【简讯与热点】

世界111个金矿典型矿床地质特征一览

Geological characteristics of 111 typical gold deposits in the world

崔敏利, 陈秀法, 何学洲

(中国地质调查局发展研究中心, 北京 100037)
<table>
<thead>
<tr>
<th>矿床名称</th>
<th>国家</th>
<th>纬度</th>
<th>经度</th>
<th>资源储量</th>
<th>矿岩</th>
<th>亚类型</th>
<th>时代</th>
<th>成矿带</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿伦布雷拉, Alumbrera</td>
<td>阿根廷</td>
<td>-27.33</td>
<td>-66.61</td>
<td>489</td>
<td>0.35</td>
<td>古近系玄武质安山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯山成矿带</td>
</tr>
<tr>
<td>贝拉德罗, Veladero</td>
<td>阿根廷</td>
<td>-29.37</td>
<td>-69.95</td>
<td>265</td>
<td>0.78</td>
<td>古近系火山岩和火山碎屑岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯山成矿带</td>
</tr>
<tr>
<td>苏卡瑞, Sukari</td>
<td>埃及</td>
<td>24.95</td>
<td>34.7</td>
<td>478</td>
<td>1.11</td>
<td>古近系火山沉积岩(安山岩-英安岩-粗面岩)及一套蛇绿岩套</td>
<td>造山型</td>
<td>太古宙</td>
<td>非洲-阿拉伯成矿区</td>
</tr>
<tr>
<td>泰尔弗, Telfer</td>
<td>澳大利亚</td>
<td>-21.75</td>
<td>120.67</td>
<td>547</td>
<td>0.75</td>
<td>中新元古代变质粉砂岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>芒特摩根, Mt. Morgan</td>
<td>澳大利亚</td>
<td>-28.77</td>
<td>122.07</td>
<td>295</td>
<td>2.29</td>
<td>中新元古代变质粉砂岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>奥林匹克坝, Olympic Dam</td>
<td>澳大利亚</td>
<td>-30.44</td>
<td>136.89</td>
<td>1200</td>
<td>0.30</td>
<td>中新元古代变质粉砂岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>帕丁顿, Paddington</td>
<td>澳大利亚</td>
<td>-30.49</td>
<td>121.33</td>
<td>476</td>
<td>1.47</td>
<td>中新元古代变质粉砂岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>戈尔登迈尔, Golden Mile</td>
<td>澳大利亚</td>
<td>-30.5</td>
<td>120.67</td>
<td>1250</td>
<td>2.40</td>
<td>新太古界粗玄岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>卡尔古利, Kalgoorlie</td>
<td>澳大利亚</td>
<td>-30.82</td>
<td>121.48</td>
<td>1720</td>
<td>1.23</td>
<td>新太古界玄武岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>圣艾夫斯, St. Ives</td>
<td>澳大利亚</td>
<td>-31.32</td>
<td>121.77</td>
<td>228</td>
<td>3.35</td>
<td>中新元古代变质粉砂岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>澳大利亚成矿区</td>
</tr>
<tr>
<td>本迪戈-巴拉腊特, Bendigo-Ballarat</td>
<td>澳大利亚</td>
<td>-37.18</td>
<td>144</td>
<td>600</td>
<td>-</td>
<td>古近系-泥盆系-碳酸盐岩</td>
<td>砂岩型</td>
<td>古生代</td>
<td>伊利安-新西兰成矿带</td>
</tr>
<tr>
<td>拉多兰姆, Lodolam</td>
<td>巴布亚几内亚</td>
<td>-3.1</td>
<td>153.67</td>
<td>1324</td>
<td>-</td>
<td>古近系安山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊利安-新西兰成矿带</td>
</tr>
<tr>
<td>利希尔, Lihir</td>
<td>巴布亚几内亚</td>
<td>-3.12</td>
<td>152.6</td>
<td>585</td>
<td>2.20</td>
<td>古近系安山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊利安-新西兰成矿带</td>
</tr>
<tr>
<td>弗里达河, Frieda River</td>
<td>巴布亚几内亚</td>
<td>-4.66</td>
<td>141.73</td>
<td>354</td>
<td>0.32</td>
<td>中新生代长石岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊利安-新西兰成矿带</td>
</tr>
<tr>
<td>奥克特迪, Tedi</td>
<td>巴布亚几内亚</td>
<td>-5.21</td>
<td>141.14</td>
<td>348</td>
<td>0.52</td>
<td>中新系闪长岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊利安-新西兰成矿带</td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度 ° 经度 °</td>
<td>资源储量 /t</td>
<td>品位 /10</td>
<td>围岩</td>
<td>亚类型</td>
<td>时代</td>
<td>成矿带</td>
<td>文献</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>波尔盖拉, Porgera</td>
<td>巴布亚新几内亚</td>
<td>-5.42 143.83</td>
<td>630</td>
<td>4.44</td>
<td>古近系冲积层</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊里安—新西兰成矿带</td>
<td>Richards et al., 1993; Fleming et al., 1986; 孙希, 1998</td>
</tr>
<tr>
<td>弗兰达, Frieda</td>
<td>巴布亚新几内亚</td>
<td>-4.66 141.73</td>
<td>315</td>
<td>0.52</td>
<td>古近系安山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>伊里安—新西兰成矿带</td>
<td>Eastoe, 1983; J.B. Whalen et al., 1985</td>
</tr>
<tr>
<td>沙帕达, Chapada</td>
<td>巴西</td>
<td>-14.23 -49.37</td>
<td>212</td>
<td>0.23</td>
<td>晚元古界变质火山岩</td>
<td>斑岩型</td>
<td>元古宙</td>
