庐山汉阳峰组变流纹岩锆石 U-Pb 同位素定年 及其地质意义

史志刚'高林志'李廷栋'丁孝忠'王军'宋志瑞2黄志忠3张恒!

(1. 中国地质科学院地质研究所,北京 100037;2. 江西省地质调查院,江西 南昌 330201;3. 中国地质调查局南京地质调查中心,江苏南京 210016)

提要:江西庐山地区新元古代地层序列从老至新出露较为齐全,该区对于分析整个"江南造山带"的构造演化至关重要。汉阳峰组仅发育(或残存)于庐山汉阳峰,由陆相喷发的变斑流纹岩或少斑流纹岩为主。本研究组获得庐山地 区汉阳峰组变流纹岩 SHRIMP 锆石 U-Pb 加权平均年龄为(838±4)Ma,MSWD=1.12;汉阳峰组 LA-ICP-MS 锆石 U-Pb 加权平均年龄为(852±4)Ma,MSWD=0.037。新获得的精确锆石年龄表明汉阳峰组不属于板溪期沉积地层,据 此,笔者首次提出将汉阳峰组明确定位于武陵运动(820±Ma)构造转换面之下的地层。新的研究结果证实汉阳峰组 与筲箕洼组属同期火山-沉积地层,对构造背景有重要的指示意义。汉阳峰组和筲箕洼组与星子岩群的层位关系已 经发生倒置,可能预示庐山地区青白口纪后期有重要的构造运动。

关 键 词:庐山;汉阳峰组;锆石U-Pb定年;地层构造意义

中图分类号: P581; P597 文献标志码: A 文章编号: 1000-3657(2014)02-0326-09

在中国三大古老陆块之中,目前争论最大的是 具有复杂构造演化历史的华南块体^[1-16]。现今普遍 观点认为华南陆块由扬子块体和华夏块体结合而 成,位于扬子块体南部的"江南造山带"是两个块体 在新元古代时期碰撞对接的结果。长久以来,"江 南造山带"的形成时限和地球动力学背景直至显生 宙的演化都一直是学术界研究的重点^[17-20]。在整个 "江南造山带"构造体系中,庐山地区是最复杂的区 域之一(图1),庐山地区对于分析整个"江南造山 带"的构造演化至关重要。虽然迄今为止对庐山地 区的研究已取得了重要进展,但仍有许多关键问题 尚未解决。作为庐山地区新元古代地层系统重要 组成部分的汉阳峰组至今仍缺乏可信的高精度年 龄的限定,这给该区乃至整个"江南造山带"地层对 比和划分及构造演化分析都带了不确定性。

前人对汉阳峰组的研究较为有限,至今仍缺乏 该火山-沉积地层的高精度年龄值,仅根据赣北地 区新元古代地层出露状况,推测汉阳峰组与都昌马 涧桥组和武宁落可岽组同属青白口纪晚期板溪期 沉积地层,三者均出露局限,上与莲沱组不整合接 触。近年笔者对汉阳峰组进行了多次详细的野外 调查,但由于植被覆盖和地形特征等原因,始终未 能发现汉阳峰组与筲箕洼组和南华纪莲沱组间的 构造接触关系,因此,实施高精度的年龄测定就成 为确定汉阳峰组归属和定位的必要手段之一。本 研究组对庐山地区实施了详细的构造和地质年代 学研究,首次获得了高精度的汉阳峰组锆石 SHRIMP和LA-ICP-MS U-Pb年龄。

收稿日期:2013-12-13;改回日期:2014-02-17

基金项目:国家科技基础性工作专项(2011FY120100)、中国地质调查局地质调查工作项目(1212011120115)和中国地质调查局地调项目 (121201011120131)联合资助。

作者简介:史志刚,男,1973年生,博士生,主要从事造山带构造研究;E-mail:cngsszg@126.com。

图1 庐山地区地质构造略图和汉阳峰组同位素样品采样点(据文献[21]修改) 1-古生界;2-新元古代牯岭群;3-汉阳峰组;4-双桥山群;5-筲箕洼组;6-星子群;7-燕山期花岗岩; 8-加里东期花岗岩;9-前寒武纪变质花岗岩;10-第四系

Fig.1 Structural sketch map of Lushan area and isotope sampling locations in the Hanyangfeng Formation (modified after reference [21])

1–Paleozoic; 2–Neoproterozoic Guling Group; 3–Hanyangfeng Formation; 4–Shuangqiaoshan Group; 5–Shaojiwa Formation; 6–Xingzi Group; 7–Yanshanian granite; 8–Caledonian granite; 9–Precambrian metagranite; 10–Quaternary

1 地质概况

谢国刚等(1996)提出创建庐山垄群^[23],自下而 上划分为筲箕洼组和汉阳峰组,是以变细碧岩--变 角斑岩--流纹岩为主的一套浅变质火山岩,正层型 地在庐山西麓筲箕洼一庐山垄--汉阳峰一带。其 中筲箕洼组是一套低变质的火山岩夹碎屑岩地层, 近年来的研究成果已将筲箕洼组定位为新元古代 中晚期^[23-24]。

位于筲箕湾组之上的汉阳峰组由陆相喷发的 变斑或少斑流纹岩为主,中夹变基性熔岩及少量变 安山岩,期间有辉长岩脉侵入,岩石变质程度浅,仅 具碎裂及弱片理化。汉阳峰组仅残存于庐山汉阳 峰峰顶。

2 采样位置及样品特征

本次工作样品采自庐山汉阳峰顶,是庐山垄群 汉阳峰组的正层型地。L12422-1样品和 20130523-01样品(汉阳峰组)采样坐标29°30.05′N, 115°57.327′E(图1)。样品为变流纹岩,灰色,变余 斑状-基质微晶结构,块状构造。岩石主要由斑晶、 基质组成,有少量凝灰物。斑晶为斜长石(Pl,5%)、 少量石英,大小一般0.5~1.5 mm。略定向分布。斜 长石近半自形板状。石英近半自形粒状,局部可见 港湾状熔蚀。基质为斜长石(Pl,20%)、钾长石 (Kfs,40%)、石英(Qtz,30%)、变质矿物(1%~5%)。 大小一般0.01~0.05 mm。长石近半自形一他形粒 状,杂乱分布。硅化明显,被绢云母交代。钾长石

质

中

他形粒状,杂乱分布。固化明显。石英他形粒状, 杂乱分布,重结晶明显。变质矿物为黑云母,定向 分布,以及磁铁矿和锆石等副矿物(图2)。

3 分析方法及结果

3.1 分析方法

近年来高精度 SHRIMP 锆石 U-Pb 定年方法 广泛用于前寒武纪地质研究,取得了一大批重要 成果^[25],本次工作中采用 SHRIMP 锆石 U-Pb 方法 对所采集的汉阳峰组 L12422-1 样品进行高精度 年龄测定,同时采用 LA-ICP-MS 锆石 U-Pb 方法 对 20130523-01 样品进行年龄测定,以便相互印 证讨论。

SHRIMP 锆石 U-Pb 定年是在中国地质科学院 北京离子探针中心澳大利亚 Curtin 理工大学虚拟实 验室的 SHRIMP II 离子探针仪上完成的。其中 L12422-1样品锆石按常规方法分选,并在双目镜下 仔细挑纯。将锆石与一片 RSES 参考样 SL13 及数 粒 TEM 置于环氧树脂中,然后磨至约一半,使锆石 内部暴露,再镀上黄金膜。详细的分析流程见参考 文献[26]。分别采用标准锆石 TEM 和 SL13 进行元 素间的分馏校正及U含量标定;其中 TEM 具有 U-Pb 谐和年龄,其²⁰⁶Pb/²³⁸U 年龄为417 Ma,但U、Th 及 Pb 含量不均一; SL13 的年龄为 572 Ma,²³⁸U 含量为 238×10⁻⁶。原始数据的处理和锆石 U-Pb 谐和图的 绘制采用 Ludwig 博士编写的 Squid 和 Isoplot 程 序^[27]。普通铅校正根据实测的²⁰⁴Pb 进行,普通铅的 组成根据 Stacey & Kramers^[28]给出的模式计算得 出。数据表中,年龄的误差为1σ绝对误差,同位素 比值的误差为1σ相对误差;文中所使用的²⁰⁶Pb/²³⁸U 年龄加权平均值具95%的置信度误差。

20130523-01样品送廊坊市科大岩石矿物分选 技术服务有限公司进行锆石挑选。锆石挑出后在 北京中兴美科科技有限公司完成制靶及透射、反射 光拍照和阴极发光(CL)照相。具体过程是在避免 污染的条件下,将岩石样品粉碎至60目以下,先用 磁选和重液方法粗选锆石,后又在双目镜下选出多 于100粒锆石。将挑出的锆石颗粒粘贴在环氧树脂 表面,抛光后将待测锆石做透射光、反射光显微照 相,然后进行阴极发光(CL)照相。透、反射及阴极 发光(CL)图像用来进一步反映锆石的内部结构特 征(图3),以便在测试过程中避开锆石中的裂隙及 包裹体等。排除含包体和存在裂纹的锆石外,进行 锆石LA-ICP-MS 定年。锆石U-Pb 定年在中国地 质调查局天津地质调查中心实验室进行。实验采 用激光剥蚀等离子质谱分析技术(LA-ICP-MS)。 采用GJ-I作为外部锆石年龄标样,利用NIST610玻 璃标样作为外标计算锆石样品的Pb/U/Th含量。采 用中国地质大学研发的 ICPMSDataCal 程序^[29]和国 际标准程序 Isoplot (Version 3.0)[30]进行数据处理并 成图,采用²⁰⁸Pb校正法对普通铅进行校正,详细的 试验流程见李怀坤等^[31]。实验中采用193 nm激光 器对锆石进行剥蚀,激光频率为8~10 Hz。激光束 斑直径为32 um。

图 2 L12422-1样品(汉阳峰组)野外照片和薄片镜下照片 Qtz—石英;Pl—斜长石;Kfs—钾长石;Ms—白云母 Fig.2 Field and microscopic photographs of sample L12422-1 from the Hanyangfeng Formation Qtz-Quartz; Pl-Plagioclase; Kfs-K-feldspar; Ms-Muscovite

http://geochina.cgs.gov.cn 中国地质, 2014, 41(2)

图 3 20130523-01样品锆石 CL 照片 Fig.3 CL images of zircons from sample 20130523-01

3.2 分析结果

3.2.1 样品L12422-1 分析结果

L12422-1样品锆石虽形态不同,但阴极发光 图像(CL)显示出典型的岩浆生长振荡环带和韵律 结构,均属于岩浆结晶的产物(图4)。根据锆石的 CL图像,对照可见光下的锆石特征进行标点选样, 排除具裂隙和包裹体的锆石颗粒。样品的锆石晶 型较好,为无色透明钝圆形-次棱形晶体。锆石粒 度多在100~200 µm。大量的研究表明,岩浆锆石的 U、Th含量高,Th/U比值较大(一般大于0.4)。庐山

图4 汉阳峰组(L12422-1)锆石CL照片 Fig.4 CL photographs of zircons from sample L12422-1

http://geochina.cgs.gov.cn 中国地质, 2014, 41(2)

质

中

汉阳峰组变质流纹岩样品(L12422-1)21个测点中 U含量变化范围为66×10⁻⁶~316×10⁻⁶;Th含量变化范 围为35×10⁻⁶~1137×10⁻⁶;Th/U值变化范围为0.55~ 1.52(表1)。上述这些分析点均位于明显的岩浆环 带部位。

样品共测试22个点位。由于仪器故障,点位 4.1未获得数据值。在获得的21个数据点测试结果 中,数据点3.1误差范围偏大,被舍弃。另外,数据 点5.1与主群不一致,数据点10.1,11.1和17.1的U 含量偏高(表1);其余16个数据点均位于谐和线上 或其附近(图5-a);这16个数据点的²⁰⁶Pb/²³⁸U年龄 加权平均值是(838±4)Ma,MSWD=1.12(图5-b)。 本文选取(838±4)Ma为样品的实际形成年龄。 3.2.2 样品20130523-01分析结果

样品 20130523-01 共测试 9个数据点(图 3),获 得有效数据 7个(表 2),样品的年龄分布如图 6-a~b 所示。样品中多数测点基本落在谐和线上,呈现出 良好的谐和性。分布在谐和线之下的测点 7和9的 ²⁰⁷Pb/²³⁵U相对于 ²⁰⁶Pb/²³⁸U偏差超过±10%,可能是 Pb 丢失所致,需排除这两个不谐和年龄。其余 7个数 据点的 ²⁰⁶Pb/²³⁸U年龄加权平均值为(852±4)Ma, MSWD=0.04。

本研究组利用 SHRIMP 和 LA-ICP-MS 锆石 U-Pb 两种测年方法获得了两个不同的加权平均年

图5 汉阳峰组锆石U-Pb谐和图(a)和加权平均年龄分布图(b)

Fig.5 ²⁰⁷Pb /²³⁵U-²⁰⁶Pb /²³⁸U concordia diagrams (a) and weighted mean age (b) of zircons from the Hanyangfeng Formation

图 6 20130523-01样品锆石 U-Pb 谐和图(a)和加权平均年龄分布图(b) Fig.6 ²⁰⁷Pb /²³⁵U-²⁰⁶Pb /²³⁸U concordia diagrams (a) and weighted mean age (b) of the zircons from the sample 20130523-01

http://geochina.cgs.gov.cn 中国地质, 2014, 41(2)

