doi: 10.12029/gc20190614

杨永春, 余君鹏, 赵得龙, 李生栋, 刘家军, 王学银, 王小强, 孔维琼, 王作刚. 2019. 甘肃省滴水山金矿区火山岩锆石 U-Pb 年龄、岩石地球化学特征及其形成的构造背景[J]. 中国地质, 46(6): 1454-1480.

Yang Yongchun, Yu Junpeng, Zhao Delong, Li Shengdong, Liu Jiajun, Wang Xueyin, Wang Xiaoqiang, Kong Weiqiong, Wang Zuogang. 2018. Zircon U–Pb dating and geochemistry of the volcanic rocks in the Dishuishan gold deposit in Gansu Province and its tectonic setting[J]. Geology in China, 46(6):1454–1480(in Chinese with English abstract).

甘肃省滴水山金矿区火山岩锆石U-Pb年龄、 岩石地球化学特征及其形成的构造背景

杨永春^{1,2},余君鹏²,赵得龙³,李生栋²,刘家军¹,

王学银2,王小强2,孔维琼2,王作刚2

 (1. 中国地质大学地质过程与矿产资源国家重点实验室,北京100083;2. 甘肃省地质矿产勘查开发局第四地质矿产勘查院, 甘肃 酒泉735000;3. 甘肃省地质矿产勘查开发局第二地质矿产勘查院,甘肃 兰州730020)

提要:滴水山金矿床为北祁连造山带西段赋存于火山岩中的构造蚀变岩型金矿床。LA-ICP-MS锆石U-Pb测年结 果表明,滴水山金矿区安山质晶屑凝灰岩年龄为(479.7±6.9)Ma,形成时代为早奥陶世,花岗闪长岩年龄为(426.9± 6.7)Ma,时代为中志留世,含金黄铁绢英岩锆石U-Pb年龄(482.7±9.5)Ma,代表了赋矿火山岩的形成年龄,成矿时 代应晚于(426.9±6.7)Ma;岩矿石地球化学特征表明,赋矿火山岩富集大离子亲石元素(LILE,如K、Rb、Th),明显亏 损高场强元素(HFSE,如Nb、Ta、P、Ti),岩矿石稀土元素配分形式基本一致,呈右缓倾,轻稀土相对富集,具弱的铕 负异常,形成于洋壳俯冲的岛弧环境,由俯冲板片脱水产生的流体交代地幔楔发生部分熔融而形成,在岩浆向上运 移的过程中遭受了上地壳混染。花岗闪长岩 SiO₂=67.48%~72.68%,K₂O+Na₂O=7.15%~7.44%,里特曼指数δ值1.78~ 2.07,铝质指数A/CNK介于0.95~1.19,富集K、Rb、Th、U等大离子亲石元素和亏损Nb、P、Ti等高场强元素,稀土分配 曲线呈右倾,轻稀土相对富集,具中等铕负异常,属钠质钙碱系列、弱过铝质I型花岗岩类,形成于弧-陆碰撞的火山 岛弧环境,具壳幔混合成因的特点。综合区域地质资料,滴水山金矿成岩成矿构造背景为早奥陶世北祁连洋盆向阿 拉善陆块之下俯冲,形成岛弧火山岩,为矿源层;中志留世,因弧-陆碰撞,形成同碰撞花岗闪长岩,晚志留世后造山 作用及造山后的伸展,导致金的富集。

关 键 词:锆石U-Pb测年;火山岩;地球化学;滴水山金矿;矿产勘查工程;北祁连造山带 **中图分类号:**P597.3;P588.14 **文献标志码:**A **文章编号:**1000-3657(2019)06-1454-27

Zircon U–Pb dating and geochemistry of the volcanic rocks in the Dishuishan gold deposit in Gansu Province and its tectonic setting

YANG Yongchun^{1,2}, YU Junpeng², ZHAO Delong³, LI Shengdong², LIU Jiajun¹, WANG Xueyin², WANG Xiaoqiang², KONG Weiqiong², WANG Zuogang²

收稿日期: 2018-12-04; 改回日期: 2019-12-04

基金项目:国家自然科学重点基金(41730426)、中国地质调查局地质调查项目(DD20160012、121201004000172201-47)联合资助。 作者简介:杨永春,男,1987年生,硕士,工程师,主要从事矿产勘查及矿床地球化学的研究工作;E-mail:yangshengkai2008@126.com。 通讯作者:刘家军,男,1963生,教授,主要从事矿床地球化学及成矿规律方面的研究;E-mail:liujiajun@cugb.edu.cn。

第46卷第6期 杨永春等:甘肃省滴水山金矿区火山岩锆石U-Pb年龄、岩石地球化学特征及其形成的构造背景 1455

(1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Beijing 100083, China;
 2. No. 4 Geological and Mineral Exploration Party of Gansu Bureau of Geology and Mineral Resources, Jiuquan 735000, Gansu, China;
 3. No.2 Geological and Mineral Exploration Party of Gansu Bureau of Geology and Mineral Resources, Lanzhou 730020, Gansu, China;

Abstract: Located in the west part of North Qilian orogenic zone, the Dishuishan gold deposit is one of the altered cataclastic rock type deposits hosted in volcanic rocks. LA-ICP-MS zircon U-Pb chronology indicates that the andesitic crystal tuff was emplaced at (479.7 ± 6.9) Ma, the granodiorite was emplaced at (426.9 ± 6.7) Ma, and the gold bearing beresite was emplaced at (482.7 ± 9.5) Ma, which represent the ages of ore – bearing volcanic rocks, whereas metallogenic age should be later than (426.9 ± 6.7) Ma. The geochemical data suggest that the trace elements of volcanic rocks are rich in K, Rb, Th, and relatively depleted in Nb, Ta, P, Ti. The volcanic rocks and related mineral ores have similar chondrite-normalized REE patterns, exhibiting right-dip curve, the LREE are relatively enriched and Eu negative anomaly is weak. Combined with the trace elements and the REE characteristics, the authors infer that the volcanic rocks were formed in an island-arc setting, related to subduction of Qilian oceanic crust. The volcanic magma contaminated by the upper crust probably came from the partial melting of the mantle wedge, which had undergone metasomatism induced by the subduction fluid. The chemical composition of the granodiorite reveals SiO_2 values ranging from 67.48% to 72.68%, K₂O+Na₂O values ranging from 7.15% to 7.44%, Rittmann index ranging from 1.78 to 2.07, and aluminous index A/CNK values ranging from 0.95% to 1.19%; the trace elements show enrichment of K, Rb, Th, U and relative depletion of Nb, P Ti. The LREE are relatively enriched and Eu negative anomaly is medium. The granodiorite belongs to Na calc-alkaline series weakly peraluminous Itype granitoid, and was formed in a volcanic island-arc setting of arc-continent collision and indicated crust and mantle source. According to regional geological data, the metallogenic tectonic background of the Dishuishan gold deposit was developed from the subduction of the North Qilian ocean basin beneath Alxa land block in Early Ordovician, which formed island-arc volcanic rock, and acted as main source bed-arc-continent collision in Middle Silurian period, which formed syncollisional granodiorite after Late Silurian period, and Qilian orogeny and intraplate extension in the post orogenic stage led to the enrichment of gold.

Key words: zircon U-Pb dating; volcanic rocks; geochemistry; Dishuishan gold deposit; mineral exploration engineering; North Qilian orogenic belt

About the first author: YANG Yongchun, male, born in 1987, engineer, master, mainly engages in the study of geological prospecting and geochemistry of mineral deposits; E-mail: yangshengkai2008@126.com.

About the corresponding author: LIU Jiajun, male, born in 1963, professor, mainly engages in the study of geochemistry of mineral deposits and mineralizing regularity; E-mail: liujiajun@cugb.edu.cn.

Fund support: Supported by the Key Program of National Natural Science Foundation of China (No. 41730426) and China Geological Survey Program (No. DD20160012, 121201004000172201-47).

1 引 言

祁连山是一个古生代晚泥盆世形成的陆-陆碰 撞造山带(宋述光等,2013;赵文津等,2014),为中 国大陆主要造山带之一,雄踞于河西走廊之南,成 为青藏高原的东北界,东南与西秦岭相连,西北被 阿尔金山截断(葛肖虹等,1999)。自北向南由北祁 连造山带、祁连陆块和柴北缘高压一超高压变质带 组成(夏林圻等,2016;图1a)。北祁连造山带西段 为中国西部重要的金属矿集区,该区金矿赋矿岩石 多样,但均与构造蚀变热液有关,大型的金矿有寒 山金矿、鹰嘴山金矿,中型的有车路沟金矿,小型的 有滴水山金矿(李奋其等,2003;童晓华等,2004;王 永生等,2011),前人针对该区金矿开展了不同程度 的地质科研工作,在矿床地质特征方面取得了一些 成果(夏林圻等,1998a,2001;毛景文等,1998a, 2004;吴茂炳等,1999;杨建国等,2002;李文渊, 2004;宋忠宝等,2005a;杨兴吉,2007),但在成岩时 代(赋矿火山岩为早奥陶世一中奥陶世、花岗闪长 岩为370~440 Ma)(毛景文等,1998b;夏林圻等, 1998a)、成矿时代((395±46)~(303±10)Ma)(夏林圻 等,2001;宋忠宝等,2003,2005b;毛景文等,2004; 杨建国等,2005)及成因等方面还存在不同的认识, 如剪切带型(毛景文等,2004)、及受韧一脆性剪切 中

带控制的蚀变岩型(夏林圻等,2001;李奋其等, 2003;杨建国等,2003;叶得金等,2003;王永生, 2012;杨永春等,2018)。滴水山金矿床是甘肃省地 质矿产勘查开发局第四地质矿产勘查院近几年勘 查新发现的一个蚀变岩型金矿床,成矿远景较好, 但研究程度较低,未对区内成岩、成矿时代,岩石成 因,成矿物质来源及成矿构造背景进行过系统研 究。本文在前人研究、野外地质调查及大量岩矿心 观察的基础上,对滴水山金矿区奥陶系阴沟群安山 质晶屑凝灰岩、含金黄铁绢英岩及南侧加里东期的 花岗闪长岩开展了年代学及岩矿石地球化学对比 研究,探讨了其形成时代、成因机制、构造背景及与 成矿的关系,为该矿床的成岩、成矿提供了新的年 代学和地球化学资料,并为区域构造演化提供新的 资料参考,同时也为寻找新的该类型矿床提供了一 定理论依据。

2 区域地质及矿床地质特征

质

滴水山金矿区位于中国中部秦祁昆巨型多旋 回复合造山带中段以西—北祁连造山带西段(毛景 文等,2004),处于塔里木克拉通、阿拉善陆块、北祁 连造山带交汇部位(夏林圻等,2016)(图1a),成矿 区带属昌马—冷龙岭加里东期、华力西期铜金铅锌 锰成矿带(贾群子等,2002)。

区域上出露地层除第四系全新统外,主要为寒 武系黑茨沟组、奥陶系阴沟群和妖魔山组,其次为 志留系旱峡组和泉脑沟山组、石炭系羊虎沟组、二 叠系大黄沟组、白垩系新民堡群及少量太古宇一古 元古界敦煌岩群出露。滴水山金矿床紧邻寒山金 矿床东侧,二者矿体均赋存于奥陶系阴沟群火山碎 屑岩中。

区内出露地层(图1b),由老到新依次为:下奥

图1 滴水山金矿区大地构造位置(a,据夏林圻等,2016修改)及地质简图(b,据资料●修编)

1—第四系全新统洪冲积物;2—上奥陶统妖魔山组;3—下奥陶统阴沟群上组;4—下奥陶统阴沟群中组;5—花岗闪长岩;6—闪长玢岩;
 7—花岗闪长岩脉;8—闪长岩脉;9—蚀变碎裂岩带;10—金矿体及编号;11—地质界线;12—平移断层;13—推测/实测性质不明断层;14—实测逆冲断层;15—探槽位置及编号;16—钻孔位置及编号;17—岩层产状;18—采样位置;19—实测剖面位置及编号;20—综合异常及编号
 Fig. 1 Geotectonic location (modified from Xia Linqi et al., 2016) and geological map (modified from Hui Jianning et al., 2013[•]) of Dishuishan gold orefield

1-Quaternary Holocene alluvial-pluvial deposit; 2-Yaomoshan Formation of Upper Ordovician; 3-Upper Yingou Group of Lower Ordovician;
 4-Middle Yingou Group of Lower Ordovician; 5-Caledonian granodiorite; 6-Caledonian diorite porphyrite; 7- Granodiorite vein; 8-Diorite vein;
 9-Altered cataclastic rock band; 10-Gold orebody and its serial number; 11-Geological boundary; 12-Parallel displacement fault; 13-Inferred/measured unknown fault; 14-Measured thrust fault; 15-Exploratory trench location and serial number; 16-Drill hole and its serial number; 17-Attitude of rocks; 18-Sampling location; 19-Measured profile location and serial number; 20-Comprehensive anomaly and its serial number

陶统阴沟群、上奥陶统妖魔山组和第四系全新统冲 洪积物。阴沟群分为中组和上组,中组岩性主要为 安山质晶屑凝灰岩、流纹岩、含角砾晶屑凝灰岩、火 山角砾岩、安山岩、岩屑砂岩、粉砂岩等,上组岩性 主要为浅灰绿色安山质凝灰岩、安山质晶屑凝灰 岩、糜棱岩化安山质凝灰岩、糜棱岩化安山质晶屑 凝灰岩和岩屑石英杂砂岩,为主要赋矿层位;妖魔 山组岩性为灰岩。侵入岩出露于研究区南部,为加 里东期花岗闪长岩体,属青山岩体,岩性为花岗闪 长岩、闪长玢岩等,脉岩主要为华力西期花岗闪长 岩脉、闪长岩脉。区内构造以NWW向断裂及其相 伴随的韧一脆性剪切带为主。

区内共圈出金矿体23条,呈透镜状、带状分布, 矿体倾向350°~20°,倾角40°~70°,矿体长65~1185 m,平均品位1.10×10⁻⁶~4.03×10⁻⁶,平均厚度0.83~ 10.06 m(王学银等,2015),矿石类型主要有黄铁绢 英岩型金矿石与石英脉型金矿石,石英脉型金矿石 中硫化物种类较多,品位相对较高。金属矿物有黄铁矿、毒砂,其次为黄铜矿、闪锌矿、磁黄铁矿,并见 有少量的自然金、银金矿,脉石矿物有石英、方解 石、高岭土、绿泥石等。

