2002年8月

东蒙地区夕卡岩石榴石稀土元素 地球化学及其成因

肖成东 刘学武

(天津华北地质勘查局,天津 300181)

提要:东蒙地区为我国北方重要的夕卡岩型锡银铜铅锌多金属成矿区,不仅矿床发育,而且成矿种类较多,典型矿床 有黄岗梁Fe(Sn),白音诺Pb-Zn-Ag等多金属和浩布高Fe(Sn)-PbZnAg(Cu)矿床。研究表明,它们都是中生代岩浆 岩与本区二叠系地层相互作用的产物。本文通过对黄岗梁、白音诺和浩布高3个矿床中不同阶段的石榴石夕卡岩矿 物学研究,划分出早晚两期夕卡岩石榴石矿物。早期以浅色、他形细粒、均质的钙铁榴石为主,多形成环带的核心,晚 期以深色、半自形中粗粒、弱非均质的钙铝榴石为主,多构成环带的边部。同时采用ICP-MS方法对其中石榴石比较 发育的黄岗梁和浩布高2个矿床中石榴石单矿物进行了稀土元素含量的测定。结果表明,矿区早期的石榴石具有岩 浆成因的特征,晚期石榴石具有热液交代成因特征,即东蒙地区既有早期岩浆阶段的岩浆型夕卡岩,又有晚期热液 交代型夕卡岩的多成因认识。

关 键 词 :夕卡岩 ;成因 ;石榴石 ;稀土元素 ;东蒙地区 中图分类号 :P578.94⁺ ;P571 文献标识码 :A 文章编号 :1000-3657(2002)03-0311-06

有关夕卡岩的成因研究是近期矿床学研究的一 个热点。随着夕卡岩型矿床的研究进展和新技术的 应用,出现了许多传统夕卡岩成因观点所无法解释 的现象,如夕卡岩矿物中出现的熔流包裹体和稀土 元素的"四分组效应^{*1~21},特别是我国长江中下游地 区夕卡岩型铁铜矿床的深入研究^{[3~81},为进一步研究 夕卡岩及其矿床成因奠定了良好的基础。

东蒙地区是我国北方重要的夕卡岩型铅锌银铁 (铜锡)矿化集中区。该区燕山期中酸性岩浆岩的大 量侵入和下二叠统海相碳酸盐岩的广泛分布,造就 了夕卡岩及其矿床的极度发育。从南到北依次有黄 岗梁铁锡矿床、白音诺铅锌矿床和浩布高铅锌铜等 矿床,它们的分布与黄岗梁--甘珠尔庙构造岩浆带 一致,呈北东向分布。自20世纪80年代以来已经有许 多学者发表了有关本区夕卡岩及其矿床的论文^[9-13], 对夕卡岩及其成矿专属性进行了研究,认为它们是 中生代燕山期中酸性岩浆岩与二叠纪不同层位接触 交代作用的产物。然而最近的研究^[14-15]在本区黄岗 梁铁锡矿床和浩布高铅锌铜锡矿床中都发现了熔流 包裹体,另外野外的许多现象也表明夕卡岩具有岩 浆成因的特征。笔者通过黄岗梁、白音诺和浩布高 3个矿区夕卡岩矿物石榴石的矿物学和部分矿物的 稀土元素的分析研究,提出了夕卡岩的早期岩浆型 成因,晚期热液交代型成因,即夕卡岩的多期多成因 的认识。

1 石榴石矿物学

1.1 石榴石一般特征

本区夕卡岩矿床普遍发育石榴石,特别是黄岗 梁和浩布高矿区。它们具有含量高、分布广、成分变 化大的特点。本文针对黄岗梁铁锡矿床、浩布高锡铅 锌和白音诺铅锌3个矿床的石榴石矿物特征(表1)进 行了研究。

