第41卷第4期	中 国 地 质	Vol.41, No.4
2014 年 8 月	GEOLOGY IN CHINA	Aug. ,2014

康永建, 佘宏全, 向安平, 等. 内蒙古八大关矿区印支期岩浆活动及其找矿意义[J]. 中国地质, 2014, 41(4): 1215-1225. Kang Yongjian, She Hongquan, Xiang Anping, et al. Indo- Chinese magmatic activity in the Badaguan ore district of Inner Mongolia and its metallogenic implications[J]. Geology in China, 2014, 41(4): 1215-1225(in Chinese with English abstract).

内蒙古八大关矿区印支期岩浆活动及其找矿意义

康永建1佘宏全1向安平1田京12李进文1杨郧城1郭志军1董旭舟2

(1. 中国地质科学院矿产资源研究所,北京100037;2. 中国地质大学地球科学与资源学院,北京100083)

提要:通过对八大关矿区主要花岗岩体进行了系统采样,其镜下鉴定结果显示该区侵入岩主要为花岗岩、黑云母花 岗岩、花岗斑岩、钾长花岗岩、花岗闪长斑岩;6件样品的LA-MC-ICP-MS 锆石 U-Pb 年龄主要在 243.87~231.63 Ma。结合成矿斑岩的形成时代,矿区主要侵入岩均形成于印支期,并不存在海西期或燕山期侵入岩体。根据岩体 年龄的分布情况,将矿区印支期岩浆活动划分为 243.87~237.11 Ma 和 231.63~229.00 Ma 2 个阶段,早阶段岩浆活动 主要形成矿体围岩;而铜钼矿化主要与晚阶段岩浆活动有关。此外,整个鄂霍次克造山带两侧的印支期岩浆活动也 具有两阶段的特点,且与鄂霍次克洋的俯冲密切相关,考虑到两侧已查明的印支期超大型-大型斑岩型矿床,认为八 大关矿区外围及额尔古纳地区存在寻找印支早期斑岩矿床的可能性。

关键词:LA-MS-ICP-MS锆石U-Pb;岩浆活动;印支期;八大关

中图分类号:511.4 文献标志码:A 文章编号:1000-3657(2014)04-1215-11

1 引 言

八大关斑岩型铜钼矿床是中国内蒙古额尔古 纳地块上较早发现的典型斑岩矿床之一,最新报道 认为该矿床形成于中三叠世鄂霍次克洋向南俯冲 的活动陆缘弧环境^[1,2]。大量资料表明,陆缘弧环境 是产出大型-超大型斑岩型矿床最有利的环境之 一^{154]},且主要以斑岩型Cu-Mo矿床为主,如智利 Chuquicamata、La Escondida等超大型斑岩型Cu-Mo矿床^[5]。近几年,额尔古纳地区鉴别出了大量与 鄂霍次克洋俯冲有关的印支期侵入岩,其地球化学 特征指示额尔古纳地块在该时期处于活动陆缘弧 环境,由此说明该区具有寻找印支期陆缘弧斑岩型 Cu-Mo矿床的巨大潜力。然而,由于内蒙古东北部 特殊的草原和森林自然环境,该区的基础地质调查 和科学研究程度一直较低,目前已查明的斑岩矿床 主要为八大关中型铜钼矿床和八八一铜矿点,其矿 床的规模和数量均不太乐观。因此,八大关铜钼矿 床的深入解剖对额尔古纳地区印支期斑岩型矿床 的找矿突破有重要的指导意义。从目前发表的研 究资料来看,八大关铜钼矿区的研究程度仍相对较 低,对矿区侵入岩的认识仍是建立在地质队编写的 详查报告的基础上,或限于当时的测试技术水平, 显然对矿区岩浆活动的认识存在诸多不足之处。 而准确厘清矿区主要花岗岩体的成岩时代,对深入 认识矿床成因、矿区岩浆活动以及确定区域找矿方

收稿日期:2014-05-19;改回日期:2014-06-21

基金项目:国家基础科研项目(2013CB429803)和中国地质调查局地质调查项目(1212011120992、1212011309011)联合资助。

作者简介:康永建,男,1989年生,硕士生,矿物学、岩石学、矿床学专业;E-mail: kangyongjian126@163.com。

通讯作者:佘宏全,男,1964年生,研究员,研究生导师,矿物学、岩石学、矿床学专业;E-mail: shehongquan@sina.com。

质

向有着十分重要的意义。

2 地质背景

八大关斑岩型铜(钼)矿床地处内蒙古自治区呼 伦贝尔市陈巴尔虎旗,海拉尔市西北约100 km。大 地构造位于外贝加尔褶皱系和大兴安岭褶皱系过渡 带,地处蒙古—鄂霍次克造山带南缘的额尔古纳地 块。在构造演化史上该区受到前中生代古亚洲构造 域演化和中新生代滨太平洋构造域、蒙古—鄂霍次克 洋构造域的强烈改造。区内断裂构造发育,主要呈 NE向和NW向,其中NE向断裂构造较为发育,长度 变化较大,而NE向断裂构造较不发育。