<td>南美地台成矿区</td>
<td>Richardsonson et al., 1986; Kuyumjian et al., 1995; 周德安, 1993</td>
</tr>
<tr>
<td>古鲁皮, Garupi</td>
<td>巴西</td>
<td>-2.29 -46.27</td>
<td>115</td>
<td>-</td>
<td>晚元古界变质火山沉积岩</td>
<td>造山型</td>
<td>元古宙</td>
<td>南美地台成矿区</td>
<td>Klein et al., 2006; Klein et al., 2005</td>
</tr>
<tr>
<td>塞拉佩拉达, Serra Pelada</td>
<td>巴西</td>
<td>-5.94 -49.66</td>
<td>500</td>
<td>12.23</td>
<td>新太古界变质火山沉积岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>南美地台成矿区</td>
<td>Cabral et al., 2002; Moroni et al., 2001</td>
</tr>
<tr>
<td>萨西戈, Sossego</td>
<td>巴西</td>
<td>-6.42 -50.07</td>
<td>249</td>
<td>0.20</td>
<td>新太古界变质火山沉积岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>南美地台成矿区</td>
<td>Monteiro et al., 2008; Monteiro et al., 2008</td>
</tr>
<tr>
<td>柏瓦利马, Novalima</td>
<td>巴西</td>
<td>-19.97 -43.83</td>
<td>810</td>
<td>-</td>
<td>新太古界变质火山沉积岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>南美地台成矿区</td>
<td>Lobato et al., 1998; Gair, 1962</td>
</tr>
<tr>
<td>普韦布洛 Viejo</td>
<td>多米尼加</td>
<td>18.93 -70.18</td>
<td>600</td>
<td>2.70</td>
<td>白垩系岩性火山岩</td>
<td>浅成低温热液型</td>
<td>中生代</td>
<td>加勒比成矿带</td>
<td>Kesler et al., 1981; Vennemann et al., 1993; 王登红, 1994</td>
</tr>
<tr>
<td>雅纳 -科累马, Yana-Kema</td>
<td>俄罗斯</td>
<td>62 148 60</td>
<td>-</td>
<td>第四系冲积层</td>
<td>砂岩型</td>
<td>新生代</td>
<td>楚戈奇—鄂霍茨克成矿带</td>
<td>王琳, 2001</td>
<td></td>
</tr>
<tr>
<td>涅日达宁, Nezhdaninsky</td>
<td>俄罗斯</td>
<td>62.52 139.16 629</td>
<td>5.10</td>
<td>-</td>
<td>下二叠统砂岩、粉砂岩</td>
<td>造山型</td>
<td>白垩纪</td>
<td>楚戈奇—鄂霍茨克成矿带</td>
<td>N. S. Bortnikov, 2007; Chernyshev, 2011</td>
</tr>
<tr>
<td>纳塔尔津, Natalka</td>
<td>俄罗斯</td>
<td>61.65 147.83 1920</td>
<td>2.80</td>
<td>-</td>
<td>一套新生代玄武岩</td>
<td>黑色岩系型</td>
<td>泥盆纪</td>
<td>楚戈奇—鄂霍茨克成矿带</td>
<td>Distler et al., 2004; Meffre et al., 2008</td>
</tr>
<tr>
<td>叶尼塞, Yenise</td>
<td>俄罗斯</td>
<td>60.39 93.03 460</td>
<td>-</td>
<td>中新生代玄武岩</td>
<td>黑色岩系型</td>
<td>元古宙</td>
<td>西伯利亚成矿区</td>
<td>Sazonov et al., 2010; Sazonov et al., 2009; A.M. Cazonoet al., 1992</td>
<td></td>
</tr>
<tr>
<td>奥林匹亚达, Olimpida</td>
<td>俄罗斯</td>
<td>59.87 92.91 1473</td>
<td>3.27</td>
<td>-</td>
<td>晚前寒武纪早里菲 Kordian 组浅变质含碎屑岩系</td>
<td>黑色岩系型</td>
<td>早古生代</td>
<td>西伯利亚成矿带</td>
<td>Yakubchuk et al., 2014; 王琳, 2001</td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度°经度°</td>
<td>资源储量/10^4 t</td>
<td>矿岩</td>
<td>亚类型</td>
<td>时代</td>
<td>成矿带</td>
<td>文献</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td>--------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>库拉纳赫，kuranakh</td>
<td>俄罗斯</td>
<td>58.85 125.67</td>
<td>487</td>
<td>晚古生代砂岩和下寒武统灰岩、白云岩</td>
<td>浅成低温热液型</td>
<td>中生代</td>
<td>楚科奇-鄂霍茨克成矿带</td>
<td>Rodionov,2014</td>
<td></td>
</tr>
<tr>
<td>苏科莫依洛克，Sukhooi log</td>
<td>俄罗斯</td>
<td>58.62 115.36</td>
<td>450</td>
<td>上二叠亚碳酸盐沉积岩</td>
<td>黑色岩系岩</td>
<td>白垩纪</td>
<td>西伯利亚成矿区</td>
<td>Meffre et al.,2008;Large et al.,2007;谭克仁,1998</td>
<td></td>
</tr>
<tr>
<td>博代博，Bodaybo</td>
<td>俄罗斯</td>
<td>58.12 114.2</td>
<td>1200</td>
<td>第四系冲积层</td>
<td>砂岩岩</td>
<td>新生代</td>
<td>西伯利亚成矿区</td>
<td>Palenova et al.,2015;Aleksandrov et al.,1975</td>
<td></td>
</tr>
<tr>
<td>阿穆尔, Amur</td>
<td>俄罗斯</td>
<td>50 136.38</td>
<td>5445</td>
<td>-</td>
<td>第四系冲积层</td>
<td>砂岩岩</td>
<td>新生代</td>
<td>乌拉尔-蒙古成矿带</td>
<td>Stepanov et al.,2008;Moiseenko et al.,1999</td>
</tr>
<tr>
<td>萨尔西格尼, Salsigne</td>
<td>法国</td>
<td>43.34 2.36</td>
<td>200</td>
<td>古近系英安岩石英闪长岩</td>
<td>斑岩岩</td>
<td>新生代</td>
<td>东亚成矿带</td>
<td>Le Guen et al.,1992;Demange et al.,2006;辛鹏秋,1997</td>
<td></td>
</tr>
<tr>
<td>东南亚, Far Southeast</td>
<td>菲律宾</td>
<td>16.85 120.8</td>
<td>440</td>
<td>古近系英安岩石英闪长岩</td>
<td>斑岩岩</td>
<td>新生代</td>
<td>东亚成矿带</td>
<td>Shinohara et al.,1997;Hedenquist et al.,1998;金阿标,2011</td>
<td></td>
</tr>
<tr>