石榴石普遍发育两个世代,即早期的细粒均质 石榴石和晚期的粗粒弱非均质—非均质石榴石。与 早期的他形—半自形石榴石相比,晚期石榴石晶形

收稿日期 2001-10-09; 改回日期 2002-03-26

作者简介:肖成东,男,1963年生,博士,高级工程师,长期从事矿床地质和地球化学研究。

Table 1 Mineralogy of garnets from skarn mineral deposits in eastern inner Mongolia									
矿区	黄。	岗 梁	浩石	市高	白 音 诺				
期次	早期晚期		早期 晚期		早期	晚期			
主要成分	早期以钙铁榴石为主,晚期以钙铝榴石为主								
次要成分	早期锰铝榴石含量少 晚期锰铝榴石含量多								
均质性	早期以钙铁榴石为主 ,均质 ;晚期以钙铝榴石为主 ,弱非均质								
环带构造	早期的钙铁榴石组成内核,晚期的钙铝榴石组成环带的外环								
晶形及发育 程 度	半自形—他形细 粒状,内接触带 中很发育	自形—半自形, 中粗粒菱形十二 面体,一般发育	中细粒他形—半 自形,比较发育	粗粒自形,四角 三八面体和菱形 十二面体,比较 发育	细粒半自形,矿 区西南部发育	中细粒自形—半 自形,菱形十二 面体和四角三八 面体,北东部发 育			
颜 色	黄绿—深绿	红棕—红褐	红色—黄绿	红褐—棕红	黄绿—深绿	浅土灰—黄褐			
成矿特征	磁铁矿	磁铁矿、胶锡矿	磁铁矿	闪锌矿、方铅矿	弱磁铁矿化	方铅矿、闪锌矿			
后期蚀变①	绿泥石化、绿帘石 石化、石英、长石、 化等	化、碳酸盐化、萤 磁铁矿化、锡石矿	绿帘石、方解石、 矿、磁铁矿化、锡7	石英、长石、闪锌 5矿化	辉石、石英、方解石、帘石、长石闪锌 矿、方铅矿等充填交代				
包体特征	气液两相包裹体和 副矿物 ,常见有机 包裹体	扣较多的磷灰石等 包裹体 ,偶见熔融	较多的气液两相 体等 ,偶见熔融包	包裹体,有机包裹 裹体	较多的气液两相包裹体 ,有机包裹体 ,体制包裹体等 ,没见熔融包裹体				
成矿温度	430 ~ 603 ℃		408~675℃(个别	800 ~ 1069℃)	482 ~ 507 ℃				
矿物组合	石榴石、磁铁矿、粃 石、符山石、硅灰 石、方解石、石英	^{军石、阳起石、透闪 石、绿泥石、绿帘}	石榴石、辉石、绿窄 石、符山石、方解?	帘石、绿泥石、阳起 5、石英	辉石、石榴石、硅灰石、符山石、绿帘 石、钾长石				

夕卡岩矿床中石榴石矿物学特征 表 1

注 ①后期蚀变的主要矿物为早期石榴石。

完好,多呈自形的菱形十二面体{110}和四角三八面体 {211 } 汲其聚形 ;环带结构比较发育 ,表现为周期性的生 长带,由于颜色、光性等的差异,形成了具有韵律性的 "聚片双晶状环带"。

1.2 石榴石的成分特征

笔者在黄岗梁和浩布高矿区做了21个石榴子的电 子探针分析,另外收集了前人对本区3个夕卡岩矿区石 榴石电子探针和化学分析结果98个,总计样品个数为 119个,采用Knowles算法,求得它们的端元组分,并将所 有的石榴石端元组分含量投点在钙铁榴石(And)—钙铝 榴石 (Gro)— 锰铝榴石+铁铝榴石+镁铝榴石 (Spess + Alm+Pyrope)成分三角图(图1)。本区石榴石成分主要为 钙质系列,其成分变化区间较大,由几乎纯的钙铁榴石 到接近于端元钙铝榴石 同时都不同程度的含有锰铝榴 石、铁铝榴石、镁铝榴石。其中白音诺矿床的锰铝榴石榴 And 石成分较高,最高可达19.78%。

石榴石的成分演化上具有明显的变化特征。主要表 现为早期石榴石富Fe(Mg)、贫Al、Mn,投点多落到了钙 铁榴石(And)端元附近, 锰铝榴石的分子成分含量较低, 因此早期石榴石多为钙铁榴石:晚期的石榴石富Al, Mn

