doi: 10.12029/gc20190307

孙宁亮, 钟建华, 倪良田, 郝兵, 罗可, 曲俊利, 刘闯, 杨冠群, 曹梦春. 2019. 鄂尔多斯盆地南部上三叠统延长组物源分析及热演化[J]. 中国地质, 46(3): 537-556.

Sun Ningliang, Zhong Jianhua, NI Liangtian, Hao Bing, Luo Ke, Qu Junli, Liu Chuang, Yang Guanqun, Cao Mengchun. 2019. Provenance analysis and thermal evolution of Upper Triassic Yanchang Formation in Southern Ordos Basin[J]. Geology in China, 46(3): 537–556(in Chinese with English abstract).

鄂尔多斯盆地南部上三叠统延长组物源分析及热演化

孙宁亮',钟建华',倪良田',郝兵',罗可',曲俊利2,刘闯',杨冠群3,曹梦春!

(1.中国石油大学(华东)地球科学与技术学院,山东青岛 266580; 2.自然资源部油气资源战略研究中心,北京 100034;
 3.中国地质大学(北京)能源学院,北京 10083)

提要:本文以鄂尔多斯盆地南部旬邑地区上三叠统延长组为例系统研究了其物源区属性及热演化。采用碎屑锆石 LA-ICP-MS 定年的方法,通过分析砂岩样品中碎屑锆石 U-Pb 的年龄结构及组成,明确了其物源区属性。研究表 明:长7碎屑锆石存在225~264 Ma、276~408 Ma、413~458 Ma、727~851 Ma、1249~1749 Ma 和1868~2469 Ma 6个年 龄区间,分别对应于印支期、海西期、加里东晚期、Rodinia超大陆裂解、晋宁运动早中期和古元古代的构造热事件, 研究区物源复杂,主要来自于北秦岭西段、秦祁造山带、西秦岭、祁连造山带东段及天山一兴蒙造山带,阿拉善地块 和盆地北部山区也可能为本区提供物源,古水流分析表明研究区的物源方向为近南部。通过磷灰石裂变径迹年龄 分析及热史模拟,明确了研究区在100 Ma 左右的早白垩世经历了重要的构造热事件,是油气藏形成的重要时期。 自此以后,又经历了4次比较明显的热演化,100~43 Ma 为缓慢抬升阶段,进入部分退火,冷却速率大概在0.44 ℃/ Ma,43~36 Ma 为一快速抬升阶段,冷却速率达到4.3 ℃/Ma,36~24 Ma 为又一期的缓慢抬升,冷却速率在0.52 ℃/Ma 左右,从24~17 Ma 样品又经历了一次快速的抬升过程,冷却速率在1.5 ℃/Ma 左右。研究区43 Ma 以来的抬升剥蚀 明显受到印度板块与亚欧板块碰撞的影响。

关 键 词:碎屑锆石;磷灰石;物源分析;热演化;延长组;鄂尔多斯盆地
 中图分类号:P597 文献标志码:A 文章编号:1000-3657(2019)03-0537-20

Provenance analysis and thermal evolution of Upper Triassic Yanchang Formation in the Southern Ordos Basin

SUN Ningliang¹, ZHONG Jianhua¹, NI Liangtian¹, HAO Bing¹, LUO Ke¹, QU Junli², LIU Chuang¹, YANG Guanqun³, CAO Mengchun¹

(1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China; 2. Research Center of Oil & Gas Resources, Ministry of Natural Resources, Beijing 100034, China; 3. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract: The sedimentary sources and thermal evolution of Upper Triassic of Yanchang Formation in Xunyi area of Southern Ordos

基金项目:国家自然科学基金(41272088)及中央高校基本科研业务专项资金(15CX06002A)联合资助。

作者简介:孙宁亮,男,1987年生,博士生,主要从事构造和沉积方面的研究;E-mail:sunningliangll@163.com。

收稿日期: 2017-04-10; 改回日期: 2017-12-06

Basin were studied in this paper. With the method of LA–ICP–MS, the detrital zircons ages and compositions of sandstone samples from the study area were analyzed so as to investigate the sedimentary sources. The results show that there exist six age stages of the Chang 7 detrital zircons, i.e., 225–264 Ma, 276–408 Ma, 413–458 Ma, 727–851 Ma, 1249–1749 Ma and 1868–2469 Ma, corresponding to the tectonic movements of Indo–Chinese, Hercynin, late Caledonian, Rodinia break–up, early–middle Jinning movement and Paleoproterozoic periods. Sedimentary sources are complex in the study area, and they mainly came from the western section of northern Qinling, Qin–Qi orogenic belt, West Qinling, eastern section of Qilian orogenic belt, and Tianshan – Xingmeng orogenic belt. Alxa block and northern area of the basin might have been the sedimentary sources of the study area. Paleo–current statistics indicate that the source direction was close to the southern part of the study area. Apatite fission track analysis and thermal history reconstruction were carried out, and the results confirm that the study area experienced an essential tectonic thermal event at 100 Ma in the early Cretaceous period of Late Mesozoic, which was an important period of oil and gas formation. There existed four relatively evident thermal evolution periods after that: 100 to 43 Ma was a slow uplift stage and experienced partially annealing with a cooling rate of around 0.44°C/Ma; 45 to 36 Ma was a rapid uplift stage and the cooling rate came to 4.3°C/Ma; 36 to 24 Ma was another slow uplift stage with the cooling rate about 0.52°C/Ma; 24 to 17 Ma was a rapid uplift stage and the cooling rate came to 1.5°C/Ma. However, the India–Asia collision has influenced the uplift and erosion in the study area since 43 Ma.

Key words: detrital zircons; apatite; provenance analysis; thermal evolution; Yanchang Formation; Ordos Basin

About the first author: SUN Ningliang, male, born in 1987, doctor candidate, engages in the study of tectonics and sedimentology; E-mail: sunningliangll@163.com.

Fund support: Supported by National Natural Science Foundation (No. 41272088), Fundamental Research Funds for the Central Universities (No. 15CX06002A).

1 引 言

鄂尔多斯盆地位于华北克拉通的中西部,是一 个典型的大型多旋回叠合盆地(杨遂正等,2006), 并含有丰富的煤炭、石油、天然气和铀矿等多种矿 产资源,是中国重要的能源矿产基地(刘池洋等, 2006)。中生代是盆地演化的重要阶段,是多种矿 产尤其是油气成藏的重要阶段,上三叠统延长组是 鄂尔多斯盆地形成内陆湖盆后的第一套生油岩层 系,也是最早发现油气的地层,一直以来都是重要 的勘探层位。近年来,对于鄂尔多斯盆地南部延长 组物源问题,众多学者通过轻、重矿物组分分析、岩 屑及碎屑成分分析以及古水流测量等方法(赵俊兴 等,2008;陈飞等,2009;宋立军等,2010;朱宗良等, 2010;贺静等,2011;王若谷等,2013)进行了研究。 然而,大多数学者只是对鄂尔多斯盆地南部延长组 大致的物源方向进行了标定,至于精确厘定其物源 区属性还有待于进一步研究。研究区物源方向及 属性的精细研究对于明确砂体展布及指导下一步 勘探具有重要意义。盆地热演化史的分析对于油 气成藏的研究具有重要意义,许多学者对鄂尔多盆 地延长组的热演化及油气成藏史进行了研究并取 得了很多成果(赵孟为等,1996a,1996b;任战利等, 1996,2006;黄志刚等,2015;孙宁亮等,2017a)。然 而,对于鄂尔多斯盆地南部地区延长组隆升剥蚀历 史及阶段的研究还比较模糊,热演化对本区油气成 藏的意义也需明确。本文采用碎屑锆石测年及古 水流分析的方法,系统研究了鄂尔多斯盆地南部旬 邑地区上三叠统延长组物源区属性,通过磷灰石裂 变径迹分析方法进一步研究延长组的热演化特征, 并为油气成藏史及油气成藏条件的研究提供帮助。

2 区域地质背景

鄂尔多斯盆地北邻银川、河套盆地,南接渭河 地堑,外围被吕梁山、大青山、贺兰山、六盘山及秦 岭所环绕(图1),是一个多期叠加的复杂盆地。古、 中元古代鄂尔多斯地块开始形成,构造热事件频 发。新元古代因晋宁运动上升为一完整古陆,在青 白口一震旦纪统一于"古中国地台"(孙肇才等, 1990)。早古生代,鄂尔多斯地块在其西南部拉开 形成了秦岭、祁连、贺兰海槽,秦岭、祁连海槽断裂 较大,而贺兰海槽逐渐演变为坳拉槽,鄂尔多斯地 台伸展成为伸向秦祁海洋的宽广陆架(赵重远, 1993)。早奥陶世末,华北地块受到南面的秦岭洋

图1 鄂尔多斯盆地南部及邻区区域地质简图(据1:500万中国地质图绘制) Fig. 1 Geological map of southern Ordos Basin(after 1:5000000 Geological Map of China)

中

及北面中亚—蒙古海槽洋壳的俯冲挤压,使华北地 台抬升,结束了华北陆缘海盆的地质历史。晚石炭 世华北地块结束了抬升剥蚀,接受沉积,早期为海 相和海陆交互相沉积,从早二叠世下石盒子组开始 进入陆相沉积(韩天佑等,2011)。

研究区位于鄂尔多斯盆地南部(图1),区内岩 石地层发育齐全,出露的地层主要有元古宇(Pt)、古 生界(Pz)、寒武系(e)、奥陶系(O)、志留系(S)、泥盆 系(D)、石炭系(C)、二叠系(P)、三叠系(T)、白垩系 (K)、第四系(Q)。秦岭造山带以商丹断裂带和洛南 一栾川一方城断裂带为界,划分为北秦岭和南秦 岭,北秦岭主要由古元古代结晶的秦岭岩群(Pt_i)、 中元古代一青白口宽坪岩群(Pt₂)、新元古代木其滩 岩群(Pt₃)及寒武系和丹凤岩群、草滩沟群等,造山 带内还发育规模不等的加里东、印支期和燕山期侵 入岩体,及少量四堡、晋宁期和海西期的岩体;南秦 岭地区志留系(S)、泥盆系(D)地层最为发育,出露 广泛,此外还发育下古生界(Pz)、二叠系(P)、三叠 系(T),并有大量印支期、海西期及加里东期的侵入 岩体。

晚三叠世延长期鄂尔多斯盆地经历了陆内盆 地形成、发展、消亡的全过程,并沉积了一套厚度 1000~1300 m的陆源碎屑岩系,根据凝灰岩标志层 (K₀~K₀)特征自下而上可分为长10~长1共10个油 层组(吴冬等,2015)。本文锆石测年砂岩样品取自 长7油层组,磷灰石裂变径迹分析样品取自长6、长 7和长8油层组。在研究区长8期以辫状河沉积为 主,岩性主要是灰绿色中细砂岩夹暗色泥岩、粉砂 岩,长7期时是湖盆最大湖泛期,底部沉积了厚层灰 黑色油页岩及深灰色泥岩,中上部沉积厚层块状砂 岩夹薄层泥岩,长6期深湖面积有所萎缩,底部以厚 层块状砂岩夹薄层泥岩为主,中上部为深灰色泥岩 与薄层粉、细砂岩互层(孙宁亮等,2017b)。

3 样品采集及实验方法

3.1 锆石样品及分析方法

样品(F1)取自探井旬52井长7油层组顶部的 块状砂岩,岩性为细粒岩屑长石砂岩,灰白色,块状 层理,矿物成分主要为石英(38.9%),长石(40.3%), 岩屑(20.8%),分选中等,次棱角状一次圆状,孔隙 式胶结(图2)。锆石的挑选在河北省廊坊市区域地