$^{207} Pb_{3}^{500} P_{0}$ 不谐和性 $^{207} Pb_{3}^{500} P_{0}^{*}$ \mathcal{A}^{96}	$^{307} Pb_{3}^{300} P_{0}$ $\pi_{B}^{3} n_{1}^{4}$ $^{207} Pb_{3}^{300} P_{0}^{4}$ $^{207} P_{0}^{4} p_{0}^{4}$ $^{207} P_{0}^{4} p_{0}^{4}$ $^{206} p_{0}^{4} p_{0}^{4} p_{0}^{4}$ $^{206} p_{0}^{4} p_{0}^{4} p_{0}^{4}$ $^{206} p_{0}^{4} p_{0}^{4} p_{0}^{4} p_{0}^{4}$ $^{206} p_{0}^{4} p_{0}^{4} p_{0}^{4} p_{0}^{4} p_{0}^{4}$ $^{206} p_{0}^{4} p_{0}^{4}$	$^{307} P_0 \int^{307} P_0 \int^{307} P_0 \int^{306} P_0^{-354} D_0^{-206} P_0^{-354} D_0^{-206} D_0^{-256} D_0^{-206} D_0^{-216} D_0^{-21$
Mat Pro $=270$ $=270$ $=270$ $=270$ $=270$ $=270$ $=270$ $=270$ $=276$ $=276$ $=276$ $=276$ $=276$ $=2745$ $=0.1339\pm3.0$ $=0.1330$ $=0.133$ $=0.1330\pm3.0$ $=0.1332\pm3.0$ $=0.1406\pm3.0$ $=0.1332\pm3.0$ $=0.1406\pm3.0$ $=0.1332\pm3.0$ $=0.1332\pm3.0$ $=0.1406\pm3.0$ $=0.1333\pm3.0$ $=0.$	Mat μ_{20} μ_{20} μ_{20} μ_{20} μ_{20} μ_{20} 88±71 7 0.0690±3.4 1309±3.6 01376±1.0 0.276 939±41 55 0.114±23 2.18±23 01389±3.0 0.455 939±41 55 0.114±23 2.18±23 0.136±0.9 0.467 811±33 -1 0.0661±1.6 1.274±1.7 0.1398±0.9 0.463 811±33 -1 0.0661±1.6 1.274±1.7 0.1398±0.7 0.463 837±20 0.133±1.7 0.1398±0.7 0.463 0.463 837±21 0.0661±1.6 1.274±1.7 0.1398±0.7 0.463 837±10 0.55 0.0661±1.6 1.274±4.8 0.436 846±27 5 0.0673±1.3 1.23±4.6 0.133±4.1 0.643 846±27 5 0.0618±4.7 1.174±4.8 0.137±1.1 0.445 846±27 1.3 0.0661±1.5 1.213±4.6 0.139±0.9 0.416 846±27 1.24±4.8 0.137±	(Main //a //a //a //a 88±71 7 0.06690±3 1.300±5.6 0.1376±1.0 0.276 939±46 13 0.0104±2.2 1.300±5.6 0.1376±1.0 0.276 939±46 13 0.00691±1.7 1.2.92±5.6 0.136±2.3 0.136±2.3 0.465 939±46 13 0.00691±1.7 1.274±2.0 0.136±0.5 0.455 811±33 -4 0.0661±1.6 1.274±1.7 0.1398±0.7 0.465 811±33 -1 0.0657±1.3 1.214±1.7 0.1398±0.7 0.465 814±4 2 0.0657±1.5 1.213±1.6 0.1334±1.1 0.224 812±4 2.135±1.6 0.1334±1.1 0.234 0.465 814±4 2 0.0667±2.0 1.21±4.4 0.1334±1.1 0.224 811±9 0 0.0666±1.5 1.21±4.4 0.1334±1.1 0.235 811±9 0 0.6664±1.5 1.21±4.4 0.1334±1.1 0.455 81±9 1.125±1.6 <td< th=""></td<>
985±/1 / 0.0090±5.4 1.309±5.5 0.113/6±1.0 0.27/6 939±46 13 0.0704±2.2 1.305±5.5 0.113/6±1.2 0.456 1865±410 55 0.0661±1.6 1.274±1.2 0.1380±3.9 0.456 811±33 -4 0.0661±1.6 1.274±1.7 0.1389±3.0 0.411 871±29 -1 0.0670±1.4 1.274±1.7 0.1389±0.7 0.463 871±29 -1 0.0670±1.4 1.274±1.7 0.1389±0.7 0.463 889±31 7 0.0667±1.3 1.231±1.7 0.1389±0.7 0.463 886±27 5 0.0675±1.3 1.231±1.7 0.1384±0.9 0.455 886±31 0 0.666±1.5 1.231±1.7 0.1384±0.9 0.456 886±27 5 0.0666±1.5 1.213±1.6 0.1384±0.9 0.456 886±27 5 0.0666±1.5 1.214±4.8 0.138±1.1 0.645 886±27 5 0.0666±1.5 1.214±4.8 0.137±1.1 0.236 <td< th=""><th>898±/1 / 0.006045.4 1.300±5.5 0.1364±1.0 0.276 939±46 13 0.0704±22 1.300±5.5 0.1345±1.2 0.467 1865±410 55 0.0704±22 1.300±5.5 0.1389±5.0 0.456 811±33 4 0.0661±1.6 1.274±1.7 0.1389±0.7 0.411 837±29 -1 0.0670±1.4 1.291±1.6 0.1395±0.7 0.463 895±31 0.0670±1.4 1.291±1.6 0.1395±0.7 0.463 808±31 0.0660±1.5 1.274±1.7 0.1389±0.7 0.445 866±27 5 0.0660±1.5 1.231±1.7 0.1389±0.7 0.455 866±27 5 0.0660±1.5 1.231±1.7 0.1389±0.7 0.455 866±1 0.0 0.553±1.3 1.238±1.7 0.1334±1.1 0.645 866±1 0.0 0.660±1.5 1.231±1.6 0.1332±0.7 0.445 875±41 0.0 0.0660±1.5 1.231±1.0 0.1393±0.8 0.463 875±41 2 0.0666±1.5 1.215±1.0 0.1393±0.8 0.465 761±95 -10 0.0666±1.5 1.291±2.1 0.1388±0.9 0.413 928±67 9 0.0666±1.5 1.291±2.1 0.1388±0.9 0.413 875±45 1 0.0664±4.5 1.315±4.6 0.1388±0.9 0.413 875±45 -10 0.0664±4.5 1.315±4.6 0.1388±0.9 0.413 928±67 9 0.0666±1.7 1.125±1.0 0.1399±0.8 0.426 761±95 -10 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 761±95 -13 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 761±95 -13 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.251±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.357±3.6 0.1369±0.1 0.317 982±67 -13 0.0641±3.4 1.251±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.357±3.6 0.1369±0.1 0.317 982±67 -13 0.0641±3.4 1.357±3.6 0.1395±0.8 0.366 745±42 -13 0.0664±1.7 1.323±1.9 0.1395±0.8 0.366 745±42 -13 0.0664±0.4 1.357±3.6 0.1395±0.9 0.416 745±46 0.1385±0.7 0.0150±</th><td>398±71 7 0000004:34 1.309±56 0.1376±1.0 0.276 939±46 13 0.0704±22 1.309±5.5 0.1345±1.2 0.467 1863±410 55 0.144±22 2.18±23 0.1384±3 0.130 902±36 12 0.0661±1.6 1.274±1.7 0.1384±3 0.0456 811±33 -4 0.0661±1.6 1.274±1.7 0.1384±0.7 0.445 837±29 -1 0.0660±1.5 1.231±1.6 0.1388±0.7 0.445 894±27 25 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 894±27 5 0.0660±1.5 1.231±1.6 0.1332±0.7 0.445 808±31 0 0.0660±1.5 1.231±1.6 0.1332±0.7 0.445 808±31 0 0.25 0.0661±1.5 1.233±1.6 0.1333±0.7 0.445 808±31 0 -25 0.0661±1.5 1.213±1.6 0.1332±0.7 0.445 808±31 0 0.0660±1.5 1.213±1.6 0.1332±0.7 0.445 808±31 0 2.5 0.0660±1.5 1.213±1.6 0.1339±0.9 0.209 833±41 2 0.0660±1.5 1.213±1.6 0.1399±0.9 0.209 833±41 2 0.0660±1.5 1.231±1.0 0.1401±1.5 0.426 761±55 -10 0.0664±5.8 1.237±3.9 0.1301±1.5 0.426 761±56 -13 0.0661±3.8 1.237±3.9 0.1301±1.5 0.426 833±19 114 0.0667±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 114 0.0667±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 16 0.0710±3.3 1.255±1.0 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.246 875±46 -13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.246 875±46 -13 0.06641±2.0 1.231±2.1 0.139±0.6 0.130±0.6 9 0.356 982±60 -13 0.0641±2.0 1.231±2.1 0.139±0.6 0.0309±0.5 0.236 875±46 -13 0.0641±2.0 1.231±2.1 0.139±0.6 0.0309±0.5 0.246 982±60 -13 0.0641±2.0 0.39%(16). # fith fith fith fith fith fith fith fith</td></td<>	898±/1 / 0.006045.4 1.300±5.5 0.1364±1.0 0.276 939±46 13 0.0704±22 1.300±5.5 0.1345±1.2 0.467 1865±410 55 0.0704±22 1.300±5.5 0.1389±5.0 0.456 811±33 4 0.0661±1.6 1.274±1.7 0.1389±0.7 0.411 837±29 -1 0.0670±1.4 1.291±1.6 0.1395±0.7 0.463 895±31 0.0670±1.4 1.291±1.6 0.1395±0.7 0.463 808±31 0.0660±1.5 1.274±1.7 0.1389±0.7 0.445 866±27 5 0.0660±1.5 1.231±1.7 0.1389±0.7 0.455 866±27 5 0.0660±1.5 1.231±1.7 0.1389±0.7 0.455 866±1 0.0 0.553±1.3 1.238±1.7 0.1334±1.1 0.645 866±1 0.0 0.660±1.5 1.231±1.6 0.1332±0.7 0.445 875±41 0.0 0.0660±1.5 1.231±1.0 0.1393±0.8 0.463 875±41 2 0.0666±1.5 1.215±1.0 0.1393±0.8 0.465 761±95 -10 0.0666±1.5 1.291±2.1 0.1388±0.9 0.413 928±67 9 0.0666±1.5 1.291±2.1 0.1388±0.9 0.413 875±45 1 0.0664±4.5 1.315±4.6 0.1388±0.9 0.413 875±45 -10 0.0664±4.5 1.315±4.6 0.1388±0.9 0.413 928±67 9 0.0666±1.7 1.125±1.0 0.1399±0.8 0.426 761±95 -10 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 761±95 -13 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 761±95 -13 0.0664±4.5 1.231±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.251±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.357±3.6 0.1369±0.1 0.317 982±67 -13 0.0641±3.4 1.251±2.1 0.1393±0.8 0.366 745±42 -13 0.0641±3.4 1.357±3.6 0.1369±0.1 0.317 982±67 -13 0.0641±3.4 1.357±3.6 0.1395±0.8 0.366 745±42 -13 0.0664±1.7 1.323±1.9 0.1395±0.8 0.366 745±42 -13 0.0664±0.4 1.357±3.6 0.1395±0.9 0.416 745±46 0.1385±0.7 0.0150±	398±71 7 0000004:34 1.309±56 0.1376±1.0 0.276 939±46 13 0.0704±22 1.309±5.5 0.1345±1.2 0.467 1863±410 55 0.144±22 2.18±23 0.1384±3 0.130 902±36 12 0.0661±1.6 1.274±1.7 0.1384±3 0.0456 811±33 -4 0.0661±1.6 1.274±1.7 0.1384±0.7 0.445 837±29 -1 0.0660±1.5 1.231±1.6 0.1388±0.7 0.445 894±27 25 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 894±27 5 0.0660±1.5 1.231±1.6 0.1332±0.7 0.445 808±31 0 0.0660±1.5 1.231±1.6 0.1332±0.7 0.445 808±31 0 0.25 0.0661±1.5 1.233±1.6 0.1333±0.7 0.445 808±31 0 -25 0.0661±1.5 1.213±1.6 0.1332±0.7 0.445 808±31 0 0.0660±1.5 1.213±1.6 0.1332±0.7 0.445 808±31 0 2.5 0.0660±1.5 1.213±1.6 0.1339±0.9 0.209 833±41 2 0.0660±1.5 1.213±1.6 0.1399±0.9 0.209 833±41 2 0.0660±1.5 1.231±1.0 0.1401±1.5 0.426 761±55 -10 0.0664±5.8 1.237±3.9 0.1301±1.5 0.426 761±56 -13 0.0661±3.8 1.237±3.9 0.1301±1.5 0.426 833±19 114 0.0667±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 114 0.0667±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 16 0.0710±3.3 1.255±1.0 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.236 875±45 13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.246 875±46 -13 0.06641±2.0 1.231±2.1 0.139±0.0 9 0.246 875±46 -13 0.06641±2.0 1.231±2.1 0.139±0.6 0.130±0.6 9 0.356 982±60 -13 0.0641±2.0 1.231±2.1 0.139±0.6 0.0309±0.5 0.236 875±46 -13 0.0641±2.0 1.231±2.1 0.139±0.6 0.0309±0.5 0.246 982±60 -13 0.0641±2.0 0.39%(16). # fith fith fith fith fith fith fith fith
4 18.03-410 55 0.014-23 1.18-23 0.1396-3.0 0.130 4 18.03-410 55 0.069141.7 1.247±23 0.1398-9.0 0.456 811±33 4 0.0660±1.5 1.274±1.7 0.1398-0.7 0.411 877±29 -1 0.0660±1.5 1.221±1.7 0.1398±0.7 0.463 894±31 7 0.0690±1.5 1.231±1.7 0.1398±0.8 0.463 1124±87 25 0.0670±1.4 1.291±1.6 0.1398±0.8 0.463 846±27 5 0.0660±1.5 1.213±1.6 0.1382±0.7 0.436 667±100 -25 0.0661±1.5 1.213±1.6 0.1382±1.0 0.209 891±94 6 0.0666±1.5 1.213±1.6 0.1373±1.1 0.645 808±31 0 0.0666±1.5 1.213±1.6 0.1373±1.0 0.209 891±94 6 0.0665±4.5 1.214±4.8 0.1378±1.0 0.209 891±94 6 0.0667±4.5 1.214±4.6 0.1373±1.0 0.209 873±41 2 0.0667±4.5 1.214±4.6 0.1373±1.0 0.209 873±41 2 0.0667±4.5 1.240±4.6 0.1393±0.9 0.413 761±95 -10 0.0667±4.5 1.240±4.6 0.1392±1.0 0.209 873±41 2 0.06675±0.9 1.125±1.0 0.1399±0.9 0.413 761±95 -10 0.0644±4.5 1.240±4.6 0.1392±0.9 0.436 761±95 -10 0.0664±4.5 1.240±4.6 0.1393±0.8 0.369 745±45 5 0.0669±1.1 1.25±1.0 0.139±0.9 0.436 745±45 -13 0.0641±3.8 1.257±3.4 0.1372±1.0 0.1401 918±36 -13 0.0641±3.8 1.257±3.4 0.1372±1.0 0.1400 918±36 -13 0.0641±3.8 1.257±3.4 0.1372±1.0 0.1400 918±36 -13 0.0641±2.8 1.231±3.1 0.1393±0.8 0.369 745±42 -13 0.0641±2.8 1.231±3.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.6 0.1401±1.5 0.445 745±42 -13 0.0641±2.8 1.231±3.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.6 0.140009 0.436 745±42 -13 0.0641±2.8 1.231±3.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.6 0.1369±1.1 0.317 745±42 -13 0.0641±2.8 1.231±2.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.6 0.1369±1.1 0.317 745±42 -13 0.0641±2.8 1.231±2.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.6 0.1369±1.1 0.317 745±42 -13 0.0641±2.8 1.231±2.1 0.1393±0.8 0.369 982±69 -16 0.0719±2.4 1.337±3.4 0.1369±1.1 0.317 745±42 -13 0.0641±2.8 0.07090±0.5 0.1401±1.5 0.0456±7.1 0.0139±0.5 0.0456±7.8 1.558 745±44.5 1.331±4.5 0.136±4.1 0.137±44.5 0.136±4.1 0.0137±4.5 0.14056±7.1 0.0137±4.