Gross 图1 赤峰北部夕卡岩矿床中石榴石端元组分三角图 Fig. 1 Triangle diagram of end-members of garnets in skarn mineral deposits in northern Chifeng And—钙铁榴石 ;Gross—钙铝榴石 ;Spess—锰铝榴石; Alm—铁铝榴石 ;Pyrope—镁铝榴石

Table 2 Geological characteristics of garnet separates from skarn initieral deposits										
矿区	样号	岩石名称	矿物组合	世代	矿物特征					
	990801	石榴石 夕卡岩	石榴石为主、少量萤 石、方解石	细粒(黄绿色 ,中粗粒状 ,以均质体为主 ,少量非均 质体					
黄岗	990804 - 1 990804 - 2	石榴石 磁铁矿 夕卡岩	石榴石、磁铁矿、透辉 石、方解石、符山石、 蠕绿泥石	细粒(Ⅱ期为细粒黄色,非均质;Ⅲ期为中粒浅棕 色,弱非均质性。两期石榴石都有气热两相 流体包裹体,常见有磷灰石等副矿物包体					
梁	990804 - 3	石榴石 磁铁矿 夕卡岩	石榴石、磁铁矿、透辉 石、方解石、符山石、 蠕绿泥石	晚期(Ⅲ)晶洞、裂隙 充填型石榴石	黄绿色粗粒自形晶 ,四角三八面体 ,表面有铁 锰蚀变 ,浅绿—棕色 ,非均质体 ,少量杂质矿 物包体					
	Wl880139	石榴石 夕卡岩	纯石榴石	晚期(Ⅲ)晶洞、裂隙 充填型石榴石	标色粗粒,均质体为主,极少非均质,晶洞、裂隙充填型石榴石					
浩布高	991201	石榴石 夕卡岩	石 榴 石、辉 石、方 解 石、磁铁矿、长石	Ⅲ期	⊥期棕色粗粒自形晶 ,多为均质体 ,部分有 Ⅱ 期次生加大生长边					
	991204	石榴石辉 石夕卡岩	石榴石、辉石磁铁矿、 方解石、闪锌矿等	⊥期	Ⅱ期石榴石为主,棕色,均质体,个别有环带。 碳酸盐化发育。Ⅲ期石榴石围绕Ⅱ期生长, 弱非均质性					
	991205	磁铁矿 石榴石 夕卡岩	石榴石(90%)磁铁 矿(5%)少量的辉 石、方解石、石英等	<u>Ⅰ</u> + Ⅱ 两期	粗大的石榴石晶体 ,均质体 ,全消光 ,呈黄褐 色 ,自形晶。其中的包体较多 ,有磁铁矿等					

表 2 夕卡岩矿床中单矿物石榴石地质特征

而贫Fe(Mg), 其投影点都落到了钙铝榴石端元附近, 而且锰铝榴石成分偏高, 而铁铝榴石的成分明显降低, 它们是富锰铝榴石的钙铝榴石。

2 石榴石的稀土元素

2.1 样品的选择、加工和稀土元素的分析

为了探讨研究区夕卡岩中石榴石的成分特征, 作者在野外采集了石榴石比较发育的黄岗梁和浩布 高矿区石榴石夕卡岩样品30余件,人工分离和挑选 单矿物石榴石20件,并进行相应的岩石薄片鉴定,其 石榴石的矿物特征见表2。

2.2 石榴石稀土微量元素分析方法

样品的制备首先用蒸馏水清洗干净,然后用小型碎样玛瑙研钵将样品粉碎并研磨至200目。再将称取的样品粉末与Na₂O₂混合,经熔融、提取和分离富

Fig. 2 REE distribution patterns of garnets from the Huanggangliang skarn mineral deposit

集,最后用ICP-MS方法测定其中的稀土元素。测试 单位为国家地质实验测试中心。测试仪器是PO-EMS。样品分析误差小于5%,精度达到0.0n×10⁻⁹级。 分析的石榴石稀土元素结果列表3。其稀土配分模式 见图2、3。