<td>勒班陀-远东南, Lepanto-Far Southeast</td>
<td>菲律宾</td>
<td>16.85 120.8</td>
<td>440</td>
<td>古新世英安质-安山质角砾岩,石英英长斑岩</td>
<td>斑岩岩</td>
<td>第四纪</td>
<td>东亚成矿带</td>
<td>施俊法等,2006;毛景文,2012</td>
<td></td>
</tr>
<tr>
<td>菲律宾, Acupan</td>
<td>菲律宾</td>
<td>16.36 120.66</td>
<td>324</td>
<td>Virar 杂岩和部分安山质熔岩、火山角砾岩、凝灰岩</td>
<td>斑岩岩</td>
<td>第四纪</td>
<td>东亚成矿带</td>
<td>Cooke et al.,1996;施俊法等,2006</td>
<td></td>
</tr>
<tr>
<td>阿特拉斯, Atlas</td>
<td>菲律宾</td>
<td>10.34 123.75</td>
<td>331</td>
<td>古新世石英闪长岩丝和英安斑岩</td>
<td>斑岩岩</td>
<td>古近纪</td>
<td>东亚成矿带</td>
<td>Cooke,2005;罗明强,2011</td>
<td></td>
</tr>
<tr>
<td>菲律宾, Sipalay</td>
<td>菲律宾</td>
<td>9.82 122.46</td>
<td>301</td>
<td>-</td>
<td>斑岩岩</td>
<td>第四纪</td>
<td>东亚成矿带</td>
<td>Cooke,2005;Donald,2005</td>
<td></td>
</tr>
<tr>
<td>金金, Kingking</td>
<td>菲律宾</td>
<td>7.19 125.97</td>
<td>295</td>
<td>新近纪-第四纪英长闪长岩</td>
<td>斑岩岩</td>
<td>新生代</td>
<td>东亚成矿带</td>
<td>罗明强,2011</td>
<td></td>
</tr>
<tr>
<td>柱板坊, Tampakan</td>
<td>菲律宾</td>
<td>6.47 125.05</td>
<td>336</td>
<td>新近纪安山岩、英长岩、角砾岩</td>
<td>斑岩岩</td>
<td>第四纪</td>
<td>东亚成矿带</td>
<td>Cooke,2005;C Middleto,2004</td>
<td></td>
</tr>
<tr>
<td>安蒂奥基亚, Antioquia</td>
<td>哥伦比亚</td>
<td>7.86 -74.8</td>
<td>155</td>
<td>新生代安山质斑岩</td>
<td>斑岩岩</td>
<td>新生代</td>
<td>考卡省成矿带</td>
<td>Lesage et al.,2013;Lesage,2011</td>
<td></td>
</tr>
<tr>
<td>巴克尔奇克, Bakyrychik</td>
<td>哈萨克斯坦</td>
<td>49.37 81.07</td>
<td>277</td>
<td>上三叠统黑色页岩,互层的灰岩,复矿砂岩、安山质粉砂岩等海相含碳细碎屑岩建造</td>
<td>砂岩岩</td>
<td>新生代</td>
<td>乌拉尔-蒙古成矿带</td>
<td>刘春涌,2005b;2005c</td>
<td></td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度’</td>
<td>经度’</td>
<td>资源储量/ t</td>
<td>品位/ %</td>
<td>围岩</td>
<td>亚类型</td>
<td>时代</td>
<td>成矿带</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>阿卡巴凯, Akbakai</td>
<td>哈萨克斯斯坦</td>
<td>45.12</td>
<td>72.67</td>
<td>360</td>
<td>6.19</td>
<td>泥盆纪花岗闪长岩与奥陶纪碎屑岩接触带、一套碳质含量较高灰质岩、碳酸岩等</td>
<td>斑岩型</td>
<td>石英斑－泥盆纪</td>
<td>楚－伊犁成矿带</td>
</tr>
<tr>
<td>库姆托福, Kumtor</td>
<td>吉尔吉斯斯坦</td>
<td>41.86</td>
<td>78.32</td>
<td>334</td>
<td>3.20</td>
<td>泥盆纪黑云母片麻岩及泥盆纪、二叠纪花岗片麻岩</td>
<td>IOCG型</td>
<td>石英斑－二叠纪</td>
<td>西部蒙古成矿带</td>
</tr>
<tr>
<td>梅里亚迪纳, Meliadine</td>
<td>加拿大</td>
<td>63.02</td>
<td>-92.22</td>
<td>200</td>
<td>6.39</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>耶洛奈夫, Yellowknife</td>
<td>加拿大</td>
<td>62.94</td>
<td>-114.2</td>
<td>499</td>
<td>2.08</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>迪图尔, Detour</td>
<td>加拿大</td>
<td>50.02</td>
<td>-79.71</td>
<td>105</td>
<td>0.98</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>赫姆洛, Hemlo</td>
<td>加拿大</td>
<td>48.5</td>
<td>-86</td>
<td>600</td>
<td>1.41</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>多姆, Dome</td>
<td>加拿大</td>
<td>48.46</td>
<td>-81.24</td>
<td>333</td>
<td>-</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>艾兰, Island</td>
<td>加拿大</td>
<td>48.31</td>
<td>-84.45</td>
<td>162</td>
<td>8.26</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>霍恩, Home</td>
<td>加拿大</td>
<td>48.25</td>
<td>-79.01</td>
<td>279</td>
<td>1.54</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>凯尔安德逊, Kerr Addison</td>
<td>加拿大</td>
<td>48.14</td>
<td>-79.58</td>
<td>307</td>
<td>-</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>塔夸, Tankwa</td>
<td>南非</td>
<td>5.33</td>
<td>-2</td>
<td>200</td>
<td>1.13</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>太古宙</td>
<td>西非成矿区</td>
</tr>
<tr>
<td>阿散蒂, Ashanti</td>
<td>加纳</td>
<td>6.45</td>
<td>-1.72</td>
<td>1182</td>
<td>1.36</td>
<td>新太古代片麻岩</td>
<td>造山型</td>
<td>古元古代</td>
<td>非洲－阿拉伯成矿区</td>
</tr>
<tr>
<td>色潘, Sepan</td>
<td>老挝</td>
<td>16.97</td>
<td>105.98</td>
<td>112</td>
<td>1.60</td>
<td>新太古代片麻岩</td>
<td>斑岩型</td>
<td>古元古代</td>
<td>中南半岛成矿区</td>
</tr>
<tr>
<td>罗西亚蒙大拿, Rosia Montana</td>
<td>罗马尼亚</td>