质调查院进行。对分选出来的锆石在双目镜下挑 选出晶形和透明度较好的颗粒作为测定对象,用环 氧树脂固定、抛光至锆石颗粒一半出露,然后进行 反射光、透射光和阴极发光照相。锆石的反射光、 透射光及阴极发光(CL)照相在中国地质调查局天 津地质调查中心进行。阴极发光照相(CL)采用日 本岛津公司 SS550 配备美国 GATON 公司 MONOCL4 阴极发光仪进行锆石内部结构分析。 锆石原位U-Th-Pb同位素分析在西北大学大陆动 力学国家重点实验室LA-ICP-MS仪器上用标准测 定程序进行。LA-ICP-MS分析采用Hewlett packard公司最新一代 Agilient 7500a ICP-MS 和德 国 Lambda Physik 公司的 ComPex102 Excimer 激光 器以及 Micro Las 公司的 GeoLas 200 M 光学系统的 联机上进行,锆石的微量元素和同位素测年在一个 测点上同时完成。在实验中采用He作为剥蚀物质 的载气,用美国国家标准技术研究院研制的人工合 成硅酸盐玻璃标准参考物质NIST SRM610进行仪 器最佳化。锆石的年龄采用国际标准锆石91500作 为外标标准物质,元素含量采用NIST SRM610作为 外标,2%Si作为内标。具体的分析步骤及数据处理 方法参见文献 Yuan et al. (2004)。采用 Glitter (ver 4.0, Macquarie University)程序对锆石的同位素比 值及元素含量进行计算,对于年龄大于10亿年的采 用100×(²⁰⁷Pb/²⁰⁶Pb年龄)/(²⁰⁶Pb/²³⁸U年龄)、年龄小于 10 亿年的采用 100×(207Pb/235U 年龄)/(206Pb/238U 年 龄)分别计算锆石测年结果的谐和度,将谐和度大 于110%和小于90%的年龄剔除。单个数据误差值 为 1σ ,样品年龄加权平均值的误差为 2σ 。数据分析 中的U-Pb谐和图、年龄分布直方图及年龄加权平 均值的计算采用 Isoplot 3.0 (2006)程序完成 $(Luddwing, 1994)_{\circ}$

3.2 磷灰石样品及分析方法

对于研究区热演化史的分析,本文采用的是磷 灰石裂变径迹的分析方法。样品取自研究区旬42 井长6、旬40井长7、旬41井长8油层组的砂岩样 (图2)。磷灰石广泛分布于沉积岩中,其对温度敏 感,径迹退火的范围与生油窗的温度范围具有一致 性,通过裂变径迹的分析可以得到有关盆地热演化 的相关信息(黄志刚等,2015)。裂变径迹测年法 (Fission Track Dating),是一种经典的同位素测年方

图2 鄂尔多斯盆地南部延长组岩心及显微镜下照片

a—灰白色块状砂岩,无层理,旬52井长7,1159.5m;b—细粒岩屑长石砂岩,见裂缝,旬52井长7,1159.6m;c—灰色细砂岩,见平行层理,旬41 井长8,1207.5m;d—长石岩屑砂岩,铁方解石胶结,泥质胶结,旬41井长8,1207.2m;e—灰白色块状砂岩,无层理,旬40井长7,1070.3m;f—细 粒岩屑长石砂岩,见微裂缝,旬40井长7,1070.5m;g—灰色块状细砂岩,含油,旬42井长6,853.5m;h—细粒长石岩屑砂岩,见粒间孔,旬42井 长6,853.5m

Fig.2 Core photographs and microphotographs of Yanchang Formation in the South Ordos Basin

a-Grayish white massive sandstone, without bedding, Chang7 Member of Xun52 well,1159.5 m; b-Fine lithic arkose, with microcrack, Chang7 Member of Xun52 well, 1159.6 m; c-Gray fine-grained sandstone, with parallel bedding, Chang8 Member of Xun41 well, 1207.5 m; d-Feldspathic lithic sandstone, with ferrocalcite and mud cementation, Chang8 Member of Xun41 well, 1207.2 m; e-Grayish white massive sandstone, without bedding, Chang7 Member of Xun41 well, 1070.3 m; f-Fine lithic arkose, with microcrack, Chang7 Member of Xun41 well, 1070.5 m; g- Gray massive sandstone, oil- bearing, Chang6 Member of Xun42 well, 853.5 m; h-Fine lithic arkose, with intergranular pore, Chang6 Member of Xun42 well, 853.5 m

法,它是基于对矿物晶体内所含的²³⁸U发生重核裂 变,与其裂变半衰期函数关系的研究来完成测年 的。通过对裂变径迹退火规律的研究,从而由单一 的年龄发展到以长度分布为主的多个参量,广泛应 用于盆地地热史和构造史方面的研究(任战利, 1995,1996;赵孟为,1996b;丁超等,2016)。本次磷 灰石裂变径迹年龄测试在中国地震局地质研究所 完成。采集的样品分离出磷灰石单矿物,并用环氧 树脂黏贴在光薄片上,在室温21℃下,用5.5%的 HNO₃蚀刻 20S,揭示自发径迹;将低铀白云母外探 测器与磷灰石一起送入反应堆辐照(在中国原子能 科学研究院492反应堆进行),之后在21℃下40% HF 蚀刻 40 min 揭示诱发径迹, 中子注量为美国国 家标准局CN5铀玻璃标定(Bellemans et al., 1995)。 测定年龄时每个样品任选20个左右质量较好,平行 于C轴的颗粒进行定年,并根据IUGS推荐的x常数 法和标准裂变径迹年龄方程计算年龄值(Hurford et al.,1982,1983)。

4 实验结果

4.1 锆石的内部结构特征及微量元素分析

本文所研究样品测点数为60个,其中5个测点 不谐和,最终用于分析的年龄数据点为55个。从砂 岩样品中代表性锆石的阴极发光图像所示(图3), 锆石的直径介于50~200 mm,以次棱角状一次圆状 为主,可见少量的短柱状和长柱状,说明锆石颗粒 经过了较长距离搬运,或者是经过多期沉积旋回。 研究区的锆石以浅黄色一黄色、无色透明状为主, 可见少量褐色,大部分具振荡环带。锆石颗粒具有 较高的Th、U含量,所选的55颗锆石Th/U比值均大 于0.1(图4),其中,Th/U比值在0.1~0.4的颗粒有9 个,占样品总数的16.4%,Th/U比值大于0.4的颗粒

图 3 鄂尔多斯盆地南部旬邑地区延长组长 7 砂岩中代表性 结石的阴极发光图像 Fig.3 The cathodoluminescence images of zircons for Yanchang Formation of Chang7 Member sandstone samples in Xunyi area, South Ordos Basin

有46个,占样品总数的83.6%,说明大部分锆石具 岩浆成因特征(Hoskin,2000)。研究区的锆石可分 为3类,第一类锆石,结构均一,环带结构发育明显, Th/U比值大于0.4,显示典型的岩浆岩锆石成因特 征(图3中35号锆石颗粒,其Th/U比值为0.76)。第 二类锆石其环带结构发育较弱,边部较暗,没有明 显的核、幔及边,Th/U比值在0.1~0.4(图3中38号锆 石颗粒,其Th/U比值为0.21),说明这类锆石受到了 变质作用的影响,但仍是岩浆成因的锆石。第三类 锆石,其外形多为次圆状,阴极发光图像显示较亮 的白色,其Th/U比值也大于0.4(图3中49号锆石颗 粒,其Th/U比值为0.72),这类锆石经过了较长距离 的搬运,也属于岩浆成因的锆石。

4.2 锆石测年结果

从锆石U-Pb年龄结果(表1)、频率分布直方图 和谐和图(图5)上可以看出,碎屑砂岩样品的U-Pb 年龄值分布范围很宽,从225 Ma至2469 Ma之间都 有分布。结合区域的构造活动事件,研究区的锆石 年龄大致可分为6个阶段:225~264 Ma、276~408 Ma、413~458 Ma、727~851 Ma、1249~1749 Ma 和 1868~2469 Ma,分别对应当时期的构造热事件。

4.3 磷灰石裂变径迹实验结果

通过磷灰石裂变径迹实验得到研究区样品裂 变径迹年龄分别为27.5 Ma、27.8 Ma和28.6 Ma(表

图4 鄂尔多斯盆地南部旬邑地区延长组长7碎屑锆石年龄 与Th/U关系

Fig.4 Diagram showing relationship between Th/U ratios and U-Pb age in Chang7 Member of Yanchang Formation in Xunyi area of South Ordos Basin

2,图6),远小于它们的地层年龄(223~226 Ma),表 明研究区的样品长时间处于退火带的底部或者是 冷却带,长度分布为右偏型,长径迹占比例大,反映 了抬升冷却过程,处于冷却带,代表了冷却年龄。

5 讨 论

5.1 物源分析

5.1.1 锆石测年反映的物源区讨论

(1)225~264 Ma。此组年龄的锆石有9颗(表 1),约占样品总数的16.4%,对应于印支期。本组错 石的Th/U为0.43~1.45,具岩浆成因的韵律性生长 环带,显示了本组锆石为岩浆成因,其年龄谐和度 在96%~107%,²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U比值也落在谐和 曲线上(图5),表明所测的同位素年龄值为岩浆侵 入的结晶年龄。印支期构造热事件在秦岭造山带 内频发,主要表现为西秦岭印支期岩浆岩、北秦岭 西段印支期岩浆岩及南秦岭印支期岩浆岩。西秦 岭岩浆岩呈带状分布,东部侵入的岩浆岩分布在西 和一武山一礼县一带,形成时代为225~211 Ma,中 部主要沿合作--夏河--同仁--带分布,岩浆岩体的 侵入年龄为245~238 Ma,西部岩体主要分布在共和 盆地周缘,主要有木勒尔一满丈岗岩体、温泉岩体 和黑马河岩体,它们的侵位年龄为235~218 Ma(骆 必继,2013)。北秦岭西段印支期岩浆岩主要是宝 鸡岩体, 卢欣祥等(1999) 测得的老君山及附近岩体 的年龄分别为(214±3)Ma及(217±3)Ma,刘树文等 (2011)测得的宝鸡岩体印支期花岗岩侵入年龄为 (212±1)Ma及(210±2)Ma,北秦岭东段曹坪、沙河湾 侵入体年龄分别为(224.1±1.1)Ma和(212±0.93)Ma

表1 鄂尔多斯盆地南部旬邑地区延长组长7砂岩中的碎屑锆石LA-ICP-MS U-Pb测年结果

 Table 1 Detrital zircon LA-ICP-MS U-Pb dating results in Chang7 Member of Yanchang Formation in Xunyi area of South Ordos Basin

