第 41 卷第 4 期	中 国 地 质	Vol.41, No.4
2014 年 8 月	GEOLOGY IN CHINA	Aug. ,2014

张璟, 邵军, 鲍庆中, 等. 蒙古国乌兰铅锌矿地质特征、岩石地球化学特征及U-Pb年龄[J]. 中国地质, 2014, 41(4): 1124-1135. Zhang Jing, Shao Jun, Bao Qingzhong, et al. Geological and rock geochemical characteristics and U-Pb age of the Ullan lead-zinc deposit in Mongolia[J]. Geology in China, 2014, 41(4): 1124-1135(in Chinese with English abstract).

蒙古国乌兰铅锌矿地质特征、岩石地球化学特征 及U-Pb年龄

张 璟 邵 军 鲍庆中 周永恒 王宏博

(中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034)

提要:蒙古国乌兰铅锌矿与查夫、甲乌拉、查干不拉根铅锌矿共同构成了中蒙克鲁伦—满洲里成矿带铅锌矿矿集区。本 文从含矿地层、控矿构造、赋矿岩脉、围岩蚀变特征、矿体特征等方面对该矿床地质特征展开阐述。样品岩石地球化学 特征研究结果表明:乌兰铅锌矿容矿围岩为一套中-高硅、中铝、高钾钙碱性火山岩;样品稀土元素总量(ΣREE)为 412.25×10⁻⁶~999.06×10⁻⁶,轻重稀土元素分馏明显((La/Yb)_N=4.41~43.10),呈现轻稀土(LREE)富集的右倾趋势,负 Eu异常明显(δEu=0.56~0.88);普遍富集大离子亲石元素(LILE)Ba、Rb、Ce,高场强元素Nb、Ta、Th及Zr,明显亏损 Li、Sr、Y等元素。锆石LA-ICP-MS U-Pb同位素分析结果表明,围岩成岩时代为晚侏罗世((150.8±4.4) Ma~ (164.7±3.1) Ma)。初步限定乌兰铅锌矿形成于140~155 Ma期间外贝加尔一大兴安岭转换挤压弧形成之后的裂谷 环境,成因类型为受爆破角砾岩控制的浅成热液脉型铅锌矿床。

关 键 词:蒙古国;乌兰铅锌矿;地质特征;岩石地球化学;锆石LA-ICP-MS U-Pb年龄
 中文分类号:P597⁺.3;P618.42~42
 文献标志码:A
 文章编号:1000-3657(2014) 04-1124-12

中蒙克鲁伦一满洲里成矿带位于中国东北地 区与蒙古国东部衔接部位,分别属我国内蒙古自治 区和蒙古国东方省管辖。从大地构造位置上看,该 成矿带地处华北一蒙古块体(Northern China— Mongolia block)东北段,中蒙古一额尔古纳前寒武 纪一早古生代中间地块东南部。该成矿带范围内 各时代地层(体)出露广泛,受前中生代和中一新生 代多期次大规模构造作用的影响,深大断裂纵横交 错,侵入岩十分发育^{III},矿产资源丰富,潜力巨大。

该成矿带在中国境内满洲里及其南西一线集 中产出查干不拉根铅锌矿、甲乌拉铅锌矿、哈拉胜 格拉陶勒盖铅锌矿,蒙古国毗邻地段产出乌兰铅锌 矿、查夫铅锌矿,形成中蒙边境在北纬48°~51°、东 经114°~117°范围内铅锌矿矿集区(图1)。中国境 内上述铅锌矿床发现时间较早,前人针对其矿床地 质特征、岩石地球化学特征及流体包裹体等方面作 了大量研究工作^[2-9];而蒙古国境内铅锌矿的研究过 去主要集中于外文文献的翻译^[10],近年来中蒙地质 合作加强使我国地质工作者可以亲赴蒙古国进行 野外地质工作考察,掌握第一手资料。

本次研究即是在对乌兰铅锌矿进行野外矿床 考察基础上,利用采集到的样品进行了较为系统的 岩石地球化学研究及锆石 LA-ICP-MS U-Pb 年龄 测试,旨在对于乌兰铅锌矿有一个较为清晰的认 识,并为中蒙上述毗邻区域多金属成矿规律对比研 究奠定基础,进而指导中国境内该矿集区区域的铅

收稿日期:2014-05-06;改回日期:2014-06-25

基金项目:中国地质调查局项目(1212011120328)资助。

作者简介:张璟,男,1984年生,博士,从事金属矿床地质研究;E-mail:441005231@qq.com。

图1中蒙克鲁伦---满洲里成矿带铅锌矿矿集区地质图

1一第四系;2一下白垩统火山岩;3一上侏罗统火山岩;4一上三叠统一下侏罗统火山岩;5一泥盆系一二叠系火山岩;6一下-中泥盆统火山岩-碳酸盐岩;7一新元古界片岩;8一二叠纪花岗斑岩;9一二叠纪花岗岩;10一石炭纪一二叠纪花岗岩;11一蒙古一鄂霍茨克造山带; 12--额尔古纳地块;13--海拉尔盆地;14--构造单元界线;15--断裂;16--国界;17--铅锌矿床

Fig.1 Geological map of the lead-zinc ore concentration area in the Kerulen-Manchuria metallogenic belt along the border area between China and Mongolia

1-Quaternary; 2-Volcanics of Lower Cretaceous; 3-Volcanics of Upper Jurassic; 4-Volcanics of Upper Triassic-Lower Jurassic; 5-Volcanics of Devonian-Permian; 6-Volcanics or carbonate rocks of Lower-Middle Devonian; 7-Schists of Upper Proterozoic; 8-Granite-porphyry in Permian; 9-Granite in Permian; 10-Granite in Carboniferous-Permian; 11-Mongolia-Okhotsk Orogen; 12-Ergun Block; 13-Hailar Basin; 14-Boundaries of tectonic units; 15-Fault; 16-National boundaries; 17-Lead-zinc deposit

锌矿找矿工作。由于境外地质工作难度较大,所选 样品并不足以全面剖析矿床成矿特征,有待于日后 进一步完善。

矿床地质特征 1

乌兰铅锌矿位于蒙古国东方省省会乔巴山市 以北125 km处,距中蒙阿日哈沙特口岸180 km,地 理坐标:北纬49°05′,东经114°05′,矿区面积约为 0.5 km²(图1)。大地构造位置上位于都尔诺特中生 代火山岩构造带北翼¹¹¹,该火山岩构造带由晚侏罗 世一早白垩世亚碱性玄武质-流纹质火山沉积岩层 组成,可分为3个层位:下部为凝灰岩与安山岩-玄 武岩,粗面英安岩、粗面流纹岩、石英长石斑岩相交 替,厚达400~600m;中部为酸性凝灰岩、火山碎屑 岩等,厚达800m;上部为安粗岩、流纹质凝灰岩、沉 积岩,厚达500~1000 m。都尔诺特火山岩构造带断 裂构造发育,最主要的是陡倾的NE向和NW向断裂 带,这些断裂带长度为几十千米,深度可达几百米。