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0.0140±6.5 0	4 1863±410 55 0.104±23 1.124±17 0.138±51.0 0.130 902±36 12 0.0661±1.7 1.247±2.0 0.138±51.0 0.130 811±33 4 0.0661±1.6 1.274±1.7 0.138±0.9 0.456 811±33 4 0.0661±1.6 1.274±1.7 0.138±0.9 0.445 881±27 25 0.0671±4.4 1.291±1.6 0.133±0.7 0.445 884±21 5 0.0660±1.5 1.221±1.7 0.138±0.9 0.455 889±31 0 0.0660±1.5 1.231±1.7 0.133±1.1 0.645 884±1 0 0.0660±1.5 1.231±1.6 0.133±0.7 0.436 667±100 -25 0.061±4.7 1.174±4.8 0.133±1.1 0.645 801±94 6 0.0661±1.5 1.134±4.0 0.133±0.7 0.436 667±100 -25 0.061±4.3 1.135±4.6 0.133±4.0 0.209 891±94 6 0.0661±4.3 1.174±4.8 0.133±1.0 0.209 891±94 6 0.0661±4.3 1.174±4.8 0.133±1.0 0.209 891±94 6 0.0661±1.3 1.155±1.6 0.133±0.0 0.209 853±41 2 0.0661±1.3 1.155±1.6 0.133±0.0 0.206 853±41 2 0.0661±1.3 1.125±1.6 0.139±0.9 0.413 761±95 1.10 0.0664±1.3 1.125±1.0 0.139±0.9 0.205 853±41 2 0.0664±1.7 1.1241±4.8 0.133±1.0 0.209 875±45 1 4 0.0675±2.0 1.291±2.4 0.137±1.0 0.209 875±45 1 4 0.0675±2.0 1.291±2.4 0.137±1.0 0.206 875±42 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 875±42 -13 0.0641±3.8 1.237±3.1 0.139±0.9 0.436 746±80 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 746±80 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 745±42 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 745±42 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 745±42 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 875±42 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 875±42 -13 0.0664±1.7 1.125±1.0 0.139±0.9 0.436 875±42 -13 0.0664±1.7 1.231±3.1 0.139±0.6 0.041±3.8 1.237±3.0 0.1364±1.1 0.317 745±42 -13 0.0664±1.7 1.231±3.1 0.139±0.6 0.0415 875±42 -13 0.0664±1.7 1.231±3.1 0.139±0.6 0.046 875±52 -13 0.0664±1.7 1.231±54 0.139±0.6 0.046 875±52 -13 0.0664±1.7 1.231±54 0.139±0.6 0.046 875±52 -13 0.0664±1.6 0.139±0.6 0.0140±0.9 0.236 875±52 -13 0.0664±1.8 0.066,0±1.7 0.139±0.6 0.0140±0.9 0.236 875	7.353-40 55 0.114±23 2.18±23 0.1389±30 0.130 902±36 12 0.0661±1.6 1.274±1.7 0.1389±0.7 0.411 831±33 4 0.0660±1.5 1.274±1.7 0.1389±0.7 0.445 837±29 1 0.0670±1.4 1.291±1.6 0.1389±0.7 0.445 837±29 1 0.0670±1.4 1.291±1.6 0.1389±0.7 0.445 8946±27 5 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 846±27 5 0.0771±4.4 1.494±4.5 0.1360±1.7 0.436 667±100 -25 0.0660±1.5 1.238±1.6 0.1337±1.0 0.249 808±31 0 0.0660±1.5 1.238±1.6 0.1337±1.0 0.249 833±41 2 0.0660±1.5 1.238±1.6 0.1337±1.0 0.249 833±41 2 0.0660±1.5 1.234±4.6 0.1337±1.0 0.246 833±19 14 0.0666±4.5 1.240±4.6 0.1337±1.0 0.246 761±95 -10 0.0666±4.5 1.240±4.6 0.1337±1.0 0.246 853±19 14 0.0675±0.9 1.125±1.0 0.1401±1.5 0.245 761±95 -10 0.0666±1.7 1.34±4.8 0.1390±0.9 0.246 761±95 -10 0.0666±1.7 1.34±4.8 0.1390±0.9 0.246 761±95 -10 0.0666±1.7 1.34±4.8 0.1390±0.9 0.246 761±95 -10 0.0666±1.7 1.34±4.8 0.1390±0.9 0.246 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.246 761±95 -10 0.0666±1.7 1.34±4.8 0.1390±0.9 0.246 745±45 -13 0.0664±1.2 0.1291±2.4 0.1390±0.9 0.246 982±69 16 0.0719±3.4 1.357±3.6 0.140±0.9 0.236 982±69 16 0.0764±2.0 1.231±2.4 0.1399±0.9 0.430 982±69 16 0.0764±2.0 1.231±2.4 0.1399±0.9 0.436 982±69 16 0.0764±2.0 1.231±2.4 0.1399±0.8 0.369 982±69 16 0.0764±2.0 1.231±2.4 0.1399±0.9 0.436 982±69 16 0.0764±2.0 1.231±2.4 0.1395±0.8 0.369 982±69 16 0.0764±2.0 1.231±2.4 0.1395±0.8 0.369 982±69 16 0.0764±2.0 1.231±2.4 0.1395±0.8 0.369 982±69 16 0.0764±7.0 1.231±2.4 0.1395±0.8 0.369 982±69 16 0.0764±7.0 0.0195±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±7.4 0.1395±
7 902456 12 0.0691±1.7 1.247±2.0 0.1308±0.9 0.456 811±33 4 0.0661±1.6 1.274±1.7 0.1396±0.7 0.411 837±29 -1 0.0600±1.5 1.231±1.7 0.1399±0.8 0.465 839±31 7 0.0690±1.5 1.231±1.7 0.1399±0.8 0.465 8 89±31 0 0.050±1.4 1.49±4.5 0.1406±1.1 0.234 8 46±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 846±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 846±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 891±94 6 0.0687±4.5 1.213±4.6 0.1337±1.0 0.209 8 891±94 6 0.0687±4.5 1.213±4.6 0.1337±1.0 0.209 8 891±94 0 6 0.0687±4.5 1.214±4.8 0.1375±1.0 0.209 7 761±95 -10 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 7 761±95 -10 0.0666±1.5 1.213±1.6 0.1330±0.9 0.205 7 761±95 -10 0.0666±1.3 1.255±1.0 0.1309±0.9 0.205 7 761±95 -10 0.0664±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0664±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0664±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0664±1.3 1.255±1.0 0.1309±0.9 0.205 7 75±45 5 0.0664±1.3 1.25±1.0 0.1209±0.5 0.436 7 75±45 -13 0.0661±3.8 1.237±3.9 0.1400±0.9 0.236 7 75±46 -13 0.0661±3.8 1.237±3.9 0.1390±0.9 0.236 7 75±46 -13 0.0661±3.8 1.237±3.6 0.1390±0.9 0.236 7 75±46 -13 0.0661±1.7 1.343±1.9 0.1390±0.9 0.236 7 75±46 -13 0.0661±1.7 1.343±1.9 0.1390±0.9 0.236 7 75±46 -13 0.0661±1.7 1.343±1.9 0.1390±0.9 0.236 7 75±46 -13 0.0661±3.8 1.237±3.6 0.1390±0.9 0.236 7 75±46 -13 0.0661±3.8 1.237±3.6 0.1370±0.5 0.236 7 75±46 -13 0.0661±1.7 1.343±1.9 0.1390±0.9 0.236 7 75±46 -13 0.0661±1.1 0.1393±0.8 0.366 1 755±1.0 0.1390±0.5 0.041±5.8 0.236 7 75±46 -13 0.0661±2.1 0.1393±0.8 0.366 1 755±56 -13 0.0390±0.5 0.1401 8 87±46 -13 0.0661±2.1 0.1231±2.1 0.1390±0.9 0.236 8 82±69 -16 0.0071±3.4 1.357±3.6 0.1370±0.5 0.0415 8 82±69 -16 0.0071±3.4 1.357±3.6 0.1370±0.5 0.0415 9 82±69 -16 0.071±3.4 1.357±3.6 0.1370±0.5 0.0415 9 82±69 -13 0.0661±2.1 0.139±0.9 0.0390,016 0.0390,016 0.10 0.1390±0.5 0.0415 9 82±60 -13 0.0661±2.1 0.139±0.5 0.0159±0.5 0.0415 9 82±60 -13 0.0661±2.1 0.139±0.5 0.0159±0.5 0.0415 9 82±60 -13 0.0661±2.1 0.139±0.5 0.0159±0.5 0.0415 9 82±60 -13 0.0661±0.0 0.100,000,000,000,000,000,000,000,000,00	7 902456 12 0.0691±1.7 1.247±2.0 0.1308±0.9 0.456 6 811±33 4 0.0661±1.6 1.274±1.7 0.1396±0.7 0.411 6 811±33 4 0.0660±1.6 1.274±1.7 0.1396±0.7 0.415 8 817±29 1 7 0.0650±1.6 1.274±1.7 0.1395±0.8 0.465 8 89±31 7 0.0650±1.5 1.213±1.6 0.1392±0.8 0.465 8 846±27 5 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 8 846±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 80±31 0 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 80±31 0 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 80±31 0 0.0660±1.5 1.213±1.6 0.1338±0.9 0.413 8 665±10 2.25 0.0668±4.5 1.213±1.6 0.1338±0.9 0.416 7 761±95 -10 0.0664±4.5 1.240±4.6 0.1399±0.9 0.416 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1399±0.9 0.416 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1399±0.9 0.416 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1399±0.9 0.436 7 746±80 -13 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 9 922±69 16 0.06641±3.8 1.237±3.9 0.1309±0.9 0.436 6 745±42 -13 0.06641±2.0 1.231±2.1 0.1372±1.0 0.401 7 918±36 8 0.06641±2.0 1.231±2.1 0.1372±1.0 0.401 9 922±69 16 0.0641±2.0 1.231±2.1 0.1372±1.0 0.401 8 873±4 1.25 0.14641±2.0 1.231±2.1 0.1372±1.0 0.401 8 873±4 1.2 0.06641±2.0 1.231±2.1 0.1372±1.0 0.401 8 873±4 1.2 0.06641±2.0 1.231±2.1 0.1372±1.0 0.401 8 873±4 1.2 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 9 922±69 16 0.00641±2.0 1.231±2.1 0.1372±1.0 0.401 8 873±4 1.2 0.136±1.2 0.136±1.2 0.136±1.2 0.136±1.1 0.137±1.0 0.317 8 873±3.1 0.05641±2.0 1.231±2.1 0.1372±1.0 0.401 9 982±69 16 0.00641±2.0 0.00641±2.0 0.130±1.5 0.0136±1.1 0.137±1.0 0.130±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0140±1.5 0.0130±1.5 0.0140±1.5 0.0130±1.5 0.0140±1	 7 902-456 12 0.0691±1.7 1.247±2.0 0.1308±0.9 0.456 6 811±33 4 6 811±33 4 7 0.0650±1.6 1.274±1.7 0.1308±0.7 0.411 8 89±31 7 7 0.0650±1.5 1.221±1.6 0.1308±0.7 0.465 8 89±31 7 0.138±0.7 0.465 8 845±27 5 0.0771±4.4 1.291±1.6 0.1338±0.7 0.455 8 845±27 5 0.0773±1.3 1.233±1.1 0.245 8 845±27 5 0.0573±1.3 1.233±1.7 0.1334±1.1 0.245 8 845±27 5 0.066±1.5 1.213±1.6 0.1333±0.7 0.436 8 845±27 5 0.066±1.5 1.213±1.6 0.1333±0.7 0.436 8 865±100 2.55 0.0673±1.3 1.233±1.7 0.1334±1.1 0.249 8 891±94 6 0 0.0673±1.3 1.135±4.6 0.1338±0.9 0.413 1 853±19 12 0.066±1.3 1.155±4.6 0.1338±0.9 0.413 1 2 928±67 9 0.0675±2.0 1.291±2.1 0.1388±0.9 0.413 1 2 928±67 9 0.0665±2.0 1.291±2.1 0.1388±0.9 0.413 1 2 928±67 9 0.0665±1.7 1.244±4 0.1375±1.0 0.209 8 831±19 2 0.0675±2.0 1.291±2.1 0.138±0.9 0.413 1 4 0.0675±4.9 1.125±4.9 0.1400±0.9 0.205 1 4 0.0675±4.0 1.125±4.0 0.130±0.9 0.205 1 4 0.0675±4.0 1.125±4.0 0.130±0.9 0.205 1 4 0.0675±4.0 1.291±2.1 0.130±0.9 0.205 1 4 0.0675±4.0 1.125±4.9 0.1400±0.9 0.205 1 4 0.0675±4.0 1.125±4.0 0.130±0.9 0.205 1 40±0.9 1.3 0.064±1.3 1.125±4.0 0.130±0.9 0.205 1 40±0.9 1.3 0.064±1.3 1.125±4.0 0.130±0.9 0.205 1 40±6.9 1.1 0.130±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.140±0.9 0.141±0.0 0.141±1.5 0.133±4.1 0.137±4.10 0.120±0.5 0.1456 1 41 2 0.066±1.7 1.125±4.9 0.130±0.6 0.130±0.6 0.130±0.6 0.130±0.6 0.130±0.4 0.130±0.4 0.130±0.4 0.130±0.6
6 811±33 -4 0.0661±1.6 1.274±1.7 0.1396±0.7 0.411 6 8374±9 -1 0.0650±1.4 1.291±1.6 0.1398±0.7 0.463 6 894±31 7 0.0650±1.4 1.291±1.6 0.1389±0.7 0.463 8 846±27 5 0.0650±1.5 1.231±1.7 0.1389±0.8 0.465 8 846±27 5 0.0660±1.5 1.231±1.6 0.1339±0.1 0.234 8 846±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.413 8 846±27 5 0.0660±1.5 1.213±1.6 0.1332±0.7 0.436 8 8657±100 -25 0.061±2.3 1.274±4.8 0.1337±1.0 0.209 8 831±41 2 0.0655±1.3 1.240±4.6 0.1330±0.9 0.413 7 853±41 2 0.0655±2.0 1.214±4.6 0.1330±0.9 0.413 7 855±19 14 2 0.0655±2.0 1.231±2.4 0.130±0.9<	6 811±33 4 0.0661±1.6 1.274±1.7 0.1395±0.7 0.411 6 871±29 1 0.0670±1.4 1.291±1.6 0.1399±0.7 0.465 8 816±27 25 0.0670±1.4 1.391±1.7 0.1395±0.8 0.465 8 816±27 55 0.0771±4.4 1.391±1.6 0.1333±1.1 0.624 8 816±27 5 0.0660±1.5 1.213±1.6 0.1333±1.1 0.624 8 816±27 5 0.0660±1.5 1.213±1.6 0.1333±1.1 0.624 8 816±27 5 0.0660±1.5 1.213±1.6 0.1333±1.0 0.209 8 816±27 1 2 0.0660±1.5 1.213±1.6 0.1333±0.7 0.436 8 816±27 1 2 0.0660±1.5 1.213±1.6 0.1333±0.7 0.436 8 816±27 1 2 0.0660±1.5 1.213±1.6 0.1333±0.7 0.436 8 815±41 2 0.06675±2.0 1.291±4.6 0.1390±0.9 0.209 8 833±19 14 0.06755±0.9 1.125±1.0 0.1300±0.9 0.205 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0641±3.8 1.255±1.0 0.1390±0.9 0.205 7 761±95 -10 0.0641±3.8 1.255±1.0 0.1390±0.9 0.205 7 75±42 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 45±42 -13 0.0641±3.8 1.237±3.0 0.1300±0.9 0.236 9 745±42 -13 0.0641±3.8 1.237±3.0 0.1300±0.9 0.369 9 82±69 1.6 0.0719±3.4 1.355±3.6 0.1390±0.9 0.369 1 785±46 -13 0.0641±2.0 1.231±2.1 0.1332±1.0 0.401 8 π	 811±33 - 4 0.0661±1.6 1.274±1.7 0.1396±0.7 0.411 8372±29 - 1 0.0670±1.4 1.291±1.6 0.1398±0.8 0.463 