矿区出露地层主要为中一上泥盆统大民山组

和石炭—二叠系。其中,大民山组地层主要出露在 矿区西南部及北部边缘,岩性为流纹斑岩、流纹质 凝灰岩、安山玢岩及斜长角闪片岩。石炭—二叠系 主要见于矿区东南部,岩层产状较缓,主要岩性为 青灰色长英质晶屑凝灰岩,区内强烈的岩浆活动使 该地层经历了一定程度的热变质作用。区内出露 大面积的花岗岩类,包括花岗岩、钾长花岗岩、花岗 斑岩、花岗闪长斑岩以及后期黑云母花岗岩脉,侵 位于中一上泥盆统火山沉积地层和石炭—二叠系 火山岩中(图1)。

3 采样位置及岩相学特征

为了查清八大关铜钼矿区花岗质复合岩体的

图1 八大关铜钼矿区地质图(据文献[6,7]修改)

1一第四系;2—D2+3火山-沉积岩;3—C3-P中酸性火山熔岩;4—黑云母花岗岩;5—花岗岩;6—花岗闪长斑岩;7—花岗斑岩;8—钾长花岗岩; 9—未知岩脉;10—实测未知倾斜断层;11—性质不明推测断层;12—实测推测地质界线;13—采样位置

Fig.1 Geological map of the Badaguan Cu-Mo ore district (modified after reference [6,7])

1-Quaternary; 2-D₂₊₃ volcano-sedimentary rock; 3-C₃-P intermediate-acidic volcanic lava; 4-Biotite granite; 5-Granite; 6-Granodiorite porphyry;
 7-Granite porphyry; 8-Moyite; 9-Unknown vein; 10-Measured unknown inclined fault; 11-Inferred fault of unknown nature 12-Measured/inferred geological boundary; 13-Sampling location

时空分布情况、岩浆演化序列及与成矿的关系,笔 者对矿区主要岩体进行了系统采样、详细的镜下鉴 定和锆石U-Pb定年工作,具体采样位置见图1。

样品 B1305,细粒花岗岩,采样坐标 N49°58′ 38″,E119°07′25″。岩石呈浅灰红色,自形-半自形 细粒花岗结构,块状构造。主要矿物组合为钾长石 (45%~50%)、斜长石(15%~20%)、石英(20%~ 25%)、少量黑云母和金属矿物(<5%)。矿物颗粒较 小,介于 0.4~1.8 mm。其中钾长石主要为条纹长 石、少量微斜长石,可见条纹结构、格子双晶;斜长 石发生弱绢云母化,聚片双晶、复合双晶发育(图2a);石英多为他形粒状,波状消光显著,可见硅化石 英沿其边界或空隙呈细脉状分布。副矿物主要有 磁铁矿、褐铁矿、锆石等。

样品 B1313 和样品 B1314,花岗斑岩,采样坐标 分别为 N49°58′41″, E119°08′48″和 N49°58′50″, E119°09′26″。岩石灰白色、灰红色,显微斑状结构 (图 2-b),块状构造。斑晶主要由钾长石、斜长石、 少量石英组成,粒度 0.2~0.6 mm;基质主要为长英 质,显微晶质,粒径<0.05 mm。主要矿物有钾长石 (45%~50%)、斜长石(15%~20%)、石英(20%~ 25%)、少量绿帘石和磁铁矿<5%。钾长石主要为正 长石,可见一组完全解理;斜长石发育聚片双晶,弱 绢云母化。可见绢云母或绢云母和石英呈细脉状 分布。副矿物以磁铁矿、绿帘石、绿泥石为主。

样品B1315,黑云母花岗岩,采自与成矿斑岩体 边界垂直的脉体,采样坐标N49°59′01″,E119°07′ 34″。岩石灰色,自形一半自形细粒花岗结构(图2c),似片麻状构造,发育绢云母化、碳酸盐化、绿泥石 化等。主要组成矿物有钾长石(45%~50%)、斜长石 (20%~25%)、石英(15%~20%)、黑云母(8%~10%)、 及少量金属矿物。粒径介于0.2~1.3 mm,个别达6 mm。钾长石主要为正长石,可见一组或两组完全 解理,轻微高岭土化;斜长石发生绢云母化,聚片双 晶、复合双晶发育;黑云母呈团粒状定向-半定向分 布,少数绿泥石化;石英为他形粒状,可见波状消 光,粒度均匀,个别达3 mm左右。副矿物主要为磁 铁矿,绿泥石、绿帘石、方解石等。