1.1 地层

矿区地层具有基底和盖层组成的双层结构。 基底为古元古代细粒-中粒闪长质片麻岩,伴生发 育细粒透辉石-磁铁矿矽卡岩和透辉石-石榴石矽 卡岩,铅锌矿化及围岩蚀变有明显向矽卡岩叠加的 迹象。盖层主要为中生代火山岩与火山沉积岩:底 部为英安岩、英安质凝灰岩,厚度为150~200 m;中 部为安山岩、玄武岩,厚度为130~150m;上部为霏细 岩、粗面流纹岩,厚度为100~400m。基底和盖层都 被晚期石英斑岩脉切穿,石英斑岩脉的厚度从十几 米到30~40 m,延伸长达2 km,延伸方向主要为NW 向,其次为EW向。

质

中

1.2 构造

矿区内主要控矿构造为NW向(320°~340°)穆 哈尔断裂带,该断裂带宽约2km,长为几十千米。 穆哈尔断裂带包括穆哈尔断裂、东穆哈尔断裂和西 穆哈尔断裂,这3条断裂的间距为400~1000m。这 些断裂为倾向SW的走滑-平移断层,断层垂向上的 位移为几十米。断裂带由断层泥和构造角砾岩组 成,常伴有30~40m宽的破碎带和裂隙带,东穆哈尔 断裂中充填了长约2km的石英斑岩脉。穆哈尔断 裂带经历了多期次构造-流体活动,断裂带中充填 的石英斑岩脉和多金属矿脉均保存着成矿流体运 动的痕迹,所形成的金属硫化物遭受多期次破碎-胶结过程。

NE向和近EW向断裂在都尔诺特火山岩构造 带总体结构中也起着重要作用,它们控制了基底古 元古代地层与中生代火山沉积地层的走向。其中 一条近EW向断裂控制了岩脉的产出,岩脉两翼和 脉壁上发育较宽的(200~300 m)蚀变带。霏细岩和 安山岩-玄武岩底部近EW向破碎带中分布有小规 模的脉状多金属矿体。

矿区除了陡倾的断裂外,还发育缓倾斜的断裂。它们主要沿火山沉积岩层接触面发育,很少出现在岩层内部。最大缓倾斜断裂发育在霏细岩层底部,该断裂通过整个矿床,但多金属矿体并未发生位移。

1.3 赋矿岩脉

石英斑岩脉形成于火山活动晚期或热液蚀变 作用早期,是主要的赋矿岩脉。岩脉分布于近东西 向构造薄弱带与穆哈尔断裂带交汇部位,进一步可 分为主岩脉、东部岩脉、主岩脉南部支脉和西部支 脉。地表出露的岩脉有主岩脉、南部支脉和部分西 部支脉,东部岩脉为盲脉体,其顶部位于地表以下 20~150 m。

主岩脉的方向为近EW向,靠近穆哈尔断裂带,脉体呈楔形,长400m,宽120m,深700m,未发现 尖灭迹象。岩脉倾向南,倾角75°~85°。

南部支脉在主岩脉以南60m处出露地表,呈椭圆形,大小为120m×80m。倾向北,倾角75°,在200m深处和主岩脉连接起来。

西部支脉沿穆哈尔断裂带分布,形状扁平,走向NW,倾向SW,倾角70°~80°。它在与主岩脉连接

处露出地表,呈扁平状,长100m,宽10~15m。岩脉 随着深度的不断加大而向NW方向延伸,且厚度也 在不断增加。在标高705m处岩脉长约300m,厚为 30~60m。

东部岩脉分布于近 EW 向薄弱带(控制主岩脉) 与东穆哈尔断裂带以及近 NS 向断裂带的交汇部 位。东部岩脉与主岩脉相距 50 m,这一间隔量一直 保持到地下 500 m,二者在深部可能会连接起来。 东部岩脉呈扁平状,走向近 EW 向,长达 200 m,厚 为 20~70 m。岩脉向南倾斜,倾角为 75°~85°。井深 600 m仍未穿过岩脉。

岩脉中的角砾岩化部位经历了热液蚀变和矿 化作用。在东部岩脉、南部支脉和主岩脉西北段的 上部、西部支脉的顶端角砾岩主要被石英-萤石-硫 化物胶结,沿着断面以及靠近岩脉中央地段的胶结 物主要为绿帘石、阳起石等角砾状蚀变矿物。

1.4 围岩蚀变

早期围岩蚀变类型为砂卡岩化,主要发育于距 地表600~800 m处的基岩与石英斑岩脉接触部位并 形成砂卡岩。蚀变矿物主要包括透辉石、磁铁矿及 少量石榴石、石英和尖晶石。

上覆盖层火山岩-火山沉积岩中也存在矽卡岩 化,但更主要体现岩浆活动晚期与铅锌成矿作用相 关的热液蚀变组合。围绕石英斑岩脉自内向外形 成3个蚀变分带:绿帘石-阳起石化带、石英-正长石 化带、青磐岩化带。绿帘石-阳起石化带分布于岩 脉中,主要蚀变矿物包括绿帘石、阳起石,少量石榴 石、透辉石、磁铁矿。蚀变岩分析结果显示,蚀变过 程中经历了剧烈的铁-钙交代作用,随热液带入了 大量的Ca、Mg、Fe,与此同时大量K、Na、Si析出。 石英-正长石化带主要集中于岩脉的顶端,近EW向 展布,长约1km,宽200~300m,距岩脉越近,硅化、 正长石化程度越强。正长石化霏细岩中KoO含量达 10.5%,考虑与绿帘石-阳起石化蚀变过程中析出的 大量K相关,蚀变温度为380~400°C,常伴有少量黑 云母化和绢云母化。青磐岩化主要分布于围岩安 山岩、英安岩中,形成通常以假晶形式交代阳起石 的绿泥石、菱铁矿、铁白云石等矿物,少见方解石。 方铅矿化、闪锌矿化主要分布于石英-正长石化蚀 变带中,并伴有石英-萤石矿化。与铀矿化伴生的 高岭土化、水云母化、鲕绿泥石化、石英-高岭土化 第41卷第4期