		元素含	; 量/10	-6			同位素	影比值	014051	24,5111			年龄	/Ma			
测点	206Pb	232Th	238U	Th/U	206Pb/238U	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ U	$\pm 1\sigma$	206Pb/238U	$J \pm 1\sigma^2$	207Pb/235U	$J \pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ U	$\pm 1\sigma$	谐和度/%
1	63	165	283	0.58	0.0577	0.0010	0.4550	0.0141	0.0572	0.0023	361	6	381	10	500	88	105
2	58	290	415	0.70	0.0358	0.0006	0.2701	0.0091	0.0547	0.0024	227	4	243	7	398	93	107
3	82	141	398	0.35	0.0531	0.0009	0.4188	0.0122	0.0572	0.0023	334	5	355	9	497	85	106
4	49	234	213	1.10	0.0591	0.0010	0.4219	0.0151	0.0518	0.0023	370	6	357	11	276	99	97
5	43	141	282	0.50	0.0389	0.0007	0.2736	0.0124	0.0510	0.0027	246	4	246	10	242	118	100
6	168	93	385	0.24	0.1122	0.0018	1.1587	0.0263	0.0749	0.0026	765	10	781	12	1065	69	102
7	18	77	112	0.69	0.0412	0.0009	0.2979	0.0228	0.0524	0.0043	260	6	265	18	303	176	102
8	268	108	214	0.51	0.3222	0.0053	5.5658	0.1153	0.1253	0.0042	1800	26	1911	18	2033	58	113
9	278	164	600	0.27	0.1195	0.0019	1.1361	0.0248	0.0690	0.0024	727	11	771	12	898	69	106
10	259	664	311	2.14	0.2139	0.0034	2.6802	0.0535	0.0909	0.0030	1249	18	1323	15	1344	62	108
11	54	159	214	0.74	0.0648	0.0012	0.5291	0.0214	0.0592	0.0029	405	7	431	14	574	103	106
12	44	129	184	0.70	0.0611	0.0011	0.4548	0.0191	0.0540	0.0027	382	7	381	13	371	108	100
13	255	77	195	0.39	0.3361	0.0054	5.1946	0.1006	0.1121	0.0037	1868	26	1852	16	1833	58	98
14	35	152	218	0.70	0.0411	0.0007	0.2947	0.0129	0.0520	0.0027	260	5	262	10	284	114	101
15	101	300	428	0.70	0.0610	0.0010	0.4908	0.0167	0.0583	0.0025	382	6	405	11	543	92	106
16	62	81	246	0.33	0.0652	0.0011	0.5228	0.0182	0.0581	0.0026	407	7	427	12	534	94	105
17	83	316	347	0.91	0.0617	0.0010	0.4678	0.0133	0.0550	0.0022	386	6	390	9	413	84	101
18	18	75	116	0.64	0.0392	0.0009	0.2956	0.0218	0.0547	0.0043	248	5	263	17	400	169	106
19	30	122	127	0.96	0.0613	0.0012	0.4734	0.0229	0.0560	0.0031	384	7	394	16	451	120	103
20	42	131	305	0.43	0.0355	0.0006	0.2367	0.0100	0.0483	0.0024	225	4	216	8	115	114	96
21	48	107	192	0.56	0.0642	0.0011	0.5051	0.0187	0.0571	0.0026	401	7	415	13	495	99	104
22	44	95	49	1.93	0.2317	0.0045	3.2948	0.1075	0.1031	0.0043	1343	23	1480	25	1481	76	110
23	31	281	194	1.45	0.0416	0.0008	0.2895	0.0146	0.0504	0.0029	263	5	258	12	216	128	98
24	18	45	69	0.65	0.0672	0.0014	0.5302	0.0330	0.0572	0.0039	419	9	432	22	500	145	103
25	22	110	93	1.18	0.0597	0.0012	0.4490	0.0242	0.0545	0.0033	374	7	377	17	392	131	101
26	107	30	59	0.50	0.4666	0.0085	10.6850	0.2467	0.1661	0.0057	2469	37	2496	21	2518	57	102
27	85	214	326	0.66	0.0670	0.0012	0.5087	0.0181	0.0551	0.0025	418	7	418	12	416	97	100
28	75	223	321	0.70	0.0603	0.0010	0.4651	0.0131	0.0559	0.0022	378	6	388	9	448	84	103
29	60	267	269	0.99	0.0574	0.0011	0.4294	0.0197	0.0543	0.0029	360	6	363	14	382	116	101
30	53	190	258	0.74	0.0532	0.0011	0.4354	0.0247	0.0594	0.0038	334	7	367	17	580	132	110
31	79	272	359	0.76	0.0562	0.0011	0.4419	0.0220	0.0570	0.0033	353	7	372	15	490	122	105
32	147	192	276	0.70	0.1367	0.0022	1.3731	0.0317	0.0728	0.0026	826	12	878	14	1010	70	106
33	182	274	357	0.77	0.1306	0.0021	1.2606	0.0316	0.0700	0.0026	791	12	828	14	928	73	105
34	326	95	184	0.51	0.4549	0.0072	10.7371	0.1875	0.1711	0.0054	2417	32	2501	16	2569	52	106
35	71	225	295	0.76	0.0623	0.0010	0.5130	0.0148	0.0597	0.0024	390	6	421	10	594	83	108
36	64	134	222	0.60	0.0736	0.0012	0.6275	0.0182	0.0619	0.0025	458	7	495	11	669	82	108
37	415	71	343	0.21	0.3116	0.0049	4.8040	0.0884	0.1118	0.0036	1749	24	1786	15	1829	57	105
38	163	63	296	0.21	0.1411	0.0023	1.3151	0.0318	0.0676	0.0024	851	13	852	14	856	73	100
39	38	118	234	0.51	0.0418	0.0008	0.3219	0.0173	0.0559	0.0034	264	5	283	13	447	130	107
40	95	233	394	0.59	0.0616	0.0010	0.5122	0.0147	0.0603	0.0024	385	6	420	10	614	83	109
41	73	336	302	1.11	0.0624	0.0011	0.4748	0.0162	0.0552	0.0024	390	6	395	11	420	94	101
42	34	107	130	0.82	0.0662	0.0012	0.5379	0.0203	0.0589	0.0027	414	7	437	13	563	98	106
43	78	404	536	0.75	0.0374	0.0006	0.2669	0.0081	0.0517	0.0021	237	4	240	6	272	90	101
44	158	46	134	0.34	0.3037	0.0050	4.7977	0.0988	0.1146	0.0038	1710	24	1785	17	1873	59	110
45	188	45	134	0.33	0.3583	0.0060	6.2494	0.1322	0.1265	0.0043	1974	28	2011	19	2050	58	104
46	91	149	396	0.38	0.0593	0.0010	0.4579	0.0126	0.0560	0.0022	372	6	383	9	450	83	103
47	98	241	366	0.66	0.0689	0.0011	0.5411	0.0139	0.0570	0.0021	429	7	439	9	490	80	102
48	57	170	337	0.50	0.0438	0.0007	0.3134	0.0102	0.0519	0.0022	276	4	277	8	281	94	100
49	42	114	159	0.72	0.0686	0.0012	0.5394	0.0207	0.0570	0.0027	428	7	438	14	491	102	102
50	94	413	391	1.05	0.0618	0.0010	0.4994	0.0147	0.0586	0.0023	386	6	411	10	553	85	106
51	77	352	294	1.20	0.0668	0.0011	0.5231	0.0159	0.0568	0.0023	417	7	427	11	481	88	102
52	183	81	108	0.74	0.4336	0.0086	9.3145	0.2549	0.1558	0.0058	2322	38	2369	25	2410	62	104
53	82	216	301	0.72	0.0695	0.0011	0.5820	0.0156	0.0607	0.0023	433	7	466	10	629	80	108
54	86	348	499	0.70	0.0442	0.0007	0.3322	0.0095	0.0545	0.0021	279	4	291	7	391	85	104
55	43	118	170	0.69	0.0648	0.0011	0.4852	0.0175	0.0543	0.0025	405	7	402	12	384	98	99
56	12	74	84	0.87	0.0379	0.0008	0.5518	0.0280	0.1055	0.0062	240	5	446	18	1722	104	186
57	67	243	290	0.84	0.0592	0.0010	0.5075	0.0169	0.0622	0.0027	370	6	386	11	681	89	104
58	62	84	160	0.53	0.1003	0.0018	0.8641	0.0330	0.0625	0.0029	616	11	682	18	691	97	111
59	32	123	141	0.87	0.0576	0.0011	0.4914	0.0219	0.0619	0.0033	360	6	406	15	671	108	113
60	109	1701	1348	1.26	0.0209	0.0003	0.3039	0.0077	0.1057	0.0039	133	2	269	6	1727	67	202

中

(弓虎军等,2009)。南秦岭印支期岩浆岩侵入体有 西岔河岩体((212±2)Ma,Qin et al.,2008),五龙岩 体((208±2)Ma,Qin et al.,2008),光头山岩体(199± 4Ma,吴峰辉等,2008),柞水岩体((224.8±1.1)Ma, 弓虎军等,2009),东江口岩体((214.8±2)Ma,Qin et al.,2010),胭脂坝岩体((201.9±1.5)Ma,韦龙猛等, 2016)。此外,研究区西南缘侵入的印支期关山花 岗岩侵入年龄为(229±7)Ma(张宏飞等,2007)。大 部分岩浆岩体显示了印支运动晚期的构造活动,与 本组锆石年龄相一致的有西秦岭中部岩浆岩体及 关山花岗岩,因此推测西秦岭中部地区及关山地区 可能为研究区提供物源。宋立军等(2010)研究发 现汭水河及千阳剖面中(图1)各有一粒此时期的锆 石,年龄分别为(235±3)Ma和(242±3)Ma,它们的物 源来自于其南面的印支期关山花岗岩,与本次研究 具有相似性。

(2)276~408 Ma。本组年龄的锆石有 24 颗(表 1),约占样品总数的43.6%,对应于海西期。锆石 Th/U比值为0.33~1.18,岩浆成因的韵律性生长环带 均很发育(图3),显示了岩浆锆石特征。本组锆石 在北部的天山一兴蒙造山带广泛发育,马收先等 (2011)通过锆石 U-Pb 和 Hf 同位素分析表明内蒙 古存在2次重要的隆升事件,第一期发生在360~ 312 Ma, 第二期发生在 276~258 Ma, 其中第二次隆 升后为盆地提供持续物源,徐博文等(2015)研究赤 峰北部红庙子正长花岗岩和鸡冠山花岗岩的形成 时代为(392±2.5)Ma和(377.4±1.6)Ma,证明了兴蒙 造山带存在多期、多阶段造山运动,黄波等(2016) 研究兴蒙造山带北缘贺兰山蛇绿岩中辉长闪长石 和玄武岩的形成时代为(341±3)Ma和(359±5)Ma, 它们最迟在晚泥盆世早期形成,刘敏等(2017)探讨 了西乌审旗南部的石英闪长岩、花岗闪长岩和黑云 母花岗岩形成时代分别为(330±2)Ma、(274±1)Ma 及(271±1)Ma~(282±1)Ma,推测了其形成于古亚洲 洋向北侧南蒙古陆块俯冲阶段。此外,张英利等 (2011)利用LA-ICP-MS U-Pb分析方法获得了西 秦岭造山带徽县一成县地区早白垩世鸡山组砂岩 中305 Ma的锆石年龄,其为岩浆成因。在海西期, 西伯利亚板块与华北板块发生碰撞俯冲作用,大量 的岩浆产物被剥蚀搬运,从而使研究区存在众多 265~408 Ma的碎屑锆石,此期锆石在南部的秦祁造 山带北缘地区不发育,只在商丹断裂处的南秦岭地 区有发育(宋立军等,2010)。因此此年龄段锆石可 能来自天山—兴蒙造山带,但也不排除西秦岭地区 的可能性。

(3)413~458 Ma。本组年龄的锆石有8颗(表 1),约占样品总数的14.5%,对应于加里东晚期。此 组年龄的锆石的Th/U比值在0.60~1.20,也具岩浆 成因的韵律性生长环带,其年龄的谐和度在100~ 108,显示了岩浆侵入的结晶年龄。该年龄段的锆 石在北秦岭西段、西秦岭及北祁连东段较为发育。 王洪亮等(2006a,2007a,2009)测定北秦岭西段红花 铺和岩湾岩体的形成时代分别为(414.3±1.9)Ma和 (413.5±1.3)Ma,揭示了北秦岭西段在加里东时期的