图2 八大关铜钼矿区主要花岗岩体的显微照片

a—花岗岩(样品B1305);b—花岗斑岩(样品B1313和样品B1314);c—黑云母花岗岩脉(样品B1315);d—钾长花岗岩(样品B1316); e—黑云母花岗岩(样品B1321);f—花岗斑岩(样品B1323);Bi—黑云母;Or—钾长石;PI—斜长石;Q—石英 Fig.2 Microstructure photographs of main granite rocks in the Badaguan Cu-Mo ore district a-Granite (sample B1305); b-Granite porphyry (sample B1313 and sample B1314); c-Biotite granite vein (sample B1315); d-Moyite (sample B1316); e-Biotite granite (sample B1321); f-Granite porphyry (sample B1323); Bi-Biotite; Or-Orthoclase; PI-Plagiocalse; Q-Quartz

中

样品 B1316,钾长花岗岩,采样坐标 N49°59′ 28″,E119°07′51″。岩石灰白色-浅青灰色,自形-半 自形不等粒花岗结构(图2-d),块状构造。主要矿 物组合为钾长石(55%~60%)、石英(25%~30%)、斜 长石(3%~5%)、少量磁铁矿<5%。粒径介于0.1~ 0.6 mm。其中钾长石主要为条纹长石,表面粗糙; 石英半自形-他形粒状,可见波状消光,发育多条粗 细不等的石英脉,脉宽0.5~1 mm。岩体中副矿物主 要为磁铁矿,呈浸染状分布;次为少量绿帘石。

样品 B1321,黑云母花岗岩,采样坐标 N49°59′ 27″,E119°06′45″。岩石灰白色,自形-半自形,块状 构造,花岗结构。主要组成矿物有钾长石(45%~ 50%)、斜长石(20%~25%)、石英(15%~20%)、黑云 母(3%~5%)及少量金属矿物。粒径介于 0.2~1.3 mm,个别达 5 mm。钾长石主要为正长石,可见一 组或两组完全解理;斜长石发生弱绢云母化,聚片 双晶、复合双晶发育;黑云母呈团簇状分布(图 2e),多已绿泥石化;石英为他形粒状,可见波状消光, 粒度均匀,个别达 5~6 mm。副矿物主要为磁铁矿, 绿泥石等。

样品 B1323,花岗斑岩,采样坐标 N49°59'01", E119°07'34"。岩石灰白色,块状构造,斑状结构,硅 化较强。斑晶有钾长石、斜长石和石英组成,粒径 0.5~1.2 mm;基质为长英质,含少量细小黑云母,显 微晶质,粒径<0.07 mm。主要组成矿物有钾长石 (40%~45%)、石英(25%~30%)、斜长石(15%~ 20%),黑云母和金属矿物<5%。钾长石斑晶发育蠕 虫结构、显微文象结构(图2-f);斜长石多绢云母 化,分布在基质中;黑云母呈细小鳞片状,多绿泥石 化;石英半自形-他形粒状,斑晶波状消光明显。副 矿物有磁铁矿、褐铁矿。发育多条硅化石英脉,相 互交叉,脉宽0.6~2 mm。

4 测试方法和分析结果

4.1 测试方法

锆石的前期处理工作由廊坊市科大岩石矿物 分选技术服务有限公司完成,采用常规粉碎和电磁 选方法进行分选,再在双目镜下用手工方法逐个挑 选锆石颗粒。锆石颗粒的阴极发光图像(CL)和锆 石制靶在北京锆年领航科技有限公司完成。根据 可见光图像尽量选择无或者少包裹体的部位,尽可 能避开裂纹部位;同时,根据阴极发光图像,尽量避 免斑点位置跨越不同世代的晶体区域。同时,这些 照片也为数据的解释提供一定的依据。U-Pb同位 素定年及锆石微量元素分析在中国地质科学院矿 产资源研究所重点实验室进行,具体实验原理和流 程见文献[8,9]。原始的测试数据经过ICPMSDataCal 软件离线处理完成^[10,11]。锆石谐和图用Isoplot程序 获得^[12]。

4.2 分析结果

质

八大关铜钼矿区各花岗岩体中锆石形态和阴极发光图像(CL)如图3所示。系统的镜下观察并结合CL图像,样品中的锆石均无色透明,呈短柱粒状或长柱状,粒径80~250µm^[13],自形程度较高,具有典型的岩浆锆石震荡环带,部分含有继承核,个别可见扇形分带结构。其震荡环带的宽度可能与锆石结晶时岩浆的温度有关,其温度影响微量元素扩散的快慢,高温下微量元素扩散快,易形成较宽的结晶环带;低温下微量元素的扩散慢,一般形成较窄的岩浆环带^[14,15]。八大关铜钼矿区6个岩体样品中的主群锆石几乎均具有这种较窄的结晶环带特征,暗示这些锆石可能形成于深部岩浆结晶过程的晚期或岩浆浅成侵位时期。

锆石中的Th、U含量及Th/U比值也可以用来判 别岩浆锆石、变质锆石和热液锆石^[16]。通常,岩浆锆 石的Th、U含量较高,Th/U比值较大(>0.4),而变质 锆石和热液锆石的Th、U含量较低,Th/U比值较小 (<0.1)^[14,15,17]。从表1可知,锆石的Th、U含量均较 高,平均值分别为521×10⁻⁶、339×10⁻⁶,其Th/U比集 中在0.4~3.9,平均1.5,个别达7.1,均落在岩浆锆石 的范围之内。综上所述,锆石的自形程度、CL图像、 Th/U比值均表明本文研究的锆石为与其花岗岩同 期结晶的岩浆锆石,其主群锆石的U-Pb年龄可代 表岩体侵位年龄。其测试数据和有效数据的年龄 见表1。