主要分布于矿床上部围岩中。

1.5 矿体、矿石特征及成矿阶段划分

乌兰铅锌矿化主要受石英斑岩脉和断裂控制, 对围岩选择性较差,矿体均产于石英斑岩附近不远 处的构造破碎带中或岩体及边部不同类型围岩中, 铅锌矿化不仅在火山沉积岩地层中发育,而且在基 岩地层中也有所表现。矿化主要发育于岩脉中,其 次为断裂。岩脉中已控制矿体8条,断裂中为1 条。矿体大多呈脉状,个别矿体呈柱状。矿体呈近 EW—NW向展布,倾向南或北,倾角70°~85°。矿体 走向延长200~400 m;倾向长度达500~700 m,深部 仍未完全控制;厚度集中于10~15 m。

矿体 Pb 品位 0.18%~7.2%, Zn 为 0.23%~7.9%, Ag 为 13~1390 g/t。矿化元素在矿体垂向上分布不 均匀:由浅至深, Pb、Ag 逐渐降低, Zn、Cd 含量增 高。与此同时,矿体上部 Cu、Au、As、黄铁矿含量通 常较高。

矿石主要有益组分为Pb、Zn、Ag,伴有Cd、Cu、 Au、As。矿石矿物主要有自然银、方铅矿、闪锌矿、 黄铁矿,其次为黄铜矿、毒砂、磁黄铁矿;脉石矿物 为石英、方解石、萤石、水白云母等。矿石结构主要 有半自形、他形粒状结构、交代残余结构、包含结构 等,矿石构造主要有块状构造、团块状构造、角砾状 构造、浸染状构造、脉状构造等。矿脉与石英脉、石 英斑岩、火山岩界线清晰,一般品位较高的矿段以 块状和团块状矿石为主。值得一提的是,爆破角砾 岩在整个多金属矿化带中均较发育,矿脉主要沿爆 破角砾岩裂隙进行充填交代,形成由角砾岩中心向 外侧"块状矿体—脉状矿体"的矿化空间分布规律, 以块状矿体为主。

依据野外矿脉穿切次序、矿物组合及矿物之间 的共生关系等特征推断,乌兰铅锌矿可大致划分为 3个成矿阶段:①高温热液阶段形成矽卡岩化蚀变, 以生成石榴石、透辉石及闪石类矿物为标志,该阶 段砂卡岩化蚀变在上覆盖层中多以脉状形式存在, 为早期热液活动结果,与铅锌矿化关系不大;②中 温热液阶段以携带Pb、Zn、Ag等矿物成分的热液强 烈活动为特征,形成与成矿密切相关的石英-正长 石化带;③低温热液阶段,广泛发育青磐岩化蚀变, 并形成铀-石英-萤石矿化及伴生的泥化。

2 样品采集及测试方法

2.1 样品采集

本次岩石地球化学测试样品采集于乌兰铅锌 矿主岩脉 Ⅱ号矿体井下平垌,主要为样品 M1-2:石 英斑岩,斑状结构,基质为微晶结构;斑晶主要由斜 长石构成,偶而见有少量钾长石;斜长石斑晶隐约 可见聚片双晶,个别可隐约见到环带构造;斑晶大 小约0.5~1 mm,含量占2%~3%;基质由他形石英及 长石组成, 粒度为0.06~0.1 mm, 其中长石含量约占 60%,石英约占40%;镜下可见穿插其中的石英细脉 内有金属矿物。样品M1-3:粗面流纹岩,斑状结 构,基质为隐晶质结构,块状构造;斑晶主要是钾长 石(30%)、石英(5%)和少量角闪石(2%)。由于 M1-2存在轻微矿化蚀变迹象,仅对M1-3进行常量 元素分析,并结合蒙古国已有分析结果^[11](表1)。样 品稀土、微量元素分析结果见表2。选择与成矿关 系密切的 M1-2、M1-32件样品进行锆石 LA-ICPMS U-Pb同位素测年。

2.2 常量、稀土和微量元素测试方法

常量、稀土和微量元素测试在国土资源部东北 矿产资源监督检测中心完成,常量元素采用玻璃熔 片大型X射线荧光光谱法(XRF)分析,测试温度为 24℃,湿度为45%,检测依据参照GB/T14506.28-93;微量和稀土元素的分析则采用电感耦合等离子 质谱法(ICP-MS)分析,测试温度为25℃,湿度为

Table 1 Major elements compositions (%)of ore bearing rocks in the Ullan lead-zinc deposit													
样品编号	样品岩性	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_2O_5	K ₂ O	CaO	TiO ₂	MnO	$Fe_2O_3^{ {\scriptscriptstyle T}}$	FeO	LOI
M1-3	粗面流纹岩	2.81	0.064	12.44	76.01	0.013	5.42	0.15	0.16	0.017	1.41	0.27	1.26
MG-1	英安岩	3.19	2.58	13.21	68.54	0.24	4.04	0.24	0.64	0.082	2.88	2.26	2.27
MG-2	英安质凝灰岩	3.08	2.64	14.23	65.91	0.22	3.83	0.29	0.82	0.09	3.56	2.55	2.82
MG-3	安山岩	3.66	3.86	11.86	61.13	0.43	2.34	0.58	1.12	0.18	7.36	4.28	3.33

表1乌兰铅锌矿容矿围岩常量元素(%)分析结果

http://geochina.cgs.gov.cn 中国地质, 2014, 41(4)

中

表2 乌兰铅锌矿容矿围岩、蚀变岩脉稀土元素、微量元素 (10°)分析结果

Table 2 REE and trace elements compositions (10⁻⁶) of ore bearing rocks and altered rock veins in the Ullan leadzinc deposit

	M1-1	M1-2	M1-3	M1-4	M1-5	M1-6
分析坝目	方铅矿脉	石英斑岩	粗面流纹岩	石英萤石脉	绿帘石脉	石英脉
La	42.6	106	30.5	23	136	26.2
Ce	100	110	94	54.4	137	59.8
Pr	11.77	20.65	8.45	6.09	25.1	6.72
Nd	40.71	70.47	27.31	21.89	84.81	23.43
Sm	7.65	12.23	4.88	4.34	12.96	4.29
Eu	0.51	0.26	0.35	0.19	0.4	0.36
Gd	6.7	11.01	4.4	3.82	12.31	3.73
Тb	1.04	1.62	0.72	0.67	1.46	0.56
Dy	5.3	7.55	4.42	3.87	5.97	2.75
Ho	0.85	1.16	0.82	0.68	0.86	0.43
Er	5.96	7.92	6.33	4.49	5.97	2.99
Tm	0.38	0.48	0.48	0.29	0.31	0.19
Yb	2.89	3.84	3.85	2.17	2.35	1.47
Lu	0.39	0.5	0.53	0.26	0.31	0.19
Ba	285	53	32.6	135	0.13*	567
Co	33.5	21.3	0.14	7.87	95.2	69.1
Cr	4.67	3.87	12.8	4.72	6.07	10.8
Nb	18	34.9	37.8	11	49.3	14.2
Ni	8.31	33.9	2.82	14.5	28.2	5.97
Rb	306	39.1	217	29.6	140	79.1
Sr	37.5	520	36.8	51.9	133	31.7
V	73.5	1.62	4.07	1.18	1.39	3.12
Zr	85.9	159	427	107	138	134
Li	16.5	4.45	28.1	30.4	21.1	53.7
Cs	3.4	53.5	7.36	1.83	4.11	3.36
Th	10.7	19.4	13.4	7.81	12.3	7.21
Ga	8.68	17.9	15.5	4.99	22.1	14
Sc	1.87	1.65	1.64	1.28	2.7	1.15
Hf	5.48	9.74	13	3.17	8.22	4.65
Та	2.44	2.05	2.69	0.68	38.7	1.71
Y	23.7	26.3	17.5	20.7	31.6	10