3 岩相学特征

在研究区内实测地质剖面3条(图2),出露的火 山岩主要为(糜棱岩化)安山质晶屑凝灰岩、安山质 岩屑晶屑角砾凝灰岩,矿石为黄铁绢英岩型金矿 石、石英脉型金矿石。在研究区南侧见有花岗闪长 岩体,岩相学特征如下:

安山质晶屑凝灰岩:灰色、黑绿色,晶屑凝灰结 构,块状构造。岩石由晶屑、岩屑及火山灰胶结物组 成。晶屑为斜长石(70%±)、角闪石(5%±)及少量石 英(2%±),岩屑为安山岩(10%±)。斜长石呈宽板状、 板状,具稀疏发育不全的聚片双晶,多具高岭土化、绢 云母化,粒度0.04~0.2 mm,个别板状长轴达2 mm。

图2 滴水山金矿区阴沟群及其南侧花岗闪长岩体实测剖面

1—第四系全新统残坡积物;2—岩屑砂岩;3—安山质晶屑凝灰岩;4—安山质岩屑晶屑角砾凝灰岩;5—安山岩;6—糜棱岩化安山质晶屑凝灰 岩;7—花岗闪长岩;8—金矿化蚀变碎裂岩;9—石英脉;10—蚀变碎裂岩;11—金矿体;12—性质不明断层

Fig.2 Measured section of Yingou Group and granodiorite body in Dishuishan gold field

1-Quaternary Holocene residual-slope deposits; 2-Lithic sandstone; 3-Andesitic crystal tuff; 4-Andesitic debris crystal breccia tuff; 5-Andesite; 6-Mylonitic andesitic crystal tuff; 7-Granodiorite; 8-Gold mineralized altered cataclastic rock; 9-Quartz vein; 10-Altered cataclastic rock; 11-Gold orebody; 12-Fault character unknown

图3滴水山金矿区火山岩岩相学特征

a一安山质晶屑凝灰岩标本;b—安山质岩屑晶屑角砾凝灰岩标本;c—斜长石、角闪石晶屑及后期蚀变形成的绿泥石,透射光;d—斜长石和辉石的晶屑残留体及后期蚀变形成的绿泥石,透射光;e—斜长石、角闪石晶屑及后期蚀变形成的绿泥石,正交偏光;f—斜长石和辉石的晶屑残 留体及后期蚀变形成的绢云母,正交偏光;Pl—斜长石;Hb—角闪石;Chl—绿泥石;Ser—绢云母

Fig. 3 Petrography of Yingou Group volcanic rocks and mineragraphy of the ore in Dishuishan gold orefield

a-Specimen of andesitic crystal tuff; b-Specimen of andesitic debris crystal breccia tuff; c-Crystal fragment of plagioclase and amphibole and chlorite formed by late alteration, transmitted light; d-Crystalline residue of plagioclase and pyroxene and chlorite formed by late alteration, transmitted light; e-Crystal fragment of plagioclase and amphibole and chlorite formed by late alteration, crossed nicols; f-Crystalline residue of plagioclase; Hb-Hornblende; Chl-Chlorite; Ser-Sericite;

图4滴水山金矿区矿石矿相学特征和花岗闪长岩岩相学特征 a-强硅化黄铁绢英岩型金矿石地表露头;b-自形晶结构、环边结构黄铁矿产于石英脉中,见有晚期毒砂,呈针柱状,单偏光; c-花岗闪长岩标本;d-斜长石残斑、角闪石、钾长石、石英及后期蚀变形成的绢云母,正交偏光;Pl-斜长石; Hb-角闪石;Ser-绢云母;Qz-石英;Or-钾长石;Ars-毒砂;Py-黄铁矿

Fig. 4 Mineragraphy of the ore and petrography of granodiorite in Dishuishan gold orefield a-Surface outcrop of strongly silicified beresite type gold ore; b-Euhedral crystal structure, rimmed structure pyrite from quartz veins, developing late arsenopyrite, plainlight; c-Specimen of granodiorite, plainlight; d-Crystalline residue of plagioclase and pyroxene, amphibole, potassium feldspar, quartz and sericite formed by late alteration, crossed nicols;Pl-Plagioclase; Hb-Hornblende; Ser-Sericite; Qz-Quartz; Or-potassium feldspar;Ars-Arsenopyrite;Py-Pyrite

岩屑一般为棱角状一次棱角状,粒度0.02~0.2 mm,具 轻微的绿泥石化、绢云母化特征(图3a、c、e)。

安山质岩屑晶屑角砾凝灰岩:岩石为灰色、灰 黑色,岩屑晶屑角砾凝灰结构、显微粒状结构,块状 结构。岩石主要由斜长石晶屑、安山岩岩屑及火山 灰胶结物等组成。晶屑为斜长石(40%±)、少量石英 (2%±),岩屑为安山岩(20%±),其中火山碎屑中角 砾级占20%、凝灰级占80%。斜长石晶屑呈宽板状、 板状、次棱角状,粒度0.1~1.2 mm,大部分受应力作 用影响呈破裂、破碎状,部分具绢云母化特征。安 山岩岩屑具显微隐晶质结构,具较强的绿泥石化、 绿帘石化特征,颗粒大小为0.2 mm×4.00 mm~1.2 mm×4.00 mm,大小差异大且分布很不均匀,多呈塑 性拉伸、撕裂、长尾钩等形态。火山灰胶结物具显 微粒状结构,可见粒度小于0.06 mm的绿泥石、斜长 石矿物存在(图3b、d、f)。

强硅化黄铁绢英岩型金矿石:浅黄色,隐晶质 结构,块状构造,金属矿物主要为黄铁矿(6%),其 次为毒砂,脉石矿物有石英(80%)、绢云母(10%) 等。黄铁矿产于石英、绢云母颗粒之间,个别发生 碎裂(图4a、b)。主要蚀变有硅化、绢云母化、高岭 土化。

花岗闪长岩:岩石为灰褐色,中细粒结构,块状构造。主要由斜长石(60%±)、石英(24±)、钾长石(8%±)、角闪石(7%±)及少量锆石、磷灰石、磁铁矿等副矿物组成。斜长石呈宽板状,多具细条纹聚片双

1460											中			玉			地		J	贡											
	H2-1-1	石英脉 矿石	84.91	7.22	1.16	0.09	0.21	0.68	0.09	2.09	0.03	0.35	0.1	2.45	99.38																
Tield	HSP-22	安 応 治 売	49.72	15.86	2.45	7.87	6.12	9.23	3.36	0.94	0.19	1.59	0.23	2.37	99.93	28	260.5	175.6	<3.00	<2.00	<10.00	84.5	<10.00	25.25	28.5	93.38	38.49	281.4			
an gold ore	HSP-20	安 培売 者	49.8	14.83	2.63	7.85	7.26	9.79	2.88	1.22	0.2	1.62	0.26	2.29	100.63	34	243	279.1	<3.00	<2.00	<10.00	90.21	<10.00	24.28	30.69	106.7	43.39	286.5			
分析结果 and Hansh	HSP-10	五	55.38	14.9	2.99	3.29	2.03	7.14	1.7	3.95	0.16	0.55	0.19	7.35	99.63	72	127.5	537.9	13.07	<2.00	<10.00	73.12	$<\!10.00$	15.74	14.52	32.84	7.95	155.1			
元素(10 ⁻⁶) Dishuishan	HSP-9	五 五 京 母 裕 北 七 治	61.91	17.88	3.19	3	0.93	2.56	3.07	3.85	0.11	0.65	0.26	2.66	100.07	68	187.8	520.3	13.95	<2.00	<10.00	86.24	<10.00	17.76	15.33	40.82	5.92	181.3			
E素和稀土 nd ore in D	HSP-6	五 京	59.68	17.51	4.29	3.75	0.97	3.28	3.09	3.38	0.14	0.66	0.24	3.22	100.21	81	197.1	705.6	8.24	<2.00	<10.00	88.14	<10.00	16.19	15.66	41.24	10.4	188.9			
元素(%)、微量テ volcanic rocks a	1213DSS-7	安山质岩屑晶 屑角砾凝灰岩	67.38	14.6	5.46	0.75	0.98	2.04	0.25	4.29	0.02	0.61	0.17	2.88	99.43	134	148	1209	18.2	10.9	0.76	208	5.83	15.8	28.8	69.3	19.3	191	4.72	30.5	68.7
と金矿石主量 yses (10 ⁻⁶) of	1213DSS-6	糜棱岩化 安山质晶 凝灰岩	54.84	17.05	2.6	4.74	3.01	5.5	2.31	2.97	0.13	0.61	0.19	6.15	100.1	107	85.4	540	12.5	8.56	0.59	129	3.71	23.4	18.4	17.4	9.37	148	13.6	17.3	50
赋矿火山岩J nd REE anal	1213DSS-5	强硅化黄 铁绢英岩 型金矿石	87.15	5.02	0.16	0.44	0.2	1.54	0.14	1.41	0.004	0.18	0.03	2.7	98.97	44.4	14.9	1198	3.1	2.46	0.19	60.5	1.67	1.62	5.16	6.73	1.37	46.1	2.86	0.38	5.79
区和寒山矿区 ice elements a	1213DSS-4	糜棱岩化 安止质晶 屑凝灰岩	56.56	15.7	2.81	4.87	2.85	5.99	2.67	1.79	0.18	0.64	0.18	5.81	100.05	57.6	116	415	16.2	9.12	0.71	142	4.15	14.8	17.8	23.5	10	140	12.7	17	65.1
長1 滴水山矿 ments(%), tra	1213DSS-3	糜棱岩化安 山质晶屑凝 灰岩	61.26	7.64	3.52	2.22	1.44	11.22	0.11	1.84	0.22	0.26	0.07	10.41	100.21	59.5	152	2056	10.6	5.04	0.38	96.2	2.51	14.4	8.54	11.4	9.75	45.6	8.62	7.51	14.8
え e 1 Major elei	1213DSS-2	强硅化黄 铁绢英岩 型金矿石	91.49	4.03	0.18	1.01	0.27	0.09	0.09	1.2	0.004	0.15	0.02	1.42	99.95	35.4	8.05	194	4.04	2.48	0.18	47.5	1.4	3.3	5.44	15.4	1.73	36.5	1.45	0.244	41.4
Table	1213DSS-1	糜棱岩化 安山质晶 屑凝灰岩	56.7	15.17	3.56	3.17	1.54	7.37	0.18	3.94	0.16	0.59	0.14	7.68	100.2	118	83.7	680	14.3	8.86	0.61	161	4.45	16.7	24.1	99.7	27	165	12.6	10.9	55.3
	样号	岩 炎 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王	SiO_2	Al_2O_3	$\mathrm{Fe_2O_3}$	FeO	MgO	CaO	Na_2O	$\rm K_2O$	MnO	TiO_2	P_2O_5	LOI	Total	Rb	Sr	Ba	Th	ЧN	Та	Zr	Ηf	Υ	Sc	Cr	Ņ	Λ	Li	Co	Cu

2019年

1460

H2-1-1	石 矿 石 市							23.37	35.07	3.97	12.53	2.21	0.43	2.3	0.3	1.53	0.29	1.02	0.14	0.95	0.10	0.82	0.58	84.21	77.58	6.63	11.7	16.59	
HSP-22	安 熔岩 岩							13.3	25.24	3.36	14.55	4.1	1.4	4.69	0.7	4.57	1.01	2.84	0.39	2.32	0.35	06.0	0.97	78.82	61.95	16.87	3.67	3.86	
HSP-20	安山质 熔岩							11.79	22.7	3.12	13.71	3.81	1.41	4.75	0.69	4.41	0.96	2.62	0.35	2.24	0.30	06.0	1.01	72.86	56.54	16.32	3.46	3.55	
HSP-10	石 天母化 溶岩							26.34	44.12	5.21	19.1	3.7	1.02	4.32	0.55	2.87	0.59	1.68	0.24	1.40	0.20	0.87	0.78	111.34	99.49	11.85	8.4	12.68	
HSP-9	五 天母 格 出							31.24	52.9	6.33	22.67	4.59	1.14	3.86	0.57	3.43	0.69	2.07	0.24	1.57	0.20	0.87	0.81	131.30	118.87	12.63	9.41	13.42	暑立室 200
HSP-6	石 天母 格 出 名							32.38	54.09	6.43	22.72	4.21	1.15	3.74	0.52	3.02	0.62	1.87	0.27	1.67	0.21	0.87	0.87	132.90	120.98	11.92	10.15	13.07	大時は里(毛
1213DSS-7	安山质岩屑晶 屑角砾凝灰岩	23.4	39	30.5	16.2	4.87	6.52	21.6	43.9	5.11	20	3.79	0.8	3.35	0.56	3.05	0.58	1.79	0.3	2.00	0.30	0.99	0.67	107.13	95.2	11.93	7.98	7.28	수 <u>배</u> 도 남 분 분 수
1213DSS-6	糜棱岩化 安山质晶 層凝灰岩	9.61	83.9	17.3	16.6	3.91	2.15	30.3	57.8	6.96	27.9	5.12	1.37	4.65	0.83	4.47	0.87	2.37	0.37	2.31	0.34	0.94	0.84	145.66	129.45	16.21	7.99	8.84	~ 바 다 금 팬~
1213DSS-5	强硅化黄 铁绢英岩 型金矿石	126	8.49	0.38	5.94	0.81	0.93	13.7	24.8	2.91	11.7	2.16	0.38	1.44	0.14	0.47	0.07	0.21	0.03	0.23	0.04	0.92	0.62	58.28	55.65	2.63	21.16	40.16	1 - 十年山が区
1213DSS-4	糜棱岩化 安山质晶 層凝灰岩	13.7	72.7	17	13.8	3.82	1.05	29.2	52.8	6.12	23.6	4.27	1.06	3.64	0.58	2.85	0.54	1.57	0.25	1.71	0.26	0.92	0.80	128.45	117.05	11.4	10.27	11.51	
1213DSS-3	糜棱岩化安 山质晶屑凝 灰岩	21.3	57.1	7.51	7.68	3.47	2.14	25	44.6	5.03	18.4	3.16	0.81	3.02	0.49	2.61	0.49	1.36	0.2	1.42	0.21	0.92	0.79	106.8	97	9.8	9.9	11.87	区亟律的辞具.
1213DSS-2	强硅化黄 铁绢英岩 型金矿石	1199	27.3	0.24	4.65	1.04	0.73	9.79	17.2	1.92	7.18	1.13	0.19	0.92	0.14	0.61	0.11	0.35	0.07	0.42	0.06	0.91	0.55	40.09	37.41	2.68	13.96	15.72	高二を優子しる
1213DSS-1	糜棱岩化 安山质晶 層凝灰岩	24.5	71.1	10.9	15.1	3.67	3.39	23.3	43.9	5.24	20.7	3.73	0.86	3.28	0.57	3.13	0.59	1.74	0.29	1.77	0.28	0.93	0.74	109.38	97.73	11.65	8.39	8.87	S202101-1-S
样号	岩石类型	Рb	Zn	Co	Ga	U	Cs	La	Ce	P_{Γ}	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	ðСе	δEu	ΣREE	LREE	HREE	LREE/HREE	La_N/Yb_N	准.1213DS