为能更准确地反映各花岗岩体的侵位时代,每 个样品均选取了20个测试点,剔除掉谐和度小于 90%的测试数据后,共获得99个有效数据,其中5个 显著较大的年龄数据(B1313-14、B1314-5、B1314-12、B1316-8、B1316-15),经过详细的CL图像分 析,解释其代表了继承锆石或捕获锆石的结晶年 龄;2个明显偏小的年龄数据(B1314-6、B1321-8),

图 3 八大关矿区六件岩体中锆石的阴极发光图 Fig.3 Cathodoluminescence images of zircons from six kinds of rocks in the Badaguan ore district

其可能是后期热事件引起锆石部分Pb丢失而造成 U-Pb年龄降低。因此,参与年龄计算的测试点共 92个,除B1314参与年龄计算的测试点为11个外, 其余5件样品参与年龄计算的有效测试点为15~17 个。6件花岗质岩石的锆石U-Pb谐和曲线及平均 年龄见图4。

5 讨 论

上述分析,即锆石的自形-半自形结构、典型的 岩浆震荡环带以及高的Th/U比,已充分说明各样品 中主群锆石的U-Pb年龄可以代表岩体的侵位时 代。可能是铅丢失的原因,个别谐和曲线落在一致 曲线附近。结合成矿斑岩的成岩年龄^[2],矿区各花 岗岩体的U-Pb年龄主要分布在243~229 Ma,主要 与印支期岩浆活动有关,而非前人认为的该矿床的 形成与海西期或燕山期岩浆活动有关^[18-20]。根据锆 石LA-MC-ICP-MS U-Pb年龄的分布情况,矿区印 支期岩浆活动主要集中在印支早期(243~237 Ma) 和印支晚期(231~229 Ma)2个阶段,其时间间隔为 6 Ma。印支早期岩浆活动主要形成矿体围岩,岩性 以花岗岩、花岗斑岩、钾长花岗岩为主;而印支晚期 岩浆活动主要形成成矿斑岩,并伴随强烈的铜钼矿 化,岩性为一套花岗闪长岩-花岗斑岩组合,2套岩 石组合与陆缘弧岩浆组合相似^[21,22]。八大关矿区岩 浆活动的特点暗示在额尔古纳地区可能存在类似 的岩浆活动。

额尔古纳地区以往很少有印支期侵入岩浆活动的报道,但随着近几年高精度测年方法的广泛应用,在该地区鉴别出了大量的印支期侵入岩。如本课题组测得八八一铜矿点花岗岩的锆石 LA-MC-ICP-MS U-Pb 年龄为(234.39±0.57) Ma。额仁陶勒盖银矿区细粒花岗岩的锆石 U-Pb 年龄为(243.9±1.6) Ma^[23]。Tang et al.在根河、莫尔道嘎及旧卡地区采集的9件中酸性侵入岩体的锆石 U-Pb 年龄集中

表1八大关矿区六件岩体的LA-MC-ICP-MS锆石U-Pb同位素测定数据

Table 1 U-Pb isotope composition of zircons of the six types of rocks in he Badaguan ore district