<td>46.31</td>
<td>23.17</td>
<td>577</td>
<td>1.04</td>
<td>岩浆岩</td>
<td>斑岩型</td>
<td>二叠纪</td>
<td>地中海成矿带</td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度°</td>
<td>经度°</td>
<td>资源储量/t</td>
<td>品位/10^-6</td>
<td>矿床名称</td>
<td>国家</td>
<td>纬度°</td>
<td>经度°</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>萨迪拉，Sadiola</td>
<td>马里</td>
<td>13.9</td>
<td>-11.68</td>
<td>280</td>
<td>1.81</td>
<td>古元古代花岗岩、绿岩带，碱性岩，</td>
<td>造山型</td>
<td>元古宙</td>
<td>非洲—阿拉伯</td>
</tr>
<tr>
<td>美国</td>
<td>64.52</td>
<td>-165.45</td>
<td>170</td>
<td>-</td>
<td>古近系—第四系冲积层</td>
<td>砂岩型</td>
<td>新生代</td>
<td>北科迪勒拉成矿带</td>
<td>Cline et al., 2000; Ruggieri et al., 1997</td>
</tr>
<tr>
<td>诺姆，Nome</td>
<td>马里</td>
<td>58.27</td>
<td>-134.37</td>
<td>281</td>
<td>1.42</td>
<td>早中—晚期白垩纪板状带和</td>
<td>造山型</td>
<td>古近纪</td>
<td>北科迪勒拉成矿带</td>
</tr>
<tr>
<td>贝茨—波斯克，Betze-Post</td>
<td>美国</td>
<td>40.98</td>
<td>-116.38</td>
<td>970</td>
<td>-</td>
<td>早中—晚期白垩纪板状带和</td>
<td>造山型</td>
<td>早中生代</td>
<td>北科迪勒拉成矿带</td>
</tr>
<tr>
<td>比尤特，Butte</td>
<td>美国</td>
<td>46.04</td>
<td>-112.56</td>
<td>3511</td>
<td>0.67</td>
<td>古元古代花岗岩、绿岩带，</td>
<td>造山型</td>
<td>古元宙</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>霍姆斯塔克, Homestake</td>
<td>母矿脉, Mother Lode</td>
<td>美国</td>
<td>44.37</td>
<td>-103.75</td>
<td>3200</td>
<td>6.70</td>
<td>中中新元古界片岩</td>
<td>造山型</td>
<td>早中生代</td>
</tr>
<tr>
<td>钱坑, Gold Quarry</td>
<td>母矿脉</td>
<td>美国</td>
<td>44.28</td>
<td>-120.8</td>
<td>1000</td>
<td>0.32</td>
<td>窄条岩—蛇绿岩带和</td>
<td>造山型</td>
<td>古生代</td>
</tr>
<tr>
<td>贝茨—波斯克，Betze-Post</td>
<td>美国</td>
<td>40.98</td>
<td>-116.38</td>
<td>970</td>
<td>-</td>
<td>早中—晚期白垩纪板状带和</td>
<td>造山型</td>
<td>古生代</td>
<td>北美成矿区</td>
</tr>
<tr>
<td>卡林，Carlin</td>
<td>美国</td>
<td>40.91</td>
<td>-116.32</td>
<td>109.5</td>
<td>-</td>
<td>早中—晚期白垩纪板状带和</td>
<td>造山型</td>
<td>古生代</td>
<td>北科迪勒拉成矿带</td>
</tr>
<tr>
<td>鲁德山, Round Mountain</td>
<td>美国</td>
<td>38.26</td>
<td>-105.55</td>
<td>261</td>
<td>0.53</td>
<td>古元—中生代</td>
<td>造山型</td>
<td>元古宙</td>
<td>非洲—阿拉伯</td>
</tr>
<tr>
<td>马里, Marysville</td>
<td>美国</td>
<td>37.12</td>
<td>-121.8</td>
<td>1505</td>
<td>-</td>
<td>中新元古界片岩</td>
<td>造山型</td>
<td>古生代</td>
<td>北科迪勒拉成矿带</td>
</tr>
<tr>
<td>奥玉陶勒盖, Oyu Tolgoi</td>
<td>蒙古</td>
<td>43.02</td>
<td>106.85</td>
<td>319</td>
<td>0.24</td>
<td>早中—晚期白垩纪板状带和</td>
<td>造山型</td>
<td>古生代</td>
<td>北科迪勒拉成矿带</td>
</tr>
<tr>
<td>托拉古纳斯, Lagunas Norte</td>
<td>秘鲁</td>
<td>-7.95</td>
<td>-78.24</td>
<td>103</td>
<td>1.66</td>
<td>古近系—第四系冲积层</td>
<td>造山型</td>
<td>元古宙</td>
<td>晚奥陶—泥盆系</td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度/经度</td>
<td>资源储量</td>
<td>品位</td>
<td>围岩</td>
<td>类型</td>
<td>时代</td>
<td>成矿带</td>
<td>文献</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Yanacocha</td>
<td>秘鲁</td>
<td>-6.99/-78.53</td>
<td>355</td>
<td>0.48</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Longo et al., 2010; Goldie et al., 2002; 刘亮生等，1994</td>
</tr>
<tr>
<td>Galeno</td>
<td>秘鲁</td>
<td>-6.97/-78.32</td>
<td>131</td>
<td>0.14</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Davies et al., 2005; Marinov, 2011</td>
</tr>
<tr>
<td>Pierina</td>
<td>秘鲁</td>
<td>-9.45/-77.59</td>
<td>224</td>
<td>0.37</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Rainbow et al., 2005; Fifarek et al., 2005; 于又华等，2000</td>
</tr>
<tr>
<td>Cuajone</td>
<td>秘鲁</td>
<td>-17.04/-70.71</td>
<td>1234</td>
<td>0.47</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>第四纪</td>
<td>安第斯成矿带</td>
<td>夏斌，2002; 霍晓晓等，2012; Adam T. Simmons, 2013</td>
</tr>
<tr>
<td>El Arco</td>
<td>墨西哥</td>
<td>28.04/-113.4</td>
<td>120</td>
<td>0.20</td>
<td>侏罗纪花岗闪长岩</td>
<td>斑岩型</td>
<td>侏罗纪</td>
<td>北科迪勒拉成矿带</td>
<td>V.A. Valencia, 2006</td>
</tr>
<tr>
<td>Metates</td>
<td>墨西哥</td>
