163.40×10^{-6}~266.80×10^{-6}，反映轻重稀土元素分馏程度的（La/Yb）_n值较低，为0.898.84~5.168，与LREE/HREE值较低（2.49~8.50）是一致的。δ Eu为0.07~0.57，大多数小于0.5，该花岗岩为晚期演化阶段形成的偏碱性花岗岩，这类花岗岩是由完全的分异结晶作用形成的。铕异常明显，随岩浆演化，SiO_2增加而δ Eu减小，即铕亏损加强，呈现出明显的铕负异常。Y 的含量较高，为18.00×10^{-6}~42.80×10^{-6}。反映重稀土元素之间分馏程度的（Gd/Yb）_n值为0.444~1.286，平均1.00左右。稀土元素配分曲线呈低缓右倾的“海鸥”型（V型）(图6)。以上特征显

图 4 京格斯台地区碱性花岗岩 R1~R2 图解(Batchelor,1985)
Fig.4 R1-R2 diagram of alkali-granite in Jinggaestai area (after Batchelor, 1985)

图 5 花岗岩构造环境判别图解(据 Maniar et al.,1989)
IAG—岛弧花岗岩类; CAG—大陆弧花岗岩类; CCG—大陆碰撞花岗岩类; POG—后造山花岗岩类; RRG—与裂谷有关的花岗岩类; CEUG—与大陆的造陆抬升有关的花岗岩类; OP—大洋斜长花岗岩

Fig.5 Discriminant diagram for tectonic setting of granites (after Maniar et al., 1989)
IAG—Island arc granitoids; CAG—Continental arc granitoids; CCG—Continental collision granitoids; POG—Post-orogenic granitoids; RRG—Rift-related granitoids; CEUG—Continental epeirogenic uplift granitoids; OP—Oceanic plagiogranites
5 结 论

（1）京格斯台地区碱性花岗岩呈北东向带状断续分布，形成年龄为 284.8 Ma 左右（单颗粒锆石 \(^{206}\)Pb/\(^{238}\)U 权重平均值），为早二叠世岩浆活动的产物。

（2）岩石具高硅、富碱、低铝、低镁铁钙的特点，岩石学、岩石化学特征表明该碱性花岗岩岩属 Barbarin 岩石分类中的碱性和碱性花岗岩类（PAG）。岩石系列为 A 型花岗岩，SiO\(_2\)>70%，Na\(_2\)O+K\(_2\)O 大于 8.0%，进一步归于碱长～碱性花岗岩亚类。

（3）在 Maniar 等(1989) 的 4 组图解中，所有样点几乎全部落在后造山花岗岩区，属陆内造山作用 (伸展构造环境) 的产物。

（4）该碱性花岗岩的确认，为研究兴蒙造山带岩壳演化提供了新的佐证。

致谢：本文研究得到内蒙古自治区地质调查院二连地区 5 幅 1:25 万区域地质调查项目大力支持。文中引用了内蒙古自治区地质矿产局、内蒙古自治区地质调查院等多家单位的图解成果，文章得到了审稿专家的精心审稿并提出了宝贵的意见，在此一并表示感谢！

参考文献（References）：

[3] 洪大卫, 王式光, 黄怀曾. 中国北部边缘古生代～中三叠纪碱性花岗
Age dating of alkali granite in Jingesitai area of Dong Ujimqin Banner, Inner Mongolia, and its significance

ZHANG Yu-qing, XU Li-quan, KANG Xiao-long, BAO Yinwuliji

(Inner Mongolia Institute of Geological Survey, Hohhot 010020, Inner Mongolia, China)

Abstract: Alkali granites are exposed in Jingesitai area near China–Mongolia border area. The intrusions, which were assigned to Late Hercynian or Indosinian in 1:200000 regional geological survey, constitute a part of the southern belt alkali granites in the Xingmeng orogenic belt. Alkali granites are characterized by high silica, high alkali, quasi–aluminum and low magnesium and calcium. The content of silica varies from 74.80 % to 78.74%, that of K₂O is higher than that of Na₂O, and that of alkali is higher than 8%. The REE content is low, the fractionation between LREE and HREE is not very obvious, (La/Yb)ᵣ values vary from 0.898 to 5.168 and δ Eu values are in the range of 0.07–0.89. Therefore, the granites belong to PAG and might have been the product of post–orogeny. U–Pb isotopic age dating of the alkali granite is (284.8±1.1) Ma, implying a product of Early Permian magmatism.

Key words: alkali granite; A–type; post orogeny; U–Pb isotopic age dating; Jingesitai area in Dong Ujimqin Banner

About the first author: ZHANG Yu-qing, male, born in 1965, senior engineer, engages in the study of regional geology and mineral resources survey; E–mail: zhangyqm@yahoo.com.cn.