measured by LA-MC-ICP-MS

测占疤旦,	含量/10-6		- Th /II	同位素比值(±1σ)			年龄(±1σ)/Ma		
	Th	U	11/0	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	207 Pb/ 235 U	206 Pb/ 238 U
B1305 - 1	383	512	0.75	0.05139±0.00031	0.2723±0.0028	0.03844±0.00026	257±15	245±2	243±2
2	314	275	1.14	0.05180±0.00046	0.2739±0.0032	0.03834±0.00027	276±20	246±3	243±2
3	268	309	0.87	0.05195±0.00046	0.2776±0.0041	0.03865±0.00037	283±20	249±3	244±2
4	452	376	1.20	0.05227±0.00051	0.2780±0.0036	0.03850±0.00027	298±22	249±3	244±2
5	726	671	1.08	0.05215±0.00049	0.2783±0.0026	0.03868±0.00025	300±6	249±2	245±2
6	423	365	1.16	0.05109±0.00058	0.2728±0.0031	0.03871±0.00029	256±56	245±2	245±2
7	276	182	1.51	0.0528±0.0017	0.281±0.011	0.03853±0.00036	320±76	251±8	244±2
8	1108	1209	0.92	0.05234±0.00069	0.2788±0.0028	0.03864±0.00028	302±1	250±2	244±2
9	469	421	1.12	0.05114±0.00076	0.2713±0.0030	0.03847±0.00028	256±33	244±2	243±2
10	253	190	1.33	0.05231 ± 0.00090	0.2792±0.0037	0.03871 ± 0.00031	298±44	250±3	245±2
11	493	297	1.66	0.05142 ± 0.00080	0.2724±0.0034	0.03842 ± 0.00030	261±31	245±3	243±2
12	515	538	0.96	0.05127±0.00069	0.2739±0.0037	0.03867±0.00037	254±31	246±3	245±2
13	500	572	0.87	0.05138±0.00081	0.2732±0.0037	0.03853±0.00023	257±37	245±3	244±1
14	133	127	1.05	0.05108±0.00063	0.2711±0.0028	0.03850±0.00022	256±28	244±2	244±1
15	192	118	1.62	0.05136±0.00073	0.2812±0.0088	0.03886±0.00051	257±33	252±7	246±3
16	332	184	1.81	0.05309±0.00092	0.2838±0.0098	0.03862±0.00090	332±36	254±8	244±6
17	644	621	1.04	0.05377±0.00037	0.278±0.0018	0.03753±0.00012	272±23	249±4	245±3
B1313-1	467	219	2.13	0.05257±0.00085	0.2722±0.0046	0.03755±0.00022	361±15	249±1	238±1
2	105	110	0.95	0.05131±0.00038	0.2654±0.0024	0.03752±0.00022	309±37	244±4	238±1
3	1257	495	2.54	0.05094±0.00034	0.2630±0.0017	0.03745±0.00012	254±17	239±2	237±1
4	1587	468	3.39	0.05126±0.00048	0.2647±0.0022	0.03746±0.00011	239±10	237±1	237±1
5	500	279	1.79	0.05095±0.00053	0.2623±0.0025	0.037342±0.000093	254±20	238±2	237±1
6	942	335	2.81	0.0534±0.0011	0.2735±0.0055	0.037161±0.000082	239±24	236±2	236±1
7	1439	437	3.29	0.05255±0.00070	0.2717±0.0033	0.03752±0.00019	346±46	246±4	235±1
8	435	350	1.24	0.05125±0.00058	0.2663±0.0028	0.03771±0.00018	309±30	244±3	237±1
9	543	236	2.30	0.05332±0.00069	0.2763±0.0036	0.03759±0.00017	254±21	240±2	239±1
10	458	240	1.91	0.05110±0.00045	0.2638±0.0022	0.03746±0.00013	343±25	248±3	238±1
11	1757	446	3.94	0.05171±0.00042	0.2691±0.0020	0.03777±0.00012	256±16	238±2	237±1
12	421	371	1.13	0.05417±0.00075	0.3032±0.0042	0.04059±0.00024	272±23	242±2	239±1
13	215	248	0.87	0.0535±0.0012	0.2785±0.0068	0.03773±0.00048	389±31	269±3	256±2
14	324	120	2.70	0.05374 ± 0.00037	0.2783±0.0020	0.03757±0.00014	350±82	249±5	239±3
15	456	420	1.09	0.05218±0.00041	0.2697±0.0024	0.03749±0.00019	361±15	249±2	238±1
16	730	557	1.31	0.05161±0.00035	0.2676±0.0087	0.03760±0.00098	300±17	242±2	237±1
17	393	152	2.58	0.05190±0.00043	0.2691±0.0020	0.03763±0.00011	333±15	241±7	238±6
18	906	351	2.58	0.05377±0.00037	0.2780±0.0018	0.03753 ± 0.00012	280±19	242±2	238±1
B1314-1	617	275	2.24	0.05129 ± 0.00030	0.2701±0.0016	0.03822 ± 0.00011	254±47	243±1	242±1
2	512	394	1.30	0.0529±0.0020	0.2780±0.0120	0.03808±0.00024	324±87	249±10	241±1
3	640	240	2.66	0.0539±0.0012	0.2815±0.0070	0.03791±0.00031	365±47	252±6	240±2
4	1530	469	3.26	0.05126 ± 0.00081	0.2674±0.0038	0.03785±0.00020	254±35	241±3	240±1
5	330	223	1.48	0.0517±0.0010	0.2973±0.0062	0.04170±0.00015	272±42	264±5	263±1
6	2194	1194	1.84	0.05055 ± 0.00053	0.2427±0.0031	0.03481 ± 0.00014	220±31	221±3	221±1
7	3616	511	7.07	0.05103±0.00057	0.2671±0.0041	0.03798±0.00050	243±58	240±3	240±3
8	2131	1112	1.92	0.05350±0.00044	0.2810±0.0021	0.03810±0.00016	350±19	251±2	241±1
9	674	299	2.26	0.05204±0.00038	0.2725±0.0018	0.03801±0.00012	287±-16	245±1	240±1
10	582	219	2.65	0.05355±0.00041	0.2801 ± 0.0020	0.03796±0.00014	354±12	251±2	240±1
11	1345	720	1.90	0.05335±0.00034	0.3020±0.0019	0.04106±0.00011	343±19	268±1	259±1
12	550	326	1.70	0.05377±0.00073	0.2816±0.0040	0.03798±0.00026	361±30	252±3	240±2
13	374	203	1.85	0.05305±0.00054	0.2778±0.0036	0.03795±0.00025	332±22	249±3	240±2
14	245	158	1.55	0.0531±0.0032	0.278±0.019	0.03794±0.00080	345±144	249±15	240±5