2.3 结果分析

分析结果表明,黄岗梁和浩布高矿区石榴石矿 物的稀土元素含量变化较大,矿物的稀土元素呈现 有规律的演化趋势。主要表现在如下几个方面:

1)矿物中的稀土元素含量变化很大。同一个矿 区不同世代的石榴石其稀土元素总量可以相差两个 数量级。其中黄岗梁石榴石的稀土元素总量变化于 23.3×10⁻⁶~132.89×10⁻⁶,浩布高矿区石榴石变化于 7.71×10⁻⁶~151.27×10⁻⁶。

2) 夕卡岩矿物稀土元素含量在时间上的演化特 征为早期石榴石稀土元素明显高于晚期石榴石,具 有继承成矿岩体稀土元素特征。如黄岗梁的 990804-1,990804-2和浩布高的H87084,其中后者 的稀土元素配分模式与其相应的夕卡岩稀土配分模 式非常一致。晚期的稀土总量明显降低,在黄岗梁矿 区主要表现为轻稀土元素的淋滤,而重稀土元素则 基本保持不变。其LREE/HREE由早期的8.87降到晚 期的0.81;在浩布高矿区则表现为稀土元素的全面 降低,其LREE/HREE比值变化不大(3.7~8.8之间)。

3)夕卡岩矿物中稀土元素在空间上的变化也表 现出一定的规律。早期石榴石的稀土元素表现为与

Fig. 3 REE distribution patterns of garnets from the Haobugao skarn mineral deposit

成矿岩体相似的特征,稀土元素总量较高,富集轻稀 土,四分组效应不明显,晚期石榴石稀土元素则总量 较低,出现弱的四分组效应。

4)反映成岩环境中氧逸度的Ce和Eu异常也呈 规律性的变化趋势。即早期石榴石(如黄岗梁矿区的 990804-1,990804-2)普遍具有Eu正异常,而其Ce负 异常则不明显。晚期石榴石,其稀土元素Eu和Ce都 有所减少,因此在其配分曲线上,表现为Eu小的正 或负异常,而Ce则为明显的负异常。所有这些演化 特征都说明了夕卡岩成岩环境的氧逸度演化模式为 早期相对氧化环境向晚期相对还原环境过渡。这一 点与岩石化学计算结果一致^[10]。

3 石榴石的成因分析

1)矿物中稀土元素出现四分组效应是典型的热 液与熔体相互作用的结果^[16-18]。本区晚期夕卡岩辉 石稀土元素的四分组效应的出现^[2]也证实了晚期的 夕卡岩以热液活动为主。而本区早期石榴石,特别是 黄岗梁矿区的早期石榴石,与晚期的辉石稀土元素 特征明显不同,表现为岩浆成因为主的特征,而晚期 石榴石(包括辉石)则具有以热液成因特征的四分组 效应。

稀土元素的四分组效应最初由Peppard等¹¹⁹在 纯化学体系液-液(有机相HCl LiBr ,HBr水相)萃取 时发现,以Nd/Pm、Gd、Ho/Er为分界点(其中Gd为 公共点),每4个元素为一组,即La-Ce-Pr-Nd,Pm-Sm-Eu-Gd,Gd-Tb-Dy-Ho和Er-Tm-Yb-Lu,它 们的液-液分配系数与原子序数之间的关系构成4 条曲线。与岩浆岩的稀土元素配分模式不同,它是热 液成因的一个重要标志。因此,岩浆成因的石榴石与 热液交代成因的石榴石具有完全不同的稀土元素配 分模式。前者与岩浆岩的配分模式相似,后者则表现 为岩浆与热液成因的过渡特征。

2)反映流体-岩石(矿物)配分规律的Y/Ho元 素比值证明了本区石榴石为岩浆和热液两种成因。 早期石榴石具有明显的岩浆成因特征,晚期则表现 为强烈的热液淋滤特点。