第46卷第6期 杨永春等:甘肃省滴水山金矿区火山岩锆石U-Pb年龄、岩石地球化学特征及其形成的构造背景 1461

晶,具弱的绢云母化及泥化;钾长石呈半自形-他形 粒状;角闪石呈自形晶,多发生绿泥石化(图4c、d)。

岩矿石地球化学特征 4

4.1 样品采集与测试

本次在研究区下奥陶统阴沟群上组地层中采集 糜棱岩化安山质晶屑凝灰岩4件,安山质岩屑晶屑角 砾凝灰岩1件,黄铁绢英岩型金矿石2件,在研究区 南侧的花岗闪长岩体中采集花岗闪长岩1件,并收集 了相邻寒山金矿区的分析结果。对所采集的样品均 进行了主量、微量和稀土元素分析。样品处理及测 试在核工业北京地质研究院完成,测试仪器为 FinniganMAT公司制造的HR-ICP-MS,测试方法为 DZ/T0223-2001《电感耦合等离子体质谱(ICP-MS) 方法通则》,温度t=20℃,相对湿度HR=30%。主量 元素测试仪器为Philips PW2404 X射线荧光光谱仪, z-2000石墨炉原子吸收分析仪,测试方法为GB/ T14506.14-2010《硅酸盐岩石化学分析方法》第14、 28部分;温度t=20℃,相对湿度HR=30%。

4.2 赋矿火山岩及金矿石地球化学特征

研究区糜棱岩化安山质晶屑凝灰岩、安山质岩 屑晶屑角砾凝灰岩及强硅化黄铁绢英岩型金矿石 的主量元素、微量元素、稀土元素分析结果见表1, 同时表中也列出了前人对寒山金矿区的相关分析 数据(毛景文等,2004)。从中可知,研究区和寒山 金矿区赋矿糜棱岩化安山质晶屑凝灰岩、安山质岩 屑晶屑角砾凝灰岩、石英绢云母化熔岩、安山质熔 岩(以下简称赋矿火山岩)及金矿石烧失量为1.42% ~10.41%,明显经受了蚀变作用。故不能用活动元 素(如Na,K,Ca,Cs,Rb,Ba和Sr)来讨论岩石系列 和成因,而采用相对不活泼的元素(如高场强元素 和稀土元素)、过渡元素对岩石系列分类和讨论岩 石的构造背景及成因(朱弟成等,2006)。

赋矿火山岩的SiO2含量(质量分数,下同)为 49.72%~67.38%,反映了岩浆从基性演化为中酸性, 滴水山矿区以中酸性火山岩为主,Al₂O₃为7.64%~ 17.88%, 总体相对较高, (K2O+Na2O)为1.95%~ 6.92%, K2O/Na2O比值为0.28~21.89, 变化较大与岩 石的蚀变有关, MgO含量为0.94%~4.29%, TiO2含 量为0.26%~1.62%,除寒山金矿区SP-20和HSP-22外,其他样品的含量较低,暗示它们可能形成于

图5 赋矿火山岩Zr/P2O5-TiO2图解(据Winchester, 1977; Zhu et al., 2012)

Fig.5 Zr/P₂O₅-TiO₂ diagram (after Winchester, 1977 ; Zhu et al., 2012) of volcanic rocks

岛弧环境。矿石的SiO2含量为84.91%~91.49%,含 量远高于围岩,显示了硅质与围岩发生硅质交代, 导致石英的沉淀。Al₂O₃为4.03%~7.22%, (K₂O+ Na₂O)为1.29%~2.18%, K₂O/Na₂O比值为10.07~ 23.22, MgO含量为0.20%~0.27%, TiO2含量为0.15% ~0.35%, 矿石中氧化物含量变化较大与岩石的蚀变 程度有关。

在赋矿火山岩的 Zr/P_2O_5 -TiO₂图解中(图5),除 寒山金矿区HSP-20和HSP-22两个样点落在碱性 范围内,其他样品均落在非碱性区内。

在原始地幔标准化微量元素图中(图6a),赋矿 火山岩和金矿石的分配形式较一致,但金矿石中微 量元素的标准化值普遍较赋矿火山岩低,与后期热 液对围岩的交代有关,岩矿石中均不同程度富集大 离子亲石元素(LILE,如K、Rb、Th),亏损高场强元 素(HFSE,如Nb、Ta、P、Ti)。

赋矿火山岩的稀土元素总量ΣREE为72.86× 10⁻⁶~145.66×10⁻⁶,平均值为112.48×10⁻⁶,轻重稀土元 素含量比值 ΣLREE/ ΣHREE 为 3.46~10.27, 富集轻 稀土元素, (La/Yb)N为3.55~13.42, δEu 值为0.67~ 1.01,总体显示为弱的铕负异常, &Ce 值为 0.85~ 0.97; 矿石的 ∑ REE 为 40.09×10⁻⁶~84.21×10⁻⁶, 平均 值为62.54×10⁻⁶, ∑LREE/∑HREE为9.01~21.16, 富 集轻稀土元素,(La/Yb)N为12.00~40.16, & Eu 值为

图6 赋矿火山岩及矿石的微量元素原始地幔标准化蛛网图(a)及其稀土元素球粒陨石标准化配分模式图(b) (原始地幔值和球粒陨石值据Sun et al., 1989)

Fig.6 Primitive mantle-normalized trace elements patterns (a) and chondrite-normalized REE patterns (b) for the volcanic rocks and ores (normalized values after Sun et al., 1989)

0.55~0.62, 铺亏损中等, *&*Ce 值为 0.80~0.90 赋矿火 山岩与矿石稀土元素含量显著差异, 但稀土元素配 分曲线基本保持不变, 均表现为右缓倾(图 6b), 与 后期热液对围岩的交代有关。

4.3 花岗闪长岩地球化学特征

研究区与寒山矿区花岗闪长岩主量元素、微量 元素、稀土元素分析及CIPW计算结果见表2。花岗 闪长岩的SiO₂含量为67.48%~72.68%,平均值为 69.63%,K₂O+Na₂O为7.15%~7.44%,平均值为 7.24%,在SiO₂-(Na₂O+K₂O)图解中(图7),研究区 样品投点落入花岗闪长岩区,寒山矿区样品多落入 花岗岩区。里特曼指数δ值介于1.78~2.07,均反映 出低碱的特点,碱度率AR=2.28~3.09[(Al+Ca+Na+ K)/(Al+Ca-Na-K)](Wright, 1969),属钙碱性系列 岩石。在Na₂O-K₂O图解(图8a)上,可以看出,滴水 山矿区和寒山矿区样品落在钾质岩石区和钠质岩 石区分界线附件,总体偏钠质。铝质指数A/CNK (Al/Ca+Na+K)介于0.95~1.19,属弱过铝质岩石(图 8b)。综上,研究区花岗闪长岩属钠质钙碱系列、弱 过铝质花岗岩类。

在花岗闪长岩原始地幔标准化微量元素图中 (图 9a),岩石具富集K、Rb、Th、U等大离子亲石元 素和亏损Nb、P、Ti等高场强元素的特征。花岗闪长 岩的 Σ REE 为 94.22×10⁻⁶~124.15×10⁻⁶,平均值为 113.77×10⁻⁶, Σ LREE/ Σ HREE 为 10.17~12.62,富集 轻稀土元素,(La/Yb)_N为 12.47~88.99, δ Eu 值为 0.50~0.66, 销亏损中等, δCe 值为 0.81~1.04, 样品分 配模式较一致, 均表现为右倾的稀土曲线(图 9b), 暗示它们可能来自同一源区。

5 LA-ICP-MS锆石U-Pb测年

本次研究对安山质晶屑凝灰岩(DSS14-2)、含 金黄铁绢英岩(DSS14-3)和研究区南侧花岗闪长岩 (DSS14-1)进行了LA-ICP-MS锆石U-Pb测年。

锆石单矿物挑选和阴极发光照射在廊坊市地 科勘探技术服务有限公司完成,对于挑选出来的纯 净锆石和标样一同置于环氧树脂中制靶,然后打磨 暴露出锆石中心部位。对其进行反射光和透射光 照相,据此挑自形程度良好的锆石进行阴极发光照 相,来查明锆石内部生长层的分布特征和结构。测 年在北京大学地球与空间科学学院造山带与地壳 演化教育部重点实验室进行。激光剥蚀使用的是 德国 Lambda Physik 公司的 COMPex 102 ArF 准分 子激光器(工作物质 ArF, 波长 193 nm)与 Agilent 7500ce 型 ICP-MS 以及 MicroLas 公司的 GeoLas 200M 光学系统连接,采用了屏蔽矩(Shield Touch) 和cs透镜。剥蚀物质的载气为氦气。用美国国家 标准技术研究院研制的人工合成硅酸盐玻璃标准 参考物质NIST610进行仪器最优化,采用Plesovice 标准锆石外部校正法进行锆石原位U-Pb分析。采 用的激光束斑直径为32 μm,激光剥蚀深度为30~ 40 µm,频率为5 Hz,能量密度为5 J/cm²。数据采集为 表2 滴水山矿区和寒山矿区花岗闪长岩主量元素(%)、微量元素、稀土元素(10⁻⁶)分析及 CIPW 计算结果 Table 2 Major elements, trace elements, REE and CIPW calculation results of granodiorite in Dishuishan and Hanshan gold orefield

样号	DSS14-1	YZH-1	YZH-2	YZH-3	YZH-4	样号	DSS14-1	YZH-1	YZH-2	YZH-3	YZH-4
SiO ₂	67.48	68.22	71.74	68.02	72.68	Pr	6.22	5.96	6.47	6.33	5.57
Al_2O_3	15.61	15.39	13.42	14.97	12.77	Nd	20.80	16.00	17.11	18.01	14.94
Fe_2O_3	2.07	0.21	0.33	0.50	0.43	Sm	3.95	4.11	4.20	4.43	4.01
FeO	1.70	2.86	2.23	2.59	2.21	Eu	0.85	0.70	0.64	0.70	0.58
MgO	1.51	1.39	1.17	1.39	1.05	Gd	3.79	2.89	3.15	3.22	2.88
CaO	2.73	2.38	1.29	1.29	1.52	Tb	0.55	0.45	0.47	0.51	0.39
Na ₂ O	4.41	4.44	4.99	4.37	4.86	Dy	2.83	2.22	2.17	2.50	2.19
K_2O	2.74	2.72	2.45	2.79	2.44	Но	0.52	0.45	0.46	0.47	0.46
MnO	0.06	0.08	0.05	0.05	0.07	Er	1.50	1.32	1.33	1.56	1.32
${\rm TiO}_2$	0.56	0.48	0.41	0.49	0.42	Tm	0.23	0.18	0.17	0.21	0.17
P_2O_5	0.17	0.15	0.13	0.13	0.12	Yb	1.40	1.09	1.02	1.21	1.07
LOI	1.26	1.33	1.35	1.35	1.45	Lu	0.21	0.19	0.14	0.19	0.15
Total	100.30	99.65	99.56	97.94	100.02	δСе	1.04	0.81	0.83	0.84	0.83
Rb	68.50	64.00	56.00	66.00	52.00	δEu	0.66	0.59	0.52	0.54	0.50
Sr	398.00	421.70	449.80	398.00	162.00	ΣREE	124.15	107.35	121.31	120.93	95.12
Ва	533.00	619.10	498.60	573.00	437.40	LREE	113.12	98.56	112.40	111.06	86.49
Th	13.40	18.030	21.100	13.36	16.11	HREE	11.03	8.79	8.91	9.87	8.63
Nb	11.80	9.00	8.00	9.00	9.00	LREE/HREE	10.26	11.21	12.62	11.25	10.02
Та	1.11	-	-	-	-	La _N /Yb _N	13.27	18.08	22.62	18.32	15.04
Zr	130.00	-	-	-	-	CIPW结果					
Hf	5.19	12.00	10.00	12.00	10.00	石英(Q)	23.68	23.61	28.23	26.71	29.79
Y	11.90	11.23	10.57	12.64	11.32	钙长石(An)	12.55	11.01	5.65	5.75	5.91
Sc		5.71	4.91	6.08	4.49	钠长石(Ab)	37.68	38.21	42.99	38.28	41.72
Cr	25.90	30.33	27.72	26.07	24.12	正长石(Or)	16.35	16.35	14.74	17.07	14.63
Ni	11.70	9.91	11.25	8.73	8.37	刚玉(C)	0.84	1.19	0.53	2.82	0.00
V	59.00	64.23	54.9	65.39	48.77	透辉石(Di)	0.00	0.00	0.00	0.00	0.79
Li	21.90	24.70	21.34	22.67	19.55	紫苏辉石(Hy)	4.40	8.03	6.26	7.34	5.44
Co	9.32	85.16	31.38	7.65	6.39	钛铁矿(II)	1.07	0.93	0.79	0.96	0.81
Cu	10.10	22.11	25.33	22.41	28.87	磁铁矿(Mt)	3.03	5.96	0.49	0.75	0.63
Pb	15.50	<3.00	<3.00	20.44	20.23	磷灰石(Ap)	0.40	16.00	0.31	0.31	0.28
Zn	42.40	48.38	37.33	64.53	37.37	分异指数(DI)	77.71	4.11	85.96	82.06	86.14
Co	9.32	85.16	31.38	7.65	6.39	H ₂ O含量	2.93	0.70	3.92	3.38	4.06
Ga	17.30	17.18	16.30	14.00	16.39	A/CNK	1.03	2.89	1.02	1.19	0.95
U	1.85	2.00	2.40	3.00	3.90	SI	12.15	0.45	10.47	11.94	9.55
W	0.72	394.00	162.00	0.60	5.70	AR	2.28	2.22	3.05	2.57	3.09
Sn	-	2.80	2.00	4.00	4.00	<i>R1</i>	2195.00	0.45	2395.00	2308.00	2497.00
Bi	0.11	<10.00	<10.00	<10.00	<10.00	R2	680.00	1.32	468.00	518.00	472.00
La	25.90	27.48	32.17	30.9	22.44	A/MF	1.76	0.18	2.05	1.91	2.01
Ce	55.40	44.31	51.81	50.69	38.95	C/MF	0.56	1.09	0.36	0.30	0.44