板块俯冲作用,测定西段奥陶纪草滩沟群火山岩中 含有400~500 Ma的年龄信息,为北秦岭加里东运动 的证据,王涛等(2009)确定北秦岭灰池子 I 型花岗 岩锆石 LA-ICP-MS, SIMS 年龄分别为(421±27) Ma和(434±7)Ma,揭示了加里东期陆缘俯冲造山活 动,张成立等(2013)通过锆石U-Pb测年确定北秦 岭在早古生代期间经历了一次大陆碰撞及两次抬 升过程,分别是~500,~450 Ma和~420 Ma,其后为盆 地持续输送物源,吕星球(2015)测定太白岩体中的 五里峡岩体侵入年龄为(431±2)Ma。北秦岭西段锆 石在加里东期的年龄与本区年龄具有相似性,因此 北秦岭西段应该为本区提供物源。西秦岭地区在 加里东期也发生了复杂的构造运动,裴先治等 (2009)研究发现西秦岭北缘天水-武山构造带关 子镇流水沟和百花中基性岩浆杂岩中含有加里东 期俯冲型(450~456 Ma)花岗岩和碰撞型(438~400 Ma)花岗岩类岩浆活动,毛小红等(2017)在西秦岭 北部秦岭杂岩中识别出麻粒岩相岩石,并通过LA-ICP-MS U-Pb 测年给出了加权平均年龄为(430± 4)Ma、(433±4)Ma及(424±3)Ma,记录了西秦岭造 山带北部变质作用及深熔作用。这些说明西秦岭 地区经历了加里东期较为强烈的构造岩浆活动,而 日本区锆石年龄与其具有一致性,因此西秦岭地区 可能为本研究区提供物源。北祁连东段也出露有 加里东期岩浆岩,何世平等(2006)确定北祁连东段 陇山岩群中角闪岩形成时代为(452.8±1.7)Ma及 (417±1.5)Ma,其形成于加里东中期大陆扩张环境, Zhang et al. (2006) 通过锆石 U-Pb 测年确定陇山-天水地区闫家店和草川铺岩体形成时代为(441± 10)Ma及(434±10)Ma,反映了加里东期的构造活 动,熊子良等(2012)通过锆石U-Pb定年获取北祁 连东段冷龙地区毛藏寺岩体和黄羊河岩体中花岗 闪长岩结晶年龄为(424±4)Ma,并揭示了北祁连造 山带从加里东早期的挤压构造体制向加里东晚期 的伸展构造演化。这些年龄与本区锆石年龄具有 一致性,因此推测北祁连东段也为研究区提供物 源。

(4)727~851 Ma。本组年龄锆石有5颗(表1), 占样品总数的9.1%。锆石的Th/U比值在0.21~ 0.77,谐和度在100~106,显示岩浆成因。此年龄段 与Rodinia超大陆的裂解有关,大多数学者认为

Rodinia超大陆裂解发生在830 Ma之后,但时空分 布不均一(徐备,2001),环扬子陆块岩浆活动有两 个峰期,分别为830~795 Ma及780~745 Ma(Li et al., 2003),其东北缘主要产出700~800 Ma岩浆活动 产物(Liu et al., 2006)。西秦岭、中祁连东段及北祁 连东段均发现有此期的岩浆岩,李瑞保等(2009)通 过LA-ICP-MS 锆石 U-Pb 测年确定西秦岭南缘勉 略带琵琶寺基性火山岩年龄为783~754 Ma,它们对 探讨扬子板块北缘 Rodinia 超大陆裂解有重要意义, 闫全人等(2007)通过 SHRIMP 测得西秦岭勉略构 造带混杂带康县---勉县段铁镁质岩块形成时代为 (841±16)Ma~(812±11)Ma,蛇绿混杂岩形成时代 为(827±14)Ma~(808±10)Ma。雍拥等(2008)通过 LA-ICP-MS 锆石 U-Pb 测年测定中祁连东段4个 花岗岩的年龄分别为(853±2.3) Ma,(888±2.5) Ma, (846±2)Ma及(756±2.2)Ma,表明其经历了两次岩 浆活动,徐学义等(2008)通过锆石U-Pb定年确定 中祁连东段兴隆山群基性火山岩锆石年龄为(713± 53)Ma,推断可能与Rodinia超大陆岩浆事件有关。 曾建元等(2006)通过SHRIMP错石U-Pb测年在北 祁连东段雷公山片麻岩石英闪长岩获得锆石加权 平均年龄为(774±23)Ma,代表了锆石岩浆结晶年 龄,可能与Rodinia超大陆的裂解有关。因此,通过 对比分析,西秦岭、中祁连东段及北祁连东段可能 为研究区提供物源。

(5)1249~1749 Ma。本组年龄锆石有5颗(表 1),占样品总数的7.3%。锆石的Th/U比值在0.21~ 2.41, 谐和度在105~110, 显示岩浆成因, 对应于晋宁 运动早中期。此年龄段的锆石在祁连造山带东段、 北秦岭西段有发育,董国安等(2007a)通过 SHRIMP U-Pb 定年测定祁连地块托勒牧场南野马 南山群下部层位石榴二云母片岩及大通山地区湟 源群上部层位石榴白云母片岩锆石年龄介于1.0~ 1.8 Ga,峰值为1.6~1.8 Ga,代表了晋宁运动早期岩 浆活动, 王银川等(2012) 通过 LA-ICP-MS 锆石 U-Pb测年确定祁连造山带东段张家川地区长宁驿中 元古代花岗质片麻岩岩浆结晶年龄为(1765±65) Ma,形成于吕梁运动后的造山活动,王洪亮等 (2006b, 2007b, 2009)测定北秦岭西段太白岩基巩 坚沟变形侵入体片麻状中细粒二长花岗岩年龄为 (1741±12)Ma,陕西胡店片麻状细粒二长花岗岩年

	表2 鄂尔多斯盆地南部延长组磷灰石裂变径迹分析数据									
Table 2 Apatite fission-track data of Yanchang Formation in the South Ordos Basin										
井号	层位岩性	Nc	$ ho_d(N_d)/(10^6 { m cm}^{-2})$	$\rho_{s}(N_{\rm s})/(10^{5}{\rm cm}^{-2})$	$\rho_i(N_i)/(10^6 {\rm cm}^{-2})$	单颗粒铀含量/10-6	$P(x^2)/\%$	Г	t∕Ma±1σ	L/μ m±1 σ (Nj)
句 41	上 o 细动虫	20	0.806	2.797	1.444	22.4	06.6	6.6 0.950	27.5±1.5	13.31±010
均41	民 0 细 的 石	30	(2015)	(646)	(3335)	22.4	90.0			(100)
句 40	レラ加が山	20	0.822	2.708	1.412	21.5	00.0	0.067	27.5±1.527.8±1.5	13.41±0.10
町40	民 / 细砂石	30	(2055)	(742)	(3869)	21.3	99.9	0.907		(100)
(10)	长6细砂岩	30	0.811	3.347	1.669	25.7	94.0	0.936	28.6±1.5	13.61±0.12
HJ 42			(2028)	(907)	(4523)					(100)

注:Nc—测量的磷灰石颗粒数;r。一铀标准玻璃的诱发径迹密度;N。一铀标准玻璃的诱发径迹数;r。一单颗粒自发径迹密度;N。一单颗粒 自发径迹数;r.一单颗粒诱发径迹密度;N.一单颗粒诱发径迹数;P(x²)—x²的概率;r—N。和Ni的相关系数;t一样品中值裂变径迹年龄;L一径迹 长度。

图 6 鄂尔多斯盆地南部地区延长组磷灰石裂变径迹年龄放射图和裂变径迹长度分布图 Fig.6 Radial plots and track length histograms of apatite of Yanchang Formation in the South Ordos Basin

龄为(1770±13)Ma,它们反映了板块边缘的俯冲-碰撞构造环境,在甘肃省两当县张家庄乡奥陶纪草 滩沟群张家庄组中基性火山岩中获得0.9~1.5 Ga数据,代表了北秦岭地区强烈的晋宁运动。本组锆石 与这些地区的构造热事件相吻合,因此祁连造山带 东段及北秦岭西段可能为本区提供物源支持。

(6)1868~2469 Ma。此组年龄的锆石有5颗(表 1),占样品总数的9.1%。,某些锆石的岩浆韵律性环 带较弱,但也仍为岩浆成因的锆石,代表了岩浆侵 入的结晶年龄,对应于古元古代构造运动。本组锆

石年龄在北秦岭西部、秦祁造山带、阿拉善地块及 盆地北部的集宁、乌拉山岩群有分布。高胜(2015) 通过锆石U-Pb测年确定北秦岭宽坪岩群中固川沟 花岗岩形成时代为(2197±19)Ma,同时在碎屑锆石 中获得~2500和~3400的年龄段,与华北板块年龄谱 系吻合,对应于华北克拉通造山运动,此外北秦岭 造山带广泛分布的秦岭岩群中长英质片麻岩锆石 U-Pb年龄和变质基性岩 Sm-Nd年龄为 2226~ 1987 Ma(裴先治等,2007),也对应于此时的构造热 运动。何艳红等(2005)通过LA-ICP-MS锆石U-Pb测年确定秦祁结合部陇山群有三组锆石年龄, 1.90~1.95 Ga、2.35~2.40 Ga及 2.45~2.50 Ga, 1.90 Ga 的Th/U小于1,但2.35 Ga和2.50 Ga几乎都大于1, 为华北克拉通内部的构造运动产物。也有学者在 阿拉善地块识别出了古元古代的岩浆变质事件,董 国安等(2007b)通过碎屑锆石 SHRIMP U-Pb年代 学测定龙首山岩群锆石年龄主要介于1.7~2.2 Ga, 占80%,峰值为1.8~2.0 Ga, 耿元生等(2010)通过 SHRIMP U-Pb 定年确定阿拉善地块叠布斯格岩群 和片麻岩中记录了1926 Ma和1802 Ma变质事件, 波罗斯坦庙变形片麻状杂岩中记录了1839 Ma岩浆 事件。盆地北部孔兹岩系的集宁杂岩、乌拉山岩群 也有相似的时代范围, Xia et al. (2006a, 2006b)通过 LA-ICP-MS U-Pb 锆石测年确定集宁杂岩含有 1890 Ma、1940Ma及2060 Ma的锆石,测定乌拉山岩 群中含有1.84~2.32 Ga年龄段锆石,对应于该时期 的构造热事件。因此,北秦岭西部、秦祁造山带、阿 拉善地块及盆地北部地区可能为本区提供物源。

通过以上锆石分阶段分析及物源区讨论,结合 碎屑锆石的年龄特征对比(表3)表明研究区延长组 长7期的物源区较复杂,主要来自于北秦岭西段、秦 祁造山带、西秦岭、祁连造山带东段及天山一兴蒙 造山带,阿拉善地块和盆地北部地区也可能为本区 提供物源。

5.1.2 古水流分析

古水流分析是判断物源的一种重要方法,它可 以确定沉积体展布方向、湖岸线走向、古斜坡位置, 能够反映沉积环境及湖盆演化的重要信息。通常 能指示古水流方向的沉积现象主要有扁平砾石的 叠瓦状排列方向、前积层、交错层理、波痕、槽轴倾 伏向、槽模、沟模、剥离线理等。 鄂尔多斯盆地南部延长组野外露头保存有多种指示古流向的沉积标志,作者通过考察铜川漆水河、铜川何家坊、耀县瑶曲、旬邑三水河等野外剖面,实测交错层理38个,槽轴倾伏向数据26个,槽 模、沟模走向40个,水流线理49个,对鄂尔多斯盆 地南部延长组优势古水流向进行了统计(表4),在 此基础上编制了古水流方向的玫瑰花图(图7),结 果表明铜川漆水河剖面长4+5层位优势古流向有2 组,分别为310°和350°;何家坊剖面长8层位优势古 流向为325°,长9层位为336°;耀县瑶曲长7层位主 要测量的是槽模及沟模走向,显示有2组优势流向, 分别为326°和18°;旬邑三水河地区长4+5层位显示 的优势古流向为335°,长8层位为340°,表明研究区 旬邑地区的物源方向为近南部。