8937±29 - 1 0.0650±1.5 1.213±1.7 0.1398±0.8 0.463 894±27 5 0.0773±1.3 1.238±1.7 0.1333±1.1 0.245 8846±27 5 0.0773±1.3 1.238±1.7 0.1333±1.1 0.245 8846±27 5 0.0660±1.5 1.213±1.6 0.1373±1.0 0.209 891±94 6 0.0687±4.5 1.213±1.6 0.1373±1.0 0.209 891±94 2 0 0.0673±4.3 1.238±1.6 0.1378±1.0 0.209 853±19 14 0.0654±4.5 1.213±1.6 0.1378±1.0 0.209 753±41 2 0.0654±4.5 1.213±1.6 0.1378±1.0 0.209 753±41 2 0.0654±4.5 1.213±1.6 0.1378±1.0 0.209 761±95 -10 0.0654±4.5 1.231±2.1 0.139±0.9 0.413 746±80 -13 0.0654±1.7 1.231±2.1 0.139±0.9 0.205 745±42 1.1 0 0.0654±1.7 1.231±2.1 0.1395±0.9 0.413 745±45 5 0.0664±1.7 1.231±2.1 0.1395±0.9 0.436 745±45 1.1 0.0120±0.5 0.458 982±69 1.6 0.0779±3.4 1.375±1.0 0.1209±0.5 0.448 745±45 1.1 0.0120±0.5 0.458 745±45 1.1 0.0120±0.5 0.458 745±45 1.1 0.1299±0.9 0.1401±1.5 0.1401 7 91±3.1 0.1291±2.1 0.1393±0.8 0.306 745±45 1.1 0.0129±0.9 0.236 745±45 1.1 0.0129±0.9 0.1304±0.9 0.235 745±45 1.1 0.1299±0.9 0.1401 7 91±36 8 1.1 0.0641±2.0 1.231±2.1 0.1393±0.9 0.4436 745±45 1.1 0.1299±0.9 0.1401 7 91±36 8 1.1 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 92±66 1.7 1.337±3.4 0.1372±1.0 0.1309±0.9 0.336 92±66 1.1 0.0641±2.0 1.231±2.1 0.1393±0.9 0.1436 745±45 1.1 0.1373±1.9 0.1395±0.9 0.1401 7 91±36 8.1 0.0641±2.0 1.231±2.1 0.1393±0.9 0.1436 745±45 1.1 0.0129±0.4 0.1372±1.0 0.1393±0.8 0.369 92±69 1.6 0.0065±1.7 1.337±3.4 0.1372±1.0 0.1393±0.9 0.1305 91±35±36 0.1305±0.5 0.1456 875±45 8.1 0.00641±2.0 1.231±2.1 0.1393±0.9 0.1436 875±45 8.1 0.00641±2.0 1.231±2.1 0.1393±0.9 0.1305 875±45 8.1 0.00641±2.0 1.231±2.1 0.1393±0.9 0.1305 875±45 8.1 0.00641±1.0 0.1375±0.9 0.1305±0.5 0.1456 <li< td=""></li<>
6 837±29 -1 0.0670±1.4 1.291±1.6 0.1398±0.7 0.463 8 1124±87 25 0.0690±1.5 1.321±1.7 0.1389±0.7 0.463 8 846±27 5 0.06053±1.3 1.321±1.7 0.1338±0.7 0.463 8 846±27 5 0.0660±1.5 1.231±1.6 0.1338±1.1 0.645 8 8667±100 -25 0.0660±1.5 1.213±1.6 0.1332±0.7 0.463 8 8667±100 -25 0.0660±1.3 1.213±1.6 0.1338±1.0 0.209 8 8667±100 -25 0.0660±1.3 1.213±4.6 0.1338±1.0 0.209 7 853±41 2 0.0660±1.3 1.213±4.6 0.1338±1.0 0.209 7 761±95 14 0 0.0660±1.3 1.231±4.1 0.133±1.0 0.413 7 761±95 14 0 0.0660±1.5 1.231±2.1 0.130±0.9 0.413 7 761±95 14 0.0661±3.8 1.231±2	 6 837±29 -1 0.0670±1.4 1.291±1.6 0.1398±0.7 0.463 6 837±29 -1 0.0650±1.5 1.321±1.7 0.138±0.8 0.463 8 81±4±87 25 0.0673±1.3 1.294±4.5 0.1333±0.7 0.445 8 84±27 5 0.0660±1.5 1.213±1.6 0.1333±0.7 0.445 8 80±31 0 0 0.0660±1.5 1.213±1.6 0.1333±0.7 0.445 8 80±31 0 0 0.0660±1.5 1.213±1.6 0.1333±0.7 0.445 8 80±41 0 0.057±2.0 1.291±2.1 0.138±0.9 0.209 8 80±41 2 0.0660±1.5 1.213±1.6 0.1337±1.0 0.209 8 80±41 2 0.0660±1.5 1.213±1.6 0.1337±1.0 0.209 8 80±41 2 0.0666±1.5 1.213±1.6 0.1337±1.0 0.209 8 80±41 2 0.0666±1.5 1.213±1.6 0.1337±1.0 0.209 7 753±41 2 0.070±3.3 1.352±3.6 0.1401±1.5 0.445 7 761±95 -10 0.070±3.3 1.352±3.6 0.1401±1.5 0.205 7 716±54 1 14 0.0675±0.9 1.125±1.0 0.1299±0.9 0.205 7 746±80 -13 0.0664±3 1.231±2.1 0.1390±0.9 0.205 7 918±36 8 0.0664±1.7 1.234±1.9 0.1399±0.9 0.205 918±36 9 0.6641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0664±1.7 1.231±2.1 0.1309±0.9 0.205 918±36 9 0.6641±2.0 1.231±2.1 0.1399±0.9 0.205 852±69 16 0.069±1.2 1.231±2.1 0.1399±0.9 0.205 852±61 13 0.0664±1.2 1.231±2.1 0.1399±0.9 0.205 852±61 14 0.0575±0.9 1.231±2.1 0.1399±0.9 0.205 875±45 5 0.066±1.7 1.231±2.1 0.1309±0.9 0.205 918±36 8 0.069±1.7 1.231±2.1 0.1399±0.9 0.205 918±36 9 0.069±1.2 1.231±2.1 0.1399±0.9 0.205 918±36 9 0.069±1.2 1.231±2.1 0.1399±0.9 0.205 918±36 9 0.069±1.2 1.231±2.1 0.1399±0.9 0.205 875±45 5 0.066±1.7 1.24±42 1.231±2.1 0.1339±0.9 0.205 875±45 16 0.0069±1.7 1.231±2.1 0.139±0.9 0.205 918±36 9 0.069±1.2 1.231±2.4 0.1372±1.0 0.401 875±44 12 1.1 0.0055±0.2 1.291±2.4 0.1372±1.0 0.401 875±45 16 0.0069±1.7 1.231±2.1 0.130±0.5 0.0456 875±45 16 0.0069±1.7 1.231±2.1 0.130±0.5 0.0456 875±45 16 0.0069±1.7 0.130±0.5 0.0456 875±45 16 0.0069±1.7 0.130±0.5 0.0456 	 6 837±29 -1 0.0670±1.4 1.291±1.6 0.1398±0.7 0.463 6 837±29 -1 0.0600±1.5 1.321±1.7 0.1389±0.7 0.463 8 846±27 5 0.0650±1.3 1.321±1.7 0.1383±0.8 0.463 8 846±27 5 0.0660±1.3 1.231±1.7 0.1333±1.1 0.645 8 846±27 5 0.0660±1.3 1.231±1.7 0.1333±1.1 0.645 8 80±31 0 0.0660±1.3 1.231±1.6 0.1332±0.9 0.413 8 80±51 0 -25 0.0661±4.7 1.174±4.8 0.1378±1.0 0.209 8 80±51 0 -25 0.0661±4.7 1.174±4.8 0.1380±0.9 0.4413 7 761±95 -10 0.0646±4.7 1.124±4.8 0.1380±0.9 0.209 7 761±95 -10 0.0646±4.3 1.240±4.6 0.1309±0.9 0.2436 7 761±95 -10 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 761±95 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 761±95 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 8 75±45 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 8 75±45 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 8 75±45 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.330 8 75±45 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.3436 9 92±69 -16 0.0779±3.4 1.237±3.1 0.1339±0.9 0.3303 9 92±69 -16 0.0779±3.4 1.357±3.6 0.1399±0.9 0.3436 9 92±69 -16 0.0779±3.4 1.357±3.6 0.1309±0.9 0.3436 9 982±69 -16 0.0779±3.4 1.357±3.6 0.1309±0.9 0.3436 9 982±69 -16 0.0779±3.4 1.357±3.6 0.1309±0.9 0.3436 9 922±69 -16 0.0779±3.4 1.357±3.6 0.1309±0.9 0.1435 18 7 Å 7 ± 8 m Å 4 m 𝔅 2 ± 0.1309±0.9 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1309±0.4 0.1307
6 899±31 7 0.0690±1.5 1.321±1.7 0.1389±0.8 0.465 8 84±27 25 0.0771±4.4 1.494±4.5 0.1304±1.1 0.234 8 84±27 5 0.0771±4.4 1.494±4.5 0.1334±1.1 0.645 5 808±31 0 0 0.0660±1.5 1.213±1.6 0.1332±0.7 0.456 667±100 -25 0.0618±4.7 1.174±4.8 0.1332±0.7 0.426 8 891±94 6 0.0660±1.5 1.213±1.6 0.1332±1.0 0.209 8 83±41 2 0.0660±1.5 1.212±1.6 0.1332±1.0 0.209 7 853±41 2 0.0666±4.5 1.315±4.6 0.1332±0.9 0.413 2 928±67 9 0.0666±4.5 1.315±4.6 0.1336±0.9 0.205 7 61±95 -10 0.0666±4.5 1.291±2.1 0.1398±0.9 0.413 7 761±95 -10 0.0666±4.5 1.2291±2.1 0.1390±0.9 0.205 7 761±95 -13 0.0641±3.8 1.237±3.9 0.1401±1.5 0.426 7 75±4.5 5 0.0666±1.7 1.234±1.9 0.1390±0.9 0.436 7 918±36 8 0.0666±1.7 1.234±1.9 0.1390±0.9 0.436 7 918±36 8 0.0666±1.7 1.234±1.9 0.1390±0.9 0.436 7 918±36 8 0.0666±1.7 1.234±1.9 0.1390±0.9 0.436 7 918±46 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 17 $W Erft in hig \pm h_0 R_1 \pm h_0 R_2 \pm h_0 R_1 = 0.317R \pounds_1 + f_2 = 1 h_0 R_2 \pm h_0 R_2 + h_0 R_1 = 0.316R \pm h_1 + f_2 = 1 h_0 R_2 + h_0 R_1 = 0.316R \pm h_1 + h_2 = 1 h_0 R_2 + h_0 R_1 = 0.316R \pm h_1 + h_2 = 1 h_0 R_2 + h_0 R_1 = 0.309R \pm h_1 + h_2 = 0.0109 R_1 = 0.01190R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109R \pm h_1 + h_2 = 0.0109 R_1 = 0.0110R \pm h_1 + h_2 = 0.0109R \pm h_1 + h_2 = 0.0109$	 6 899±31 7 0.0690±1.5 1.321±1.7 0.1389±0.8 0.463 8 8124±87 25 0.0771±4.4 1.494±4.5 0.1360±1.1 0.234 8 846±27 5 0.0660±1.5 1.213±1.6 0.1333±0.7 0.436 8 865±100 -25 0.0618±4.7 1.174±4.8 0.1373±1.0 0.209 8 801±94 6 0.0887±4.5 1.315±4.6 0.1337±1.0 0.209 8 801±94 6 0.06887±4.5 1.315±4.6 0.1337±1.0 0.209 8 8353±41 2 0.0664±1.5 1.291±2.1 0.1388±0.9 0.413 12 928±67 9 0.0664±4.5 1.240±4.6 0.1397±1.0 0.209 8 853±19 14 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 7 761±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.205 7 875±45 5 0.0664±1.7 1.343±1.9 0.1399±0.9 0.205 7 918±36 8 0.0664±1.7 1.343±1.9 0.1399±0.9 0.205 9 918±40 -13 0.0641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0664±1.7 1.343±1.9 0.1309±0.9 0.236 9 918±40 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.236 9 92±40 -13 0.0664±1.7 1.343±1.9 0.1369±1.1 0.317 #£3.11测试结果误差偏大,未参加样品U Pbi皆和图和加权平均年龄计算. 	6 899±31 7 0.0690±1.5 1.321±1.7 0.1389±0.8 0.463 8 814±27 25 0.0771±4.4 1.494±4.5 0.1333±1.1 0.645 5 808±31 0 0.0660±1.3 1.213±1.6 0.1333±1.1 0.645 8 667±100 -25 0.0665±1.3 1.213±1.6 0.1337±1.0 0.209 8 891±94 6 0.0665±4.5 1.315±4.6 0.1387±1.0 0.209 8 891±94 6 0.0665±4.5 1.315±4.6 0.1387±1.0 0.209 8 891±94 6 0.0666±4.5 1.240±4.6 0.1380±0.9 0.445 7 746±80 -13 0.0646±4.5 1.240±4.6 0.1390±0.9 0.236 8 853±19 14 0.0655±0.9 1.125±1.0 0.1209±0.5 0.426 9 145±42 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 9 746±42 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 9 746±45 1.1231±2.1 0.1399±0.9 0.236 9 145±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.2436 9 145±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.3436 9 145±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.3436 9 145±42 -13 0.0199±7.4 0.1395±0.9 0.1445 9 155±4.5 % m#d.U Pbil³AnBA/m V2454±8.1 % mathematical states at the states at t
8 1124±87 25 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 8 46±27 5 0.0660±1.5 1.238±1.7 0.1332±0.7 0.435 5 8845±10 -25 0.06614.15 1.174±4.8 0.1332±0.7 0.436 6 667±100 -25 0.0661±4.7 1.174±4.8 0.1338±1.0 0.209 8 891±94 6 0.0887±4.7 1.174±4.8 0.1378±1.0 0.209 7 853±41 2 0.0687±4.5 1.1315±4.6 0.1388±0.9 0.413 2 928±67 9 0.0667±0.9 1.1291±2.1 0.1388±0.9 0.413 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1300±0.9 0.205 7 751±95 -10 0.0641±3.8 1.237±3.6 0.1401±1.5 0.426 7 751±96 -13 0.0641±3.8 1.237±3.9 0.1401±0.9 0.205 8 75±4.5 5 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 9 18±56 8 0.0669±1.7 1.234±1.9 0.1399±0.9 0.436 7 918±56 8 0.0669±1.7 1.234±1.9 0.1399±0.9 0.436 9 145±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.436 9 145±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.436 7 75±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.436 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 3 17 校正待测样品并与之同时测定的标准相品的误差为0.39%(1 σ),普通铅校正采用实测的 ²³ Pb. 7 3点3.1 测试结果误差确人,未参加样品U Pb谐和图和加权平均年龄计算。	8 1124±87 25 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 8 846±27 5 0.0673±1.3 1.233±1.7 0.1332±0.7 0.436 8 667±100 -25 0.0669±4.7 1.174±4.8 0.1332±0.7 0.436 8 667±100 -25 0.06685±4.7 1.174±4.8 0.1332±1.0 0.209 8 891±94 6 0.0687±4.3 1.174±4.8 0.1373±1.0 0.209 8 853±41 2 0.06657±2.0 1.291±2.1 0.1388±0.9 0.413 12 928±67 9 0.0665±4.5 1.1.244±4.6 0.1373±1.0 0.205 7 61±95 -10 0.0666±4.5 1.240±4.6 0.1300±0.9 0.205 7 761±95 -10 0.0666±4.5 1.240±4.6 0.1300±0.9 0.205 7 761±80 -13 0.0661±3.8 1.257±3.6 0.1400±0.9 0.205 7 74±48 -13 0.0661±1.3 1.257±3.6 0.1400±0.9 0.205 6 745±45 5 0.0665±1.7 1.243±1.9 0.1309±0.9 0.436 6 745±42 -13 0.0661±1.3 1.253±3.6 0.1400±0.9 0.236 9 98±69 16 0.0719±3.4 1.357±3.6 0.1309±0.9 0.436 6 745±42 -13 0.0661±1.2 1.231±2.1 0.1399±0.9 0.436 745±42 -13 0.0661±1.2 1.231±2.1 0.1372±1.0 0.436 745±42 1.3 1.34±4.15 0.166,11±2.0 1.231±2.1 0.1372±1.0 0.436 87±69 1.6 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 87±54.13 1.335±4.14 0.175±4.4 0.175±4.10 0.1372±1.0 0.436 745±4.14 0.175±4.4 0.175±4.4 0.1372±1.0 0.436 745±4.14 0.1372±1.0 0.1401 745±4.14 0.1667±4.4 0.175±4.4 0.1372±1.0 0.1309±0.9 0.436 6 745±4.2 1.3 0.0664±1.7 1.343±1.9 0.1369±1.1 0.1312±4.0 0.1309±0.9 0.436 87±4.14 0.1372±1.0 0.1401 87±4.14 0.1667±4.14 0.1275±3.6 0.1369±1.1 0.1312±4.0 0.1309±0.9 0.436 745±4.14 0.1372±4.0 0.1309±0.9 0.436 745±4.15 0.1369±1.1 0.1372±4.0 0.1309±0.9 0.436 745±4.15 0.1369±1.1 0.1372±1.0 0.1401 745±4.15 0.1667±1.1 0.1372±1.0 0.1309±0.9 0.1369±1.1 0.1312±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.13125±6.