注:加"*"数据为小于检出限的测定值,仅供参考。

65%,检测依据参照DZ/T0223-2001等。

2.3 锆石U-Pb同位素测定方法

本文样品采用常规方法进行粉碎,用电磁选方 法进行分选,然后在双目镜下挑选出晶形和透明度 较好、无裂痕和包裹体的锆石颗粒,将其粘贴在环 氧树脂表面,打磨抛光后使锆石中心部位暴露出 来,然后对其进行透射光、反射光和阴极发光(CL) 图像的采集。锆石的制靶、显微图像采集和锆石 LA-ICP-MS U-Pb 同位素分析的详细实验原理和 流程参见文献[12]。测试结果通过GLITTER软件 计算得出,实验获得的数据采用Andersen^[13]的方法 进行同位素比值的校正以扣除普通Pb的影响,谐和 图的绘制采用ISOPLOT3.0^[14]完成。

3 岩石地球化学特征

3.1 常量元素

质

乌兰铅锌矿容矿围岩(火山岩、火山沉积岩) SiO₂、Al₂O₃和 MgO 质量分数分别为61.13%~ 76.01%、11.86%~14.23%和0.064%~3.86%, Na₂O和 K₂O 质量分数分别为2.81%~3.66%和2.34%~ 5.42%, K₂O/Na₂O比值介于1.24~1.93, Fe₂O₃^T、CaO 和 P₂O₅ 质量分数分别为1.41%~7.36%、0.15%~ 0.58%和0.013%~0.43%。在火山岩TAS图解中,样 品均位于碱性系列与亚碱性系列过渡部位(图2),具 体为高钾钙碱性系列(图3)。在A/NK-A/CNK图解 中样品分布较为集中,整体处于过铝质与准铝质过渡 部位(图4)。可见,乌兰铅锌矿容矿围岩虽岩石类型 较为复杂,但常量元素地球化学特征具有高度一致 性,为一套中-高硅、中铝、高钾钙碱性火山岩。

3.2 稀土及微量元素

本次研究选取的火山岩、次火山岩及蚀变岩脉 样品(表2)稀土元素总量(Σ REE)为412.25×10⁶~ 999.06×10⁶。(La/Yb)_N=4.41~43.10,轻重稀土元素分 馏明显,呈现轻稀土(LREE)富集的右倾趋势,负Eu 异常明显(δ Eu=0.56~0.88)。样品稀土元素配分模 式具有高度一致性,表明矿致相关蚀变岩脉(M1-

图2 火山岩 TAS 图解 (虛线上方为碱性系列,虛线下方为亚碱性系列) Fig.2 TAS diagram of volcanic rocks (Alkaline series is above the dotted line, and calc-alkaline is below the dotted line)

图 3 SiO₂-K₂O关系图解 Fig.3 Diagram of SiO₂-K₂O

1、M1-4、M1-5、M1-6)与容矿围岩(M1-2、M1-3) 具有相同的物质来源(图5),从而可以利用与成矿 关系密切的容矿围岩的成岩时代来间接限定成矿 时代^[15]。

在微量元素蛛网图中,该组样品(表2)普遍富 集大离子亲石元素(LILE)Ba、Rb、Ce,高场强元素 Nb、Ta、Th及Zr,明显亏损Li、Sr、Y等元素(图6),具 有较高的一致性。但需注意的是,样品M1-5严重 亏损Ba,考虑与退变质作用相关^[16]。

4 同位素年龄

用于进行锆石LA-ICP-MS U-Pb同位素分析的

图4 ACNK-ANK关系图解 Fig.4 Diagram of ACNK-ANK

2个样品中锆石粒度变化较大(50~150μm),锆石的 阴极发光(CL)图像显示,其内部结构复杂,既有发育 振荡生长环带的粒状或短柱状锆石,也有长柱状或板 状锆石,还有少数锆石不发光(图7~8),其Th/U比值 介于0.35~0.82(表3~4),暗示锆石岩浆成因特征。

样品 M1-2 石英斑岩中锆石 30 个有效测点²⁰⁶Pb/ ²³⁸U 年龄值介于(132.4±3.29) Ma~(182.5±4.12) Ma(图 9,表3),其加权平均年龄为(150.8±4.4) Ma(MSWD= 13),表明石英斑岩的形成时代为晚侏罗世。

样品 M1-3 粗面流纹岩中锆石 25 个有效测点 ²⁰⁶Pb/²³⁸U年龄值介于(159±2)Ma~(168±4)Ma(图10, 表4),其加权平均年龄为(164.7±3.1)Ma(MSWD= 0.048),表明粗面流纹岩的形成时代为晚侏罗世。

- 5 讨 论
- 5.1 成矿特征对比

如前所述,中蒙克鲁伦--满洲里成矿带铅锌矿

http://geochina.cgs.gov.cn 中国地质, 2014, 41(4)

图 7 样品 M1-2 锆石阴极发光图像 Fig.7 CL images of selected zircons from sample M1-2

图 8 样品 M1-3 锆石阴极发光图像 Fig.8 CL images of selected zircons from sample M1-3

表3	M1-2(石英斑岩)LA-ICP-MS锆石U-Pb定年数据
Table 3	Zircon LA-ICP-MS U-Pb dating data of sample M1-2