<td>24.91/-106.37</td>
<td>429</td>
<td>0.49</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>北科迪勒拉成矿带</td>
<td>Greenhoot, 2000</td>
</tr>
<tr>
<td>Pachuca</td>
<td>墨西哥</td>
<td>20.06/-98.44</td>
<td>400</td>
<td>0.51</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>北科迪勒拉成矿带</td>
<td>Camprubiet et al., 2007</td>
</tr>
<tr>
<td>Witwatersrand</td>
<td>南非</td>
<td>-26.7/28</td>
<td>58000</td>
<td>-</td>
<td>中—新太古代石英质岩系</td>
<td>砂岩型</td>
<td>古生代</td>
<td>非洲—阿拉伯成矿带</td>
<td>Utter, 1980; Minter et al., 1988; 汤葵联，1991</td>
</tr>
<tr>
<td>Hishikari</td>
<td>日本</td>
<td>32.01/130.69</td>
<td>326</td>
<td>45.50</td>
<td>白垩纪—古近系页岩</td>
<td>浅成低温热液型</td>
<td>第四纪</td>
<td>东亚成矿带</td>
<td>毛景文，2012; Tohma, 2010; Izawa, 1990; 施俊法，2001</td>
</tr>
<tr>
<td>Bulyanhulu</td>
<td>坦桑尼亚</td>
<td>-3.22/32.49</td>
<td>326</td>
<td>7.65</td>
<td>太古代火山岩花岗岩类</td>
<td>造山型</td>
<td>元古代</td>
<td>乌本迪造山带</td>
<td>Theriault et al., 2003; Simms et al., 2007; 徐年生，2001</td>
</tr>
<tr>
<td>Copler</td>
<td>土耳其</td>
<td>39.43/38.53</td>
<td>302</td>
<td>1.54</td>
<td>侵入二叠纪—石炭纪变质</td>
<td>斑岩型</td>
<td>古近纪</td>
<td>西亚成矿带</td>
<td>Imer et al., 2013; Yigit, 2006</td>
</tr>
<tr>
<td>Kisladag</td>
<td>土耳其</td>
<td>38.48/29.15</td>
<td>206</td>
<td>0.52</td>
<td>晚白垩纪花岗岩类</td>
<td>斑岩型</td>
<td>中生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Bozkaya et al., 2014; Yigit et al., 2009;</td>
</tr>
<tr>
<td>Daugiztau</td>
<td>乌兹别克斯坦</td>
<td>41.24/64.21</td>
<td>261</td>
<td>-</td>
<td>奥陶—志留系碳酸盐岩系</td>
<td>黑色岩系型</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Usmanovich et al., 2015; 赵仁夫等，2002</td>
</tr>
<tr>
<td>Koppatacs</td>
<td>乌兹别克斯坦</td>
<td>41.17/65.5</td>
<td>620</td>
<td>4.50</td>
<td>奥陶—志留系碳酸盐岩系</td>
<td>黑色岩系型</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Wang et al., 1997; Xie et al., 1999;</td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>纬度’经度’</td>
<td>资源储量/t</td>
<td>品位/10^-3</td>
<td>围岩名称</td>
<td>亚类型</td>
<td>时代</td>
<td>成矿带</td>
<td>文献</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>卡尔马克尔</td>
<td>乌兹别克</td>
<td>41.05 69.62</td>
<td>2000</td>
<td>-</td>
<td>铅锌二叠纪花岗岩</td>
<td>斑岩型</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Pašava et al., 2010; Bliss et al., 2014; 薛春纪等, 2016</td>
</tr>
<tr>
<td>阿尔马雷克</td>
<td>乌兹别克</td>
<td>40.82 69.65</td>
<td>2250 0.37</td>
<td>石英一安白二叠纪岩(C2-P1)</td>
<td>浅成低温热液型</td>
<td>石英纪</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>薛春纪等, 2013</td>
</tr>
<tr>
<td>扎尔米坦</td>
<td>乌兹别克</td>
<td>40.33 66.73</td>
<td>9.80</td>
<td>石英一志留系白云岩</td>
<td>黑色岩系型</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Abzalov, 2007; Zhao et al., 2014; 赵仁夫等, 2002</td>
<td></td>
</tr>
<tr>
<td>穆龙套, Open Pit</td>
<td>乌兹别克</td>
<td>41.5 64.58</td>
<td>1500 2.50</td>
<td>下志留系变质岩</td>
<td>黑色岩系</td>
<td>二叠纪</td>
<td>古生代</td>
<td>乌拉尔—蒙古成矿带</td>
<td>Kempe et al., 2015; Drew et al., 1998; 孟广路等, 2013</td>
</tr>
<tr>
<td>科齐布拉克, Koch Burak</td>
<td>乌兹别克</td>
<td>41.23 70.03</td>
<td>160 1.21</td>
<td>火山岩一安白一安白</td>
<td>造山型</td>
<td>-</td>
<td>乌拉尔—蒙古成矿带</td>
<td>刘春涌, 2004</td>
<td></td>
</tr>
<tr>
<td>萨拉威, Salave</td>
<td>西班牙</td>
<td>43.57 -6.91</td>
<td>125 1.21</td>
<td>石英一铁一磁铁</td>
<td>VMS 型</td>
<td>古生代</td>
<td>地中海成矿带</td>
<td>Martin-Izard et al. 2009; Gumiel et al., 2008</td>
<td></td>
</tr>
<tr>
<td>里奥奥廷, Rio Tinto</td>
<td>西班牙</td>
<td>37.17 -6.67</td>
<td>850 -</td>
<td>石英一铁一磁铁</td>
<td>VMS 型</td>
<td>古生代</td>
<td>地中海成矿带</td>
<td>Pomies et al., 1998; Williams et al., 1977; 李廷祥, 2000</td>
<td></td>
</tr>
<tr>
<td>斯库斯里斯, Skouries</td>
<td>希腊</td>
<td>40.47 23.7</td>
<td>284 0.48</td>
<td>古近系岩浆岩</td>
<td>斑岩型</td>
<td>古近纪</td>
<td>塞尔维亚马其顿成矿带</td>
<td>Frei, 1995; Eliopoulou et al., 1991; 张雪旋等, 2014</td>
<td></td>
</tr>
<tr>
<td>蒙拉基, Hauraki</td>
<td>新西兰</td>
<td>-36.55 174.57</td>