									续表1
湖上山口	含量	/ 10 ^{- 6}	Th/U		同位素比值(1±	σ)	1	年龄 (1±σ)	/Ma
测点编号	Th	U	-	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	207 Pb/ 235 U	206 Pb/ 238 U
B1316-1	661	602	1.10	0.05393±0.00040	0.2852±0.0031	0.03839±0.00048	369±17	255±2	243±3
2	661	570	1.16	0.05102±0.00038	0.267±0.0017	0.03797±0.00012	243±12	240±1	240±1
3	159	164	0.97	0.05147±0.00039	0.2696 ± 0.0021	0.03799±0.00011	261±19	242±2	240±1
4	103	123	0.83	0.05102±0.00084	0.2689±0.0044	0.03824±0.00024	243±34	242±4	242±2
5	342	424	0.81	0.05377±0.00054	0.2823±0.0037	0.03806±0.00030	361±22	252±3	241±2
6	543	537	1.01	0.06684±0.00048	1.060±0.014	0.11504±0.00077	83 l±16	734±7	702±4
7	431	261	1.65	0.05123±0.00033	0.2678±0.0017	0.03792±0.00012	250±15	241±1	240±1
8	1016	749	1.36	0.05311±0.00020	0.27972±0.00089	0.038220±0.000091	345±9	250±1	242±1
9	444	488	0.91	0.05216±0.00029	0.2752±0.0022	0.03829±0.00028	300±13	247±2	242±2
10	558	333	1.67	0.05264±0.00022	0.2770±0.0012	0.03817±0.00010	322±9	248±1	242±1
11	818	765	1.07	0.05386±0.00050	0.28166±0.00053	0.03792±0.00033	365±22	252±0	240±2
12	730	879	0.83	0.05385±0.00021	0.2845±0.0014	0.03835±0.00018	365±3	254±1	243±1
13	1092	401	2.72	0.05372±0.00026	0.2822±0.0012	0.03813±0.00008	367±9	252±1	241±0
14	177	455	0.39	0.06836±0.00018	1.2610±0.0064	0.13383±0.00069	880±6	828±3	810±4
15	80	96	0.84	0.05335±0.00045	0.2803 ± 0.0022	0.03822±0.00023	343±19	251±2	242±1
16	529	252	2.10	0.05391±0.00056	0.2850±0.0026	0.03836±0.00029	369±24	255±2	243±2
17	757	433	1.75	0.05217±0.00024	0.2757±0.0015	0.03834±0.00017	300±9	247±1	243±1
18	513	296	1.74	0.05183±0.00028	0.2724 ± 0.0015	0.03816±0.00017	280±18	245±1	241±1
19	395	167	2.36	0.05103±0.00035	0.2669 ± 0.0019	0.03796±0.00017	243±12	240±2	240±1
B1321-1	114	142	0.80	0.05070±0.00066	0.2637 ± 0.0038	0.03772 ± 0.00026	228 ± 30	238±3	239±2
2	197	182	1.08	0.05224±0.00088	0.2725 ± 0.0050	0.03782±0.00026	295±44	245±4	239±2
- 3	149	181	0.83	0.0532±0.0015	0.2817 ± 0.0090	0.03837±0.00031	339±97	252±7	243±2
4	102	134	0.76	0.0523 ± 0.0013	0.2733 ± 0.0074	0.03791 ± 0.00034	298±57	245±6	240±2
5	1.56	184	0.85	0.05099±0.00038	0.2667 ± 0.0027	0.03793±0.00029	239±12	240±2	240±2
- 6	205	240	0.85	0.05110+0.00027	0.2665+0.0021	0.03782+0.00025	256+13	240+2	239+2
7	206	234	0.88	0.0517 ± 0.0016	0.2737 ± 0.0082	0.03842 ± 0.00027	333 ± 70	246±7	243±2
8	565	729	0.78	0.05220±0.00021	0.2516 ± 0.0018	0.03495±0.00022	295±9	228±1	221±1
9	266	296	0.90	0.05161 ± 0.00027	0.2696 ± 0.0021	0.03789±0.00025	333±11	242±2	240±2
10	191	228	0.84	0.05200±0.00025	0.2718 ± 0.0021	0.03792 ± 0.00026	287±9	244±2	240±2
11	2.37	2.82	0.84	0.05147 ± 0.00024	0.2680 ± 0.0022	0.03777 ± 0.00029	261±11	241±2	239±2
12	187	249	0.75	0.05118 ± 0.00026	0.2674 ± 0.0022	0.03790 ± 0.00027	250 ± 11	241±2	240 ± 2
13	184	196	0.93	0.05386 ± 0.00064	0.283 ± 0.0042	0.03814 ± 0.00037	365±26	253 ± 3	241±2
14	240	238	1.01	0.05307 ± 0.00033	0.2785 ± 0.0022	0.03806 ± 0.00022	332 ± 15	249±2	241±1
15	206	2.50	0.82	0.05250 ± 0.00039	0.2765 ± 0.0026	0.03818 ± 0.00023	306 ± 12	248 ± 2	242 ± 1
16	211	233	0.90	0.05100±0.00023	0.2662 ± 0.0017	0 03787±0 00021	243±9	240 ± 1	240 ± 1
B1323-1	112	122	0.92	0.0530 ± 0.0016	0.2668 ± 0.0082	0.03652 ± 0.00025	328±67	240 ± 7	231 ± 2
2	264	290	0.91	0.05299±0.00033	0.2673 ± 0.0016	0.03662 ± 0.00014	328±10	241±1	232±1
3	135	130	1.04	0.0514±0.0020	0.2579 ± 0.0095	0.03643±0.00022	257±87	233±8	231±1
4	243	190	1.28	0.05338±0.00069	0.2687±0.0035	0.03654±0.00015	346±28	242±3	231±1
5	265	188	1.41	0.05327±0.00087	0.2687±0.0045	0.03660±0.00013	339±37	242±4	232±1
6	267	225	1.19	0.05294±0.00048	0.2655 ± 0.0022	0.03645±0.00013	328±20	239±2	231±1
7	146	165	0.88	0.05184±0.00075	0.2600 ± 0.0031	0.03655±0.00031	280±33	235±2	231±2
8	111	132	0.84	0.0538±0.0014	0.2725±0.0070	0.03678±0.00021	361±59	245±6	233±1
9	271	242	1.12	0.05302±0.00058	0.2654±0.0029	0.03634±0.00014	328±24	239±2	230±1
10	244	232	1.05	0.0532±0.0015	0.2652±0.0069	0.03619±0.00024	345±63	239±6	229±1
11	154	138	1.12	0.05167±0.00071	0.2629±0.0036	0.03692±0.00017	333±31	237±3	234±1
12	188	171	1.10	0.05377±0.00062	0.2721±0.0031	0.03674±0.00016	361±21	244±2	233±1
13	144	132	1.09	0.05235±0.00069	0.2643±0.0034	0.03666±0.00020	302±1	238±3	232±1
14	126	125	1.00	0.0525±0.0011	0.2651±0.0055	0.03677±0.00018	306±48	239±4	233±1
15	115	100	1.15	0.0512±0.0022	0.2606±0.0114	0.03670±0.00020	250±98	235±9	232±1
16	140	126	1.11	0.05205±0.00079	0.2618±0.0040	0.03655±0.00022	287±33	236±3	231±1