5.2 磷灰石裂变径迹反映的热演化史分析

将磷灰石裂变径迹实验得到的裂变径迹长度、 年龄值,输入AFTSolve软件中进行热历史模拟。模 型选取 Ketchan 等(1999)(multi-kinetic)地温退火 模型,初始径迹长度定为16.3 µm,拟合曲线数选取 10000.在进行具体模拟时选用限制任意搜索项 (CRS)进行拟合,[Dpar]选取1.5 Lm。模拟的边界 条件包括:①地梯度和地表温度的取值,地表温度 取20℃,现今的地温梯度取2.88℃/100m,关键点古 地温梯度代表值为:中生代晚期3.5~4.5℃/100 m;② 热史起始时间的设定,本文根据前人研究成果,地 层年龄及燕山运动的时限设定构造热史的起始时 间为120~80 Ma(黄志刚等,2015);③样品古地温增 减因素分析:研究区增温过程主要由于沉积埋藏作 用造成的,而冷却降温过程主要是由于构造隆升剥 蚀引起的。通过AFTSolve软件模拟的结果包括K-S Test和Age GOF两个输出参数。将测试所得到的 径迹长度和径迹年龄值分别与模拟的长度值和年 龄值进行比较。一般认为年龄 GOF 与K-F 检验值 都大于5%的情况下,认为模拟过程是可信的;而两 个参数都超过50%的情况下,认为模拟结果是可信 的,与实际较为接近。

通过软件模拟得到样品旬41长8油层组样品 的年龄值为27.8Ma,径迹长度为(13.2±8) μm,其K-S test 值为0.11, Age GOF 值为0.10;旬40长7油层 组样品的年龄值为28.1 Ma,径迹长度为(13.3±7) μm,K-S test 值为0.14, Age GOF 值为0.61;旬42长

Table 3 The dating results of representative geological bodies around the Southern Ordos Basin									
事件	区域位置	地质体	年龄/Ma	测试方法	资料来源				
	西秦岭东部西和一		005 011	XX DI	74 2/24 2012				
	武山一礼县一带 西秦岭中部合作—		225~211	U-Pb	骆必继,2013				
	夏河一同仁一带		245~238	U–Pb	骆必继,2013				
	西秦岭西部	木勒尔一满丈岗岩体、 温泉岩体和黑马河岩体	235~218	U–Pb	骆必继,2013				
	北秦岭西段	老君山及附近岩体	$214\pm3,217\pm3$	U-Pb	卢欣祥等,1999				
	北秦岭东段	曹坪岩体	224.1±1.1	U-Pb	弓虎军等,2009				
	北秦岭东段	沙河湾岩体	212±0.93	U-Pb	弓虎军等,2009				
	北秦岭西段	宝鸡岩体	212±1,210±2	U-Pb	刘树文等,2011				
印支期构造运动	南秦岭	西岔河岩体	212±2	LA-ICP-MS	Oin et al., 2008				
	南秦岭	五龙岩体	208±2	LA-ICP-MS	Qin et al., 2008				
	南秦岭	柞水岩体	224.8±1.1	U-Pb	弓虎军等,2009				
	南秦岭	东江口岩体	214.8±2	U-Pb	Qin et al., 2010				
	南秦岭	胭脂坝岩体	201.9±1.5	U-Pb	伟龙猛等,2016				
	祁连山东南部	印支期关山花岗岩	229±7	U-Pb	张宏飞等,2007				
	赤峰北部	红庙子正长花岗岩	392±2.5	LA-ICP-MS	徐博文等,2015				
	赤峰北部	鸡冠山花岗岩	377.4±1.6	LA-ICP-MS	徐博文等,2015				
	兴蒙造山带北缘	贺兰山蛇绿岩	341±3,359±5	U-Pb	黄波等,2016				
	표 卢 卢 생 士 해		330±2,274±1	I. DI	六川与6大大 2017				
	四马申旗南部		及(271±1)~(282±1)	U-Pb	刘琡寺,2017				
	北秦岭西段	红花铺岩体 甘肃两当县悤陶纪苜滩	414.3±1.9	LA-ICP-MS	王洪亮等,2006a				
	北秦岭西段	沟群火山岩	400~500	LA-ICP-MS	王洪亮等,2007a				
	北秦岭西段	岩湾岩体	413.5±1.3	LA-ICP-MS	王洪亮等,2009				
	北秦岭西段	灰池子 I 型花岗岩	421±27, 434±7	LA-ICP-MS,SIMS	王涛等,2009				
	北秦岭西段	五里峡岩体	431±2	U-Pb	吕星球,2015				
加里东晚期	西秦岭北缘天水 一武山构造带	关子镇流水沟和百花中 基性	450~456,438~400	U–Pb	裴先治等,2009				
何起运动	而表於北部	坐口石水石 表於本史	130+1 133+1 恐 121+3	I A-ICP-MS	手小红笙 2017				
	北祁连东段	陇山安群	452 8+1 7.417+1 5	LA-ICP-MS	何世平玺,2006				
	北祁连东段	问家店尝休	441+10	LA ICI MIS	内區中守,2000 Zhang et al 2006				
	北祁连东段	草川辅岩体	434+10	U-Ph	Zhang et al 2006				
	北祁连东段	毛藏寺岩体、	424+4	U DL	能了白皙 2012				
	冷龙地区	黄羊河岩体	424±4	U-Pb	熊丁艮寺,2012				
	四秦岭南缘烟略带	琵琶守基性火山岩 広日	783~754	LA-ICP-MS	李墙保等,2009				
	四茶岭观略构适审	康县省于坝铁铁顶石	$(841\pm16)\sim(812\pm11)$	SHRIMP	闫全人寺,200/ 闫全人练 2007				
	四茶岭池略档道市	二召使价冯阵长石	$(82/\pm 14) \sim (808\pm 10)$	SHRIMP	闫全八寺,200/ 东圳体 2000				
Rodinia	中祁连东段	五峰 们 石 体	846±2	LA-ICP-MS	维拥寺,2008 奋细体 2009				
招大陆刻解	中州连东段	日月宁石仲	/56±2.2	LA-ICP-MS	雅/册寺,2008				
RE CHU AC IT	中和廷示权	山円厉石平 2000000000000000000000000000000000000	633 ≖ 2.5 712+52	LA-ICP-WIS	班1用守,2008 公学文生 2008				
	个种是小权	不僅山研入山石 雪八山皆麻 <u>男</u>	/15±55	0 10	孙子入守,2008				
	北祁连东段	石革闪长岩	774±23	SHRIMP	曾建元等,2006				
		张家川地区长宁驿							
	祁连造山带东段	龙岗质片麻岩	1765±65	LA-ICP-MS	土银川等,2012				
		七闪灰月林石 大白屶基田収沟							
	北秦岭西段	一世世出山	1741±12	LA-ICP-MS	王洪亮等,2006b				
晋宁运动早中期									
	北秦岭西段	陕四朝店斤麻祆细粒	1770±13	LA-ICP-MS	王洪亮等,2007b				
		长花岗岩							
	北素岭西段	甘肃两当县奥陶纪草滩	900~1500	LA-ICP-MS	王洪亭等,2007b				
		沟群火山岩	2107:10		<u>京時 2015</u>				
	北茶町四技	见坪石杆回川沟化冈石	219/±19 1000 1050 2250 2400 T	U−Pb	向胜,2015				
古元古代	秦祁结合部	陇山群	1900~1950、2350~2400 及 2450~2500	LA-ICP-MS	何艳红等,2005				
构造运动	阿拉善地块	龙首山岩群	1800~2000	SHRIMP	董国安等,2007a.b				
	盆地北部	集宁杂岩	1890、1940及2060	LA-ICP-MS	Xia et al., 2006a				
	盆地北部	乌拉山岩群	1840~2320	U-Pb	Xia et al., 2006b				

表3 鄂尔多斯盆地南缘周缘代表性地质体年龄值统计

	太4 鄂尔多斯盆地南部延长组占流问统计表								
Table 4 The paleo-current statistics of Yanchang Formation in the South Ordos Basin									
剖面	层位	优势古流向/(°)	测量类型	个数					
铜川漆水河	长 4+5	310/350	交错层理、槽轴倾伏走向、水流线理	26					
相川有安持	长8	325	交错层理、槽轴倾伏走向、水流线理	18					
铜川阳豕切	长9	336	交错层理、水流线理	21					
耀县瑶曲	长7	326/18	沟模、槽模	40					
与日二水河	长4+5	335	交错层理、槽轴倾伏走向、水流线理	19					
旬巴三爪河	长8	340	交错层理、槽轴倾伏走向、水流线理	29					

6 油层组样品的年龄值为 28.3 Ma, 径迹长度为 (13.5±5) μm, K-S test 值为 0.58, Age GOF 值为 0.82。此次模拟结果符合参数检验要求, 与实际较 为接近,模拟结果是可信的(图 8)。

通过软件模拟热演化史分析可知,鄂尔多斯盆 地南部旬邑地区延长组长8-长6自形成以来,经历 了缓慢的埋藏过程,其地层温度逐渐升高,到100 Ma左右的早白垩纪期地层达到最大古地温,进入 油气的生油窗阶段。从早白垩世晚期,研究区地层 逐渐开始抬升,地层温度开始下降,样品进入退火 阶段,主要经历了4个阶段(图8):100~43 Ma的时 间段为样品的缓慢抬升阶段,进入部分退火,冷却 速率大概在0.44℃/Ma,43~36 Ma的时间段为一快 速抬升阶段,冷却速率达到4.3℃/Ma,36~24 Ma的 时间段为一缓慢抬升阶段,冷却速率达到0.52℃/ Ma,从24~17 Ma样品又经历了一次快速的抬升过 程,冷却速率大概在1.5℃/Ma左右。

研究区在43 Ma以来进入快速抬升阶段,并存 在43~36 Ma、24~17 Ma 2个快速抬升剥蚀期,这与 印度板块与亚欧板块的碰撞有着较强的耦合关系 (赵孟为,1996b;王国灿等,2011)。印度板块与亚 欧板块的碰撞开始于始新世(Copeland et al., 1987, 1990),在中国藏南、西喜马拉雅、天山北缘地区都 有相关的构造变形记录(Hodges,1992),藏东及川滇 西部地区根据裂变径迹年龄数据可以划分出45~38 Ma、25~17 Ma、13~8 Ma及5 Ma至今4个构造隆升 期(钟大赉等,1996);根据热年代学资料,将藏南喜 马拉雅地区新生代划分为55~36 Ma、25~20 Ma、17~ 12 Ma 及 3 Ma 以来 4 个抬升冷却期(王国灿等, 2011; Schlup et al., 2004); 根据磷灰石裂变径迹分析 数据将青藏高原东北缘包括东昆仑东段、祁连山地 区划分为57~45 Ma、23~21 Ma、~8 Ma以及3.6 Ma 以来4个抬升冷却期(王国灿等,2011;张培震等, 2006;方小敏等,2007)。研究区在43 Ma以来的抬

中

图 8 鄂尔多斯盆地南部地区延长组热演化史模拟结果 Fig.8 Modeling results of thermal history of Yanchang Formation in the South Ordos Basin

升剥蚀阶段与上述时间发生的时间具有较好的一 致性,也反映了印度板块与亚欧板块的碰撞对研究 区的抬升剥蚀有影响。

6 结 论

(1)鄂尔多斯盆地南部旬邑地区延长组长7砂 岩碎屑锆石存在 225~264 Ma、276~408 Ma、413~ 458 Ma、727~851 Ma、1249~1749 Ma 和 1868~2469 Ma 6 个年龄区间,分别对应于该阶段的构造热事件,碎屑锆石的年龄特征对比表明研究区物源较复杂,主要来自于北秦岭西段、秦祁造山带、西秦岭、祁连造山带东段及天山一兴蒙造山带,阿拉善地块和盆地北部地区也可能为本区提供物源,古水流分析表明旬邑地区的物源方向为近南部。