注:DSS14-1为滴水山矿区采集的样品,YZH-1~YZH-4为引用寒山矿区的数据(毛景文等,2004)。

20 s气体空白和65 s激光剥蚀。同位素比值数据处理和U-Pb表现年龄计算采用Glitter程序进行,普通铅校正按照Anderson(2002)的方法。年龄计算与谐和图绘制采用Isoplot 4.15 完成,小于1000 Ma采用²⁰⁶Pb/²³⁸U年龄,大于1000 Ma采用²⁰⁷Pb/²⁰⁶Pb年龄。 锆石U-Pb同位素数据见表3,单个数据的误差均为 1σ,其加权平均值具95%的置信度。

安山质晶屑凝灰岩样品(DSS14-2)中的锆石 粒径约50~150 μm,多呈不规则状,长宽比约1:1~2: 1,环带结构相对不发育(图10a),32个分析点的U、 Th的含量分别为248.99×10⁻⁶~781.51×10⁻⁶、130.80× 10⁻⁶~471.38×10⁻⁶(表3),Th/U比值介于 0.26~1.03,

图7花岗闪长岩SiO₂-(Na₂O+K₂O)图解(据Middlemost, 1994))

1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长 岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉 长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩; 13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长 岩;16—副长正长岩;17—副长深成岩;18—宽方钠岩/磷霞岩/粗白 榴岩;Ir—Irvine分界线;上方为碱性,下方为亚碱性

Fig. 7 SiO₂-(Na₂O+K₂O) diagram of granodiorite (after Middlemost, 1994)

1- Olivine gabbro; 2a- Alkali gabbro; 2b- Sub- alkaline gabbro;
3- Gabbro diorite; 4- Diorite; 5- Granodiorite; 6- Granite;
7-Quartzolite; 8-Monzogabbro; 9-Mmonzodiorite; 10-Monzonite;
11- Quartz monzonite; 12- Syenite; 13- Olivine gabbro; 14- Foid monzodiorite; 15- Foid monzosyenite; 16- Foid plagisyenite;
17-Foidolite; 18- Tawite/ urtite/ italite; Ir-Irvine dividing line, above the line is alkali, below is sub-alkali

具有岩浆锆石的特点(Rubatto, 2002)。该样品锆石 测点年龄可分为2组,第一组2颗锆石(点09、21)

的²⁰⁶Pb/²³⁸U年龄均为511 Ma,代表火山喷发时俘获的 中寒武世锆石。第二组30颗锆石测点均投影于谐和 线上或谐和线附近(图11a),具有较一致的年龄,年龄 范围在(454±3)Ma~(500±3)Ma,其加权平均年龄值 为(479.7±6.9)Ma,代表火山岩的喷发年龄为早奥陶 世。

含金黄铁绢英岩(DSS14-3)中锆石的粒径为 50~150 µm,多呈不规则状,长宽比为1:1~2:1,锆石 发育较好的岩浆锆石振荡环带结构(图10a),30个 分析点的U、Th的含量分别为379.53×10⁻⁶~1147.54× 10⁻⁶、174.82×10⁻⁶~2766.37×10⁻⁶(表3),Th/U比值介 于 0.46~2.41, 具 有 岩 浆 锆 石 的 特 点 (Rubatto, 2002)。该样品锆石测点年龄可分为4组,第一组5 颗锆石(点05、09、25、30)的²⁰⁷Pb/²⁰⁶Pb年龄均介于 1003~3193 Ma,代表了火山喷发时俘获的太古宙一 中元古代老地层中残留锆石的年龄,锆石有较好的 生长环带和少量的暗色增生边。第二组3颗锆石 (点08、11、12)的²⁰⁶Pb/²³⁸U年龄均介于497~520 Ma, 代表了火山喷发时俘获的中一晚寒武世锆石的年 龄,呈椭圆状,第三组16颗锆石在误差范围内有较 一致的²⁰⁷Pb/²⁰⁶Pb、²⁰⁷Pb/²³⁵U和²⁰⁶Pb/²³⁸U比值,在谐和 线上及附近(图11b),其加权平均年龄值为(482.7± 9.5)Ma,为早奥陶世,该年龄早于赋矿安山质晶屑 凝灰岩的成岩年龄,且该组锆石具岩浆锆石的特 点,不具有热液锆石的特点,因此,该年龄代表赋矿 火山岩的形成年龄。第四组7颗锆石(点03、06、10、 15、18、23、27)的²⁰⁶Pb/²³⁸U年龄均介于427~461 Ma, CL图像显示锆石颗粒边部阴极发光强度较强,分带

图 8 花岗闪长岩 Na₂O 对 K₂O(a)(据 Middlemost, 1972)和 A/CNK 对 A/NK(b)图解(据 Maniar et al., 1989) Fig. 8 Na₂O-K₂O (a) (after Middlemost, 1972) and A/CNK-A/NK (b) (after Maniar et al., 1989) diagrams of granodiorite

Fig. 9 Primitive mantle–normalized trace elements patterns (a) and chondrite–normalized REE patterns (b) for the granodiorite (normalized values after Sun et al., 1989)

较弱,代表后期岩浆热事件的年龄。

花岗闪长岩样品(DSS14-1)中锆石粒径 50~ 200 um,以自形粒状为主,少量呈短柱状,长宽比2: 1~4:1,结构相对简单,显示出清晰的岩浆韵律环带 (图 10c), 31 个分析点的U、Th 的含量分别为 $382.77 \times 10^{-6} \sim 2245.93 \times 10^{-6}$, $171.65 \times 10^{-6} \sim 2836.83 \times 10^{-6}$ 10⁻⁶(表3),Th/U比值介于0.38~1.28,具有岩浆锆石 的特点(Rubatto, 2002)。该样品锆石测点年龄可分 为4组,第一组7颗锆石(点03、04、05、19、22、25、 26)的²⁰⁷Pb/²⁰⁶Pb年龄均介于1286~1941 Ma.代表了 火山喷发时俘获的古一中元古代老地层中残留锆 石的年龄,锆石有较好的生长环带,颜色较暗。第 二组3颗锆石(点11、12、24)的²⁰⁶Pb/²³⁸U年龄均介于 451~465 Ma,代表了火山喷发时俘获的中一晚奥陶 世锆石的年龄,具有较好的生长韵律环带,长宽比 较小。第三组18颗锆石测点均投影干谐和线上或 谐和线附近(图11c),具有较一致的年龄,其加权平 均年龄值为(426.9±6.7)Ma,代表花岗闪长岩的侵位 年龄,为中志留世(加里东晚期)。第四组4颗锆石 (点17、27、30)的²⁰⁶Pb/²³⁸U年龄均介于389~422 Ma, CL图像显示锆石颗粒边部阴极发光强度较强,代表 后期岩浆热事件的年龄。

6 讨 论

6.1 成岩、成矿时代

北祁连西段火山岩分布广泛,从古元古代到早

古生代均有不同程度的分布,其中以中元古代早期 和早奧陶世火山作用最为强烈。前人针对早奧陶 世赋矿火山岩、金成矿时代及与金成矿有密切关系 的中酸性侵入体开展了大量同位素测年工作,获得 了大量岩矿石年龄数据。

夏林圻等(1998a)研究认为该套火山岩同位素 年龄为486~445 Ma。毛景文等(2004)认为寒山金 矿区赋矿火山岩时代偏新,为中奥陶世,本次研究 获得滴水山金矿赋矿安山质晶屑凝灰岩锆石U-Pb 年龄为(479.7±6.9) Ma(图11a),与夏林圻等获得的 年龄数据基本一致,成岩时代应为早奥陶世,该年 龄同时位于北祁连洋壳俯冲的时限范围内(520~ 440 Ma)(宋述光等,2013)。

杨建国等(2005)测得寒山金矿南侧花岗闪长 岩锆石U-Pb年龄为(370±25)Ma,其侵位时间发生 在早泥盆世一早石炭世,属华力西早期产物。夏林 圻等(2001)测得青石峡岩体中第二侵入单元花岗 闪长岩地质年龄为(372±6)Ma,王楠等(2017)测得 青山二长花岗岩(属青山岩体)地质年龄为440Ma, 本次研究测得区内花岗闪长岩锆石U-Pb年龄为 (426.9±6.7)Ma,属加里东晚期,其形成时代为中志 留世,由于研究区内花岗闪长岩体同属青山岩体, 为青石峡大岩体一部分,根据现代花岗岩研究表 明,任何一个大的花岗岩体均是经过较长地质时 期、多次岩浆侵入形成的,夏林圻等(2001)认为青 石峡岩体也是由三个阶段侵入体构成,因此本次所

				∄ Table 3 LA−	E3 滴水山 ICP-MS z	金矿区 LA- ircon U-Pb	HCP-MS	石 U-Pb 测i lts in Dishui	式结果 shan gold c	refield					
L 1 j	何	畫/ 10 ⁻⁶	850			207 235		206 038				年龄/1	Ма		
测点方	Th	n	0/ u .L	04~~~/04	Ισ	U 222/94 222	Ισ	0°22/04°22	lσ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	1σ	$^{206} Pb/^{238} U$	1σ	$^{207}{\rm Pb}/^{206}{\rm Pb}$	1σ
样晶号	DSS14-1	花岗闪长岩													
01	180.90	476.87	0.37935	0.05740	0.00100	0.55804	0.00880	0.07053	0.00063	450	9	439	4	507	19
02	208.88	465.70	0.44853	0.06030	0.00097	0.58388	0.00839	0.07025	0.00061	467	5	438	4	614	17
03	709.96	888.32	0.79922	0.15697	0.00207	1.31402	0.01443	0.06073	0.00052	498	18	344	4	1286	96
04	745.72	706.10	1.05611	0.10106	0.00135	0.91918	0.01045	0.06598	0.00055	662	9	412	б	1644	10
05	1499.72	1308.60	1.14605	0.14415	0.00169	1.38090	0.01311	0.06949	0.00056	698	15	413	4	1774	59
90	203.95	442.87	0.46052	0.05810	0.00087	0.54963	0.00724	0.06862	0.00057	445	5	428	с	534	15
07	520.76	748.47	0.69577	0.06022	0.00076	0.57381	0.00611	0.06913	0.00055	435	10	429	4	466	64
08	312.52	598.45	0.52222	0.05701	0.00075	0.55129	0.00621	0.07015	0.00056	446	4	437	с	492	12
60	251.97	478.44	0.52665	0.05767	0.00081	0.53918	0.00658	0.06782	0.00055	438	4	423	с	517	14
10	1608.18	1356.62	1.18543	0.09413	0.00113	0.94662	0.00931	0.07295	0.00058	441	17	433	4	486	111
11	228.00	382.77	0.59566	0.05621	0.00092	0.57933	0.00845	0.07477	0.00064	464	5	465	4	461	18
12	410.71	705.10	0.58248	0.06391	0.00090	0.63857	0.00775	0.07248	0.00060	501	5	451	4	739	13
13	269.86	502.61	0.53692	0.07064	0.00103	0.66786	0.00845	0.06859	0.00057	447	10	422	4	581	64
14	2836.83	2245.93	1.26310	0.10150	0.00116	1.01782	0.00941	0.07274	0.00057	452	18	429	4	573	113
15	295.93	750.72	0.39419	0.05960	0.00094	0.55546	0.00777	0.06761	0.00058	427	×	420	4	466	57
16	171.65	420.81	0.40790	0.05608	0.00079	0.52862	0.00649	0.06838	0.00056	431	4	426	Э	456	14
17	753.11	1673.33	0.45007	0.09769	0.00122	0.87014	0.00900	0.06461	0.00052	476	10	389	б	917	58
18	298.56	527.46	0.56603	0.05597	0.00079	0.53358	0.00655	0.06916	0.00056	434	4	431	с	451	14
19	813.71	633.27	1.28493	0.31001	0.00355	3.82893	0.03498	0.08960	0.00072	743	46	410	9	1941	164
20	596.99	979.68	0.60937	0.06827	0.00084	0.61921	0.00631	0.06580	0.00052	426	6	406	Э	538	61
21	249.40	568.80	0.43847	0.05921	0.00081	0.54170	0.00636	0.06636	0.00054	427	7	413	Э	502	52
22	647.08	687.10	0.94176	0.10918	0.00133	0.98138	0.00978	0.06521	0.00052	622	12	400	3	1542	51
23	290.11	602.54	0.48148	0.05841	0.00093	0.56153	0.00794	0.06974	0.00059	453	5	435	4	545	17
24	308.46	460.49	0.66985	0.06881	0.00099	0.68902	0.00859	0.07264	0.00060	532	5	452	4	893	13
25	559.47	510.93	1.09500	0.11084	0.00137	0.98866	0.01010	0.06471	0.00052	869	5	404	Э	1813	6
26	1027.98	\$69.34	1.18248	0.14171	0.00184	1.23690	0.01337	0.06332	0.00053	581	18	371	4	1516	79
27	291.15	691.72	0.42091	0.06404	0.00094	0.59794	0.00766	0.06773	0.00056	476	5	422	З	743	14
28	537.61	712.75	0.75428	0.05968	0.00078	0.57390	0.00637	0.06975	0.00056	461	4	435	ŝ	592	12
29	248.78	596.77	0.41688	0.05518	0.00080	0.51513	0.00648	0.06773	0.00055	422	4	422	б	420	15
30	358.66	514.99	0.69644	0.08764	0.00114	0.80356	0.00874	0.06651	0.00054	480	11	405	ŝ	861	99
31	315.58	526.86	0.59898	0.08637	0.00110	0.88742	0.00943	0.07453	0.00060	463	12	447	4	542	77