Y和Ho这两个元素具有相同的离子电价,其8 次配位的离子半径也几乎完全相同。根据戈尔德施 密特定律,推测Y和Ho在许多地球化学环境中应有 很相似的化学行为。Y/Ho比值在不同矿物和岩石 中应该保持相当一致,而且与碳质球粒陨石值相似。 据Bau等^[20]统计数据表明,Y/Ho值在不同类型火成 岩、硅酸盐碎屑沉积岩及球粒陨石中没有明显的变 化。说明无论是岩浆的部分熔融还是结晶分异都不 会有Y和Ho的明显分异。但是两元素在水溶液体系 中的化学行为则发生分异,如现代的海水和河水中 Y和Ho的比值与其母岩有显著的不同。即两元素在 Y/Ho

29.88

	the Huangganglian and Haobugao skam mineral deposits in eastern Inner Mongolia													
矿区	黄 岗 梁					浩 布 高								
样号	990801	990804 - 1	990804 - 2	990804 - 3	wl880130	991201	991204	991205	991206	H91620	H90386	H90301	H87084Q	H87084S
La	3.23	26.70	5.70	1.27	0.98	3.00	7.97	6.87	8.32	4.92	4.31	3.63	26.20	7.73
Ce	1.90	48.40	18.85	5.12	2.11	1.62	9.67	6.08	5.64	3.67	3.73	4.06	56.60	18.50
Pr	0.91	7.07	3.53	1.36	0.52	0.32	2.14	0.85	1.85	1.14	0.83	1.03	7.97	3.12
Nd	4.98	28.48	20.01	8.45	3.50	1.14	8.72	3.05	8.33	4.87	2.24	3.72	32.40	14.00
Sm	2.42	5.28	6.21	3.21	2.15	0.26	1.45	0.56	1.69	0.88	0.40	0.60	6.16	3.33
Eu	0.98	3.49	4.38	0.93	1.18	0.18	1.19	0.32	0.38	0.19	0.16	0.28	1.22	0.53
Gd	3.01	5.54	5.40	3.66	3.09	0.32	1.55	0.78	2.30	1.05	0.50	0.48	5.30	2.89
Tb	0.56	0.68	0.83	0.61	0.57	0.05	0.22	0.10	0.32	0.15	0.08	0.06	0.75	0.42
Dy	3.71	3.51	4.36	3.23	3.84	0.31	1.14	0.50	1.84	0.86	0.41	0.37	4.24	2.24
Ho	0.80	0.68	0.86	0.57	0.80	0.06	0.26	0.10	0.38	0.17	0.09	0.08	0.88	0.42
Er	1.74	1.48	1.85	1.17	2.02	0.20	0.56	0.25	1.04	0.40	0.26	0.23	2.44	1.20
Tm	0.27	0.23	0.27	0.17	0.34	0.03	0.09	0.04	0.16	0.05	0.04	0.03	3.97	0.19
Yb	1.79	1.18	1.72	1.15	1.90	0.19	0.52	0.21	0.91	0.36	0.20	0.22	2.71	1.19
Lu	0.29	0.17	0.24	0.18	0.30	0.03	0.07	0.04	0.14	0.04	0.03	0.03	0.43	0.19
Y	23.91	19.78	26.28	14.98	29.09	3.66	11.03	5.10	18.42	10.49	3.23	4.32	25.3	12.5
REE	26.59	132.89	74.21	31.08	23.30	7.71	35.55	19.75	33.30	18.75	13.28	14.83	151.27	55.94
LREE	14.42	119.42	58.68	20.34	10.44	6.52	31.14	17.73	26.21	15.67	11.67	13.32	130.55	47.21
HREE	12.17	13.47	15.53	10.74	12.86	1.19	4.41	2.02	7.09	3.08	1.61	1.51	20.72	8.73
LR/HR	1.18	8.87	3.78	1.89	0.81	5.48	7.06	8.78	3.70	5.09	7.24	8.84	6.30	5.40
Eu∕Eu ∗	1.12	1.98	2.28	0.83	1.41	1.92	2.43	1.49	0.59	0.61	1.10	1.56	0.64	0.51
Sm/Nd	0.49	0.19	0.31	0.38	0.61	0.23	0.17	0.18	0.20	0.18	0.18	0.16	0.19	0.24
Eu/Sm	0.40	0.66	0.71	0.29	0.55	0.69	0.82	0.57	0.22	0.22	0.40	0.47	0.20	0.16