点	701 // I	²⁰⁷ Pb	/ ²⁰⁶ Pb	²⁰⁷ Pł	0/ ²³⁵ U	⁵ U ²⁰⁶ Pb/ ²³⁸ U ²⁰⁷ Pb/ ²⁰⁶ Pb		⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U			²⁰⁶ Pb/ ²³⁸ U	
号	Th/U	比值	误差1σ		误差1σ	比值	误差1σ	年龄/Ma	误差1σ	年龄/Ma	误差1σ	年龄/Ma	误差1σ
1	0.50	0.0539	0.0027	0.1593	0.0086	0.02103	0.00049	368.0	108.75	150.1	7.51	134.2	3.11
2	0.47	0.0685	0.0026	0.2006	0.0082	0.02163	0.00047	884.4	76.50	185.6	6.89	137.9	2.95
3	0.39	0.0792	0.0028	0.2405	0.0092	0.02382	0.00051	1177.9	68.18	218.8	7.50	151.8	3.21
4	0.46	0.0563	0.0021	0.1782	0.0070	0.02303	0.00048	462.7	80.70	166.5	6.04	146.8	3.05
5	0.44	0.1070	0.0057	0.3560	0.0220	0.02522	0.00070	1749.5	94.13	309.4	16.51	160.5	4.42
6	0.42	0.1090	0.0038	0.3830	0.0150	0.02444	0.00054	1782.2	61.86	329.5	11.05	155.6	3.39
8	0.45	0.0528	0.0025	0.1494	0.0076	0.02243	0.00051	317.8	104.55	141.4	6.69	143.0	3.22
9	0.57	0.0551	0.0020	0.1543	0.0060	0.02084	0.00044	414.2	79.67	145.7	5.25	133.0	2.75
10	0.38	0.1468	0.0050	0.5550	0.0230	0.02872	0.00066	2308.6	57.83	448.2	14.79	182.5	4.12
11	0.45	0.1177	0.0036	0.4030	0.0140	0.02382	0.00050	1921.1	53.38	343.6	9.83	151.7	3.15
12	0.38	0.0510	0.0023	0.1620	0.0079	0.02338	0.00052	239.3	102.03	152.4	6.92	149.0	3.26
13	0.51	0.2239	0.0073	0.6840	0.0270	0.02422	0.00057	3009.2	51.71	529.3	15.98	154.3	3.59
14	0.47	0.0716	0.0026	0.2311	0.0090	0.02263	0.00048	973.5	71.39	211.1	7.39	144.3	3.03
15	0.54	0.0516	0.0017	0.1559	0.0052	0.02245	0.00045	265.4	72.39	147.1	4.60	143.1	2.83
16	0.54	0.0820	0.0024	0.3031	0.0095	0.02650	0.00053	1246.2	55.69	268.8	7.38	168.6	3.34
17	0.45	0.0546	0.0015	0.1849	0.0051	0.02498	0.00048	394.7	59.17	172.2	4.40	159.1	3.03
18	0.47	0.0463	0.0024	0.1505	0.0082	0.02225	0.00051	11.8	118.45	142.4	7.27	141.9	3.20
20	0.70	0.0502	0.0013	0.1689	0.0044	0.02460	0.00047	202.0	58.94	158.4	3.84	156.7	2.95
21	0.35	0.0720	0.0033	0.2030	0.0100	0.02347	0.00055	987.2	90.86	188.0	8.60	149.5	3.49
22	0.38	0.1815	0.0072	0.7190	0.0360	0.02757	0.00071	2666.4	64.55	549.8	21.45	175.3	4.45
23	0.49	0.0632	0.0028	0.1856	0.0088	0.02090	0.00047	714.2	90.76	172.9	7.53	133.4	2.98
24	0.55	0.0528	0.0020	0.1725	0.0070	0.02427	0.00051	317.0	84.11	161.6	6.03	154.6	3.18
25	0.46	0.0710	0.0024	0.2417	0.0089	0.02472	0.00051	957.8	68.36	219.8	7.31	157.4	3.23
27	0.56	0.0561	0.0021	0.2016	0.0081	0.02442	0.00051	455.7	80.67	186.5	6.88	155.6	3.21
28	0.51	0.0548	0.0022	0.1854	0.0078	0.02479	0.00052	403.8	85.27	172.7	6.71	157.9	3.30
29	0.50	0.1724	0.0044	0.6610	0.0190	0.02698	0.00054	2580.9	41.86	515.3	11.41	171.6	3.39
30	0.52	0.0934	0.0044	0.2900	0.0160	0.02075	0.00052	1496.5	87.18	258.9	12.24	132.4	3.29
31	0.42	0.0528	0.0015	0.1820	0.0053	0.02465	0.00047	318.8	62.52	169.8	4.52	157.0	2.99
34	0.56	0.0574	0.0017	0.1850	0.0056	0.02379	0.00046	504.4	63.91	172.3	4.84	151.6	2.93
35	0.38	0.0741	0.0029	0.2430	0.0100	0.02513	0.00055	1043.7	75.68	220.6	8.33	160.0	3.43

http://geochina.cgs.gov.cn 中国地质, 2014, 41(4)

表4 M1-3(粗面流纹岩)LA-ICP-MS锆石 U-Pb定年数据														
	Table 4 Zircon LA-ICP-MS U-Pb dating data of sample M1-3													
ĿП	111 / T.T.	²⁰⁷ Pl	b/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb	/ ²³⁸ U	²⁰⁷ Pb/	²⁰⁷ Pb/ ²⁰⁶ Pb		²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb/ ²³⁸ U	
尽亏	In/U	比值	误差1σ	 比值	误差1σ	比值	误差1σ	年龄/Ma	误差1σ	年龄/Ma	误差1σ	年龄/Ma	误差1σ	
2	0.44	0.0475	0.0090	0.170	0.032	0.02603	0.00064	76	306	160	28	166	4	
4	0.43	0.0482	0.0072	0.175	0.026	0.02638	0.00059	107	260	164	22	168	4	
6	0.53	0.0491	0.0039	0.174	0.014	0.02576	0.00044	151	146	163	12	164	3	
7	0.45	0.0497	0.0042	0.175	0.014	0.02554	0.00046	180	152	164	12	163	3	
8	0.56	0.0492	0.0044	0.174	0.015	0.02563	0.00047	158	165	163	13	163	3	
9	0.51	0.0500	0.0048	0.176	0.017	0.02558	0.00046	194	181	165	14	163	3	
10	0.44	0.0500	0.0057	0.178	0.020	0.02585	0.00048	196	219	166	17	165	3	
11	0.61	0.0514	0.0043	0.179	0.015	0.02527	0.00041	257	157	167	13	161	3	
12	0.73	0.0518	0.0030	0.178	0.010	0.02499	0.00038	278	104	167	9	159	2	
14	0.54	0.0508	0.0045	0.176	0.015	0.02520	0.00044	233	163	165	13	160	3	
15	0.42	0.0481	0.0094	0.172	0.033	0.02594	0.00063	105	318	161	29	165	4	
16	0.42	0.051	0.011	0.177	0.037	0.02523	0.00060	235	355	165	32	161	4	
18	0.72	0.0493	0.0034	0.175	0.012	0.02568	0.00040	164	127	163	10	163	3	
19	0.41	0.050	0.013	0.176	0.046	0.02540	0.00076	205	423	164	40	162	5	
20	0.45	0.0511	0.0052	0.179	0.018	0.02537	0.00042	246	199	167	16	162	3	
22	0.42	0.0498	0.0044	0.175	0.015	0.02546	0.00043	188	165	164	13	162	3	
23	0.81	0.0501	0.0085	0.177	0.030	0.02567	0.00057	198	299	166	26	163	4	
24	0.59	0.048	0.013	0.172	0.046	0.02617	0.00081	87	405	161	40	167	5	
25	0.50	0.0498	0.0046	0.175	0.016	0.02556	0.00048	185	170	164	14	163	3	
26	0.51	0.050	0.010	0.177	0.036	0.02551	0.00061	205	341	165	31	162	4	
28	0.44	0.0497	0.0072	0.175	0.025	0.02555	0.00055	180	264	164	22	163	3	
29	0.44	0.0510	0.0053	0.177	0.018	0.02517	0.00051	242	195	165	16	160	3	
30	0.62	0.0492	0.0049	0.175	0.017	0.02586	0.00055	157	182	164	15	165	3	
31	0.82	0.0510	0.0059	0.179	0.021	0.02546	0.00044	240	228	167	18	162	3	