第46卷第6期 杨永春等:甘肃省滴水山金矿区火山岩锆石U-Pb年龄、岩石地球化学特征及其形成的构造背景 1467

	1σ		14	14	16	16	14	14	15	58	15	13	14	13	12	16	15	15	14	15	16	16	18	14	14	16	16	15	15	19	15	15	15
	²⁰⁷ Pb/ ²⁰⁶ Pb		540	458	555	501	506	506	512	468	534	492	503	493	453	510	469	527	528	510	506	486	555	529	477	552	469	505	524	504	488	476	523
3	1σ		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
年龄/M	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		454	476	456	463	490	484	482	469	511	479	481	483	478	485	488	490	494	483	487	480	511	498	496	466	481	480	500	480	476	478	484
	1σ		5	5	5	5	5	5	5	6	5	5	5	5	4	5	5	5	5	5	5	5	9	5	S	2	5	5	5	9	5	5	S
	$^{207}\text{Pb}/^{235}\text{U}$		468	473	472	469	493	488	487	469	515	481	485	484	473	489	485	497	500	488	490	481	519	503	493	481	479	484	504	484	478	477	491
	lα		0.00060	0.00062	0.00061	0.00062	0.00065	0.00064	0.00064	0.00062	0.00068	0.00062	0.00063	0.00063	0.00061	0.00065	0.00064	0.00065	0.00065	0.00064	0.00065	0.00064	0.00070	0.00065	0.00064	0.00063	0.00064	0.00063	0.00066	0.00066	0.00062	0.00063	0 00064
206	$\prod_{n=1}^{\infty} qd_{n+1}$		0.07297	0.07665	0.07323	0.07448	0.07902	0.07797	0.07766	0.07570	0.08247	0.07706	0.07744	0.07776	0.07689	0.07812	0.07872	0.07904	0.07958	0.07783	0.07839	0.07733	0.08256	0.08031	0.08000	0.07498	0.07742	0.07724	0.08069	0.07727	0.07664	0.07693	0.07800
,	1 0		0.00742	0.00737	0.00814	0.00784	0.00792	0.00778	0.00801	0.00769	0.00861	0.00714	0.00746	0.00735	0.00665	0.00841	0.00778	0.00828	0.00805	0.00818	0.00831	0.00823	0.00985	0.00786	0.00757	0.00835	0.00806	0.00790	0.00832	0.00922	0.00770	0.00790	0 0082 5
207235	0		0.58622	0.59316	0.59223	0.58781	0.62508	0.61669	0.61577	0.61534	0.66046	0.60557	0.61163	0.61141	0.59371	0.61903	0.61228	0.63120	0.63570	0.61680	0.61993	0.60612	0.66771	0.64184	0.62452	0.60549	0.60217	0.61048	0.64338	0.61052	0.60122	0.60017	0 62178
	1σ		0.00085	0.00080	0.00091	0.00087	0.00083	0.00083	0.00085	0.00085	0.00086	0.00078	0.00081	0.00080	0.00074	0.00089	0.00082	0.00087	0.00084	0.00087	0.00087	0.00088	0.00097	0.00082	0.00080	0.00092	0.00086	0.00085	0.00086	0.00097	0.00084	0.00085	0 00088
207	dd wr pb/zw pb		0.05828	0.05614	0.05867	0.05725	0.05738	0.05737	0.05752	0.05897	0.05810	0.05701	0.05730	0.05704	0.05601	0.05749	0.05642	0.05793	0.05795	0.05749	0.05737	0.05686	0.05867	0.05798	0.05663	0.05858	0.05642	0.05734	0.05785	0.05732	0.05691	0.05659	0.05783
232	∩,/µT*	屑凝灰岩	0.56884	0.61015	0.49898	0.50387	0.49794	0.55267	0.42865	0.48284	0.43105	0.53482	0.35704	0.55534	0.43401	0.45642	0.50894	0.59416	0.50103	0.47678	0.48157	0.48123	0.55090	0.44604	0.59426	0.56461	0.51409	0.52079	0.56235	0.52532	0.62282	0.59654	051407
/ 10 ⁻⁶	U	安山质晶	381.67	370.09	346.67	333.36	361.05	365.37	323.04	443.56	313.65	476.10	422.95	445.44	781.51	330.33	377.63	319.63	367.32	318.91	302.47	303.62	287.55	413.12	439.71	430.95	334.03	415.83	379.55	248.99	422.56	375.20	350 35
含量/	ЧЦ	DSS14-2	217.11	225.81	172.98	167.97	179.78	201.93	138.47	214.17	135.20	254.63	151.01	247.37	339.18	150.77	192.19	189.91	184.04	152.05	145.66	146.11	158.41	184.27	261.30	243.32	171.72	216.56	213.44	130.80	263.18	223.82	184 73
[]]	则点号	告唱美	01	02	03	04	05	90	07	08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

	1σ		15	13	68	19	10	68	16	85	8	80	16	19	13	15	16	16	15	65	15	15	15	15	16	15	12	23	28	19	15	71
	b/ ²⁰⁶ Pb		492	569	614	473	1405	1003	670	483	3193	689	671	694	536	485	802	601	530	880	511	641	571	647	617	659	1085	558	857	623	559	1464
la	$1\sigma^{207}$ F		4	4	4	4	б	4	4	4	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
年龄/ N	⁰⁶ Pb/ ²³⁸ U		470	476	456	482	444	454	480	497	284	471	520	503	472	467	441	493	491	461	478	488	481	487	459	484	458	499	427	495	486	452
	$1\sigma^{-2}$		5	5	11	9	5	13	9	14	7	14	9	L	5	5	9	9	5	12	5	5	5	5	5	5	5	7	6	9	5	17
	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$		473	492	483	480	639	557	514	495	954	510	549	539	483	470	504	512	498	538	484	516	497	516	486	516	578	509	502	518	499	662
	lα		0.00062	0.00061	0.00061	0.00067	0.00057	0.00059	0.00065	0.00067	0.00037	0.00068	0.00071	0.00071	0.00061	0.00061	0.00060	0.00066	0.00064	0.00061	0.00062	0.00064	0.00063	0.00065	0.00062	0.00064	0.00059	0.00073	0.00070	0.00069	0.00064	0.00062
320 906	Π_{oc7}/qd_{on7}		0.07562	0.07670	0.07410	0.07764	0.07137	0.07449	0.07730	0.08125	0.04499	0.07680	0.08397	0.08110	0.07589	0.07518	0.07079	0.07945	0.07917	0.07468	0.07700	0.07862	0.07748	0.07855	0.07387	0.07800	0.07357	0.08042	0.06856	0.07985	0.07828	0.07517
,	lσ		0.00770	0.00733	0.00892	0.00932	0.00979	0.00990	0.00901	0.00960	0.01695	0.01169	0.01006	0.01093	0.00731	0.00747	0.00896	0.00909	0.00807	0.00947	0.00775	0.00858	0.00823	0.00893	0.00863	0.00864	0.00932	0.01144	0.01391	0.01029	0.00827	0.01491
	$\Omega_{cc7}/\mathbf{qd}_{in7}$		0.59412	0.62418	0.69797	0.60487	0.87609	0.90252	0.65929	0.74973	1.55821	0.76072	0.71660	0.69973	0.60847	0.58899	0.64264	0.65613	0.63301	0.76285	0.61023	0.66152	0.63119	0.66295	0.61463	0.66193	0.76679	0.65131	0.63886	0.66624	0.63400	1.21274
,	1σ		0.00085	0.00081	0.00101	0.00097	0.00119	0.00115	0.00096	0.00099	0.00333	0.00124	0.00099	0.00109	0.00082	0.00083	0.00104	0.00094	0.00085	0.00107	0.00085	0.00091	0.00089	0.00095	0.00096	0.00093	0.00108	0.00113	0.00159	0.00105	0.00088	0.00169
	qd_{007}/qd_{107}		0.05700	0.05904	0.06833	0.05652	0.08905	0.08790	0.06187	0.06694	0.25129	0.07186	0.06192	0.06259	0.05817	0.05684	0.06586	0.05992	0.05801	0.07412	0.05750	0.06105	0.05911	0.06123	0.06037	0.06157	0.07562	0.05876	0.06761	0.06054	0.05877	0.11706
	N°c2/hT222		0.46062	0.57754	0.58491	0.48503	1.05182	0.78985	0.70906	0.73765	2.41070	0.65316	0.74661	0.52339	0.64519	0.61934	0.82178	0.59746	0.57389	0.67211	0.52941	0.57059	0.51210	0.77294	0.61625	0.74357	1.03780	0.53887	0.86182	0.52726	0.71569	0.87969
/ 10 ⁻⁶	U	含金黄钨	379.53	687.55	459.80	380.22	595.50	659.33	629.81	487.82	1147.54	518.71	581.82	388.01	681.77	639.07	621.47	550.21	489.17	718.80	513.74	454.37	473.03	657.06	578.56	632.61	656.06	441.48	303.60	396.94	589.60	616.15
含量	Th	DSS14-3	174.82	397.09	268.94	184.42	626.36	520.77	446.57	359.84	2766.37	338.80	434.39	203.08	439.87	395.80	510.71	328.73	280.73	483.11	271.98	259.26	242.24	507.87	356.54	470.39	680.86	237.90	261.65	209.29	421.97	542.02
I J	测点号	样品号 I	01	02	03	04	05	90	07	08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

第46卷第6期 杨永春等:甘肃省滴水山金矿区火山岩锆石U-Pb年龄、岩石地球化学特征及其形成的构造背景 1469

图 10 安山质晶屑凝灰岩(a)、含金黄铁绢英岩(b)、花岗闪长岩(c)锆石 CL 图像及 U-Pb 年龄(Ma) Fig.10 Zirons CL images and U-Pb ages of andesitic crystal tuff (a), gold bearing beresite (b) and granodiorite (c)

图 11 安山质晶屑凝灰岩(a)、含金黄铁绢英岩(b)和花岗闪长岩(c)锆石 U-Pb 谐和图 Fig.11 Ziron U-Pb Concordia diagram of andesitic crystal tuff (a), gold bearing beresite (b) and granodiorite (c)

质

中

获得的花岗闪长岩年龄值为早期岩浆侵位时间。 该岩体成岩年龄与同属北祁连山西段北带的金佛 寺岩体成岩年龄((424.0±1.6) Ma)相接近(孙宝璐 等,2017),同时也位于北祁连造山带碰撞造山阶段 时限范围内(440~360 Ma)(宋述光等,2013)。

关于滴水山金矿成矿时代,前人对邻区寒山金 矿成矿时代进行了较多讨论。夏林圻等(2001)测 得寒山金矿早期主成矿阶段含金石英脉 Rb-Sr等 时线年龄为(395±46) Ma。毛景文等(2004)获得寒 山金矿含金石英脉 Rb-Sr等时线年龄为(303±10) Ma。宋忠宝等(2005b)测得寒山金矿含金绢英岩中 石英包裹体 Rb-Sr等时线年龄为(339±10) Ma。杨 建国等(2005b)测得寒山金矿早期金-毒砂-黄铁 矿-石英脉 Rb-Sr等时线年龄分别为(372±8) Ma。 因此,寒山金矿成矿同位素年龄值介于(395±46)~ (303±10) Ma。本次研究采集含金黄铁绢英岩锆石 U-Pb年龄为(482.7±9.5) Ma(图11b),该年龄代表了 赋矿安山质晶屑凝灰岩的形成年龄,参照寒山金矿成 矿同位素年龄值及花岗闪长岩的成岩年龄,滴水山金 矿的成矿时代应晚于(426.9±6.7) Ma(图11c)。

6.2 岩石成因及源区性质

6.2.1 赋矿火山岩

滴水山金矿区和寒山金矿区赋矿火山岩Cr、 Ni、Co质量分数分别为11.40×10⁻⁶~106.70×10⁻⁶、 5.92×10⁻⁶~43.39×10⁻⁶、7.51×10⁻⁶~30.50×10⁻⁶,远低于 原始地幔质量分数值(Cr=1020×10⁻⁶、Ni=2400×10⁻⁶、 Co=105×10⁻⁶)(Rudnick et al., 2003),表明其不具有 幔源原始岩浆的属性(Frev et al., 1978)。此外,赋 矿火山岩富集大离子亲石元素(LILE,如K、Rb、 Th),明显亏损高场强元素(HFSE,如Nb、Ta、P、Ti), 二者与岛弧钙碱性火山岩微量元素分配型式较一 致,而与岛弧拉斑玄武岩系列微量元素分配型式明 显不同,前者以低度富集低场强元素和亏损高场强 元素为特征,而后者则以强烈富集低场强元素为特 征(毛景文等,2004),Nb、Ta和Ti的亏损,指示物源 区有难熔矿物(钛铁矿、金红石等)(孙志远等, 2018),这些矿物通常存在于俯冲消减带流体交代 的亏损地幔中(Hawkins, 2003)。在REE配分图上, 表现为轻稀土(LREE)富集,富集的LREE主要来自 俯冲流体,且研究区赋矿火山岩Yb<5×10⁻⁶,Ta<1× 10⁻⁶, Ta/Yb<0.5, La/Nb=1.98~4.96(原始地幔La/Nb 为0.98~1.00,岛弧岩浆La/Nb>1, Condie, 1982),以 上特征指示区内赋矿火山岩与岛弧环境有关 (Condie, 1986;孙志远等, 2018),同时显示区内火山 岩的原始岩浆可能起源于受俯冲板片脱水熔融交 代的亏损地幔楔(Ellam et al., 1988)。