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1372±4.0 0.1369±1.1 0.1375±4.0 0.1369±1.1	8 1124±87 25 0.0771±4.4 1.494±4.5 0.1406±1.1 0.234 8 1124±87 25 0.0673±1.3 1.233±1.7 0.1333±1.1 0.645 8 846±27 5 0.0666±1.5 1.231±1.6 0.1333±1.1 0.645 8 667±100 -25 0.0661±4.7 1.174±4.8 0.1373±1.0 0.209 8 801±94 6 0.0087±4.5 1.315±4.6 0.1337±1.0 0.209 8 81±94 5 0.0666±4.5 1.315±4.6 0.1339±0.9 0.413 12 928±67 9 0.0675±0.9 1.291±2.1 0.1388±0.9 0.413 12 928±67 9 0.0675±0.9 1.291±2.1 0.1388±0.9 0.413 13 74±80 -13 0.0646±4.5 1.240±4.6 0.1390±0.9 0.413 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 15 74±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.205 16 745±42 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 17 85±45 5 0.0664±1.7 1.241±1.9 0.1399±0.9 0.436 18 F校正待测样品并与之同时测定的标准样品的误差为0.39%(16), 普通铅校正采用实测的 ³ⁿ Pb不 指方数正待测样品并与之同时测定的标准样品的误差为0.39%(16), 普通铅校正采用实测的 ³ⁿ Pb不 第2:31.1测试结果误差偏人, 未参加样品UPb皆和图和加权平均年龄计算。
8 846.27 5 0.067341.3 1.2384.17 0.13344.11 0.645 8 846.27 5 0.066041.5 1.21341.6 0.13324.07 0.436 8 667 \pm 100 -25 0.0618 \pm 4.7 1.174 \pm 4.8 0.1338 \pm 1.0 0.209 8 891 \pm 94 6 0.0687 \pm 4.5 1.315 \pm 4.6 0.1388 \pm 1.0 0.209 7 853 \pm 41 2 0.0687 \pm 4.5 1.315 \pm 4.6 0.1388 \pm 0.9 0.413 2 928 \pm 67 9 0.0666 \pm 4.5 1.240 \pm 4.6 0.1388 \pm 0.9 0.413 7 761 \pm 95 0.0666 \pm 4.5 1.240 \pm 4.6 0.1392 \pm 0.9 0.413 7 761 \pm 95 0.064 \pm 4.5 1.240 \pm 4.6 0.1392 \pm 0.9 0.413 7 761 \pm 95 0.0641 \pm 3.8 1.237 \pm 3.9 0.1400 \pm 0.5 0.205 8 853 \pm 19 14 0.0655 \pm 2.0 1.291 \pm 2.4 0.1372 \pm 1.0 0.209 7 751 \pm 76 -13 0.0641 \pm 3.8 1.237 \pm 3.9 0.1400 \pm 0.9 0.236 6 745 \pm 42 -13 0.0661 \pm 3.1 1.231 \pm 2.1 0.1392 \pm 0.9 0.436 9 18 \pm 56 8 0.0666 \pm 4.1 1.2.0 1.231 \pm 2.1 0.1392 \pm 0.9 0.436 7 755 \pm 6 0.01401 \pm 3.4 1.357 \pm 3.6 0.1400 \pm 9 0.236 6 745 \pm 42 -13 0.0641 \pm 2.0 1.231 \pm 2.1 0.1392 \pm 0.9 0.436 8 745 \pm 42 -13 0.0641 \pm 2.0 1.231 \pm 2.1 0.1372 \pm 1.0 0.1302 \pm 0.5 0.436 8 745\pm42 -13 0.0641 \pm 2.0 1.231 \pm 2.1 0.1392\pm0.6 0.436 7 755\pm6 0.1366 \pm 1.1 2.34 \pm 1.9 0.1372 \pm 1.0 0.1302 \pm 0.8 0.369 9 82 \pm 69 16 0.0611 \pm 2.0 1.231 \pm 2.1 0.1372 \pm 1.0 0.1302 \pm 0.8 0.369 8 1.31 \pm 7 & 1.357\pm3.6 0.1369 \pm 1.1 0.1302 \pm 0.359 8 1.31 \pm 7 & 1.357\pm3.6 0.1369 \pm 1.1 0.1302 \pm 1.8 0.369 9 822\pm69 1.0 0.0719 \pm 3.4 1.357 \pm 3.6 0.1369\pm1.1 0.1302 \pm 1.8 0.369 8 1.31 \pm 7 & 1.357\pm3.6 0.1369\pm1.1 0.1302 \pm 1.8 0.369 9 822\pm69 1.0 0.0719 \pm 3.4 1.357 \pm 3.6 0.1369\pm1.1 0.1302 \pm 1.8 0.369 8 1.31 \pm 7 & 1.357\pm3.6 0.1369\pm1.1 0.1302 \pm 1.8 0.369 9 822\pm69 1.1 \pm 1.8	8 8464.27 5 0.065341.3 1.23841.7 0.1133441.1 0.645 6 6674100 -25 0.066041.5 1.21341.6 0.1137341.0 0.209 8 808431 0 0.066041.5 1.21341.6 0.1137841.0 0.209 8 81494 6 0.0687544.5 1.17444.8 0.1137841.0 0.209 8 853441 2 0.0687544.5 1.3154.6 0.1137841.0 0.209 7 61495 -10 0.064644.5 1.29142.1 0.138440.9 0.413 7 61495 -10 0.064644.5 1.24044.6 0.1139040.9 0.205 7 761480 -13 0.064143.8 1.23743.9 0.1140040.9 0.205 7 746480 -13 0.064143.8 1.23743.9 0.1140040.9 0.236 7 746480 -13 0.064143.8 1.23743.9 0.139940.9 0.436 7 982469 16 0.005644.1 1.23142.1 0.139940.9 0.436 6 745442 -13 0.06644.1 1.23142.1 0.139940.9 0.436 6 745442 -13 0.06644.1 1.3434.1 9 0.139940.9 0.436 6 745442 -13 0.06644.1 1.3434.1 9 0.139940.9 0.436 7 982469 16 0.071943.4 1.35743.6 0.136941.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(16),普通船校正采用实测的 ³ⁿ Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	8 846427 5 0.067341.3 1.2384.17 0.13344.1.1 0.645 6674100 -25 0.061844.7 1.1744.8 0.133240.7 0.436 8 6674100 -25 0.061844.7 1.1744.8 0.133784.10 0.209 8 819494 6 0.068754.3 1.3154.46 0.13874.10 0.209 8 853441 2 0.066754.2 0.129142.1 0.138840.9 0.413 7 61±95 -10 0.06754.0 1.29142.1 0.138840.9 0.413 7 761±95 -10 0.064644.5 1.2404.46 0.139040.9 0.426 7 761±95 -11 0.0641±3.8 1.2374.3 0.0140040.9 0.205 7 761±80 -13 0.0641±3.8 1.2374.3 0.0140040.9 0.205 8 73445 5 0.06641.7 1.2344.19 0.139040.9 0.236 9 982469 -13 0.06641±3.8 1.2374.10 0.130940.9 0.436 6 745442 -13 0.06641±2.0 1.23142.1 0.139340.8 0.369 9 982469 16 0.0719±3.4 1.3574.10 0.139340.8 0.369 13 7845 8 0.066641.7 1.34341.9 0.139340.9 0.436 745442 -13 0.06641±2.0 1.23142.1 0.139340.8 0.369 9 982469 16 0.0719±3.4 1.35743.6 0.136941.1 0.317 3 751.1 测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 7 3 73236 0.0641±2.0 1.23142.1 0.139340.8 0.369 1 3 75340 0.0719±3.4 1.35743.6 0.136941.1 0.317 3 7 5 0.035940.9 0.7369 1 7 7 5 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
8 88331 0 0 006691.5 1.213±1.6 0.1333±0.7 0.436 8 867±100 -25 0.0687±4.7 1.174±4.8 0.1338±1.0 0.209 8 891±94 6 0.0687±4.5 1.174±4.6 0.1388±1.0 0.209 7 853±41 2 0.0687±4.5 1.241±4.6 0.1388±0.9 0.413 2 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0645±4.5 1.240±4.6 0.1390±0.9 0.205 8 853±19 14 0.0655±0.9 1.1.25±1.0 0.1209±0.9 0.236 7 76±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 875±45 5 0.0682±2.2 1.291±4.4 0.1372±1.0 0.401 8 875±45 5 0.0682±2.2 1.291±4.4 0.1372±1.0 0.401 9 18±36 8 0.0665±1.7 1.231±2.1 0.1372±1.0 0.401 7 918±36 8 0.0665±1.7 1.231±2.1 0.1372±1.0 0.401 7 918±36 8 0.0665±1.7 1.231±2.1 0.1372±1.0 0.401 9 92±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 3 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 3 78±63 1.131č4.果提進htthentic Philican Philipan Philican Philipan	5 808±31 0 0 0060b41.5 1.213±1.6 0.11332±0.7 0.436 8 667±100 2.5 0.0618±4.7 1.174±4.8 0.1378±1.0 0.209 8 891±94 6 0.06615±4.5 1.315±4.6 0.1387±1.0 0.209 7 853±41 2 0.0657±4.5 1.315±4.6 0.1387±1.0 0.205 7 761±95 -10 0.0655±4.5 1.240±4.6 0.1309±0.9 0.416 7 761±95 -11 0 0.0646±4.5 1.240±4.6 0.1309±0.9 0.426 7 761±95 -11 0 0.0646±4.5 1.240±4.6 0.1309±0.9 0.436 8 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.9 0.205 8 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.9 0.236 9 137±4.5 5 0.0685±2.2 1.241±2.4 0.1372±1.0 0.416 7 918±36 8 0.0666±1.1 1.231±2.1 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1399±0.9 0.436 1 ± 7 $\&$ π h	8 808±31 0 0.0660±1.5 1.213±1.6 0.1373±0.7 0.436 667±100 25 0.0618±4.7 1.174±4.8 0.1373±1.0 0.209 8 891±94 6 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 8 53±41 2 0.06675±2.0 1.291±2.1 0.1388±0.9 0.416 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 8 55±19 14 0.0675±0.9 1.125±1.0 0.1400±1.5 0.458 8 751±9 14 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 6 745±45 5 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 6 745±45 5 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 6 745±42 -13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 9 92±69 16 0.006641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 745±46 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±46 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±46 -13 0.0041±2.0 1.231±2.1 0.1393±0.8 0.369 745±46 -13 0.0041±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±46 -13 0.0041±7 -13 0.0041±7 -13 0.1305±0.1 0.530 6 745±46 -13 0.0041±7 -13 0.0041±7 -13 0.0041±7 -13 0.1305±0.0 0.4401 745±75 -13 0.0041±7 -13 0.0041±7 -13 0.1305±0.0 0.4401 745±75 -13 0.00641±7 -13 0.00641±7 -13 0.130±0.0 0.230 8 225±66 -13 0.00641±7 -13 0.0041±7 -14 0.1372±1.0 0.1400±7 -13 0.0041±7 -13 0.0041±7 -13 0.0130±0.0 0.4401 745±75 -13 0.00641±7 -13 0.00641±7 -13 0.0041±7 -14 0.0075±7 -13 0.0041±7 -14 0.0075±7 -13 0.0041±7 -14 0.0075±7 -13 0.0041±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.0075±7 -14 0.000±7 -14 0.000±7 -1
8 667 ± 100 -25 0.0618 ± 4.7 1.74 ± 4.8 0.137 ± 1.0 0.209 8 891 ± 94 6 0.0657 ± 4.5 1.31 ± 4.6 0.137 ± 1.0 0.209 7 853 ± 41 2 0.0657 ± 4.5 1.31 ± 4.6 0.1387 ± 1.0 0.209 7 853 ± 41 2 0.0657 ± 4.5 1.24 ± 4.6 0.139 ± 0.9 0.413 7 761 ± 95 -10 0.0657 ± 0.9 1.125 ± 1.0 0.140 ± 0.9 0.205 8 853 ± 19 14 0.0657 ± 0.9 1.125 ± 1.0 0.130 ± 0.9 0.236 7 76 ± 80 -13 0.064 ± 4.5 1.24 ± 4.6 0.139 ± 0.9 0.236 7 75 ± 4.5 5 0.068 ± 2.22 1.29 ± 4.4 0.137 ± 1.0 0.410 8 855 ± 4.5 -13 0.068 ± 1.2 1.34 ± 1.9 0.139 ± 0.9 0.236 7 918 ± 3.6 -13 0.064 ± 2.2 1.23 ± 1.9 0.139 ± 0.9 0.236 7 75 ± 4.2 -13 0.064 ± 2.1 1.23 ± 1.9 0.139 ± 0.9 0.336 9 75 ± 4.2 -13 0.064 ± 2.0 1.23 ± 1.2 0.139 ± 0.9 0.336 8 75 ± 4.2 -13 0.064 ± 2.0 1.23 ± 1.2 0.139 ± 0.9 0.369 9 75 ± 6.9 16 0.0719 ± 3.4 1.357 ± 3.6 0.139 ± 0.9 0.369 9 82 ± 6.9 16 0.0719 ± 3.4 1.357 ± 3.6 0.139 ± 0.8 0.369 8 $B_{2}\pm69$ 16 0.0719 ± 3.4 1.357 ± 3.6 0.139 ± 0.8 0.369 8 $B_{2}\pm1.0$ 1.37 ± 1.2 1.37 ± 1.0 0.137 ± 1.0 0.317 8 $B_{2}\pm1.1$ 0.137 ± 1.0 0.139 ± 0.8 0.369 9 125 ± 1.3 1.357 ± 3.6 0.136 ± 1.1 0.317 8 $B_{2}\pm1.3$ 1.31 1.24 1.357 ± 3.6 0.136 ± 1.1 0.317	8 6674100 -25 0.0618±4.7 1.174±4.8 0.1378±1.0 0.209 8 891±94 6 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 12 924±67 9 0.0687±4.5 1.315±4.6 0.1389±0.9 0.413 12 924±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.436 7 761±95 -10 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 6 745±45 5 0.0641±3.8 1.237±3.1 0.1372±1.0 0.401 9 18±36 8 0.0666±1.7 1.343±1.9 0.1372±1.0 0.401 9 18±36 8 0.0666±1.7 1.343±1.9 0.1372±1.0 0.401 17 745±42 -13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 9 92±69 16 0.0666±1.7 1.343±1.9 0.1393±0.8 0.369 16 0.0719±3.4 1.357±3.6 0.1399±0.9 0.436 17 \Re_{13} 1.357±3.6 0.1399±0.9 0.436 18 $\%_{14}$ \Re_{15} \Re_{16} \Re_{1	8 6674100 -25 0.0618±47 1.174±4.8 0.1378±1.0 0.209 8 891±94 6 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 8 53±41 2 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 9 285±47 9 0.0700±5.3 1.352±3.6 0.1401±1.5 0.426 9 24±67 9 0.0700±5.3 1.352±3.6 0.1390±0.9 0.413 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.426 7 761±95 -10 0.0641±3.8 1.25±1.0 0.1209±0.5 0.458 8 55±19 14 0.0655±0.9 1.125±1.0 0.1309±0.9 0.436 7 74±45 5 0.06641.7 1.345±1.9 0.1393±0.8 0.369 9 875±45 5 0.06641±3 1.375±1.0 0.1399±0.9 0.4401 9 18±36 8 0.06641±2, 1 1.345±1.9 0.1393±0.8 0.369 9 92±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 相手校正待测样品并与之同时测定的标准样品的误差为0.39%(1 ₆),普通铅校正采用实测的 ^{3a} Pb不 指点3.1测试结果误差偏大,未参加样品UPb造和图和加权平均年龄计算。