黄岗梁—浩布高矿区石榴石矿物稀土元素含量及其特征参数 表3 REE contents and characteristic parameters of garnets from Table 3

热水溶液中可以发生分异。球粒陨石的Y/Ho比值 为28[21]

30.56

26.28

36.36

61.00

42.42

51.00

48.47

61.70

29.09

黄岗梁矿区石榴石由早到晚, 其Y/Ho比值有 增大的趋势(表3),但变化不大(26.28~36.36),除了 晚期的样品wl880130具有较高的分异值(36.36)以 外,其他都接近球粒陨石的比值(28),浩布高矿区石 榴石的Y/Ho比值也有同样的趋势,只是分异非常 明显(28.88~61.77)。所有这些都反映了本区夕卡岩 的岩浆和热液的双重成因特征,黄岗梁早期的石榴 石具有岩浆成因的迹象,而浩布高和白音诺矿区晚 期的石榴石和外夕卡岩矿物辉石则具有强烈的热液 成岩的特征。

3 岩浆成因的夕卡岩以出现熔融包裹体和熔流 包裹体为其特征。熔流包裹体的发现为岩浆成因夕 卡岩提供了重要证据。本区夕卡岩矿物中发现了熔 流包裹体和熔融包裹体。黄岗梁矿区在萤石中发现 了熔流包裹体[15] 这类包裹体分布孤立 在室温下没 有明显的边缘,仅见有黑气泡和其周围的子矿物,当 对其加热至200℃左右时,包裹体边缘逐渐清晰,呈 纺锤形、长条形等。其中的气相占20%~30% 液相占 10%~15%,其余为固体子矿物相,子矿物相包括几个

连生一起的透明子矿物,有的包裹体内部或其边缘 附近有不透明物质,不透明子矿物有1~3种。对该类 包裹体加热到1050℃时达到均一 此时子矿物完全 消失 ,气泡扩大到几乎全部充满包裹体 ,并有粘稠状 液体溢出。另外 张新安!?地在浩布高矿区夕卡岩中 发现了熔融包裹体。所有这些都证明本区夕卡岩的 双重成因,即早期的岩浆成因为主和晚期过渡到热 液成因为主。前者多与铁矿化有关,而后者则多形成 多金属矿化。

35.89

54.00

28.88

29.48

本文是笔者博士论文的部分内容,论文的编写 过程中始终得到了北京大学地质学系艾永富教授的 精心指导,野外样品的采集得到了浩不高铅锌矿王 旭东工程师的密切配合和帮助,在此深表感谢。

参考文献:

- [1] Philip R, Whitney, James F et al. Rare earth element metasomatism in hydrothermal systems : The Willsboro-Lewis wollastonite ores[]] Geochim. Cosmochim. Acta, 1998, 62(17): 2965~2977.
- [2] 殷纯嘏,艾永富,邵宏翔.内蒙辉石夕卡岩中稀土元素的"四分 组效应 "及其地球化学意义[J] 北京大学学报(自然科学版), 1993 ,29(6) :754~757.