利用相容性相差较大的两个活动元素的比值 可以有效示踪岩浆源区和地壳混染程度(徐夕生 等,2010)。富集地幔和过渡型地幔Zr/Nb<18,亏损 地幔Zr/Nb>18(Le Roex et al., 1983)。区内赋矿火 山岩Zr/Nb介于15.07~19.09,暗示区内火山岩由过 渡型地幔和亏损地幔部分熔融形成, Ti/Y 值为 108.24~259.24,平均值193.40,与亏损地幔Ti/Y值 271 相近(Sun et al., 1989)。地壳通常具有较高的 La/Nb值(Weaver et al., 1984; Wedepohl, 1995),介于 1.77~2.90,如果地壳受到混染作用,不相容元素La 相对于Nb就会明显升高(贠杰等,2015),区内火山 岩La/Nb介于1.98~4.96,暗示区内火山岩遭受了地 壳混染作用,在原始地幔标准化微量元素图中,Rb-Th呈峰,Nb-Ta呈槽,进一步指示火山岩熔体在上 侵的过程中可能受到上地壳的混染(Wilson, 1989, 李平等,2018)。区内火山岩没有明显的Ce负异常, 表明源区没有俯冲沉积物的加入(Turner et al., 1988)

Wilson(1989)认为,洋壳俯冲过程中,洋壳中由 基性岩变质形成的角闪岩大量脱水转变为石英榴 辉岩,随着俯冲深度加大,榴辉岩发生含水部分熔 融,从而产生富水的中酸性部分熔融体,之后上升 进入上覆地幔楔,降低了其固相线,导致地幔发生 部分熔融,从发引发岛弧岩浆作用,因此,研究区岛 弧火山岩应为俯冲板片脱水产生的流体(包括含水 流体和部分熔融体)交代地幔楔发生部分熔融而形 成(夏林圻等,2003),在岩浆向上运移的过程中又 遭受了上地壳混染作用。

6.2.2花岗闪长岩

花岗岩成因类型的判定是花岗岩研究最重要的基础问题。目前ISAM型分类是用的最广泛的成因分类方案,I型、S型和A型较常见,M型较为少见(肖庆辉等,2002)。已有众多学者从不同的角度提出过多种判别方法,如Chappell et al.(1974)以铝指数1.1作为区分I型和S型的界线,Miller(1985)和吴福元等(2007)认为角闪石、堇青石和碱性铁镁矿物

是判断I型、S型和A型花岗岩最有效的矿物学标志。Chappell(1999)对Lachlan褶皱带花岗岩的研究发现,I型花岗岩中,P₂O₅含量随SiO₂含量的增加 而降低,而在S型花岗岩中,P₂O₅含量随SiO₂含量的增加 前降低,而在S型花岗岩中,P₂O₅含量随SiO₂含量的 增加而增高或基本不变,这是由于磷灰石在准铝-弱准铝(A/CNK<1.1)的I型花岗质岩浆中溶解度很 低,总是优先结晶,从而使残余岩浆P₂O₅越来越低。

岩石成因信息可以通过岩石系列及其地球化 学特征来反映,因为同一岩石系列的岩石在矿物组 成和化学成分上相似,不同系列的岩石,其形成环 境、物质来源和形成过程则不尽相同(肖庆辉等, 2002)。研究区花岗闪长主要由斜长石、石英、钾长 石、角闪石及少量锆石、磷灰石、磁铁矿等副矿物组 成,P₂O₃含量随SiO₂含量的增加而降低,碱度率AR= 2.28~3.09,属钙碱性系列岩石,总体偏钠质,铝质指 数 A/CNK 介于 0.95~1.19,在原始地幔标准化微量 元素图中(图 9a),岩石具富集K、Rb、Th、U等大离 子亲石元素和亏损Nb、P、Ti等高场强元素的特征, 以上岩石系列及地球化学特征与I型花岗岩类特征 类似(Rickwood, 1989; Chappell, 1999),因此,区内 花岗闪长岩应为I型花岗岩类。

花岗闪长岩稀土元素地球化学特征表现为轻稀土元素富集,重稀土元素亏损的特点,δEu值为0.50~0.66,为中等亏损,具壳型花岗岩的特点(王中刚等,1989)。Rb/Sr介于0.12~0.32,平均值为0.19,介于上地幔值(0.034)与地壳值(0.35)之间(Taylor et al.,1995),反映出壳幔源的特点(王国良等,2013; 王楠等,2018),表明研究区花岗闪长岩可能为下地 壳岩石部分熔融形成或壳幔相互作用的产物。

研究表明花岗岩类的源区具有多样性 (Johannes et al., 1996; Patino et al., 1998; Castro et al., 1998; Alther et al., 2000; Sisson et al., 2004), 中 基性岩石部分融熔通常形成化学成分偏中性的花 岗闪长质的准铝质花岗岩类,碎屑沉积岩类部分融 熔则会形成偏酸性的过铝质花岗岩类,而泥砂质沉 积岩类部分融熔则可能形成强烈富铝和富钾的花 岗岩(朱小辉等,2016)。在C/MF-A/MF图解(12a) 和Rb/Ba-Rb/Sr图解(12b)中,样品点落在或接近基 性岩源岩范围,个别落在泥砂质岩源岩范围。研究 区花岗闪长岩属偏钠质钙碱系列、弱过铝质I型花 岗岩类,结合区域地质背景,暗示其源岩可能为中 基性岛弧型火山岩部分融熔或者是与形成岛弧型 火山岩同源的岩浆演化形成(吴才来等,2004)。岩 石 Eu 的负异常,暗示其源岩在发生部分熔融时,在 源区有斜长石的残留(蒋宗胜等,2012;徐璐璐等, $2014)_{\circ}$

6.3 构造环境

6.3.1 赋矿火山岩

阴沟群在区内是一套火山岩—正常沉积岩组 合,其中火山岩是以中酸性火山岩为主体的钙碱性 火山岩系列,根据赋矿火山岩岩石系列及其富集大 离子亲石元素,亏损高场强元素等地球化学特征, 显示区内赋矿火山岩与岛弧环境有关。在(Y+Nb) 对 Rb(图 13a)和(Yb+Ta)对 Rb(图 13b)图解中,区 内赋矿火山岩的成分点均落入岛弧区内,再次表明 研究区赋矿火山岩形成于岛弧环境,说明在早奥陶

图 12 花岗闪长岩 C/MF-A/MF 图解(a)(据 Alther et al., 2000)和 Rb/Sr-Rb/Ba 图解(b)(据 Sylvester, 1998) Fig.12 C/MF-A/MF diagram (after Alther et al., 2000) and Rb/Sr-Rb/Ba diagram(after Sylvester, 1998) of granodiorite

图 13 研究区赋矿火山岩和花岗闪长岩 Y+Nb对 Rb(a)与 Yb+Ta对 Rb(b)图解(据 Pearce et al., 1984) Fig.13 (Y+Nb)-Rb (a) and (Yb+Ta)-Rb (b) diagrams of volcanic rocks and granodiorite (after Pearce et al., 1984)

世((479.7±6.9)Ma~(482.7±9.5)Ma)研究区仍处于 洋壳俯冲、消减形成的沟-弧-盆体系阶段,也表明 北祁连洋在此阶段未闭合。这与前人对区域上下 奥陶统阴沟群火山岩是岛弧环境产物的认识一致 (夏林圻等,2001;宋述光等,2009;夏林圻等, 2016),也与区域赋矿火山岩形成环境和物质来源 特征一致,该赋矿岛弧火山岩是北祁连寒武纪末— 早奧陶世洋壳向北东方向阿拉善陆块俯冲、消减的 产物,在俯冲时引发地幔楔部分融熔,产生的岛弧 岩浆在其形成和通往地表的过程中,不仅带来了大 量地幔的成矿物质,而且融熔和萃取了弧壳基底陆 源沉积物中的成矿组分,为本区金矿形成奠定了丰 富的物质基础(夏祖春等,1996)。 6.3.2花岗闪长岩

北祁连西段大部分花岗质岩体的形成都与祁 连山造山作用中的俯冲造山作用和碰撞造山作用 相关,表现为多数同位素年龄值都集中在440~ 380Ma(夏林圻等,2001),Song et al.(2013)认为随 着祁连洋的闭合,北祁连在440~420Ma发生弧-陆 碰撞,形成同碰撞期花岗岩,本次测得区内花岗闪 长岩锆石U-Pb年龄为(426.9±6.7)Ma,结合区域地 质背景,研究区花岗闪长岩体应属北祁连洋闭合 后,弧-陆碰撞的产物。

花岗岩类微量元素可以用作探索构造环境的 工具(Patino et al., 1991; Sylvesler, 1998)。根据(Y+ Nb)对Rb与(Yb+Ta)对Rb图解(Pearce et al., 1984)

图 14 花岗闪长岩 SiO₂-Nb(a)(底图据毛景文等,2004)和*R*1-*R*2图解(b)(底图据 Bachelor, 1985) Fig.14 SiO₂-Nb diagram(a)(after Mao et al., 2004)and *R*1-*R*2 diagram(b)(after Bachelor, 1985) of granodiorite

中的投影(图13),区内花岗闪长岩投影到火山岛弧 区。在SiO₂-Nb图解(毛景文等,2004)(图14a)中, 再次证明了区内花岗闪长岩体为火山弧花岗岩 类。在*R1-R2*图解(Bachelor et al., 1985)上(图 14b),区内花岗闪长岩的投影点落于板块碰撞前和 同碰撞期两个区。综上所述,区内花岗闪长岩体应 属发育于岛弧区同碰撞钠质钙碱系列、弱过铝质 I 型花岗岩类。

6.4 地质意义

滴水山金矿位于北祁连造山带西段,处于塔里 木克拉通、阿拉善陆块、北祁连造山带交汇部位,该 造山带从元古宙至泥盆纪经历了由大陆裂谷→大 洋化→洋盆扩张并俯冲消减→沟、弧、盆体系形成 和发展→洋盆收缩闭合→碰撞造山等一系列构造 演化过程(夏林圻等,2001;李文渊,2004;夏林圻 等,2016)。

夏林圻等(1998b, 1999, 2001, 2016)、宋述光等 (2009,2013)研究表明,从古元古代中期开始,华北 克拉通西南边缘发生大陆裂解事件,形成北大河地 区朱龙关群中大规模大陆裂谷溢流玄武岩,至晚寒 武世,最终发生大陆裂解和分离,形成北祁连早古 生代洋盆。早寒武世至晚奥陶世(520~440Ma),北 祁连洋盆向北或北东方向俯冲至阿拉善陆块之下, 形成北祁连早古生代俯冲杂岩带、岛弧火山岩带和 弧后盆地火山岩带,区内火山岩主微量元素特征显 示为岛弧钙碱性火山岩,锆石U-Pb年龄为(479.7± 6.9)Ma~(482.7±9.5)Ma,为早奥陶世岛弧火山作用 的产物。滴水山金矿和寒山金矿均产于岛弧火山 岩建造的中酸性火山岩中,与区域岩石相比,二者 赋矿火山岩中金均发生明显贫化,分别为区域背景 值的1/4、1/2(夏林圻等,2001;杨永春等,2018)。研 究区赋矿火山岩和矿石的 REE、 Σ LREE/ Σ HREE 比值、(La/Yb)_N比值及δEu值有显著差异,但稀土元 素配分形式基本保持不变,均表现为右缓倾的稀土 曲线(图 6b),反映了它们来自相同的源区,表明赋矿 火山岩为成矿提供了物源。晚奥陶世至晚志留世 (440~420Ma),北祁连洋盆闭合,发生弧-陆碰撞, 形成研究区中志留世同碰撞花岗闪长岩((426.9± 6.7)Ma),该期花岗闪长岩成岩年龄早于成矿时代 ((395±46)~(303±10)Ma),代表了成矿前的一期岩 浆热事件。晚志留世至早泥盆世(420~400Ma)发生 强烈造山作用,导致山脉形成,并于早泥盆世堆积 磨拉石建造(杜远生等,2004),由于碰撞造山作用, 在岛弧火山岩地段形成了韧一脆性剪切带,为流体 的运移提供了通道。早泥盆世(<400Ma)后祁连山 发生造山后的伸展和剥蚀,持续的伸展作用引起造 山带的去根和地幔软流圈的上涌并发生部分熔融, 造成地壳岩石的熔融,形成造山后花岗岩(宋述光 等,2013),伴随岩浆活动,矿化热源不断萃取火山 岩中成矿物质,并在糜棱岩化带中形成金的初步富 集,随着成矿作用的进行,构造体制发生转换,早期 形成的韧一脆性变形逐渐转变为脆性变形,且岩体 的再次侵入导致含矿热源再次活动,在脆性裂隙中 形成含金石英细脉、大脉,导致金元素的再次富集 成矿(邓军等,1998;翟裕生等,2002;杨永春等, 2018)。

7 结 论

(1)滴水山金矿区赋矿安山质晶屑凝灰岩LA-ICP-MS锆石U-Pb年龄为(479.7±6.9)Ma,形成时代 为早奧陶世;花岗闪长岩年龄(426.9±6.7)Ma,时代为 中志留世(加里东晚期);含金黄铁绢英岩锆石U-Pb 年龄(482.7±9.5)Ma,代表了赋矿安山质晶屑凝灰岩 的形成年龄,成矿时代应晚于(426.9±6.7)Ma。

(2) 滴水山金矿区赋矿安山质晶屑凝灰岩、安 山质岩屑晶屑角砾凝灰岩属钙碱性系列,富集大离 子亲石元素(LILE,如K、Rb、Th),明显亏损高场强 元素(HFSE,如Nb、Ta、P、Ti),岩矿石稀土元素配分 型式基本一致,呈右缓倾,轻稀土相对富集,具弱的 铕负异常,形成于洋壳俯冲的岛弧环境,由俯冲板 片脱水产生的流体交代地幔楔发生部分熔融而形 成,在岩浆向上运移的过程中遭受了上地壳混染。 花岗闪长岩SiO2含量67.48%~72.68%,(K2O+Na2O) 含量7.15%~7.44%,里特曼指数δ值为1.78~2.07,铝 质指数 A/CNK 介于 0.95~1.19, 富集 K、Rb、Th、U等 大离子亲石元素和亏损 Nb、P、Ti 等高场强元素,稀 土分配曲线呈右倾,轻稀土相对富集,具中等铕负 异常,属钠质钙碱系列、弱过铝质I型花岗岩类,形 成于弧-陆碰撞的火山弧环境,具壳幔混合成因的 特点。

(3)综合区域地质资料,滴水山金矿区成岩成 矿构造背景为早奥陶世北祁连洋盆向阿拉善陆块

地

质

之下俯冲,形成岛弧火山岩,为矿源层;中志留世, 发生弧-陆碰撞,形成同碰撞花岗闪长岩,晚志留世 后造山作用及造山后的伸展,导致金的富集。

致谢:本次研究工作得到甘肃省地矿局四勘院 各级领导、中国地质大学(北京)博士梁亚运、杨尚 松的指导和帮助,论文修改中匿名审稿专家提出很 多宝贵意见,在此一并表示感谢!