图4 八大关矿区6件岩石锆石U-Pb谐和图 Fig.4 Zircon U-Pb concordia diagrams for the six kinds of rocks in the Badaguan ore district

在(241~247) Ma^[24]。佘宏全等测得莫尔道嘎北部片麻状花岗岩的锆石U-Pb年龄为(243.9±4.2) Ma^[25]。塔源二长花岗岩、满归西正长花岗岩、管护站长英质脉,库田坎石英闪长岩的锆石LA-ICP-MSU-Pb年龄分别是(220±3) Ma、(220±3) Ma、(249±4) Ma、(244±4) Ma^[26]。额尔古纳地块上察哈彦岩体斑状黑云母正长花岗岩的锆石U-Pb年龄为(236±1) Ma^[27]。这些侵入岩曾依据K-Ar定年和地层接触关系而被误认为是侏罗纪、或白垩纪、或奥陶纪等。

从目前已准确厘定的锆石 U-Pb 年龄来看,额 尔古纳地区的侵入岩也主要集中分布在印支早期 (249~234 Ma)和印支晚期(231~220 Ma)2个阶段, 与前人^[24,28]曾对中蒙一额尔古纳地块印支期岩浆活 动所划分的阶段基本吻合,说明额尔古纳地区印支 期普遍存在2幕比较集中的岩浆活动。此外,Li et al.还收集了大量鄂霍次克造山带北缘印支期侵入 岩的锆石 U-Pb数据,显示其岩浆活动也主要集中 分布在印支早期(247~240 Ma)和印支晚期(230~ 219 Ma)2个阶段^[28],与额尔古纳地块上的岩浆活动 特点大体一致。同时,大量已发表的侵入岩的地球 化学和同位素数据指示其两侧的印支期岩浆活动 主要与鄂霍次克洋的双向俯冲有关^[24,26,28]。