(2)研究区在100 Ma左右的早白垩纪经历了重要的构造热事件,自此以后,又经历了6次比较明显

的热演化,100~43 Ma为缓慢抬升阶段,进入部分退 火,43~36 Ma为一快速抬升阶段,36~24 Ma为又一 缓慢抬升阶段,24~17 Ma为又一次快速抬升阶段, 17~5 Ma为一缓慢抬升阶段,自5 Ma以来进入了最 后一个快速抬升期,一直持续到现今接近地表温 度,研究区43 Ma以来的抬升剥蚀受到印度板块与 亚欧板块碰撞的影响。

致谢:非常感谢西北大学大陆动力学国家重点 实验室及中国地震局地震动力学国家重点实验室 的工作人员在锆石及磷灰石实验及数据处理过程 中给予的帮助,也非常感谢评审专家及编辑部提出 的修改意见。

References

- Bellemans F, De Corte F, Den Haute P V. 1995. Composition of SRM and CN U– doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation Measurements, 24(2): 153–160.
- Chen Fei, Fan Tailiang, Gao Zhiqian, Yu Xitong, Pang Zhenglian. 2009. Analysis of the provenance direction and the depositional system of Yanchang Formation of Upper Triassic in the southern Ordos Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 24(6): 24–32 (in Chinese with English abstract).
- Copeland P, Harrison T M, Kidd W S F, Ronghua Xu, Yuquan Zhang. 1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India– Asia collision[J]. Earth and Planetary Science Letters, 86(2/4): 240–252.
- Copeland P, Harrison T M. 1990. Episodic rapid uplift in the Himalaya revealed by ⁴⁰Ar/³⁹Ar analysis of detrital K–feldspar and muscovite, Bengal Fan[J]. Geology, 18(4): 354–357.
- Ding Chao, Chen Gang, Guo Lan, Zhang Wenlong, Shi Xiaolin, Xu Xiaogang, Liu Teng. 2016. Differential uplift on the northeast margin of Ordos Basin: Evidence from apatite fission track analysis[J]. Geology in China, 43(4):1238–1247(in Chinese with English abstract).
- Tung Kuoan, Yang Huaijen, Yang Houngyi, Liu Dunyi, Zhang Jianxin, Wan Yusheng, Tseng Chienyuan. 2007. SHRIMP U– Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 52(19):2687–2701.
- Dong Guoan, Yang Hongyi, Liu Dunyi, Zhang Jianxin, Zeng Jianyuan, Wan Yusheng. 2007. SHRIMP U– Pb geochronological research and significance on detrital zircons from the Long Shoushan Group[J]. Chinese Science Bulletin, 52(6): 688–697 (in Chinese).
- Fang Xiaomin, Song Chunhui, Dai Shuang, Zhu Yingtang, Gao

Junping, Zhang Weilin. 2007. Cenozoic deformation and uplift of the NE Qinghai– Tibet Plateau: Evidence from high– resolution magnetostratigraphy and basin evolution[J]. Earth Science Frontiers, 14(1): 230–242 (in Chinese with English abstract).

- Gao Sheng. 2015. Geochemistry, Geochronology and Its Tectonic Implications for the Kuanping Complex in the West Part of the North Qinling Orogen[D]. Northwest University Master's Dissertation,1–72 (in Chinese with English abstract).
- Geng Yuansheng, Wang Xinshe, Wu Chunming, Zhou Xiwen. 2010. Late-paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area: Event from geochronology[J]. Acta Petrologica Sinica, 26(4):1159-1170 (in Chinese with English abstract).
- Gong Hujun, Zhu Laimin, Sun Boya, Li Ben, Guo Bo. 2009. Zircon U- Pb ages and Hf isotope characteristics and their geological significance of the Shahewan, Caoping and Zhaishui granitic plutons in the South Qinling orgen[J]. Acta Petrologica Sinica, 25 (2):248-264 (in Chinese with English abstract).
- Han Tianyou, Li Hui, Li Wenhou, Tian Yongqing, Liu Guanglin, Ma Haiyong, Li Jihong. 2011. Distribution characteristics and geological significance of U–Pb age of detrital zricon in Yanchang formation of Yanhe strata section of Ordos basin[J]. Northwestern Geology, 44(1): 105–111 (in Chinese with English abstract).
- He Jing, Feng Shengbin, Yuan Xiaoqi, Han Peng, Xie Guwei, Zhang Caili. 2011. Sandstone component of outcrops of Yanchang Formation in the margin of Ordos Basin and its geological significance[J]. Lithologic Resevoirs, 23(6): 30–43 (in Chinese with English abstract).
- He Shiping, Wang Hongliang, Chen Juanlu, Xu Xueyi, Zhang Hongfei, Ren Guangming. 2006. Zircon U–Pb chronology of Longshan rock group by LA– ICP– MS and geological significance[J]. Acta Geologica Sinica, 80(11):1668–1675 (in Chinese with English abstract).
- He Yanhong, Sun Yong, Chen Liang, Li Haiping, Yuan Honglin, Liu Xiaoming. 2005. Zircon U– Pb chronology of Longshan complex by LA–ICP–MS and its geological significance[J]. Acta Petrologica Sinica, 21(1): 125–134 (in Chinese with English abstract).
- Hodges K V, Parrish R R, Housh T B, Lux DR, Burchfiel BC, Royden LH, Chen Z. 1992. Simultaneous miocene extension and shortening in the himalayan orogen[J]. Science, 258(5087): 1466– 1470.
- Honglin Yuan, Shan Gao, Xiaoming Liu, Huiming Li, Detlef Günther, Fuyuan Wu. 2004. Accurate U- Pb age and trace element determination of zircon by laser ablation- inductively coupled plasma- mass spectrometry[J]. Geostandards and Geoanalytical Research, 28: 353-370.
- Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423–439.

- Huang Bo, Fu Dong, Li Shucai, Ge Mengchun, Zhou Wenxiao. 2016. The age and tectonic implications of the Hegenshan ophiolite in Inner Mongolia[J]. Acta Petrologica Sinica, 32(1):158–176 (in Chinese with English abstract).
- Huang Zhigang, Ren Zhanli, Chen Yuli. 2015. Thermal evolution history of Yanchang formation in the southeastern margin of the Ordos basin: Evidence from vitrinite- reflectance and apatite fission- track[J]. Acta Geologica Sinica, 89(5): 909- 916 (in Chinese with English abstract).
- Hurford A J, Green P F. 1982. A users' guide to fission-track dating calibration[J]. Earth and Planetary Science Letters, 59: 343-354.
- Hurford A J, Green P F. 1983. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1: 285–317.
- Li Ruibao, Pei Xianzhi, Ding Sanping, Li Zuochen, Feng Jianyun, Sun Yu, Zhang Yafeng, Liu Zhanqing. 2009. LA–ICP–MS zircon U– Pb dating of the Pipasi basic volcanic rocks within the Mian–Lue tectonic zone in the southern margin of west Qinlin and its geological implication[J]. Acta Geologica Sinica, 83(11):1612– 1623 (in Chinese with English abstract).
- Li Z X, Li X H, Kinny P D, Wang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn- rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1–4):85–109.
- Liu Chiyang, Zhao Hongge, Gui Xiaojun, Yue Leping, Zhao Junfeng, Wang Jianqiang. 2006. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 80(5): 617–638 (in Chinese with English abstract).
- Liu Min, Zhao Hongtao, Zhang Da, Xiong Guangqiang, Di Yongjun. 2017. Chronology, geochemistry and tectonic implications of late palaeozoic intrusions from south of Xiwuqi, Inner Mogolia[J]. Earth Science, 42(4):527–548 (in Chinese with English abstract).
- Liu Yongqing, Gao Linzhi, Liu Yanxue, Song Biao, Wang Zongxiu. 2006. Zircon U- Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block[J]. Chinese Science Bulletin, 51(19):2375-2382.
- Liu Shuwen, Yang Pengtao, Li Qiugen, Wang Zongqi, Zhang Wanyi, Wang Wei. 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China[J]. Journal of Jilin University(Earth Science Edition), 41(6):1928–1943 (in Chinese with English abstract).
- Luddwing K R. 1994. Isoplot A Plotting and Regression Program for Radiogenic Isotope Data[R]. US Geological Survey Open File Report, 39: 91–445.
- Luo Biji. 2013. Petrogenesis and Geodynamic Processes of the Indosinian Magmatism in the West Qinglin Orogenic Belt, Central

China[D]. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Geochemistry,1–191 (in Chinese with English abstract).

- Lu Xinxiang, Wei Xiangdong, Xiao Qinghui, Zhang Zongqing, Li Huimin, Wang Wei. 1999. Geochronological studies of rapalivi granites in Qingling and its geological implications[J]. Geological Journal of China Universities, 5(4):372–377 (in Chinese with English abstract).
- Lü Xingqiu. 2015. Chronology and Genesis of the Taibai Grantioid Pluton form the North Qinling[D]. China University of Geosciences (Beijing), 1–78 (in Chinese with English abstract).
- Ma Xianshou, Meng Qingren, Qu Yongqiang. 2011. A study of detrital zircons of late Carboniferous–Middle Triassic strata in the northern margin of North China block and its geological implication[J]. Geological Bulletin of China, 30(10):1485–1500 (in Chinese with English abstract).
- Mao Xiaohong, Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lu Zenglong. 2017. Early Paleozoic granulite– facies metamorphism and anatexis in the northern West Qinling orogeny: Monazite and zircon U– Pb geochronological constraints[J]. Science China Earth Sciences, 60:943–957.
- Pei Xianzhi, Meng Yong, Ding Sanping, Li Zuochen, Liu Zhanqing, Liu Huibin, Li Gaoyang, Li Ruibao. 2007. Identification of 2.5 Ga detrital zircons from conjoint area between Qilian– Qinling orogenic belts and its geological implication[J].Journal of Earth Sciences and Environment, 29(2):111–116 (in Chinese with English abstract).
- Pei Xianzhi, Ding Sanping, Li Zuochen, Liu Zhanqing, Li Ruibao, Feng Jianyun, Sun Yu, Zhang Yafeng, Liu Zhigang, Zhang Xiaofei, Chen Guochao, Chen Youxin. 2009. Early Paleozoic Tianshui– Wushan tectonic zone of the Northern margin of West Qinling and its tectonic evolution[J]. Acta Geologica Sinica, 83(11):1547–1564 (in Chinese with English abstract).
- Qin Jiangfeng, Lai Shaocong, Li Yongfei. 2008. Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogeny, central China: zircon U-Pb ages, geochemistry, and Sr-Nd- Pb isotopic constraints[J].International Geology Review,50: 1080-1104.
- Qin Jiangfeng, Lai Shaocong, Grapes Rodney, Diwu Chunrong, Ju Yinjuan, Li Yongfei. 2010. Origin of LateTriassic high–Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos, 120(3/4):347–367.
- Ren Zhanli. 1995. Thermal history of Ordos Basin assessed by apatite fission track analysis[J]. Acta Geophysica Sinica, 38(3): 339–349 (in Chinese with English abstract).
- Ren Zhanli. 1996. Research on the relations between geothermal

history and oil- gas accumulation in the Ordos basin[J]. Acta Petrolei Sinica, 17(1): 17–23 (in Chinese with English abstract).