8 891+94 6 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 7 853±41 2 0.06575±2.0 1.291±2.1 0.138840.9 0.413 8 553±41 2 0.0700±3.3 1.232±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0700±3.3 1.232±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0666±4.5 1.240±4.6 0.1309±0.5 0.458 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1309±0.9 0.236 8 73±45 5 0.0696±1.7 1.335±1.9 0.1379±0.9 0.401 9 745±42 -13 0.0641±2.4 1.337±3.6 0.1399±0.9 0.436 7 918±36 8 0.0641±3 1.231±2.1 0.1393±0.8 0.366 9 745±42 -13 0.0641±2.4 1.331±2.1 0.1393±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.1399±0.9 0.436 9 82±69 16 0.0719±3.4 1.357±3.6 0.1399±0.9 0.436 8 745±42 1.3 0.0641±2.1 1.331±2.1 0.1393±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.139±0.8 0.366 17 87±42 1.3 0.0641±2.0 1.231±2.1 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.139±0.8 0.366 17 87±42 1.3 0.0641±0 1.231±2.1 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.317 8 7.45±1.5 0.136±1.1 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.139±0.8 0.366 9 82±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.317 8 7.5±3.5 0.136±1.1 0.139±0.8 0.366 9 8.2±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.317 8 7.5±3.5 0.136±1.1 0.139±0.8 0.366 9 8.2±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.317 17 8.7±4.5 0.156 18 8.7±4.5 0.156 9 8.2±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.139±0.8 0.366 9 8.2±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.139±0.8 0.366 9 8.2±69 16 0.0719±3.4 1.357±3.6 0.136±1.1 0.139±0.8 0.366 18 8.3±68	8 891±94 6 0.0887±4.5 1.315±4.6 0.1387±1.0 0.209 7 853±41 2 0.0675±2.0 1.291±2.1 0.1388±0.9 0.413 7 761±95 -10 0.0666±4.5 1.240±4.6 0.1390±0.9 0.205 3 853±19 14 0.0675±0.9 1.125±1.0 0.1390±0.9 0.205 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.0641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0666±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 918±36 8 0.0666±1.7 1.343±1.9 0.1399±0.9 0.436 7 45±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 918±36 8 0.0666±1.7 1.343±1.9 0.1399±0.9 0.431 8 75±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 918±36 8 0.0666±1.7 1.343±1.9 0.1399±0.9 0.431 8 75±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 15 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 15 745±42 -13 0.0641±2.0 1.231±2.1 0.1369±1.1 0.317 8 75±43 1.∭izf±4,2 ±h_M_R_H_D_R_F_M_R_H_D_R_F_M_R_H_D_R_F_M_F_F_M_F_F_M_F_F_M_F_F_H_F_F_H_F_F_F_H_F_F_F_F	8801±94 6 0.0687±4.5 1.315±4.6 0.1387±1.0 0.209 7853±41 2 0.0675±2.0 1.291±2.1 0.1383±0.9 0.413 228±67 9 0.0700±3.3 1.232±3.6 0.1401±1.5 0.426 71±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.236 71±45 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 77±45 5 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 77±45 5 0.0641±3.8 1.231±2.1 0.1399±0.9 0.401 77±45 -13 0.0641±3.4 1.231±2.1 0.139±4.0 0.401 71±442 -13 0.0641±3.4 1.231±2.1 0.139±4.0 0.431 17枚正待测样品并与之同时测定的标准样品的误差为0.39%(1 ₆), 普通铅校正采用实测的 ^{3a} Pb不 指力,未参加样品U Pbi皆和图和加权平均年龄计算。 32 (20130523-01)LA-ICP-MS钻石U-Pb.定车结果
7 853±41 2 0.0675±2.0 1.291±2.1 0.1388±0.9 0.413 2 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0646±4.5 1.252±3.6 0.1300±0.9 0.205 3 853±19 14 0.0575±0.9 1.125±1.0 0.1209±0.5 0.438 7 746±80 -13 0.0641±3 1.237±3.9 0.140±0.9 0.236 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1395±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1395±0.9 0.436 9 82±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 17 ψ_{12} = 0.0664±1.7 1.231±2.1 0.1395±0.9 0.436 9 82±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 17 ψ_{12} = 0.019±3.4 1.357±3.6 0.1369±0.9 0.436 8 745±42 1.3 0.0641±2.0 1.231±2.1 0.1395±0.9 0.436 8 745±42 1.3 0.0641±2.0 1.231±2.1 0.1305±0.9 0.396 8 745±42 1.3 0.064±0.7 1.345±0.0 0.396 8 745±42 1.3 0.306,0 0.150,0 0.306,0 0.306 8 745±75 0.306 8 7	7 853±41 2 0.0675±2.0 1.291±2.1 0.138±0.9 0.413 12 92±67 9 0.070±3.3 1.352±3.6 0.1401±1.5 0.426 761±95 -10 0.0664±4.5 1.240±4.6 0.1390±0.9 0.205 3 853±19 14 0.0655±0.9 1.125±1.0 0.1209±0.5 0.458 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.205 6 745±45 5 0.06641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.06641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.06641±2.0 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1 σ),普通铅校正采用实测的 3n Pb不 据点3.1测试结果误差偏大,未参加样品U Pbi皆和图和加权平均年龄计算。	F7 853±41 2 0.0675±2.0 1291±2.1 0.1388±0.9 0.413 12 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 F7 161±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 E3 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 E7 746±80 -13 0.0641±3.8 1.231±3.1 0.1399±0.9 0.236 E7 875±45 5 0.0680±1.7 1.241±1.9 0.1372±1.0 0.401 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.236 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.236 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.236 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.246 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1372±1.0 0.401 E7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.236 E7 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 E9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 H7校正待测样品并与之同时测定的标准样品的误差为0.39%(16), 普通铅校正采用实测的 ³⁶ 0 ³⁶ 9 E1 1331.1测试结果误差偏大, 未参加样品U Pb谐和图和加权平均年龄计算。 136.31.1测试结果误差偏大, 未参加样品U Pb谐和图和加权平均年龄计算。
2 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 853±19 14 0.0655±0.9 1.125±1.0 0.1390±0.5 0.458 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 755±45 5 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 9 18±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 82±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 17 $\Re \Sigma = \frac{1}{3}$ 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 82±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 15 % 2 % m ⁴ h.h $\Re = \frac{1}{3}$ % 0.39%(1 σ), $\frac{1}{3}$ h.f $\Re \approx \frac{1}{3}$ % h.f \mathbb{R}_{1} % 1.365±1.1 0.1393±0.8 0.369 15 % 1.3 % 1.357±3.6 0.1305±0.9 0.436	12 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 7 761±95 -10 0.0646±4.5 1.240±4.6 0.1300±0.9 0.205 3 853±19 14 0.0655±0.9 1.125±1.0 0.1300±0.9 0.205 7 746±80 -13 0.0651±3.8 1.237±3.9 0.1400±0.9 0.236 6 745±45 5 0.0652±2.2 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0664±1.7 1.343±1.9 0.1399±0.9 0.436 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1 σ),普通铅校正采用实测的 ²ⁿ Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算.	12 928±67 9 0.0700±3.3 1.352±3.6 0.1401±1.5 0.426 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 853±19 14 0.0675±0.9 1.125±1.0 0.130±0.9 0.236 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 875±45 5 0.0685±2.2 1.291±2.4 0.1372±1.0 0.401 875±45 13 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 指点3.1测试结果误差偏大,未参加样品UPb谐和图和加权平均年龄计算。 36 20130523-01)LA-ICP-MS 锆石U-Pb.定车结果
7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 3 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 7 74±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 875±45 5 0.0682±2.2 1.291±4.4 0.1372±1.0 0.401 7 918±36 8 0.0665±1.7 1.343±1.9 0.1392±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1392±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 15 校正待测样品并与之同时测定的标准样品的误差为0.39%(1 σ),普通铅校正采用实测的 ²ⁿ Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	7 761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 3 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1370±1.0 0.401 7 85±45 5 0.0641±3.8 1.231±2.1 0.1372±1.0 0.401 7 918±36 8 0.0666±1.7 1.343±1.9 0.1372±1.0 0.436 6 745±42 -13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1 σ),普通铅校正采用实测的 ²ⁿ Pb 不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	761±95 -10 0.0646±4.5 1.240±4.6 0.1390±0.9 0.205 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 875±45 5 0.06641±3.8 1.237±3.9 0.1400±0.9 0.236 875±45 5 0.06641±2.2 1.291±2.4 0.1372±1.0 0.401 875±45 13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 6 745±42 -13 0.06641±2.0 1.231±2.1 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 指于校正得测样品并与之同时测定的标准样品的误差为0.39%(1c),普通铅校正采用实测的 ^{3m} Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 3 (20130523-01)LA-ICP-MS 锆石U-Pb定车结果
3 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 9 18±36 8 0.0696±1.7 1.345±1.9 0.1392±0.9 0.436 745±42 -13 0.0661±2.0 1.231±2.1 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 1于校正待测样品并与之同时测定的标准样品的误差为0.39%(16),普通铅校正采用实测的 ³⁴ Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	 3 853±19 14 0.0675±09 1.125±1.0 0.1209±0.5 0.458 7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 8 75±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 9 18±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 9 18±42 -13 0.0696±1.7 1.343±1.9 0.1399±0.8 0.369 9 24±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 相子校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的²ⁿPb不 4 1.351测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 	5 853±19 14 0.0675±0.9 1.125±1.0 0.1209±0.5 0.458 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 5 745±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 9 18±36 8 0.0668±1.7 1.343±1.9 0.139±0.9 0.4401 6 745±42 -13 0.0641±2.0 1.231±2.1 0.139±0.8 0.369 16 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 相于校正待测样品并与之同时测定的标准样品的误差为0.39%(1 ₆),普通铅校正采用实测的 ³³ Pb不 指点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 第 (20130523-01)LA-ICP-MS 锆石U-Pb.定车结果