<td>1362 -</td>
<td>中新世和上新生代火岩英安岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>伊里安—新西兰成矿带</td>
<td>Christie et al., 2007; Simpson et al., 2011; Robi 等, 1990</td>
<td></td>
</tr>
<tr>
<td>萨里加纳里, Sari Gunay</td>
<td>伊朗</td>
<td>35.18 48.09</td>
<td>300 2.00</td>
<td>三叠纪岩浆岩</td>
<td>浅成低温热液型</td>
<td>新近纪</td>
<td>西亚成矿带</td>
<td>Richards et al., 2006</td>
<td></td>
</tr>
<tr>
<td>萨尔切什梅, SarCheshmeh</td>
<td>伊朗</td>
<td>29.95 55.86</td>
<td>- 0.27</td>
<td>上新世—中新世火岩安白岩</td>
<td>斑岩型</td>
<td>新近纪</td>
<td>西亚成矿带</td>
<td>张洪瑞等, 2013</td>
<td></td>
</tr>
<tr>
<td>科拉尔, Kolar</td>
<td>印度</td>
<td>13.17 78.17</td>
<td>900 -</td>
<td>中新世—上新世火岩安白岩</td>
<td>斑岩型</td>
<td>新近纪</td>
<td>印度成矿带</td>
<td>Safonov et al., 1984; Mishra et al., 1999; 刘春涌, 2005; 李尚林等, 2014</td>
<td></td>
</tr>
<tr>
<td>巴都希贾乌, Batu Hijau</td>
<td>印度尼西亚</td>
<td>-8.97 116.87</td>
<td>296 0.29</td>
<td>火岩一细长岩</td>
<td>斑岩型</td>
<td>新近纪</td>
<td>伊里安—新西兰成矿带</td>
<td>Imai and Ohno, 2008; Mekrum et al., 1994</td>
<td></td>
</tr>
<tr>
<td>矿床名称</td>
<td>国家</td>
<td>矿度/经度</td>
<td>资源储量</td>
<td>品位</td>
<td>围岩</td>
<td>亚类型</td>
<td>时代</td>
<td>成矿带</td>
<td>文献</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>格拉斯贝格, Grasberg</td>
<td>印度尼西亚</td>
<td>-4.06 137.11</td>
<td>3416 0.68</td>
<td>古近—新近纪斑状英闪长岩、英安岩、灰岩</td>
<td>斑岩型</td>
<td>新近纪</td>
<td>伊里安—新几内亚成矿带</td>
<td>Pollard et al., 2006; 张伟波等, 2013</td>
<td></td>
</tr>
<tr>
<td>洛斯佩拉姆, Los Pelambres</td>
<td>智利</td>
<td>-31.72 -70.49</td>
<td>342 0.06</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Reich et al., 2003; Sillitoe, 1973; 张立生, 2002</td>
<td></td>
</tr>
<tr>
<td>塔斯卡拉玛, Pascua Lama</td>
<td>智利</td>
<td>-29.32 -70.02</td>
<td>710 1.42</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Deyell et al., 2005; Arenson et al., 2014; Palacios et al., 2001</td>
<td></td>
</tr>
<tr>
<td>塞罗卡塞尔, Cerro Casale</td>
<td>智利</td>
<td>-27.79 -69.3</td>
<td>1014 0.51</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Sillitoe et al., 2013; Sanematsu, 2000</td>
<td></td>
</tr>
<tr>
<td>坎佩切, Caspiache</td>
<td>智利</td>
<td>-27.68 -69.3</td>
<td>780 0.49</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Vila et al., 1991; Muntean et al., 2000; 李华先, 1988</td>
<td></td>
</tr>
<tr>
<td>马里昆加, Mariaunca</td>
<td>智利</td>
<td>-27.55 -69.3</td>
<td>209 0.70</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Ryan, 1996; Ryan et al., 1994; 方维萱等, 2012</td>
<td></td>
</tr>
<tr>
<td>坎德拉利亚, Candeleria</td>
<td>智利</td>
<td>-27.52 -70.29</td>
<td>113 0.13</td>
<td>古近系安山质火山岩</td>
<td>IOCG 型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Rosenbaum et al., 2005; Davidson et al., 1991; 缪卫东, 1993</td>
<td></td>
</tr>
<tr>
<td>隆伯马尔特, Lobo-Marte</td>
<td>智利</td>
<td>-27.23 -69.03</td>
<td>220 1.18</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Warren et al., 2008; Warren et al., 2005; 高乾兰, 1991</td>
<td></td>
</tr>
<tr>
<td>埃尔佩尼翁, El Penon</td>
<td>智利</td>
<td>-24.41 -69.5</td>
<td>128 6.17</td>
<td>古近系安山质火山岩</td>
<td>浅成低温热液型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Shaver, 2009; Shaver, 2009</td>
<td></td>
</tr>
<tr>
<td>塞拉戈达, Sierra Gorda</td>
<td>智利</td>
<td>-22.85 -69.34</td>
<td>102 0.06</td>
<td>古近系安山质火山岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Thomas Bissig, 2014; Oviedo et al. 1991</td>
<td></td>
</tr>
<tr>
<td>埃尔印迪奥, El Indio</td>
<td>智利</td>
<td>-29.77 -69.98</td>
<td>140 10.90</td>
<td>新近纪安山岩、流纹岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>Jannas et al., 1990; Jannas et al., 1999; 佐藤兴平等, 1984</td>
<td></td>
</tr>
<tr>
<td>埃尔特尼恩特, El Teniente</td>
<td>智利</td>
<td>-34.08 -70.38</td>
<td>437 0.04</td>
<td>古近系安山质火山岩、辉长岩、闪长玢岩与黑云母角砾岩</td>
<td>斑岩型</td>
<td>新生代</td>
<td>安第斯成矿带</td>
<td>竺泓泽等, 2015; 毛翠等等, 2012</td>
<td></td>
</tr>
</tbody>
</table>