- Ren Zhanli, Zhang Sheng, Gao Shengli, Cui Junping, Liu Xinshe. 2006. Research on region of maturation anomaly and formation time in Ordos basin[J]. Acta Geologica Sinica, 80(5): 674–684 (in Chinese with English abstract).
- Schlup M, Carter A, Cosca M, Stech A. 2004. Exhumation history of eastern Ladakh revealed by ⁴⁰Ar/⁵⁹Ar and fission-track ages: The Indus River-Tso Morari transect, NW Himalaya[J]. Journal of the Geological Society, 160(3): 385–399.
- Song Lijun, Chen Juanlu, Zhang Yingli, Liu Chiyang, Wu Chonglong, Zhang Xiaohao.2010. U– Pb chronological characteristics of late Triassic sediment in Southwestern Ordos and it's tectonic significance[J]. Acta Geologica Sinica, 84(3): 370–386 (in Chinese with English abstract).
- Sun Ningliang, Zhong Jianhua, Liu Shaoguang, Tian Dongen, Liu Chuang, Cao Mengchun, Yang Guanqun, Hao Bing. 2017a. Diagenesis and physical property evolution of gravity flow tight reservoir of Yanchang formation in Southern Ordos basin[J]. Earth Science, 42(10):1802–1816(in Chinese with English abstract).
- Sun Ningliang, Zhong Jianhua, Wang Shubao, Liu Shaoguang, Ni Liangtian, Qu Junli, Hao Bing, Liu Chuang. 2017. Sedimentary characteristics and petroleum geologic significance of deep-water gravity flow of the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 19(2):299-314(in Chinese with English abstract).
- Sun Zhaocai, Xie Qiuyuan, Yang Junjie. 1990. Ordos Basin–One Type of a Unstable Craton Internal Superimposed Basin, Chinese Meso– cenozoic Sedimentary basin[M]. Beijing: Petroleum Industry Press, 1–45 (in Chinese).
- Wang Guocan, Cao Kai, Zhang Kexin, Wangan, Liu Chao, Meng Yanning, Xu Yadong. 2011. Spatio- temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China: Earth Sciences, 41(3): 332–349 (in Chinese).
- Wang Hongliang, He Shiping, Chen Juanlu, Xu Xueyi, Sun Yong, Diwu Chunrong. 2006. LA– ICPMS dating of zircon U– Pb and tectonic significance of Honghuapu subduction– related intrusions in the west segment of Northern Qinling mountains[J]. Geoscience, 20(4):20–28.
- Wang Hongliang, He Shiping, Chen Juanlu, Xu Xueyi, Sun Yong, Diwu Chunrong. 2006. LA-ICP-MS dating of zircon U-Pb and tectonic significance of Gongjiangou deformation intrusions of Taibai rock mass, Shanxi province- the primary study on the response in North Qinling orogenic belt to Lü Liang movement[J]. Acta Geologica Sinica, 80(11):1660- 1667 (in Chinese with English abstract).
- Wang Hongliang, He Shiping, Chen Juanlu, Xu Xueyi, Sun Yong,

Diwu Chunrong, Li Haiping. 2007. LA–ICP–MS zircon U–Pb dating of the Hudian gneissic monzogranite in the western segment of the North Qinling and its geological significance[J]. Geology in China, 34(1):17–25 (in Chinese with English abstract).

- Wang Hongliang, Xu Xueyi, Chen Juanlu, Sun Yong, Li Wanzhong, Li Ping, Li Ting, Zhang Hong. 2009. Dating and geochemical characteristics of the Yanwan Paleozoic collisional intrusion in the West segment of Northern Qinling Mts[J]. Acta Geologica Sinica, 83(3): 353–364 (in Chinese with English abstract).
- Wang Ruogu, Li Wenhou, Liao Youyun, Guo Yanqin, Liu Haowei. 2013. Provenance analysis of Chang7 Member of Triassic Yanchang Formation in Ordos Basin[J]. Geological Bulletin of China, 32(4): 671–684 (in Chinese with English abstract).
- Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Chengli, Li Wuping, Li Shan. 2009. North Qinling Paleozoic granite association and their variation in space and time: Implications orogenic processes in the orogens of central China[J]. Science in China (Series D): Earth Sciences, 52(9):1359–1384.
- Wang Yinchuan, Pei Xianzhi, Li Zuochen, Li Ruibao, Pei Lei, Wei Fanghui, Liu Chengjun, Gao Jingmin, Wu Shukuan, Chen Youxin. 2012. LA-ICP-MS zircon U-Pb dating of the Mesoproterozoic granitic gneisses at Changningyi of Zhangjiachuan area on the eastern edge of the Qilian Orogenic belt[J]. Geological Bulletin of China, 31(10):1576–1587 (in Chinese with English abstract).
- Wei Longmeng, Yang Yizeng, Zhang He, He Jianfeng, Chen Fukun. 2016. Petrogenesis of Yanzhiba Granite in South Qinling: Constraints from Zircon U–Pb ages, Geochemistry and Sr–Nd–Pb Isotope[J]. Journal of Earth Sciences and Environment, 38(4):527– 546 (in Chinese with English abstract).
- Wu Dong, Zhu Xiaomin, Ma Aiyu, Li Yutong, Liu Ziliang, Liao Jijia. 2015. Sedimentary facies of the Chang6– Chang10 intervals in Heshui–Ta'erwan area, Ordos Basin[J]. Geolgogy in China, 42(6): 1822–1836(in Chinese with English abstract).
- Wu Fenghui, Liu Shuwen, Li Qiugen, Wang Zongqi, Su Li, Yang Kai, Zhang Fan, Yan Quanren, Yan Zhen. 2009. Zircon U– Pb geochronology and geological significance of Guangtoushan granitoids from Western Qinling, central China[J]. Acat Scientiarum Naturalium Universitatis Pakinensis. 45(5):811–818 (in Chinese with English abstract).
- Xia Xiao Ping, Sun Min , Zhao Guo chun, Luo Yan. 2006a. LA–ICP– MS U– Pb geochronology of detrital zircons from the Jining complex, North China Craton and its tectonic significance[J]. Precambrian Research, 144: 199–212.
- Xia Xiaoping, Sun Min, Zhao Guochun, Wu Fuyuan, Xu ping, Zhang Jiheng, Luo Yan. 2006b. U– Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, western block of the North China

Craton[J]. Earth and Planetary Science Letters, 241: 581-593.

- Xiong Ziliang, Zhang Hongfei, Zhang Jie. 2012. Petrogenesis and tectonic implications of the Maozangsi and Huangyanghe granitic intrusions in Lenglongling area, the eastern part of North Qilian Mountains, NW China[J]. Earth Science Frontiers, 19(3):214–227 (in Chinese with English abstract).
- Xu Bei. 2001. Recent study of the Rodinia supercontinent evolution and its main goal[J]. Geological Science and Technology Information, 20(1):15–19 (in Chinese with English abstract).
- Xu Bowen, Xi Aihua, Ge Yuhui, Liu Yu, Wang Mingzhi, Fang Chao. 2015. Zircon U-Pb ages of the late Paleozoic A-Type granites in Chifeng, inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 89(1):58-69 (in Chinese with English abstract).
- Xu Xueyi, Wang Hongliang, Chen Juanlu, He Shiping, Wu Peng, Gao Ting. 2008. Zircon U-Pb dating and petrogenesis of Xinglongshan group basic volcanic rocks at eastern segment of Middle Qilian Mts[J]. Acta Petrologica Sinica, 24(4):827-840 (in Chinese with English abstract).
- Yan Quanren, Wang Zongqi, Yan Zhen, Xiang Zhongjin, Chen Junlu, Wang Tao. 2007. SHRIMP analyses for Ophiolitic – Mafic Blocks in the Kangxian– Mianxian section of the Mianxian– Lueyang Melange: their geological implications[J]. Geological Review, 53 (6):755–764(in Chinese with English abstract).
- Yang Suizheng, Jin Wenhua, Li Zhenhong. 2006. Multicycle supermposed basin Formation and evolution of Ordos basin[J]. Natural Gas Geoscience, 17(4): 494–498 (in Chinese with English abstract).
- Yong Yong, Xiao Wenjiao, Yuan Chao, Yan Zhen, Li Jiliang. 2008. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern Central Qilian and their tectonic implications[J]. Acta Petrologica Sinica,24(4):855–866(in Chinese with English abstract).
- Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in the North Qinling belt[J]. Chinese Science Bulletin,35:4405–4410 (in Chinese).
- Zhang Hongfei, Zhang Benren, Nigel Harris, Zhang Li, Chen Yuelong, Chen Nengsong, Zhao Zhidan. 2006. U–Pb zircon SHRIMP ages, geochemical and Sr–Nd–Pb isotopic compositions of intrusive rocks from the Longshan–Tianshui area in the southeast corner of the Qilian orogenic belt, China:Constraints on petrogenesis and tectonic affinity[J]. Journal of Asian Earth Sciences, 27:751–764.
- Zhang Hongfei, Wang Jing, Xu Wangchun, Yu Honglin. 2007. Derivation of Adakitic Magma by partial melting of subducted continental crust[J]. Geological Journal of China Universities, 13 (2): 224–234 (in Chinese with English abstract).
- Zhang Peizhen, Zheng Dewen, Yin Gongming, Yuan Daoyang, Zhang

Guangliang, Li Chuanyou, Wang Zhicai. 2006. Discussion on late Cenozoic growth and rise of northeastern margin of the Tibetan plateau[J]. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract).

- Zhang Yingli, Wang Zongqi. 2011. Provenance analysis of Early Cretaceous Huixian– Chengxian basin, western Qinling orogenic belt, China: Constraints from zircon U–Pb geochronology[J]. Geological Bulletin of China, 30(1):37–50 (in Chinese with English abstract).
- Zhao Chongyuan. 1993. Geological Development of Oil and Gas Bearing Basin[M]. Xi'an:Northwestern University Press: 1-68 (in Chinese).
- Zhao Junxing, Lü Qing, Li Fengjie, Shen Xiaoli, Fu wei, Luo Yuan. 2008. Sediment provenance analysis of the Chang6 oil-bearing of Yanchang Formation in the South of Ordos Basin[J]. Acta Sedimentologica Sinica, 26(4): 610-616 (in Chinese with English abstract).
- Zhao Mengwei, Hans- Jurgen Behr. 1996. Vitrinite reflectance in triassic with relation to geothermal history of Ordos basin[J]. Acta Petrolei Sinica, 17(2): 15–23 (in Chinese with English abstract).
- Zhao Mengwei. 1996. The application of apatite fission track analysis to the reconstruction of the subsidence and uplift history of sedimentary basins: A case study from the Ordos Basin[J]. Acta Geophysica Sinica, 39(supp.):238–248(in Chinese with English abstract).
- Zhong Dalai, Dinglin. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism[J]. Science in China(Series D): Earth Sciences, 39(4): 369-379.
- Zhu Zongliang, Li Wenhou, Li Keyong, Chen Quanhong, Guo Yanqing, Yuan Zhen. 2010. Provenance analysis of late Triassic sediments in the southern Ordos Basin[J]. Geological Journal of China Universities, 16(4): 547–555 (in Chinese with English abstract).

附中文参考文献

- 陈飞,樊太亮,高志前,于喜通,庞正炼.2009.鄂尔多斯盆地南部上 三叠统延长组物源方向及沉积体系分析[J].西安石油大学学报 (自然科学版),24(6):24-32.
- 丁超, 陈刚, 郭兰, 张文龙, 师晓林, 徐小刚, 刘腾. 2016. 鄂尔多斯盆 地东北部差异隆升过程裂变径迹分析[J]. 中国地质, 43(4):1238-1247.
- 董国安,杨怀仁,杨宏仪,刘敦一,张建新,万渝生,曾建元.2007a.祁 连地块前寒武纪基底锆石 SHRIMP U-Pb 年代学及其地质意 义[J].科学通报,52(13):1572-1585.
- 董国安,杨宏仪,刘敦一,张建新,曾建元,万渝生.2007b.龙首山岩 群碎屑锆石 SHRIMP U-Pb 年代学及其地质意义[J].科学通报, 52(6):688-697.
- 方小敏, 宋春晖, 戴霜, 朱迎堂, 高军平, 张伟林. 2007. 青藏高原东北

部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘,14(1):230-242.