注释

●惠剑宁,王学银,王党琦.2013.甘肃省玉门市滴水山金矿普 查报告[R].酒泉:甘肃省地质矿产勘查开发局第四地质矿产勘 查院.

References

- Alther R, Holl A, Hegener E, Langer C, Kreuzer H. 2000. High potassium, calc–alkaline I–type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1/3): 51–73.
- Anderson T. 2002. Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology, 192(1): 59–79.
- Bachelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 48: 43–45.
- Castro A, Patino Douce A E, Corretge L G. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 135(2–3): 255–276.
- Chappell B W. 1999. Aluminum saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46: 535-551.
- Chappell B W, White AJR. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173–174.
- Condie K C. 1982. Plate Tectonics and Crustal Evolution (Second Edition) [M]. Oxford: Pergamon Press.
- Condie K C. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States[J]. The Journal of Geology, 94(6): 845–864.
- Deng Jun, Lv Guxian, Yang Liqiang, Guo Tao, Fang Yun, Shu Bing. 1999. The transformation of tectonic stress field and interfacial metallogensis[J]. Acta Geoscientica Sinica, 19(3): 244–250 (in Chinese with English abstract).
- Ellam R M, Hawkesworth C J. 1988. Elemental and isotopic variations in subduction related basalts: Evidence for a three component model[J]. Contributions to Mineralogy and Petrology, 98(1): 72–80.
- Frey F A, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38(1): 129–176.

- Ge Xiaohong, Liu Junlai. 1999. Formation and tectonic background of the northern Qilian Orogenic belt[J]. Earth Science Frontiers, 6(4): 223–230 (in Chinese with English abstract).
- Gerdes A, Worner G, Henk A. 2000. Post– collisional granite generation and HAT–Lp metamorphism by radiogenic heating: the example from the Variscan South Bohemian Batholith[J]. Journal of the Geological Society of London, 157(5): 577–587.
- Hawkins J W. 2003. Geology of supra-subduction zones-implications for the origin of ophiolites[C]//Dilek Y and Newcomb S(eds.). Ophiolite Concept and the Evolution of Geological Thought. Colorado: Geological Society of America Special Paper, 373: 227– 268.
- Jia Qunzi, Yang Zhongtang, Xiao Chaoyang, Zou Xianghua, Ye Dejin, Duan Yongmin, Zhao Junwei, Su Lianghong. 2002. Subdivision of Qilian metallogenic belt and ore–forming regularities [J]. Mineral Deposits, 21: 140–143 (in Chinese with English abstract).
- Jiang Zongsheng, Zhang Zuoheng, Hou Kejun, Hong Wei, Wang Zhihua, Li Fengming, Tian Jingquan. 2012. Geochemistry and zircon U– Pb age of volcanic rocks from the Chagangnuoer and Zhibo iron deposits, western Tianshan, and their geological significance[J]. Acta Petrologica Sinica, 28(7): 2074–2088 (in Chinese with English abstract).
- Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks[M]. Berlin: Springer–Verlag.
- Le Roex A P, Dick H J B, Erlank A J. 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees East[J]. Journal of Petrology, 92(10):267–318.
- Li Fenqi, Wang Chengshan, Yi Haisheng, Tang Zhongli, Liu Baichong, Ma Yunhai. 2003. Ore– forming conditions and gold prospecting criteria in Changma region, West Gansu province[J]. Xinjiang Geology, 21(4): 468–473 (in Chinese with English abstract).
- Li Ping, Liu Hongxu, Ding Bo, Tian Mingming. 2018. The Ziron U– Pb geochronology and dynamics mechanism for the formation of monzonitic granite in the Qiongbola area, south of Yili basin[J]. Geology in China, 45(4): 720–739 (in Chinese with English abstract).
- Li Wenyuan. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics[J]. Acta Geoscientica Sinica. 25(3): 313–320 (in Chinese with English abstract).
- Mao Jingwen, Yang Jianmin, Zhang Zhaochong, Wu Maobing, Wang Zhiliang, Zhang Zuoheng, Ye Dejin, Zuo Guochao. 1998a. Geology, Geochemistry and genesis of the Hanshan ductile-brittle shear zone gold deposit in Gansu Province[J]. Mineral Deposits, 17 (1): 1–12 (in Chinese with English abstract).
- Mao Jingwen, Zhang Zuoheng, Yang Jianmin, Zhang Zhaochong, Wang Zhiliang, Ye Dejin. 1998b. Geology and metallogenic geochemistry of the Yinzuishan gold deposit, Gansu Province[J]. Mineral Deposits, 17(4): 297–306 (in Chinese with English)

abstract).

- Mao Jingwen, Zhang Zuoheng, Yang Jianmin, Zuo Guochao, Zhang Zuoheng, Ye Dejin, Wang Zhiliang, Ren Fenshou, Zhang Yu Jun, Peng Cong, Liu Yuzhou, Jiang Mei. 2003. Minerogenetic Series and Prospecting Evaluation of Copper Gold Iron Tungsten Polymetallic Deposit in the West Sector of the Northern Qilian Mountains[M]. Beijing: Geological Publishing House, 1–143 (in Chinese).
- Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635– 643.
- Middlemost E K. 1972. A simple classification of volcanic rocks[J]. Bulletin of Volcano, 36: 382–397.
- Middlemost E K. 1994. Naming materials in the magma/igneous rock system[J]. Earth–Science Reviews, 37(3/4):215–224.
- Miller C F. 1985. Are strongly peraluminous magmas derived from politic sedimentary source?[J]. Journal of Geology, 93(6):673–689.
- Patino A E, Johnston A D. 1991. Phase eruilibria and melting productivity in the politic system: Implication for the origin the peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107: 202–218.
- Patino A E, McCarthy T C. 1998. Melting of crustal rocks during continental collision and subduction[C]//Hacker B R, Liou J G (eds.). When Continental Collide: Geodynamics of Ultra- high Pressure Rocks. Netherlands: Kluwer Academic Publishers, 27–55.
- Pearce J A, Harris B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956–983.
- Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22: 247–253.
- Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U- Pb ages and metamorphism[J]. Chemical Geology, 184(1/2): 123-138.
- Rudnick R L, Gao S. 2003. Composition of the continental crust [C]//L R R (ed.). Treatise on Geochemistry. Oxford: Elsevier, 1–64.
- Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2004. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 148(6): 635–661.
- Song Shuguang, Niu Yaoning, Zhang Lifei, Zhang Guibin. 2009. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation: An example from North Qilian and North Qaidam HP– UHP belts[J]. Acta Petrologica Sinica, 25(9): 2067–2077 (in Chinese with English abstract).
- Song Shuguang, Zhang Guibin, Zhang Cong, Zhang Lifei, Wei Chunjing. 2013a. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP–UHP belts in Qilian–Qaidam, the northern Tibetan Plateau[J]. Chin. Sci. Bull., 58: 2240–2245 (in Chinese).

Song S G, Zhang L F, Niu Y L, Li S, Xiao H X. 2013b. Tectonics of the North Qilian orogen, NW China[J]. Gondwana, 23: 1378–1401.

- Song Zhongbao, Ren Youxiang, Li Zhipei, Yang Jianguo, Liu Xiaozhou. 2003. Review on isotopic dating in the western part of the North Qilian Mountains[J]. Northwestern Geology, 36(4): 1–7 (in Chinese with English abstract).
- Song Zhongbao, Li Zhipei, Ren Youxiang, Yang Jianguo, Li Yazhi, Xie Chunlin. 2005a. Chronology and geological significance of Chelugou dacite porphyry in North Qilian Mountains[J]. Geological Science and Technology Information, 24(3): 15–19 (in Chinese with English abstract).
- Song Zhongbao, Ren Youxiang, Li Zhipei, Yang Jianguo, Li Yazhi. 2005b. A preliminary study on the metallogenetic age of Hanshan gold deposit, North Qilian Mountain[J]. Geology and Prospecting, 41(3): 12–15 (in Chinese with English abstract).
- Sun Baolu, Qian Qing, Zhang Jian Xin. 2017. Ziron U– Pb geochronology, Hf–O isotopes, whole–rock geochemistry of the Dafosi and Jin fosi granite plutons, Gansu Province and geological implications[J]. Acta Petrologica Sinica, 33(10): 3091–3108 (in Chinese with English abstract).
- Sun S S, McDonough W F. 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. London: Geological Society Special Publication, 42: 313–345.
- Sun Zhiyuan, Long Lingli, Wang Yuwang, Luo Zhaohua, Zhao Lutong, Xie Hongjing. 2018. Geochronology, geochemistry and genesis of Na- rich volcanic rocks of the Zhaibeishan copper deposit in Eastern Tianshan Mountains[J]. Geology in China, 45(5): 943–962 (in Chinese with English abstract).
- Sylvesler P J. 1998. Post-collisional peraluminous granites[J]. Lithos, 45: 29-44.
- Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241–265.
- Tong Xiaohua, Ye Dejin. 2004. Metallogenic prognosis of composite informations on gold ore deposite in Yingzuishan–Chelugou–shan in western section of North Qilian[J]. Acta Geologica Gansu, 13 (2): 79–84 (in Chinese with English abstract).
- Turner G, Wang S, Burgess R. 1988. Argon and other noble gases in fluid inclusions[J]. Chemical Geology, 70(1/2): 42.
- Wang Guoliang, Ye Zhanfu, Qi Shengsheng, Li Jie, Liu Jiandong. 2013. LA- ICP- MS ziron U- Pb dating and geochemical characteristics of late grante in Longwang mountain of northern Qilian[J]. Mineral Resources and Geology, 27(6): 462-470 (in Chinese with English abstract).
- Wang Nan, Wu Cailai, Ma Changqian. 2017. The Paleozoic granitic magmatism of the eastern Altyn tagh fault belt and its continental dynamic significance [J]. Acta Geoscientica Sinica, 38(S1): 33–37 (in Chinese with English abstract).

质

- Wang Nan, Wu Cailai, Lei Min, Chen Hongjie, Li Mingze. 2018. Mineralogical characteristics of Qingshan granitic pluton in north Qilian Orogenic belt and their constraints on petrogenesis[J]. Earth Science, 43(4): 1253–1265 (in Chinese with English abstract).
- Wang Xueyin, He Pingping. 2015. Geochemical characteristics of Dishuishan gold deposit in Gansu province [J]. Gansu Geology, 24 (3): 58–62 (in Chinese with English abstract).
- Wang Yongsheng, Wang Jianguo, Liu Yuxiang. 2011. Metallogenic fluid characteristics and genetic analysis of gold deposit in the west sector of the Northern Qilian Mountains [J]. China Science and Technology Information. 14: 25–27 (in Chinese).
- Wang Yongsheng. 2012. Research on Mineralizing Fluid Geochemistry Characteristics and Genesis of Yingzuishan Gold Deposit, Gansu Province[D]. Beijing: China University of Geoscience, 1–68 (in Chinese with English abstract).
- Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. 2010. Rare earth Element Geochemistry[M]. Beijing: Science Press, 1–535 (in Chinese).
- Weaver B L, Tarney J. 1984. Empirical approach to estimating the composition of the continental crust[J]. Nature, 31(1): 310-575.
- Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217–1232.
- Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach[M].London: Unwin Hyman, 466.
- Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325–342.
- Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite gneiss[J]. Geological Magazine, 106(4): 370-384.
- Wu Cailai, Yang Jingsui, Yang Hongyi, Wooden J, Shi Rendeng, Chen Songnian, Zheng Qiuguang. 2004. Dating of two types of granite from north Qilian, China[J]. Acta Petrologica Sinica, 20(3): 425– 432 (in Chinese with English abstract).
- Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217–1238 (in Chinese with English abstract).
- Wu Maobing, Mao Jingwen, Yang Jianmin, Zhang Zhaochong, Zuo Guochao. 1999. Deformation of the Hanshan shear zone and its relationship to gold mineralization in west part of North Qilianshan [J]. Geology and Prospecting, 35(4): 12–14 (in Chinese with English abstract).
- Xia Linqi, Xia Zuchun, Ren Youxiang, Zuo Guochao, Qiu Jiaxiang, Peng Ligui, Wang Dawei, Yang Weirang, Wu Jieren, Xia Weihua, Tan Gongjiong, Yu Pusheng. 1998a. Volcanism and Mineralization of Qilian Mountains and its Adjacent Area [M]. Beijing: Geological Publishing House, 10–80 (in Chinese).
- Xia Linqi, Xia Zuchun, Xu Xueyi. 1998b. Early Palaeozoic mid-ocean ridge-ocean island and back-arc basin volcanism in the North Qilian

Mountains[J]. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).