316

质

- [3] 吴言昌,常印佛.关于岩浆夕卡岩问题[J] 地学前缘,1998, (4)291~301.
- [4] Morgan J W and Wandless G A. Rare earth element distribution in some hydrothermal minerals : evidence for crystallographic control[J] Geochim. Cosmochim.Acta ,1980 A4 973~ 980.
- [5]赵斌 李院生 赵劲松. 岩浆成因夕卡岩的包裹体证据[J] 地球 化学 ,1995 24(2):198~200.
- [6] 凌其聪 程惠兰. 凌东狮子山铜矿床地质特征及成岩成矿机理 研究[J] 矿床地质,1998 2(2):158~164.
- [7] 凌其聪 程惠兰. 岩浆夕卡岩的地质特征及其形成机制讨论[J] 长春科技大学学报,1998,28(4):366~372.
- [8]林新多. 岩浆-热液过渡型矿床[M] 武汉:中国地质大学出版 社,1999.51~59.
- [9] 张新安. 内蒙古巴林左旗浩布高锡多金属矿床的地质地球化学 特征[D] 北京大学硕士学位论文,1988,35~51.
- [10] 艾永富,牟保磊.内蒙黄岗—甘珠尔庙成矿带夕卡岩与成矿
 [M] 北京:北京大学出版社,1990.5~15.
- [11]张德全.浩布高铅锌锡铜夕卡岩矿床分带及成因探讨[A] 见:张德全,赵一鸣主编.大兴安岭及邻区铜多金属矿床论文集 [C]北京:地震出版社,1993.100~115.
- [12]赵一鸣,林文蔚.中国夕卡岩矿床[M]北京,地质出版社, 1990.232~266.
- [13] 王琦, 艾永富. 内蒙古白音诺铅锌矿床富锰单斜辉石与矿化的 关系[]] 北京大学学报(自然科学版), 1995, 31(2) 224~228.

- [14]张新安.内蒙古巴林左旗浩布高锡多金属矿床的地质地球化学特征[M]北京:北京大学出版社,1988.5~51.
- [15] 王莉娟,岛崎英彦,王京彬,等.黄岗梁夕卡岩铁锡矿床成矿流 体及成矿作用[]]中国科学(D辑),2001,31(7),553~562.
- [16] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems : evidence from Y/
 Ho Zr/Hf, and lanthanide tetrad effect[J] Contrib. Mineral. Petrol. 1996, 123 323~333.
- [17] Bau M. The lanthanide tetrad effect in highly evolved felsic igneous rocks-A reply to the comment by Y. Pan[J] Contrib. Mineral. Petrol., 1997,128:409~412.
- [18] Irver W, Forster H J, Hecht L, et al. Experimental, geochemical mineralogical and O-isotope constraints on the latemagmatic history of the Fichtelgebirge granites (Germany IJ] Geol. Rdsch., 1997 & (suppl.):110~124.
- [19] Peppard D F, Mason G W, Lewey S. A tetrad effect in the liquid-liquid extracting ordering of lanthanides (III I J J Inoorg Nucl Chem., 1969 31 2271~2272.
- [20] Bau M , Dulski P. Anthropogenic origin of positive gadolinium anomalies in rever waters[J] Earth Planet. Sci.Lett.1996 , 143 : 245~255.
- [21] Anders E , Grevesse N. Abundances of the elements : mete oritic and solar[J] Geochim. Cosmochim. Acta , 1989 53 : 197~214.

REE geochemistry and origin of skarn garnets from eastern Inner Mongolia

XIAO Cheng-dong , LIU Xue-wu

(North China Geological Exploration Bureau of Tianjin, Tianjin 300181, China)

Abstract : Eastern Inner Mongolia , as the most important skarn-type tin-silver-copper-lead-zinc polymetallic metallogenic province in northern China , is characterized by not only well-developed Mesozoic magmatic plutons and their related skarn mineral deposits but also a great variety of mineral deposit types. Based on the mineralogical study of garnets of different stages from the Huanggangliang iron-tin mineral deposit , Baiyinnuo lead-zinc-silver polymetallic deposit and Haobugao skarn lead-zinc-tin deposits , two kinds of garnets are recognized. The early-stage garnet is mainly andradite , which is light-colored , finegrained , anhedral and isotropic and in most cases forms the core of a grain ; the late-stage garnet is mainly grossular , which is dark-colored , medium-to coarse-grained , subhedral and slightly anisometric and mostly forms the rim of a grain. In addition , rare earth element (REE) concentrations in garnet separates from the Huanggangliang and Haobugao skarn mineral deposits were determined using ICP-MS. The results suggest that the early-stage garnet in the area shows the character of magmatic origin , while the late-stage garnet indicates a hydrothermal metasomatic origin. So , there are both early-stage magmatic skarn and late-stage hydrothermal metasomatic skarn in eastern Inner Mongolia.

Key words : skarn ; garnet ; origin ; REE ; eastern Inner Mongolia