- 高胜.2015.北秦岭西段宽坪杂岩的地球化学、年代学研究及其构造 地质意义[D].西安:西北大学,1-72.
- 耿元生, 王新社, 吴春明, 周喜文. 2010. 阿拉善变质基底古元古代晚期的构造热事件[J]. 岩石学报, 26(4):1159-1170.
- 弓虎军,朱赖民,孙博亚,李犇,郭波.2009. 南秦岭沙河湾、曹坪和柞 水岩体锆石 U-Pb 年龄、Hf同位素特征及其地质意义[J]. 岩石学 报,25(2):248-264.
- 韩天佑,李慧,李文厚,田永强,刘广林,马海勇,李继宏.2011.鄂尔 多斯盆地延河剖面延长组碎屑锆石 U-Pb 年龄分布特征及地质 意义[J].西北地质,44(1):105-111.
- 贺静,冯胜斌,袁效奇,韩鹏,解古巍,张才利.2011.鄂尔多斯盆地周 缘延长组露头剖面砂岩组分及地质意义分析[J].岩性油气藏,23 (6):30-43.
- 何世平, 王洪亮, 陈隽璐, 徐学义, 张宏飞, 任光明. 2006. 北祁连东端 陇山岩群斜长角闪岩锆石 LA-ICP-MS 测年及其地质意义[J]. 地质学报, 80(11):1668-1675.
- 何艳红, 孙勇, 陈亮, 李海平, 袁洪林, 柳小明. 2005. 陇山杂岩的LA-ICP-MS 锆石 U-Pb 年龄及其地质意义[J]. 岩石学报, 21(1): 125-134.
- 黄波, 付冬, 李树才, 葛梦春, 周文孝. 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 32(1):158-176.
- 黄志刚,任战利,陈玉林.2015.鄂尔多斯盆地东南缘延长组地层热 演化史——来自镜质组反射率和磷灰石裂变径迹证据[J].地质 学报,89(5):909-916.
- 李瑞保,裴先治,丁仨平,李佐臣,冯建赟,孙雨,张亚峰,刘战庆. 2009. 西秦岭南缘勉略带琵琶寺基性火山岩LA-ICP-MS锆石 U-Pb年龄及其构造意义[J]. 地质学报,83(11):1612-1623.
- 刘池洋,赵红格,桂小军,岳乐平,赵俊峰,王建强.2006.鄂尔多斯盆 地演化一改造的时空坐标及其成藏(矿)响应[J].地质学报,80 (5):617-638.
- 刘敏,赵洪涛,张达,熊光强,狄永军.2017.内蒙古西乌旗南部晚古 生代侵入岩年代学、地球化学特征及地质意义[J].地球科学,42 (4):527-548.
- 刘树文,杨朋涛,李秋根,王宗起,张万意,王伟.2011.秦岭中段印支 期花岗岩岩浆作用与造山过程[J].吉林大学学报(自然科学版), 41(6):1928-1943.
- 卢欣祥, 尉向东, 肖庆辉, 张宗清, 李惠民, 王卫. 1999. 秦岭环斑花岗 岩的年代学研究及其意义[J]. 高校地质学报,5(4):372-377.
- 骆必继.2013. 西秦岭造山带印支期岩浆作用及深部过程[D]. 武汉: 中国地质大学,1-191.
- 吕星球.2015.北秦岭太白花岗岩体年代学和成因研究[D].北京:中国地质大学(北京),1-78.
- 马收先, 孟庆任, 曲永强. 2011. 华北地块北缘上石炭统一中三叠统 碎屑锆石研究及其地质意义[J]. 地质通报, 30(10):1485-1500.
- 毛小红,张建新,于胜尧,李云帅,喻星星,路增龙.2017.西秦岭造山

带北部早古生代麻粒岩相变质作用及深熔作用:锆石和独居石 U-Pb年代学的制约[J].中国科学:地球科学,47(5):601-606.

- 裴先治, 孟勇, 丁仨平, 李佐臣, 刘战庆, 刘会彬, 李高阳, 李瑞保. 2007. 祁连一秦岭造山带交接部位25亿年碎屑锆石的发现及其 地质意义[J]. 地球科学与环境学报, 29(2):111-116.
- 裴先治,丁仨平,李佐臣,刘战庆,李瑞保,冯建赟,孙雨,张亚峰,刘 智刚,张晓飞,陈国超,陈有炘.2009.西秦岭北缘早古生代天水 一武山构造带及其构造演化[J].地质学报,83(11):1547-1564.
- 任战利.1995.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J]. 地球物理学报,38(3):339-349.
- 任战利.1996.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,17(1):17-23.
- 任战利, 张盛, 高胜利, 崔军平, 刘新社. 2006. 鄂尔多斯盆地热演化 程度异常分布区及形成时期探讨[J]. 地质学报, 80(5): 674-684.
- 宋立军,陈隽璐,张英利,刘池洋,吴冲龙,张小浩.2010.鄂尔多斯盆 地西南部汭水河地区上三叠统碎屑锆石U-Pb年代学特征及其 地质意义[J].地质学报,84(3):370-386.
- 孙宁亮,钟建华,刘绍光,田东恩,刘闯,曹梦春,杨冠群,郝兵. 2017a.鄂尔多斯盆地南部延长组重力流致密储层成岩作用及物 性演化[J].地球科学,42(10):1802-1816.
- 孙宁亮,钟建华,王书宝,刘绍光,倪良田,曲俊利,郝兵,刘闯. 2017b.鄂尔多斯盆地南部三叠系延长组深水重力流沉积特征及 其石油地质意义[J].古地理学报,19(2):299-314.
- 孙肇才,谢秋元,杨俊杰.1990.鄂尔多斯盆地——一个不稳定克拉 通内部叠合盆地的典型,中国新生代沉积盆地[M].北京:石油工 业出版社,1-45.
- 王国灿, 曹凯, 张克信, 王岸, 刘超, 孟艳宁, 徐亚东. 2011. 青藏高原 新生代构造隆升阶段的时空格局[J]. 中国科学: 地球科学, 41(3): 332-349.
- 王洪亮,何世平,陈隽璐,徐学义,孙勇,第五春荣.2006a.北秦岭西 段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义[J].现代 地质,20(4):20-28.
- 王洪亮,何世平,陈隽璐,徐学义,孙勇,第五春荣. 2006b.太白岩基
 巩坚沟变形侵入体LA-ICPMS 锆石U-Pb测年及大地构造意义
 ——吕梁运动在北秦岭造山带的表现初探[J].地质学报,80(11):
 1660-1667.
- 王洪亮,何世平,陈隽璐,徐学义,孙勇,第五春荣,李海平.2007a.北 秦岭西段胡店片麻状二长花岗岩LA-ICP-MS锆石U-Pb测年 及其地质意义[J].中国地质,34(1):17-25.
- 王洪亮,陈亮,孙勇,柳小明,徐学义,陈隽璐,张红,第五春荣. 2007b.北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕虏锆石[J]. 科学通报,52(14):1684-1693.
- 王洪亮,徐学义,陈隽璐,孙勇,李万忠,李平,李婷,张红.2009.北秦 岭西段岩湾加里东期碰撞侵入体形成时代及地球化学特征[J]. 地质学报,83(3):353-364.
- 王若谷,李文厚,廖友运,郭艳琴,刘昊伟.2013.鄂尔多斯盆地三叠 系延长组长7段物源区分析[J].地质通报,32(4):671-684.

地

质

- 王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗 岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学: 地 球科学, 39(7): 949-971.
- 王银川, 裴先治, 李佐臣, 李瑞保, 裴磊, 魏方辉, 刘成军, 高景民, 吴 数宽, 陈有炘. 2012. 祁连造山带东段张家川地区长宁驿中元古 代花岗片麻岩LA-ICP-MS 锆石 U-Pb 年龄及其构造意义[J]. 地 质通报,31(10):1576-1587.
- 韦龙猛,杨一增,张贺,贺剑峰,陈福坤.2016.南秦岭胭脂坝花岗岩 成因:锆石 U-Pb 年龄、地球化学和 Sr-Nd-Pb 同位素的制约[J]. 地球科学与环境学报,38(4):527-546.
- 吴冬,朱筱敏,马爱钰,李雨彤,刘自亮,廖纪佳.2015.鄂尔多斯盆地 合水一塔尔湾地区长6~长10油层组沉积相研究[J].中国地质, 42(6):1822-1836.
- 吴峰辉,刘树文,李秋根,王宗起,苏黎,杨凯,张帆,闫全人,闫臻. 2009. 西秦岭光头山花岗岩锆石 U-Pb 年代学及其地质意义[J]. 北京大学学报(自然科学版), 45(5):811-818.
- 熊子良,张宏飞,张杰.2012.北祁连东段冷龙岭地区毛藏寺岩体和 黄羊河岩体的岩石成因及其构造意义[J].地学前缘,19(3):214-227.
- 徐备. 2001. Rodinia 超大陆构造演化研究的新进展和主要目标[J]. 地质科技情报, 20(1):15-19.
- 徐博文, 郗爱华, 葛玉辉, 刘钰, 王明智, 房超. 2015. 内蒙古赤峰地区 晚古生代 A 型花岗岩锆石 U-Pb 年龄及构造意义[J]. 地质学报, 89(1):58-69.
- 徐学义, 王洪亮, 陈隽璐, 何世平, 武鹏, 高婷. 2008. 中祁连东段兴隆 山群基性火山岩锆石 U-Pb 定年及岩石成因研究[J]. 岩石学报, 24(4):827-840.
- 闫全人, 王宗起, 闫臻, 向忠金, 陈隽璐, 王涛. 2007. 秦岭勉略构造混 杂带康县—勉县段蛇绿岩块—铁镁质岩块的 SHRIMP 年代及其 意义[J]. 地质论评, 53(6):755-764.
- 杨遂正,金文华,李振宏. 2006. 鄂尔多斯多旋回叠合盆地形成与演

化[J]. 天然气地球科学, 17(4): 494-498.

- 雍拥,肖文交,袁超,闫臻,李继亮.2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义[J].岩石学报,24(4):855-866.
- 曾建元,杨宏仪,万渝生,刘敦一,温大任,林宗祺,董国安.2006.北 祁连山变质杂岩中新元古代(~775Ma)岩浆活动纪录的发现:来 自SHRIMP锆石U-Pb定年的证据[J].科学通报,51(5):575-581.
- 张成立,刘良,王涛,王晓霞,李雷,龚齐福,李晓菲.2013. 北秦岭早 古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报,58:2323-2329.
- 张宏飞, 王婧, 徐旺春, 袁洪林. 2007. 俯冲陆壳部分熔融形成埃达克 质岩浆[J]. 高校地质学报, 13(2): 224-234.
- 张培震,郑德文,尹功明,袁道阳,张广良,李传友,王志才.2006.有 关青藏高原东北缘晚新生代扩展与隆升的讨论[J].第四纪地质, 26(1):5-13.
- 张英利, 王宗起. 2011. 西秦岭造山带徽县一成县盆地早白垩世沉积 物源分析——锆石 LA-ICP-MS U-Pb 年代学的约束[J]. 地质通 报, 30(1):37-50.
- 赵重远. 1993. 含油气盆地地质学进展[M]. 西安: 西北大学出版社, 1-68.
- 赵俊兴, 吕强, 李凤杰, 申晓莉, 付伟, 罗媛. 2008. 鄂尔多斯盆地南部 延长组长6时期物源状况分析[J]. 沉积学报, 26(4): 610-616.
- 赵孟为, Behr B J. 1996a. 鄂尔多斯盆地三叠系镜质组反射率与地热 史[J]. 石油学报, 7(2): 15-23.
- 赵孟为.1996b.磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应 用一以鄂尔多斯盆地为例[J].地球物理学报,39(增刊):238-248.
- 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学: 地球科学, 26(4): 289-295.
- 朱宗良, 李文厚, 李克永, 陈全红, 郭艳琴, 袁珍. 2010. 鄂尔多斯盆地 南部晚三叠世物源分析[J]. 高校地质学报, 16(4): 547-555.