- Xia Linqi, Xia Zuchun, Xu Xueyi, Zhao Jiangtian, Yang Hequn, Zhao Donghong. 1999. Proterozoic continental flood basalts from Qilian Mountains[J]. Geological Review, 45: 1028–1037 (in Chinese with English abstract).
- Xia Linqi, Xia Zuchun, Ren Youxiang. Xu Xueyi, Yang Hequn, Li Zhipei, Yang Jianguo, Li Wenyuan, Zhao Donghong, Song Zhongbao, Li Xiangmin, Yu Pusheng. 2001. Tectonic– Volcanic Magama– Metallogenic Dynamics of North Qilian Mountains[M]. Beijing: China Land Publishing House, 1–130, 231–255 (in Chinese).
- Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract).
- Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 43(4): 1087–1138 (in Chinese with English abstract).
- Xia Zuchun, Xia Linqi, Xu Xueyi. 1996. The Late- Proterozonic-Cambrian active continental rift volcanism in Northern Qilian Mountains[J]. Acta Geoscientica Sinica, 17(3): 282–291 (in Chinese with English abstract).
- Xiao Qinghui, Deng Jinfu, Ma Daquan, Hong Dawei, Mo Xuanxue, Lu Xinxiang, Li Zhichang, Wang Xiongwu, Ma Changqian, Wu Fuyuan, Luo Zhaohua, Wang Tao. 2002. The Ways of Investigation on Granitoids[M]. Beijing: Geological Publishing House, 230 (in Chinese).
- Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, Deng Gang. 2015. Geochemistry and ziron U– Pb age of volcanic rocks from the Shaquanzi Fe– Cu Deposit in East Tianshan Mountanins and their geological significance[J]. Geology in China, 41(6): 1771–1790 (in Chinese with English abstract).
- Xu Xisheng, Qiu Jiansheng. 2010. Igneous Petrology[M]. Beijing: Science Press, 93 (in Chinese).
- Yang Jianguo, Ma Zhongping, Ren Youxiang, Li Zhipei, Song Zhongbao. 2002. The geological feathures and genetic pattern of Te- Au deposit related to porphyry in North Qilian Mts[J]. Northwestern Geology, 35(2): 24-33 (in Chinese with English abstract).
- Yang Jianguo, Huang Zhenquan, Ren Youxiang, Li Zhipei, Song Zhongbao. 2003. The ore-controlling condition and metallogenic model of Hanshan gold deposit in North Qilian Mts[J]. Northwestern Geology, 36(1): 41-51 (in Chinese with English abstract).
- Yang Jianguo, Yang Linhai, Ren Youxiang, Li Zhipei, Song Zhongbao. 2005. Isotopic geochronology of the ore- forming process in the Hanshan gold deposit of the North Qilian Mountains[J]. Acta Geoscientica Sinica, 26(4): 315-320 (in Chinese with English abstract).

- Yang Xingji. 2007. Ore- forming conditions and prospecting direction of Hanshan gold deposit in the Anxi County, Gansu[J]. Northwestern Geology,43(1): 49- 53 (in Chinese with English abstract).
- Yang Yongchun, Liu Jiajun, Wang Xueyin, Wang Xiaoqiang, Xue Xiaowen, Zhang Cong, Ren Xi. 2018. Geochemical characteristics and structural ore– control mechanism about different structural– lithofacies zones of the Dishuishan gold deposit in Gansu province[J]. Northwestern Geology, 51(1): 88–103 (in Chinese with English abstract).
- Ye Dejin, Zhang Zuoheng, Zhao Yanqing. 2003. Ore-control factors and genesis of the Yingzuishan altered cataclastic rock type gold deposit, the west sector of the Northern Qilian Mountains[J]. Acta Geoscientia Sinica, 24(4): 311–318 (in Chinese with English abstract).
- Yun Jie, Gao Xiaofeng, Xiao Peixi, Kang Lei, Li Ping. 2015. Geochemical characteristics of the Lower Carboniferous volcanic rocks of the Wuluate Formation in the Western Kunlun Mountains and their geological significance[J]. Geology in China, 42(3): 587– 600 (in Chinese with English abstract).
- Zhai Yusheng, Lv Guxian. 2002. Transition of tectonic and dynamic regime and mineralization [J]. Acta Geoscientia Sinica, 23(2): 97– 102 (in Chinese with English abstract).
- Zhang Dequan, Sun Guiying, Xu Honglin. 1995. Petrology and isotope chronogy of the Jinfosi pluton, Qilian Mts., Gansu[J]. Acta Geoscientica Sinica, 37(4): 375–385 (in Chinese with English abstract).
- Zhao Wenjin, Mechie J, Feng Mei, Shi Danian, Xue Guangqi, Su Heping, Song Yang, Yang Hongwei, Liu Zhiwei. 2014. Cenozoic orogenesis of the Qilian Mountain and the lithosphere mantle tectonic framework beneath it[J]. Geology in China, 41(5): 1411– 1423. (in Chinese with English abstract).
- Zhu Dicheng, Pai Guitang, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli, Geng Quanru, Dong Guochen. 2006. Identification for the Mosozoic OIB- type basalts in Central Qinghai- Tibetan plateau: geochronology, geochemistry and their tectonic setting[J]. Acta Geological Sinica, 80(9): 1312-1328 (in Chinese with English abstract).
- Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L, Mo X X. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Recore of an early Paleozonic Andean– type magmatic arc in the Australian proto– Tethyan margin[J].Chemical Geology, 328: 290–308.
- Zhu Xiaohui, Wang Hongliang, Yang Meng. 2016. Ziron U–Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qillian Mountain[J]. Geology in China, 43(3): 751–767 (in Chinese with English abstract).

附中文参考文献

- 邓军, 吕古贤, 杨立强, 郭涛, 方云, 舒斌. 1998. 构造应力场转换与界 面成矿[J]. 地球学报, 19(3): 244-250.
- 葛肖虹,刘俊来.1999.北祁连造山带的形成与背景[J].地学前缘,6(4):223-230.
- 贾群子,杨钟堂,肖朝阳,邹湘华,段永民,赵俊伟,苏亮红.2002.祁 连山金属矿床成矿带划分及分布规律[J].矿床地质,21(增刊): 140-143.
- 蒋宗胜,张作衡,候可军,洪为,王志华,李凤鸣,田敬全.2012.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 岩石学报,28(7):2074-2088.
- 李奋其, 王成善, 伊海生, 汤中立, 刘佰崇, 马云海. 2003. 甘肃西部昌 马地区金矿成矿条件及找矿标志[J]. 新疆地质, 21(4): 468-473.
- 李平,刘红旭,丁波,田明明.2018.伊犁盆地南缘琼博拉二长花岗岩 锆石年代学及形成动力学机制[J].中国地质,45(4):720-739.
- 李文渊.2004. 祁连山主要矿床组合及其成矿动力学分析[J]. 地球学报, 25(3):313-320.
- 毛景文,杨建民,张招崇,吴茂炳,王志良,张作衡,叶得金,左国朝. 1998a.甘肃寒山剪切带型金矿床地质、地球化学和成因[J].矿床 地质,17(1):1-12.
- 毛景文,张作衡,杨建民,张招崇,王志良,叶得金.1998b.甘肃鹰嘴山金矿床地质和成矿地球化学[J].矿床地质,17(4):297-306.
- 毛景文,张作衡,杨建民,左国朝,张作衡,叶得金,.王志良,任丰寿, 张玉君,彭聪,刘煜洲,姜枚.2004.北祁连山西段铜金铁钨多金 属矿床成矿系列和找矿评价[M].北京:地质出版社,1-143.
- 宋述光,牛耀龄,张立飞,张贵宾.2009.大陆造山运动:从大洋俯冲 到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J]. 岩石学报,25(9):2067-2077.
- 宋述光,张贵宾,张聪,张立飞,魏春景.2013a.大洋俯冲和大陆碰撞 的动力学过程:北祁连一柴北缘高压一超高压变质带的岩石学制 约[J].科学通报,58(23):2240-2245.
- 宋忠宝,任有祥,李智佩,杨建国,刘小舟.2003.北祁连山西段同位 素测年概况[J].西北地质,36(4):1-7.
- 宋忠宝,李智佩,任有祥,杨建国,栗亚芝,谢春林.2005a.北祁连山 车路沟英安斑岩的年代学及地质意义[J].地质科技情报,24(3): 15-19.
- 宋忠宝,任有祥,李智佩,杨建国,栗亚芝.2005b.北祁连山寒山金矿 成矿时代讨论[J].地质与勘探,41(3):12-15.
- 孙宝璐, 钱青, 张建新. 2017. 甘肃大佛寺、金佛寺花岗岩体的锆石 U -Pb 年龄、Hf-O同位素和全岩地球化学特征及地质意义[J]. 岩 石学报, 33(10): 3091-3108.
- 孙志远, 龙灵利, 王玉往, 罗照华, 赵路通, 解洪晶. 2018. 东天山寨北 山铜矿区钠质火山岩年代学、地球化学特征及其成因[J]. 中国地 质, 45(5): 943-962.
- 童晓华,叶得金.2004.甘肃北祁连西段鹰咀山一车路沟山金矿综合 信息成矿预测[J].甘肃地质学报,13(2):79-84.

地

质

- 王国良, 叶占福, 祁生胜, 李杰, 刘建栋. 2013. 北祁连龙王山晚志留 世花岗岩LA-ICP-MS锆石U-Pb测年及其地球化学特征[J]. 矿 产与地质, 27(6): 462-470.
- 王楠, 吴才来, 马昌前. 2017. 阿尔金断裂带东段古生带花岗岩浆作 用及其大陆动力学意义[J]. 地球学报, 38(S1): 33-37.
- 王楠, 吴才来, 雷敏, 陈红杰, 李名则. 2018. 北祁连青山花岗岩体矿 物学特征及其对岩石成因的约束[J]. 地球科学, 43(4): 1253-1265.
- 王学银,何平平.2015.甘肃滴水山金矿地质地球化学特征及找矿标志[J].甘肃地质,24(3):58-62.
- 王永生,王建国,刘玉祥.2011.北祁连西段金矿成矿流体特征及成 因分析——以鹰咀山、寒山、车路沟金矿为例[J].中国科技信息, 14:25-27.
- 王永生.2012.甘肃省鹰咀山金矿成矿流体特征与矿床成因研 究[D].北京:中国地质大学(北京),1-68.
- 王中刚, 于学元, 赵振华. 1989. 稀土元素地球化学[M]. 北京: 科学出版社, 1-535.
- 吴才来,杨经绥,杨宏仪,Wooden J,史仁灯,陈松永,郑秋光.2004. 北祁连东部两类I型花岗岩定年及其地质意义[J].岩石学报,20 (3):425-432.
- 吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题[J].岩石学报,23(06):1217-1238.
- 吴茂炳,毛景文,杨建民,张招崇,左国朝. 1999. 北祁连西段寒山剪 切带的变形作用及其与金矿化的关系[J]. 地质与勘探, 35(4): 12-14.
- 夏林圻,夏祖春,任有祥,左国朝,邱家骧,彭礼贵,王大为,杨巍然, 邬介人,夏卫华,覃功炯,于浦生.1998a.祁连山及邻区火山作用 与成矿[M].北京:地质出版社,10-80.
- 夏林圻,夏祖春,徐学义.1998b.北祁连山早古生代洋脊一洋岛和弧 后盆地火山作用[J].地质学报,72(4):301-312.
- 夏林圻, 夏祖春, 徐学义, 赵江天, 杨合群, 赵东宏. 1999. 祁连山元古 宙大陆溢流玄武岩[J]. 地质论评, 45(增刊): 1028-1037.
- 夏林圻,夏祖春,任有祥,徐学义,杨合群,李智佩,杨建国,李文渊, 赵东宏,宋忠宝,李向民,于浦生.2001.北祁连山构造-火山岩 浆-成矿动力学[M].北京:中国大地出版社,1-130,231-255.
- 夏林圻,夏祖春,徐学义.2003.北祁连山奥陶纪弧后盆地火山岩浆 成因[J].中国地质,30(1):48-60.
- 夏林圻,李向民,余吉远,王国强.2016. 祁连山新元古代中一晚期至 早古生代火山作用与构造演化[J]. 中国地质,43(4):1087-1138.

- 夏祖春,夏林圻,徐学义.1996.北祁连山元古宙末一寒武纪主动大陆裂谷火山作用[J].地球学报,17(3):282-291.
- 肖庆辉,邓晋福,马大铨,洪大卫,莫宣学,卢欣祥,李志昌,汪雄武, 马昌前,吴福元,罗照华,王涛. 2002. 花岗岩研究思维与方 法[M].北京:地质出版社,230.
- 徐璐璐,柴凤梅,李强,曾红,耿新霞,夏芳,邓刚.2014.东天山沙泉 子铁铜矿区火山岩地球化学特征、锆石 U-Pb 年龄及地质意 义[J].中国地质,41(6):1771-1790.
- 徐夕生,邱检生.2010.火成岩岩石学[M].北京:科学出版社,93.
- 杨建国,马中平,任有祥,李智佩,宋忠宝.2002.北祁连山与斑岩有 关的碲金型金矿床地质特征和成因模型[J].西北地质,35(2): 24-33.
- 杨建国,黄振泉,任有祥,李智佩,宋忠宝.2003.甘肃北祁连山寒山 金矿床控矿条件与成矿模式[J].西北地质,36(1):41-51.
- 杨建国,杨林海,任有祥,李智佩,宋忠宝.2005.北祁连山寒山金矿 床成矿作用同位素地质年代学[J].地球学报,26(4):315-320.
- 杨兴吉.2007.甘肃安西县寒山金矿床控矿因素及找矿方向[J].西北 地质,43(1):49-53.
- 杨永春, 刘家军, 王学银, 王小强, 薛小文, 张聪, 任锡. 2018. 甘肃滴 水山金矿不同构造-岩相带岩石地球化学特征及构造控矿机理 探讨[J]. 西北地质, 51(1): 88-103.
- 叶得金,张作衡,赵彦庆.2003.北祁连西段鹰咀山蚀变碎裂岩型金 矿床控矿因素和成因[J].地球学报,24(4):311-318.
- 贠杰,高晓峰,校培喜,康磊,李平.2015.西昆仑下石炭统乌鲁阿特 组火山岩地球化学特征及地质意义[J].中国地质,42(3):587-600.
- 翟裕生, 吕古贤. 2002. 构造动力体制转换与成矿作用[J]. 地球学报, 23(2): 97-102.
- 张德全, 孙桂英, 徐洪林. 1995. 祁连山金佛寺岩体的岩石学和同位 素年代学研究[J]. 地球学报, 37(4): 375-385.
- 赵文津, Mechie J, 冯梅, 史大年, 薛光琪, 宿和平, 宋洋, 杨宏伟, 刘志 伟. 2014. 祁连山造山作用与岩石圈地幔的特型结构构造[J]. 中 国地质, 41(5): 1411-1423.
- 朱弟成,潘桂棠,莫宣学,王立全,赵志丹,廖忠礼,耿全如,董国臣. 2006. 青藏高原中部中生代 OIB 型玄武岩的识别:年代学、地球 化学及其构造环境[J]. 地质学报, 80(9):1312-1328.
- 朱小辉, 王洪亮, 杨猛. 2016. 祁连南缘柴达木山复式花岗岩体中部 二长花岗岩锆石 U-Pb 定年及其地质意义[J]. 中国地质, 43(3): 751-767.