集区内主要产出乌兰铅锌矿、查夫铅锌矿、甲乌拉 铅锌矿、查干不拉根铅锌矿。利用本次乌兰铅锌矿 地质特征研究结果,结合前人针对后三者的研究成 果^[2-9],现将上述矿床成矿特征作如下对比研究,见

图 10 样品 M1-3 U-Pb 谐和图 Fig.10 U-Pb concordia diagram of sample M1-3

表5。

容矿围岩方面:乌兰、查夫铅锌矿主要为侏罗 系火山岩地层,甲乌拉、查干不拉根主要为二叠系 火山岩、火山沉积岩地层;容矿围岩具有多样性,体 中 国 地 质

Francharta metanogenie sete in the sortaer area setween ennia and Frongona											
矿床特征	乌兰铅锌矿	查夫铅锌矿	甲乌拉铅锌矿	查干布拉根铅锌矿							
容矿围岩	侏罗系英安岩、安山岩、 玄武岩、流纹岩	侏罗系玄武岩、安山 岩、粗面安山岩、英 安岩、安粗岩、高钾 流纹岩	二叠系玄武岩、安山岩、 流纹岩、板岩和砂砾岩	二叠系砂板岩、流纹岩							
侵入岩脉	石英斑岩	二长闪长岩、花岗岩、 正长岩	长石斑岩、花岗斑岩	石英斑岩 、长石斑岩、流 纹斑岩							
控矿构造	NW 向穆哈尔断裂	NW、NNW、NE 向断 裂	NW、NNW 向断裂	NWW 向断裂							
围岩蚀变	砂卡岩化、绿帘石化、 阳起石化、硅化、钾长 石化、碳酸盐化、绿泥 石化	硅化、绢云母化、绿 帘石化、碳酸盐化	硅化、绢云母化、 萤石 化、 绿泥石化、碳酸盐 化	硅化、绢云母化、 绿泥石 化、绿帘石化、伊利石化、 碳酸盐化、高岭石化							
矿体形态	块状、脉状	脉状、条带状、透镜 状	脉状、条带状、透镜状	脉状、条带状、透镜状							
主要金属矿物	方铅矿、闪锌矿、黄铁 矿、黄铜矿	方铅矿、闪锌矿、黄 铁矿、黄铜矿	方铅矿、闪锌矿、黄铁 矿、白铁矿、磁黄铁矿、 黄铜矿	方铅矿、闪锌矿、黄铁矿、 黄铜矿							
次要金属矿物	黄铜矿、毒砂、 磁黄铁矿	辉铜矿、白铁矿、磁 黄铁矿、毒砂、 辉钼 矿、 黝铜矿、 深红 银矿、螺状硫银矿、 硫锑铜银矿、 辉铋 矿、自然铋和自然银	磁铁矿、 赤铁矿、斑铜 矿、自然银、辉银矿、银 黝铜矿、含银辉铋铅矿、 碲银矿、含硫铋铅银矿、 硫锑银矿	毒砂、磁黄铁矿、辉锑铅 银矿、银黝铜矿、深红银 矿、自然银、硫锑铜银矿、 银金矿、角银矿、辉银矿							
脉石矿物	石英、方解石、萤石、 水白云母	石英、方解石	石英、萤石、 绢云母、 绿泥石、伊利石、水白云 母、方解石	石英、萤石、 绢云母、绿 泥石、绿帘石、伊利石、方 解石、高岭石、菱锰矿							

表5中蒙克鲁伦---满洲里成矿带铅锌矿矿集区矿床地质特征

Table 5 Metallogenic characteristics of lead-zinc deposits in the lead-zinc ore concentration area along the Kerulen-Manchuria metallogenic belt in the border area between China and Mongolia

现了本区域铅锌矿化对于围岩选择性较差。与成 矿相关的侵入岩脉:除查夫铅锌矿外,均为次火山 岩,体现了浅成低温热液控矿的特征。控矿构造: 主要为NW向断裂构造,随矿床分布空间位置不同 而转向NNW、NWW向。围岩蚀变类型及组合:相 似,为典型的浅成热液蚀变类型¹⁰⁷,由于乌兰铅锌矿 存在古元古代基底而发育矽卡岩化。矿体形态:均 为脉状、条带状及透镜状,乌兰铅锌矿爆破角砾岩 较为发育而存在块状矿体类型。主要金属矿物、次 要金属矿物及脉石矿物也体现了相似性。上述对 比研究表明,乌兰铅锌矿与矿集区内其他铅锌矿在 成矿特征方面具有高度相似性,仅由于构造位置不 同而存在细小差异,因而推断其成矿类型一致,为 受爆破角砾岩控制的浅成热液脉型铅锌矿床。

5.2 成矿地质背景

中一晚侏罗世,乌兰铅锌矿所在位置处于外贝 加尔一大兴安岭转换挤压弧处,该挤压弧被认为是 沿着蒙古—鄂霍茨克缝合带形成的,切穿了北亚克 拉通和克拉通南部边缘的先存增生地体,延伸至外 贝加尔地区和蒙古西部更远处。伴随着转换挤压 弧的形成,地壳延展带内的断裂有所分级,结果导 致一系列单向或双向地堑沿着EW-NW走向形成, 最终被晚侏罗世至早白垩世双峰式火山岩和陆源 碎屑沉积物所填充^[18]。本次研究中常量元素分析结 果表明,乌兰铅锌矿容矿围岩(火山岩、火山沉积 岩)整体为一套中-高硅、中铝、高钾钙碱性火山岩, 该特征火山岩大多形成于上述裂谷环境^[19]。