注：* 坐标数据相当于比例尺1:1,2500万地质图读取精度；* 资源储量/品位本身都是动态数据，来自文献或者书籍记载仅供参考矿山规模大小。


Arenson L U, Jakob M, Wainstein P. Effects of Dust Deposition on Glacier Ablation and Runoff at the Pasqua–Lama Mining Project, Chile and Argentina[C]// Engineering Geology for Society and Territory. 2014: 27–32.


Cerpa L M, Bissig T, Kyser K, et al. Lithologic controls on


http://geochina.cgs.gov.cn 中国地质, 2020, 47(5)
Hitzman M W, Oreskes N, Einaudi M T. Geological characteristics and
tectonic setting of proterozoic iron oxide (Cu, U, Au, REE)
Holley E A. The Veladero high–sulfidation epithermal Au–Ag deposit,
Argentina: Volcanic stratigraphy, alteration, mineralization, and
IMAI A. Generation and Evolution of Ore Fluids for Porphyry Cu–Au
Mineralization of the Santo Tomas II (Philex) Deposit,
Imai A., Ohno, S., 2008. Primary Ore Mineral Assemblage and
Fluid Inclusion Study of the Butu Hijau Porphyry Cu–Au Deposit,
İmre A., Richards J P, Creaser R A. Age and tectonomagmatic setting
of the Eocene Çöpler–Kabaatçik magmatic complex and porphyry–
epithermal Au deposit, East Central Anatolia, Turkey[J].
J.B.Whalen, R.M.Britten, I.McDougall, 等. 巴布亚—新几内亚 Frieda
矿化和构造: 外前寒武纪地质.
Jan Pasava, 李新宇. 黑色页岩中的金矿床成因——IGCP254 研究新
mineralization at the El Indio deposit, Chile[J]. Journal of
types in the El Indio district, Chile[J]. Soc. Econ. Geol. Spec. Publ,
1999, 7: 219–266.
Jannas R R. Gold and copper mineralization in the El Indio deposit,
Chile. Epithermal Gold Mineralization of the Circum–Pacific :
Geology, Geochemistry, Origin and Exploration II[J]. Jour.
geochem.explo., 1999 36:233–266.
John M. Guibert, Charles F.Park Jr, 天华. 加拿大西北部耶洛奈夫地区
Johnson J P, McCulloch M T. Sources of mineralising fluids for
the Olympic Dam deposit (South Australia): Sm–Nd isotopic
Kelley K D, Romburger S B, Beatty D W, et al. Geochemical and
geochronological constraints on the genesis of Au–Te deposits at
Cripple Creek, Colorado[J]. Economic Geology, 1998, 93(7): 981–
1012.
Kempe, U. et al., 2015. Concordant U–Pb SHRIMP ages of U–rich
zircon in granitoids from the Muruntau gold district (Uzbekistan):
Timing of intrusion, alteration ages, or meaningless numbers. Ore
Geology Reviews, 65: 308–326.
Kerr D J, Gibson H L. A comparison of the Horne volcanogenic
massive sulfide deposit and intracauldron deposits of the Mine
Sequence, Noranda, Quebec[J]. Economic Geology, 1993, 88(6):
1419–1442.
Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins,
and geodynamic settings of supergiant gold metallogenic
Kerrich R, Wyman D. Geodynamic setting of mesothermal gold
deposits: An association with accretionary tectonic regimes[J].
Kesler S E, Russell N, Seaward M, et al. Geology and geochemistry of
sulfide mineralization underlying the Pueblo Viejo gold–silver
oxide deposit, Dominican Republic[J]. Economic Geology, 1981,
Khashegerel B E, Rye R O, Hedenquist J W, et al. Geology and
reconnaissance stable isotope study of the Oyu Tolgoi porphyry
Cu–Au system, South Gobi, Mongolia[J]. Economic Geology,
Kishida A, Kerrich R. Hydrothermal alteration zoning and gold
concentration at the Kerr–Addison Archean lode gold deposit,
690.
C, S) constraints on the genesis of the Cachoeira gold deposit,
Gurupi Belt, northern Brazil[J]. Chemical Geology , 2005, 221(3):
188–206.
Cu–Au and Rosia Montana epithermal Au–Ag deposits, Apuseni
Mts., Romania: Timing of magmatism and related
mineralisation[J]. Bulgarian Academy of Sciences, Geochemistry,
Kouzmanov, K. et al., 2006. Magmatic Fluids in the Breccia–Hosted
Epithermal Au–Ag Deposit of Rosia Montana, Romania.
Kuehn C A, Rose A W. Carlin gold deposits , Nevada: Origin in a deep
zone of mixing between normally pressured and over–pressured
Kuyumjian R M. Diversity of fluids in the origin of the Chapada Cu–
205.
Larue R R, Maslennikov V V, Robert F, et al. Multistage sedimentary
and metamorphic origin of pyrite and gold in the giant Sukhoi Log
deposit, Lena gold province, Russia[J]. Economic Geology,
Lawley C J M, Creaser R A, Jackson S E, et al. Unraveling the western
Churchill province Paleoproterozoic gold metallotect: Constraints
from Re–Os Arsenopyrite and U–Pb Xenotime geochemistry and
LA–ICP–MS arsenopyrite trace element chemistry at the BIF–
http://geochina.cgs.gov.cn 中国地质, 2020, 47(5)


