Depositional process and model of debrite dominated deep-water system in the Dongying Depression, Bohai Bay Basin
Author:
Affiliation:

Clc Number:

P618.13

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper is the result of oil and gas exploration engineering. [Objective]Debris flow represents an important mechanism of sediment transport and dispersal in deep-water environment, the related sandstone reservoir constitute one of the important targets for petroleum exploration in petroliferous basins, while deep-water systems dominated by debris flows are still poorly understand compared to well-studied turbidity currents and turbidite systems. [Methods]The depositional process and model of gravity flows which developed in the Middle Sub-member of the 3rd Member of the Eocene Shahejie Formation, Dongying Depression, Bohai Bay Basin have been studied through the integration of core data examination, well logging data and 3D seismic data interpretation. [Results]It is suggested that nine base types of lithofacies can be recognized in slump-derived gravity flow deposits, which can be summarized into four main origin types, which indicate mass transport and flow transport processes, respectively. Quantitative lithofacies analysis suggests that the slump-derived gravity flow depositional system is dominated by debris flows, while turbidity currents are less important, and sandy debris flows represent the most important debris flow type. The slump-derived gravity flows undergo five evolution stages including slide, slump, sandy debris flow, muddy debris flow and turbidity currents, which correspondingly develop five types of deep-water depositional elements during transportation and evolution, including slide, slump, debrite channel, debrite lobe and turbidite sheet. Sandy debrite channels, lobes and sandy slides constitute the most important deep-water reservoirs in the study area according to their wide distribution and reservoir property. [Conclusions]It is proposed that adequate sediment supply, high depositional rate on delta-front, frequent tectonic activities and short transport distance are the main controlling factors. Accordingly, a depositional model is proposed to depict slump-derived gravity flow systems based on depositional processes, sedimentary patterns and basin morphology. This study seeks to improve deep-water sedimentary theories and provide guidance for petroleum exploration of deep-water sands in deep-lacustrine basins.

    Reference
    Related
    Cited by
Get Citation

Liu Jianping, Xian Benzhong, Zhang Li, Su Ming, Li Yuzhi, Yan Haiqing, Wang Zhen, Chen Peng, Wu Qianran, Li Jin, Tian Rongheng, Yang Xin, Zhou Huanhuan, Luo Xun, Chen Long. Depositional process and model of debrite dominated deep-water system in the Dongying Depression, Bohai Bay Basin[J]. Geology in China, 2022, 49(6): 1951-1969(in Chinese with English abstract).

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 12,2020
  • Revised:January 13,2021
  • Adopted:
  • Online: January 10,2023
  • Published: December 20,2022