乌兰铅锌矿容矿围岩(火山岩、火山沉积岩)样 品普遍富集大离子亲石元素(LILE)Ba、Rb、Ce,高 场强元素Nb、Ta、Th及Zr,明显亏损Li、Sr、Y等元素 的微量元素分布模式与幔源岩浆特征具有一定相 似性。结合蒙古国地质工作者硫同位素分析结 果^[11],矿床所含硫化物δ³⁴S为-1‰~+4‰,黄铁矿和 闪锌矿硫同位素特征相似,揭示硫具有一致的深成 来源。样品稀土元素配分模式具有高度一致性,表 明样品具有相同物质来源。根据野外赋矿岩脉、容 矿围岩、矿化蚀变脉体之间的穿插、交错关系,可初 步判断其形成顺序为容矿火山岩地层沉积→石英 斑岩侵入→矿化蚀变脉体贯入。浅成低温热液型 矿床矿石沉淀发生在容矿围岩就位后不久(0.5~15 Ma)^[20],因而可以利用矿区火山岩地层上部岩石类 型——粗面流纹岩及石英斑岩的形成年龄限定矿 化蚀变的时间上限。

锆石U-Pb测年结果显示,粗面流纹岩((164.7± 3.1)Ma)与石英斑岩((150.8±4.4)Ma)均形成于晚 侏罗世,测年结果与地质事实完全吻合,二者在误 差范围内相差 6.4 Ma。蒙古国地质工作者曾对乌 兰铅锌矿上部围岩中的铀矿化利用铀测年方法进 行年龄测定,获得绝对年龄分别为136 Ma、137 Ma、 143 Ma和157 Ma^[11]。铀矿化形成于铅锌矿化之后, 因而该组年龄可以作为铅锌矿化下限年龄。结合 前人使用Li-Ar法确定的乌兰铅锌矿绢云母形成年 龄((161±7)Ma)^[11],可初步推断乌兰铅锌矿成矿时 间为140~155 Ma。

综上所述,乌兰铅锌矿形成于140~155 Ma期间 外贝加尔一大兴安岭转换挤压弧形成之后的裂谷 环境。

6 结 论

(1)乌兰铅锌矿容矿围岩为侏罗系英安岩、安山岩、玄武岩、流纹岩,显示出成矿对于围岩选择性较差。石英斑岩是主要的赋矿岩脉与NW向穆哈尔断裂带共同构成了重要的控矿因素。围岩蚀变类型(砂卡岩化、绿帘石化、阳起石化、硅化、钾长石化、碳酸盐化、绿泥石化)及矿体特征均符合浅成低温热液脉型多金属矿床特征。

(2)常量元素分析结果表明,乌兰铅锌矿容矿 围岩为一套中-高硅、中铝、高钾钙碱性火山岩。稀 土元素配分模式具有高度一致性,表明样品具有相 同物质来源。普遍富集大离子亲石元素(LILE)Ba、 Rb、Ce,高场强元素 Nb、Ta、Th及 Zr,明显亏损 Li、 Sr、Y等元素的微量元素分布模式与幔源岩浆特征 具有一定相似性,以上特征表明致矿岩浆有可能来 源于深部(可达地幔)。

(3)通过中蒙克鲁伦一满洲里成矿带铅锌矿集

区内铅锌矿床成矿特征对比研究,确定乌兰铅锌矿 为受爆破角砾岩控制的浅成热液脉型铅锌矿床。

(4) 锆石 LA-ICPMS U-Pb 同位素分析结果表 明, 乌兰铅锌矿围岩成岩时代为晚侏罗世((150.8± 4.4) Ma~(164.7±3.1) Ma), 结合蒙古国地质工作者 年龄分析结果, 通过成矿地质背景研究, 初步限定 乌兰铅锌矿形成于 140~155 Ma 期间外贝加尔一大 兴安岭转换挤压弧形成之后的裂谷环境。

参考文献(References):

- 朱群,武广,张炯飞,等. 得尔布干成矿带成矿区划与勘查技术研究进展[J].中国地质, 2001, 28 (5): 19-27.
 Zhu Qun, Wu Guang, Zhang Jiongfei, et al. Research progress of metallogenic classification and exploration technology in Derbugan metallogenic belt[J]. Geology in China, 2001, 28 (5): 19-27 (in Chinese with English abstract).
- [2] 聂凤军, 刘勇, 刘翼飞, 等. 中蒙边境查夫一甲乌拉地区中生代银 多金属矿床成矿作用[J].吉林大学学报(地球科学版), 2011, 41
 (6): 1715-1725.

Nie Fengjun, Liu Yong, Liu Yifei, et al. Ore-forming processes of silver–polymetallic deposits occurring within Tsav–Jiawula region along China– Mongolian border[J]. Journal of Jilin University (Earth Science Edition) , 2011, 41(6): 1715–1725 (in Chinese with English abstract).

[3] 解成波, 刘明. 查干不拉根银铅锌(金)矿床地质特征及成因类型[J].世界地质, 2001, 20 (1): 25-29.

Xie Chengbo, Liu Ming. Geological features and genetic type of Chaganbulagen Ag, Pb, Zn(Au) deposit[J]. World Geology, 2001, 20 (1): 25–29 (in Chinese with English abstract).

- [4] 双宝, 葛玉琦, 刘继贤. 内蒙古呼盟地区甲乌拉银铅锌矿床流体 包裹体与成矿的关系[J].吉林地质, 2009, 28 (2): 32-35.
 Shuang Bao, Ge Yuqi, Liu Jixian. Relationship between fluid inclusions and ore- forming of Jiawula Ag- Pb- Zn deposit in Hulunbeir league, Inner Mongolia[J]. Jilin Geology, 2009, 28 (2): 32-35 (in Chinese with English abstract).
- [5] 曾令平. 甲乌拉银铅锌矿床地质特征及成矿控制探讨[J]. 有色金属(矿山部分), 2010, 62 (3): 34-39.
 Zeng Lingping. Geological features of Jiawula Ag-Pb-Zn deposit and its metallogenic control discussion[J]. Nonferrous Metals

Geology(Mine Part) , 2010, 62 (3): 34–39 (in Chinese with English abstract).

[6] 翟德高, 王建平, 刘家军, 等. 内蒙古甲乌拉银多金属矿床成矿流 体演化与成矿机制分析[J]. 矿物岩石, 2010, 30 (2): 68-76. Zhai Degao, Wang Jianping, Liu Jiajun, et al. Ore-forming fluids evolution and metallogenic mechamism analysis of the Jiawula Agpoltmetallic deposit, Inner Mongolia[J]. J. Mineral Petrol., 2010, 30 (2): 68-76 (in Chinese with English abstract).