7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 918±36 8 0.0666±1.7 1.343±1.9 0.1395±0.9 0.436 5 745±42 -13 0.06641.2 1.343±1.9 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1365±1.1 0.317 1.7校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ²⁴ Pb不 居点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0696±1.7 1.343±1.9 0.1393±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为 $0.39\%(1_{9}),$ 普通铅校正采用实测的 2n Pb \overline{x} 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	7 746±80 -13 0.0641±3.8 1.237±3.9 0.1400±0.9 0.236 7 746±80 -13 0.0661±3.8 1.237±3.9 0.1400±0.9 0.240 8 73±45 5 0.0685±2.2 1.291±2.4 0.1372±1.0 0.440 9 18.3 0.0696±1.7 1.343±1.9 0.1393±0.9 0.436 9 13 0.061±2.0 1.231±2.1 0.1393±0.9 0.436 9 13 74±2 13 0.0671±2.4 1.343±1.9 0.1393±0.9 0.436 9 14 7校正待測样品并与之同时测定的标准样品的误差为0.39%(1σ), 普通铅校正采用实测的 ³³ Pb不 第 15 3.1 测试结果误差偏大, 未参加样品U Pbi봠和图和加权平均年龄计算。 第 2 13 0.30523-01)LA-ICP-MS锆石U-Pb.定年结果
7 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 1于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ^{2m} Pb不 属点3.1测试结果误差偏大,未参加样品UPb谐和图和加权平均年龄计算。	7 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为 0.39%(15)、普通铅校正采用实测的 ²ⁿ Pb不 据点 3.1 测试结果误差偏大,未参加样品 U Pbi皆和图和加权平均年龄计算。	27 875±45 5 0.0682±2.2 1.291±2.4 0.1372±1.0 0.401 27 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 26 745±42 -13 0.0691±2.0 1.231±2.1 0.1393±0.8 0.369 29 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 38 点 3.1 测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 第 (10 30523-01)LA-ICP-MS 锆石U-Pb定车结果
7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 1于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ²³¹ Pb不 居点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	 7 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 相于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ²ⁿPb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 	27 918±36 8 0.0696±1.7 1.343±1.9 0.1399±0.9 0.436 26 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 11于校正待测样品并与之同时测定的标准样品的误差为0.39%(1c),普通铅校正采用实测的**Pb不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 岩(20130523-01)LA-ICP-MS 结石U-Pb,定年结果
6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 引于校正待測样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ²³ Pb不 居点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 2m Pb 不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	6 745±42 -13 0.0641±2.0 1.231±2.1 0.1393±0.8 0.369 9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1c),普通铅校正采用实测的 ³³⁴ Pb不 据点3.1测试结果误差偏大,未参加样品UPb谐和图和加权平均年龄计算。 岩(20130523-01)LA-ICP-MS锆石U-Pb定车结果
9 982±69 16 0.019±3.4 1.357±3.6 0.1369±1.1 0.317 引于校正待测样品并与之同时测定的标准样品的误差为0.39%(10),普通铅校正采用实测的 ³³ Pb不 最点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ^{2a} Pb 不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	9 982±69 16 0.0719±3.4 1.357±3.6 0.1369±1.1 0.317 用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1c),普通铅校正采用实测的 ²⁰⁴ Pb不 据点3.1测试结果误差偏大,未参加样品U Pb请和图和加权平均年龄计算。 岩(20130523-01)LA-ICP-MS锆石U-Pb定年结果
引于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ³³ Pb不 居点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ^{an} pb 不 据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	用于校正待测样品并与之同时测定的标准样品的误差为0.39%(1σ),普通铅校正采用实测的 ³³⁴ Pb 不 据点 3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 岩(20130523-01)LA-ICP-MS 锆石 U-Pb 定年结果
屠点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。	据点3.1测试结果误差偏大,未参加样品U Pb谐和图和加权平均年龄计算。 岩(20130523-01)LA-ICP-MS 锆石 U-Pb定年结果
		岩(20130523-01)LA-ICP-MS锴石U-Pb定车结果
		岩(20130523-01)LA-ICP-MS锴石 U-Pb定年结果
		岩(20130523-01)LA-ICP-MS锴石 U-Pb定年结果
		岩(20130523-01)LA-ICP-MS 锆石 U-Pb 定年结果
岩(20130523−01)LA−ICP−MS 锆石U−Pb定年结果 ic zircons (20130523−01) from the Hanyangfeng Formation in Lushan area /位	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area 在他们的中心	
岩(20130523-01)LA-ICP-MS 锆石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area 道	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area 位值	다. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
(20130523-01)LA-ICP-MS 铣石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area ① ① ① ② ② □ ① ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③	cic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area 2值 ⁰⁷ Pb/ ²⁰⁶ Pb 1σ ²⁰⁷ Pb/ ²³⁵ U 1σ	$ \frac{1}{\sigma^{7} b h^{206} b b} \frac{1}{1\sigma} \frac{2^{30} p b^{238} U}{2^{33} T h^{238} U} \frac{1}{1\sigma} \frac{2^{07} p b^{236} U}{2^{07} b h^{235} U} \frac{1}{1\sigma} \frac{2^{07} p b^{206} p b}{1\sigma} \frac{1}{1\sigma} \frac{1}{\sigma} \frac{1}{$
(20130523-01) LA-ICP-MS 铣石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area 前 小pb/ ²⁰⁶ pb 1σ ²³² Th/ ²³⁸ U 1σ ²⁰⁰ pb/ ²³⁸ U 1σ ²⁰⁷ pb/ ²³⁵ U 1σ ²⁰⁷ pb/ ²⁰⁶ pb 1σ 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33	tic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area 公准	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
岩(20130523-01)LA-ICP-MS 铣石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area ① ① ⑦ 1σ 2^{32} Th/ 238 U 1σ 2^{00} Pb/ 235 U 1σ 2^{07} Pb/ 206 Pb 1σ ⑦ 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0005 0.5439 0.0006 853 6 853 6 855 17	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area と値 のでわら ²⁰⁶ Pb 1 で ²³² Th/ ²³⁸ U 1 で ²⁰⁶ Pb/ ²³⁸ U 1 で ²⁰⁷ Pb/ ²³⁶ U 1 で ²⁰⁷ Pb/ ²⁰⁶ Pb 1 で 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0005 0.5439 0.0006 853 6 853 6 855 17	DILI Trian Trian 200°pb/206pb 1σ ²⁰⁶ pb/ ²³⁸ U 1σ ²⁰⁶ pb/ ²³⁸ U 1σ ²⁰⁷ pb/ ²⁰⁶ pb 1σ 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0005 0.5439 0.0006 853 6 853 6 855 17
岩(20130523-01)LA-ICP-MS 铣石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area ① ① ① ⑦ 1σ 2^{32} Ph/ ²³⁸ U 1 σ 7 Pb/ ²³⁶ U 1σ 2^{32} Ph/ ²³⁵ U 1σ 7 Pb/ ²³⁶ U 1σ 0.0011 0.5898 0.0067 0.0005 0.5439 0.0006 853 6 853 6 853 6 853 852 853 852 853 854 77	tic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area と値 のでわら ²⁰⁶ Pb 1 で ²³² Th/ ²³⁸ U 1 で ²⁰⁶ Pb/ ²³⁸ U 1 で ²⁰⁷ Pb/ ²³⁶ U 1 で ²⁰⁷ Pb/ ²⁰⁶ Pb 1 で 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0675 0.0005 0.5439 0.0006 853 6 853 5 854 17	ULIE TERVINA OPD Tervina Tervina 200°pb/206pb 1σ ²⁰⁰ pb/ ²³⁵ U 1σ ²⁰¹ pb/ ²³⁵ U 1σ ²⁰¹ pb/ ²³⁵ U 1σ ²⁰¹ pb/ ²³⁵ U 1σ 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0005 0.5439 0.0006 853 6 853 6 855 17 0.0675 0.0006 0.6654 0.0005 852 5 854 17
岩(20130523-01)LA-ICP-MS 指石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area ① ① $\mp \[mmm] / \[mmm] /$	tic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area と値 のでわら ²³⁰ わら 1 で ²³² Th/ ²³⁸ U 1 で ²⁰⁶ わら ²³⁸ U 1 で ²⁰⁷ わら ²³⁵ U 1 で ²⁰⁷ わら ²³⁶ わ 1 で 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0005 0.5439 0.0006 853 6 853 6 855 17 0.0675 0.0006 0.6654 0.0005 852 5 853 5 853 7 0 0.0674 0.003 0.7220 0.0007 853 5 852 4 851 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
岗 (20130523-01) LA-ICP-MS 指石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area ① ① ⑦ 1σ 2^{32} Th/ 238 U 1σ 2^{07} Pb/ 206 Pb 1σ ⑦ 1σ 2^{32} Th/ 238 U 1σ 2^{07} Pb/ 206 Pb 1σ ⑦ 0.0678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0006 0.5439 0.0006 853 6 853 6 853 17 0.0674 0.0006 0.6654 0.0007 852 5 853 6 853 6 853 17 0.0674 0.0006 0.5537 0.0007 853 7 857 19 0.0676 0.0006 0.5737 0.0005 852 7 857 19	tic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area <hr/> E伯 </th <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
岩(20130523-01)LA-ICP-MS 指石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area :他 $\mp \#/Ma$:他 $\mp \#/Ma$:他 $\pi = 2^{32}$ Th/ ²³⁸ U .小Pb/ ²⁰⁶ Pb 1 σ .小Pb/ ²³⁵ U 1σ .00011 0.5898 0.0054 850 6 853 16 863 33 0.0675 0.0006 0.5439 0.0006 8533 6 8533 6 8533 7 853 17 0.0674 0.0003 0.7220 0.0007 853 5 852 4 851 10 0.0676 0.0006 0.5737 0.0007 853 7 853 7 857 19 0.0675 0.0003 0.7220 0.0007 853 7 857 19 0.0675 0.0003 0.0007 853	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area Lff $Th/2^{238}U$ $T_{\rm eff} \oplus Ma$ Lff $\mp \oplus Ma$ $M^2 pb/2^{206} pb$ $T_{\rm eff} \oplus Ma$ $m^2 pb/2^{206} pb/2^{238}U$ $T_{\rm eff} \oplus Ma$ $m^2 pb/2^{206} pb/2^{236}U$ $T_{\rm eff} \oplus Ma$ 0.0057 0.0054 850 6 853 $T_{\rm eff} \oplus Ma$ 0.0057 0.0054 850 $T_{\rm eff} \oplus Ma$ 0.0057 0.0054 850 $T_{\rm eff} \oplus Ma$ 0.0077 0.0005 853 $T_{\rm eff} \oplus Ma$ 0.0076 0.0005 853 T_{\rm eff} \oplus Ma <t< th=""><td>ULI THRY IN A OUP bb/206 pb 1 σ 217 hb/236 pb/238 lig THRY IN A OU 678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0011 0.5898 0.0054 853 6 853 16 863 33 0.0675 0.0006 0.6654 0.0005 852 5 853 5 854 17 0.0674 0.0003 0.7220 0.0007 853 5 853 7 851 10 0.0676 0.0006 0.5737 0.0007 853 7 853 7 853 7 853 7 853 10 0.0675 0.0003 0.8097 0.0087 853 7 853 6 853 19</td></t<>	ULI THRY IN A OUP bb/206 pb 1 σ 217 hb/236 pb/238 lig THRY IN A OU 678 0.0011 0.5898 0.0054 850 6 853 16 863 33 0.0676 0.0011 0.5898 0.0054 853 6 853 16 863 33 0.0675 0.0006 0.6654 0.0005 852 5 853 5 854 17 0.0674 0.0003 0.7220 0.0007 853 5 853 7 851 10 0.0676 0.0006 0.5737 0.0007 853 7 853 7 853 7 853 7 853 10 0.0675 0.0003 0.8097 0.0087 853 7 853 6 853 19
岩(20130523-01)LA-ICP-MS 指石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area :他 $\mp \#/Ma$:他 $\mp \#/Ma$:他 $2^{07} p_b/^{236} U$.小 $\pi = 10^{-235} U$.0.011 0.5898 0.0054 0.0678 0.0011 0.5898 0.0054 0.0676 0.0006 0.5439 0.0006 8533 6 853 6 853 17 0.0675 0.0006 0.5543 0.0007 853 5 853 7 853 17 0.0676 0.0003 0.7220 0.0007 853 7 853 7 853 7 853 7 853 17 0.0676 0.0003 0.0007 853 7 853 7 853 19 0.0675 0.0003 0.0007 853	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area	ULI THRY IN A OUP $\frac{1}{16}$ $\frac{23^2}{16}$ $\frac{1}{16}$ $\frac{23^2}{16}$ $\frac{1}{16}$ $\frac{20^7}{16}$ $\frac{1}{16}$ $\frac{20^7}{16}$ $\frac{1}{16}$ $\frac{20^7}{16}$ $\frac{1}{16}$ $\frac{20^7}{16}$ $\frac{1}{16}$ $\frac{20^7}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{16}$ $\frac{33}{17}$ $\frac{1}{17}$ $\frac{0.0675}{0.0066}$ 0.0056 0.0005 0.0057 852 5 853 1 $\frac{1}{17}$ $\frac{0.0675}{0.000}$ 0.0007 853 5 853 7 853 1 1 0.0675 0.0006 0.55737 0.0007 853 7 853 7 853 1 1 1 1 1 0 0.006 0.5737 0.0007 853 7 853 7 853 1 1 1 1 1 1 1 0 0.006 0.50
岩(20130523-01)LA-ICP-MS 指石 U-Pb 定年结果 ic zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (20130523-01) from the Hanyangfeng Formation in Lushan area it zircons (2011 0.5898 0.0054 0.0056 853 6 853 16 863 31 0.0674 0.0006 0.5654 0.0006 853 5 853 7 853 7 19 0.0676 0.0006 0.5737 0.0005 852 7 7 853 7 19 0.0675 0.0003 0.8097 0.0008 853 7 853 7 853 7 853 7 19 0.0675 0.0006 0.5697 0.0018 853 7 853 7 853 7 853 7 19 0.0675 0.0006 0.5693 0.0018 853 7 854 7 18 10	tic zircons (20130523–01) from the Hanyangfeng Formation in Lushan area	-11 - 11 - 11 - 11 - 11 - 11 - 11 - 11