Marinov D. Re–Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Peru[C]/ Biennial Meeting, Sga 2011 Antofagasta, Chile, 2011.


Luís Oviedo, 黄俊杰. 智利特卡马拉库页岩型金矿床的成因特征[J]. 国外火山地质, 1993(2).


Marinov D. Re–Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Peru[C]/ Biennial Meeting, Sga 2011 Antofagasta, Chile, 2011.


Luis Oviedo, 黄俊杰. 智利特卡马拉库页岩型金矿床的成因特点[J]. 国外火山地质, 1993(2).


Rota J C, Ekburg C E. History and geology outlined for Newmont's
Gold Quarry Mine: history and general geology[C]//
Bulk mineable precious metal deposits of the western United States

Ruggieri G, Lattanzi P, Luxoro S S, et al. Geology, mineralogy, and
fluid inclusion data of the Furtei high–sulfidation gold deposit,

Rush P M, Seegers H J. Ok Tedi copper–gold deposits[J]. Geology of
the mineral deposits of Australia and Papua New Guinea, 1990, 2:
1747–1754.

Ryan P J. The Candelaria copper–gold deposit, Chile[M]. University
of the Witwatersrand, Economic Geology Research Unit, 1996.

deposit, Chile: Congreso Geológico Chileno, 7th[J]. Concepción

Rye D M, Rye R O. Homestake gold mine, South Dakota; I, Stable

Safonov Y G, Genkin A D, Vasudev V N, et al. Genetic features of
gold ore deposit at Kolar, Dharwar Craton, India[J]. Journal of

Sánchez, 2006., p. 30; ProInversión—Private Investment Promotion
Agency in Peru, 2007

Sander M V, Einaudi M T. Epithermal deposition of gold during
transition from propylitic to potassic alteration at Round Mountain,

Using 40 Ar/ 39 Ar Dating on the Mineralization of the Hishikari
249–266.

Sanematsu K. Caspiche porphyry Au–Cu deposit in the Maricunga

and secondary weathering phases, Mother Lode gold district,
Tuolumne County, California[J]. Applied Geochemistry, 2000, 15
(8): 1219–1244.

of the Yenisey Ridge: geological–structural province, structural

Conditions of the Blagodat Gold Deposit in the Riphean
Metamorphic Rocks of the Yenisey Ridge According to
Geochemical and Isotopic Data[J]. 2009.

Schaubs P M, Zhao C. Numerical models of gold–deposit formation in
the Bendigo–Ballarat Zone, Victoria[J]. Australian Journal of Earth

Schwartz M O, Oberthür T, Amanor J, et al. Fluid inclusion re-
equilibration and PTX constraints on fluid evolution in the Ashanti

Rota J C. The Gold Quarry Mine: history and general geology[C]//
Bulk mineable precious metal deposits of the western United States

Ruggieri G, Lattanzi P, Luxoro S S, et al. Geology, mineralogy, and
fluid inclusion data of the Furtei high–sulfidation gold deposit,

Rush P M, Seegers H J. Ok Tedi copper–gold deposits[J]. Geology of
the mineral deposits of Australia and Papua New Guinea, 1990, 2:
1747–1754.

Ryan P J. The Candelaria copper–gold deposit, Chile[M]. University
of the Witwatersrand, Economic Geology Research Unit, 1996.

deposit, Chile: Congreso Geológico Chileno, 7th[J]. Concepción

Rye D M, Rye R O. Homestake gold mine, South Dakota; I, Stable

Safonov Y G, Genkin A D, Vasudev V N, et al. Genetic features of
gold ore deposit at Kolar, Dharwar Craton, India[J]. Journal of

Sánchez, 2006., p. 30; ProInversión—Private Investment Promotion
Agency in Peru, 2007

Sander M V, Einaudi M T. Epithermal deposition of gold during
transition from propylitic to potassic alteration at Round Mountain,

Using 40 Ar/ 39 Ar Dating on the Mineralization of the Hishikari
249–266.

Sanematsu K. Caspiche porphyry Au–Cu deposit in the Maricunga

and secondary weathering phases, Mother Lode gold district,
Tuolumne County, California[J]. Applied Geochemistry, 2000, 15
(8): 1219–1244.

of the Yenisey Ridge: geological–structural province, structural

Conditions of the Blagodat Gold Deposit in the Riphean
Metamorphic Rocks of the Yenisey Ridge According to
Geochemical and Isotopic Data[J]. 2009.

Schaubs P M, Zhao C. Numerical models of gold–deposit formation in
the Bendigo–Ballarat Zone, Victoria[J]. Australian Journal of Earth

Schwartz M O, Oberthür T, Amanor J, et al. Fluid inclusion re-
equilibration and PTX constraints on fluid evolution in the Ashanti

http://geochina.cgs.gov.cn 中国地质, 2020, 47(5)