质

- [7] 翟德高, 刘家军, 王建平, 等. 内蒙古甲乌拉大型 Pb-Zn-Ag 矿床 稳定同位素地球化学研究[J]. 地学前缘, 2013, 20 (2): 213--225. Zhai Degao, Liu Jiajun, Wang Jianping, et al. A study of stable isotope geochemistry of the Jiawula large Pb-Zn-Ag ore deposit, Inner Mongolia[J]. Earth Science Frontiers, 2013, 20 (2): 213-225 (in Chinese with English abstract).
- [8] 佘洪全, 李红红, 李进文, 等. 内蒙古大兴安岭中北段铜铅锌金银 多金属矿床成矿规律与找矿方向[J].地质学报, 2009, 83 (10): 1456-1472.

She Hongquan, Li Honghong, Li Jinwen, et al. The metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the Northern- Central Daxinganling Mountain, Inner Mongolia[J]. Acta Geologica Sinica, 2009, 83 (10): 1456–1472 (in Chinese with English abstract).

- [9] 武广, 糜梅, 高峰军, 等. 满洲里地区银铅锌矿床成矿流体特征及 矿床成因[J].地学前缘, 2010, 17 (2): 239-255.
 Wu Guang, Mi Mei, Gao Fengjun, et al. Ore- forming fluid characteristics and genesis of silver- lead- zinc deposits in the Manzhouli area, Inner Mongolia, China[J]. Earth Science Frontiers, 2010, 17 (2): 239-255 (in Chinese with English abstract).
- [10] 曹宏经, 周平. 查夫矿床的含矿构造(东蒙古)[J].国外铀金地质, 1996, 13 (1): 58-65.
 Cao Hongjing, Zhou Ping. Ore-bearing structure of Tsav leadzinc deposit (Eastern Mongolia)[J]. Overseas Uranium and Gold Geology, 1996, 13 (1): 58-65 (in Chinese with English abstract).
- [11] Мельников В. И, Долгор Я, Мазилов Е. B, et al. Ullan leadzinc Deposit(Eastern Mongolia)[R]. Mongolia:Cojbalsan, 1996.
- [12] Yuan H L, Gao S, Liu X M, et al. Accurate U–Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandard Newsletter: The Journal of Geostandards and Geoanalysis, 2004, 28:353–370.
- [13] Andersen T. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology, 2002, 192: 59–79.
- [14] Ludwig K R. Users manual for Isoplot/Ex (rev.2.49): A geochronological toolkit for Microsoft Excel[J]. Berkeley

Geochronology Center, Special Publication, 2001, 1: 55.

[15] 表尚虎,郑卫政,周兴福.大兴安岭北部锆石U-Pb年龄对额尔 古纳地块构造归属的制约[J].地质学报,2012,86 (8):1262-1272.

Biao Shanghu, Zheng Weizheng, Zhou Xingfu. Zircon U-Pb age of the North Da Hinggan Mts., NE China and its constraint to attribute of the Ergun Block[J]. Acta Geologica Sinica, 2012, 86 (8): 1262–1272 (in Chinese with English abstract).

[16] 刘树杰, 李玉龙, 王德福. 内蒙古东部额尔古纳地块古变质岩地 球化学特征及成因环境探讨[J].吉林地质, 2011, 30 (1): 19-28. Liu Shujie, Li Yulong, Wang Defu. Geochemical characteristics and genetic environment of the ancient metamorphic rocks in the Erguna Block in the eastern part of Inner Mongolia[J]. Jilin Geology, 2011, 30 (1): 19-28 (in Chinese with English abstract).

[17] 张炯飞, 权恒, 武广, 等. 东北地区中生代火山岩形成的构造环境 [J]. 贵金属地质, 2000, 9 (1): 33-38.
Zhang Jiongfei, Quan Heng, Wu Guang, et al. Tectonic setting of Mesozoic volcanic rocks in Northeast China [J]. Journal of Precious Metallic Geology, 2000, 9 (1): 33-38(in Chinese with English abstract).

- [18] Leonid M. Parfenov, Gombosuren Badarch, Nikolai A. Berzin, et al. Metallogenesis and tectonics of Northeast China[M]. USGS, 2003: 548–550.
- [19] 尹志刚, 张跃龙, 杨晓平, 等. 大兴安岭北部中生代火山岩特征 及岩浆演化[J]. 世界地质, 2006, 2 (25): 120–128.
 Yin Zhigang, Zhang Yuelong, Yang Xiaoping, et al. Characteristics of Mesozoic volcanic rocks and magma evolution in North Da Hinggan Mountains [J]. World Geology, 2006, 2 (25): 120–128(in Chinese with English abstract).
- [20] 陈根文, 夏斌, 肖振宇, 等. 浅成低温热液矿床特征及在我国的 找矿方向 [J]. 地质与资源, 2001, 10 (3): 165-171.
 Chen Genwen, Xia Bin, Xiao Zhenyu, et al. Characteristics of epithermal deposits and the prospecting guide in China [J].
 Geology and Resource, 2001, 10 (3): 165-171(in Chinese with English abstract).

Geological and rock geochemical characteristics and U-Pb age of the Ullan lead-zinc deposit in Mongolia

ZHANG Jing, SHAO Jun, BAO Qing-zhong, ZHOU Yong-heng, WANG Hong-bo

(Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang 110034, Liaoning, China)

Abstract: The Ullan lead-zinc deposit in Mongolia, together with Tsav, Jiawula, Chaganbulagen lead-zinc deposits, forms a leadzinc ore concentration area in the Kerulen-Manchuria metallogenic belt. Geological characteristics of the Ullan deposit were described in the aspects of ore-bearing strata, ore- controlling structure, ore- bearing dike, wall rock alteration and orebody characteristics. Rock geochemical studies show that ore- bearing rocks are calc- alkaline volcanic rocks with medium-high Si, medium-Al and high K. The rocks are enriched in large-ion lithophile elements (Ba, Rb, Ce), high field-strength elements (Nb, Ta, Th), Zr and depleted in Li, Sr, Y, with the data $\sum REE=412.25 \times 10^{-6}-999.06 \times 10^{-6}$, $(La/Yb)_{N}=4.41-43.10$ and strong Eu anomalies (δ Eu=0.56-0.88). Zircon LA-ICPMS U-Pb isotope ages indicate that wall rocks formed in Late Jurassic (from (150.8±4.4) Ma to (164.7±3.1) Ma). The authors also determined that Ullan lead-zinc deposit was formed in a rift setting after the formation of Transbaikal- Da Hinggan Mountains transpressional arc in the period of 140-155 Ma and hence belongs to the hypabyssal hydrothermal vein-type deposit controlled by explosion breccia.

Key words: Mongolia; Ullan lead-inc deposit; geological characteristics; rock geochemistry; zircon LA-ICPMS U-Pb age

About the first author: ZHANG Jing, male, born in 1984, doctor, majors in metal deposit geology; E-mail: 441005231@qq.com.