331

龄,分别是(838±4)Ma和(852±4)Ma。由于LA-ICP-MS所获得有效测点年龄只有7个,稍显偏少,因此本文中取SHRIMP锆石U-Pb测得的(838±4)Ma作为汉阳峰组的成岩年龄。

4 构造地质意义

江西庐山地区位于"江南造山带"的中段北侧, 该区新元古代地层序列从老至新出露较为齐全(图 1)。区内星子岩群曾经被认为是整个"江南造山 带"中时代最古老的变质结晶基底,但最新研究成 果显示其应定位于武陵运动(820 Ma左右)构造转 换面之上(另文详述);筲箕洼组和双桥山群修水组 则划分为转换面之下的低变质基底^[24,32]。

目前庐山地区新元古代地层划分已经发生巨 大变动,但由于汉阳峰组出露局限,缺乏高精度年 龄证据等原因,导致对其对比和划分产生极大不确 定性。构造带中的地层划分主要依据精确的地层 定年[9,33-34]。汉阳峰组长久以来都被认为是位于筲 箕洼组之上的板溪期火山-沉积地层,制约着人们 对整个庐山地区前寒武纪地层划分的认识:本文研 究结果证实汉阳峰组年龄是(838±4)Ma,表明其不 属于板溪期沉积地层,而应定位于武陵运动(820± Ma)构造转换面之下沉积地层单元。LA-ICP-MS 锆石U-Pb方法获得的(852±4)Ma年龄值进一步佐 证了汉阳峰组不属于板溪期沉积地层这一论点。 高林志等的研究结果证实筲箕洼组形成于831~840 Ma^[23],与本文报道的汉阳峰组成岩年龄在误差范围 内一致,应与汉阳峰组属于同期沉积的地层。同期 沉积的2套火山岩地层化学成分不同[23],对构造背 景有重要的指示意义。本文报道的汉阳峰组 SHRIMP 锆石 U-Pb 年龄以及关于星子岩群的最新 研究结果已经极大地改变了庐山地区新元古代地 层划分和地层对比,因此该区新元古代构造演化也 应重新思考,同时新的成果对于分析"江南造山带" 的构造演化也有重要帮助。事实上,汉阳峰组和筲 箕洼组与星子岩群的层位关系已经发生倒置,可能 预示庐山地区青白口纪后期有重要的构造运动。

致谢:在此感谢北京SHRIMP中心董春燕博士 在测试期间的技术保障;感谢杨淳高工在锆石制靶 和周丽芹硕士在阴极发光照相方面的帮助;感谢审 稿人和《中国地质》编辑部在论文修改过程中提供 的建设性意见。

地

质

参考文献(Refrences):

[1] 李廷栋. 中国构造运动期序和构造发展阶段[J]. 中国区域地质, 1982, 1: 13-25.

Li Tingdong. The sequence of the tectonic movements and the megastages of tectonic development in China[J]. China Regional Geology, 1982, 1: 13–25(in Chinese with English abstract).

[2] 李廷栋. 中国岩石圈构造单元[J]. 中国地质, 2006, 33(4): 700-710.

Li Tingdong. Lithospheric tectonic units of China[J]. Geology in China, 2006, 33(4): 700–710(in Chinese with English abstract).

[3] 刘宝珺, 许效松. 中国南方岩相古地理图集[M]. 北京: 科学出版 社, 1994: 1-188.

Liu Baojun, Xu Xiaosong. The Lithofacies and the Paleogeographic Atlas of Southern China[M]. Beijing: Science Press, 1994: 1–188(in Chinese).

[4] 许靖华, 孙枢, 李继亮. 是华南造山带而不是华南地台[J]. 中国科学(B辑), 1987, 10: 1107–1115.

Xu Jinghua, Sun Shu, Li Jiliang. It is Huanan Orogen and not Huanan Platform[J]. Science in China(Series B), 1987, 10: 1107– 1115(in Chinese).

[5] 陈旭, 张元动, 樊隽轩, 等. 赣南奥陶纪笔石地层序列与广西运动[J]. 中国科学: 地球科学, 2010, 40(12): 1621-1631. Chen Xu, Zhang Yuandong, Fan Junxuan, et al. The Ordovician graptolite stratigraphic sequence and Guangxi event in southern Jiangxi[J]. Science in China(Series D), 2010, 40(12): 1621-1631 (in Chinese).

[6] 许志琴, 张国伟. 中国(东亚)大陆构造与动力学[J]. 中国科学(D 辑), 2013, 43(10): 1527-1538.

Xu Zhiqin, Zhang Guowei. Continent tectonics and dynamics of China (East Asia) [J]. Science in China(Series D), 2013, 43(10): 1527–1538(in Chinese).

- [7] 高林志, 陆济璞, 丁孝忠, 等. 桂北地区新元古代地层凝灰岩锆石 U-Pb年龄及地质意义[J]. 中国地质, 2013, 40(5): 1443-1452.
 Gao Linzhi, Lu Jipu, Ding Xiaozhong, et al. Zircon U-Pb dating of Neoproterozoic tuff in South Gaungxi and its implications for stratigraphic correlation[J]. Geology in China, 2013, 40(5): 1443-1452(in Chinese with English abstract).
- [8] 孟庆秀,张健,耿建珍,等.湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J]. 中国地质,2013,40(1):191-216.

Meng Qingxiu, Zhang Jian, Geng Jianzhen, et al. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolutionin South China[J]. Geology in China, 2013, 40 (1): 191–216(in Chinese with English abstract).

[9] 郑宁, 宋天锐, 李廷栋, 等. 华南造山带下寒武统和中奥陶统发现 放射虫[J]. 中国地质, 2012, 39(1): 260-265.

Zheng Ning, Song Tianrui, Li Tingdong, et al. The discovery of the Lower Cambrian and Middle Ordovician Radiolaria in the South China orogenic belt[J]. Geology in China, 2012, 39(1): 260–265(in Chinese with English abstract).

- [10] Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China Continent and its implications[J]. Science China: Earth Sciences, 2013, 56(11):1804–1828.
- [11] Zhang Shaobing, Zheng Yongfei. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 2013, 23(4): 1241–1260.
- [12] Li Zhengxiang, Li Xianhua. Formation of the 1300 km- wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35: 179–182
- [13] Li Xianhua, Li Wuxian, Li Zhengxiang, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd- Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research. 2009, 174: 117–128.
- [14] Shu Liangshu, Faure M, Yu Jinhai, et al. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 187: 263–276.
- [15] Charvet J, Shu Liangshu, Faure M, et al. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39: 309–330
- [16] Wang Yuejun, Fan Weiming, Zhang Guowei, et al. Phanerozoic tectonics of the south China block: Key observations and controversies[J]. Gondwana Research, 2013. 23: 1273–1305.
- [17] Zhang Chuanlin, Santosh M, Zou Haibo, et al. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U– Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China[J]. Lithos, 2013, 179: 263–274.
- [18] Yao Jinlong, Shu Liangshu, Santosh M, et al. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences, 2013, 74: 225–243.
- [19] Wang Wei, Zhou Meifu, Yan Danping, et al. Detrital zircon record of Neoproterozoic active- margin sedimentation in the eastern Jiangnan Orogen, South China[J]. Precambrian Research, 2013, 235: 1–19.
- [20] Zhang Yuzhi, Wang Yuejun, Geng Hongyan, et al. Early Neoproterozoic (~850Ma) back-arc basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and

petrogenetic constraints from meta- basalts[J]. Precambrian Research, 2013, 231: 325-342.

[21] 尹国胜, 谢国刚. 江西庐山地区伸展构造与星子变质核杂岩[J]. 中国区域地质, 1996 (1): 17-26.

Yin Guosheng, Xie Guogang. Extensional strucrure and the Xingzi metamorphic core complex in the Lushan area, Jiangxi[J]. Regional Geology of China, 1996 (1): 17–26(in Chinese with English abstract).

[22] 谢国刚, 邓必荣. 江西庐山新元古代庐山垄群的建立[J]. 江西地 质科技, 1996, 23(4): 167–171.
 Xie Guogang, Deng Birong. Establishment of Neoprotorozoic

Lushan Long Group in Lushan area, Jiangxi Province[J]. Geological Science and Technology of Jiangxi, 1996, 23(4): 167– 171(in Chinese).

[23] 董树文, 薛怀民, 项新葵, 等. 赣北庐山地区新元古代细碧-角斑 岩系枕状熔岩的发现及其地质意义[J]. 中国地质, 2010, 37(4): 1021-1033.

Dong Shuwen, Xue Huaimin, Xiang Xinkui, et al. The discovery of Neoproterozoic pillow lava in spilite- ceratophyre of Lushan area, northern Jiangxi Province, and its geological significance[J]. Geology in China, 2010, 37(4): 1021–1033(in Chinese with English abstract).

[24] 高林志, 黄志忠, 丁孝忠, 等. 庐山筲箕洼组与星子岩群年代地 层关系及 SHRIMP 锆石 U-Pb 年龄的制约[J]. 地球学报, 2012, 33(3): 295-304.

Gao Linzhi, Huang Zhizhong, Ding Xiaozhong, et al. The Geochronological relationship between the Shaojiwa Formation and the Xingzi Complex Group in northwestern Jiangxi and the constraints on zircon SHRIMP U–Pb age[J]. Acta Geoscientica Sinica, 2012, 33(3): 295–304(in Chinese with English abstract).

[25] 王泽九. 斑脱岩中锆石 SHRIMP测年在前寒武纪地层中的应用 ——前寒武纪年代地层学研究的新思路[J]. 地层学杂志, 2010 (1): 56-59.

Wang Zejiu. Zircon SHRIMP dating of the K- bentonite in the Precambrian strata[J]. Journal of Stratigraphy, 2010 (1): 56–59(in Chinese with English abstract).

[26] 刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩 SHRIMP 测年: 早古生代洋壳消减的证据[J]. 地质学报, 2003, 77 (3): 317-327.

Liu Dunyi, Jian Ping, Zhang Qi, et al. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic subduction[J]. Acta Geologica Sinica, 2003, 77 (3): 317–327(in Chinese with English abstract).

- [27] Ludwig K R. SQUID 1.02, A User's Manual[M]. Berkeley Geochronology Center Special Publication No. 2. 2455 Ridge Road, Berkeley, CA 94709, USA. 2002.
- [28] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by two- stage model[J]. Earth Planet. Science Letter, 1975, 26: 207–221.
- [29] Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS

质

without applying an internal standard[J]. Chemical Geology. 2008, 257: 34-43

- [30] Ludwig K R. User's manual for Isoplot/Ex, version 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 1–70
- [31] 李怀坤,朱士兴,相振群,等. 北京延庆高于庄组凝灰岩的锆石 U-Pb定年研究及其对华北北部中元古界划分新方案的进一步 约束[J]. 岩石学报, 2010, 26(7):2131-2140.
 Li Huaikun, Zhu Shixing, Xiang Zhenqun, et al. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7):2131-2140(in Chinese with English abstract).
- [32] 高林志, 黄志忠, 丁孝忠, 等. 赣西北新元古代修水组和马涧桥组
 SHRIMP 锆石 U-Pb 年龄[J]. 地质通报, 2012, 31(7): 1086-1093.
 Gao Linzhi, Huang Zhizhong, Ding Xiaozhong, et al. Zircon

SHRIMP U-Pb dating of Xiushui and Majianqiao Formations in northwestern Jiangxi Province[J]. Geological Bulletin of China, 2012, 31(7):1086–1093(in Chinese with English abstract).

- [33] 关俊朋,何斌,李德威. 庐山地区星子群碎屑锆石 SIMS U-Pb 年 龄及其地质意义[J]. 大地构造与成矿学, 2010, 34(3): 402-407.
 Guan Junpeng, He Bin, Li Dewei. SIMS U-Pb dating of the detrital zircons from the Xingzi Group in Lushan area and its geological significance[J]. Geotectonica et Metallogenia, 2010, 34 (3): 402-407(in Chinese with English abstract).
- [34] 高林志, 丁孝忠, 张传恒, 等. 江南古陆变质基底地层年代的修正 和武陵运动构造意义[J]. 资源调查与环境, 2012, 33(2): 71-76. Gao Linzhi, Ding Xiaozhong, Zhang Chuanheng, et al. A revised chronostratigraphic dating of metamorphosed basement strata of Jiangnan old land and its implication for Wuling tectonic movement[J]. Resources Survey & Environment, 2012, 33(2): 71-76(in Chinese with English abstract).

Zircon U-Pb isotopes dating of Hanyangfeng Formation in Lushan area and its geological significance

SHI Zhi–gang¹, GAO Lin–zhi¹, LI Ting–dong¹, DING Xiao–zhong¹, WANG Jun¹, SONG Zhi–rui², HUANG Zhi–zhong³, ZHANG Heng¹

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
 Jiangxi Institute of Geological Survey, Nanchang 330201, Jiangxi, China;

3. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China)

Abstract: The outcropped Neoproterozoic strata are relatively complete from old to young in Lushan area, and hence this area is significant for analyzing the tectonic evolution of the whole "Jiangnan Orogen". The Hanyangfeng Formation, which exists only in Hanyang peak of the Lushan Mountain, is mainly composed of terrestrial eruptional metacrystal or phenocryst–rare rhyolite. The authors obtained the high–precision SHRIMP zircon U–Pb weighted mean age (838±4 Ma, corresponding MSWD=1.12) of the metamorphic rhyolite of the Hanyangfeng Formation in the Lushan area, and also obtained LA–ICP–MS zircon U–Pb weighted mean age (852±4 Ma, corresponding MSWD=0.037) of this Formation. These new data indicate that the Hanyangfeng Formation does not belong to the Banxi period. The authors initially hold that the Hanyangfeng Formation ought to be located under the tectonic transformation of the Wuling movement (820± Ma). The new research result confirms that the Hanyangfeng Formation is of the same volcanic–sedimentary strata as the Shaojiwa Formation, and therefore it may be a significant indicator to the tectonic setting. Actually, the sequence relationship of the Hangyangfeng Formation and the Shaojiwa Formation to the Xingzi Complex group shows upside–down phenomenon, suggesting that there probably existed a significant geological movement in the Lushan area during the late Qingbaikou period.

Key words: Lushan; Hanyangfeng Formation; zircon U-Pb dating; stratigraphic structural significance

About the first author: SHI Zhi-gang, male, born in 1973, doctor candidate, majors in structural geology; E-mail: cngsszg@126. com.