研究表明,斑岩型矿床的形成与大洋板块俯冲 相关的岩浆作用有着密切的成因联系^[29,30]。鄂霍次 克造山带两侧发育两幕与鄂霍次克洋俯冲有关的 岩浆活动,说明在其两侧具有寻找特大型-大型斑 岩型矿床的巨大潜力。然而,目前在额尔古纳地区 发现的斑岩型矿床不论其规模还是数量均不太乐 观,主要为八大关中型铜钼矿床((226.7±2.4) Ma^[1]) 以及八八一铜矿点。对比鄂霍次克造山带北缘的 额尔登特特大型铜钼矿床((240±3) Ma)^[31]和阿林诺 尔钼矿((229.0±2.2) Ma)^[32],一方面暗示八大关矿区 外围存在寻找印支早期斑岩矿床的可能性,另一方 面说明额尔古纳地区在进一步的找矿过程中,应注 意这2幕岩浆活动所形成的侵入岩,可能会提供一 些找矿信息。

6 结 论

(1)本文首次查清了八大关矿区主要侵入岩的 形成时代,结合已准确厘定的成矿斑岩的成岩年 龄,其锆石U-Pb年龄集中在243.87~229 Ma,主要 与印支期岩浆活动密切相关。

(2)根据矿区侵入岩的年龄分布情况,本文将 矿区岩浆活动分为印支早期(243.87~237.11 Ma)和 印支晚期(231.63~229.0 Ma),与鄂霍次克造山带两 侧印支期的岩浆活动特点基本一致;两侧已查明斑 岩矿床与这两幕岩浆活动的密切关系,对八大关矿 区外围斑岩矿床的勘查有一定的指导意义。

致谢:审稿专家及编辑部杨艳博士对论文提出 了宝贵修改意见,在此一并致以诚挚的谢意!

参考文献(Reference):

- [1] 李春风,柳振江,宓奎峰,等.内蒙古八大关斑岩型铜钼矿床形成时代与成因分析[J].中国地质,2014,41(4):1253-1269.
 Li Chunfeng, Liu Zhenjiang, Mi Kuifeng, et al. The age and genesis of the Badaguan porphyry copper-molybdenum deposit in Inner Mongolia[J]. Geology in China, 2014, 41(4): 1253-1269(in Chinese with English abstract).
- [2] 陈志广. 中国东北德尔布干成矿带中生代构造-岩浆成矿作用及 其地球动力学背景[D]. 中国科学院, 2010:91-109.
 Chen Zhiguang. Mesozoic Tectonic- Magmatic Mineralization of Derbugan Metallogenic Belt in NE China, and Its Geodynamic Setting[D]. China Academy of Science, 2010: 91- 109(in Chinese with English abstract).
- [3] 侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征,岩浆 热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817. Hou Zengqian, Yang Zhiming. Porphyry deposits on continental settings of China: Geological characteristics, magmatichydrothermal system, and metallogenic model[J]. Acta Geological Sinica, 2009, 83(12): 1779-1817(in Chinese with English abstract).
- [4] Kerrich R, Goldfarb R, Groves D, et al. The geodynamics of worldclass gold deposits: Charateristics, space- time distribution, and origins[J]. Reviews in Econnomic Geology, 2000, 13: 501-551.
- [5] Camus F, Silltioe R H, Petersen R. Andean copper deposits: New discoveries, mineralization style and metallogeny[J]. Society of Economic Geologists Special Publication, 1996, 5: 1–198.
- [6] 黑龙江省有色金属地质勘查706队.内蒙古自治区陈巴尔虎旗八 大关矿区铜钼矿资源储量核实报告[R]. 2005: 1-10. Non- Ferrous Metals Geological Exploration Team 706 from Heilongjiang Province. Resources Reserves Verification Report of Badaguan Cu- Mo Mine Area, Old Barag Banner, in Inner Mongolia[R]. 2005: 1-10 (in Chinese).
- [7] 佘宏全,李红红,李进文,等.内蒙古大兴安岭中北段铜铅锌金银 多金属矿床成矿规律与找矿方向[J].地质学报,2009,83(10): 1456-1472.

She Hongquan, Li Honghong, Li Jinwen, et al. The metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the northern-central

Daxing'anling Mountain, Inner Monglia[J]. Acta Geologica Sinica, 2009, 83(10): 1456–1472(in Chinese with English abstract).

- [8] Cocherie A, Robert M. Laser ablation coupled with ICP- MS applied to U- Pb iron geochronology: A review of recent advances[J]. Gondwana Research, 2008, 14: 597–608.
- [9] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS 锆石微区原位U-Pb 定年技术[J]. 矿床地质, 2009, 28(4):481-492.
 Hou Kejun, Li Yanhe, Tian Yourong. In situ U-Pb zircon dating using laser ablation- multi ion counting- ICP- MS[J]. Mineral Deposits, 2009, 28(4): 481-492 (in Chinese with English abstract).
- [10] Liu Y S, Gao S, Hu Z, et al. Continental and oceanic crust recycling– induced melt– peridotite interactions in the Trans– North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51 (1/2):537–571.
- [11] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP– MS[J]. Chinese Science Bulletin, 2010, 55(15):1535–1546.
- [12] Ludwig K R. User's manual for Isoplot/Ex, version 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1–70.
- [13] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27–62.
- [14] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geoscience[M]. Springer-Verlag Berlin Heidelberg, Germany, 2000, 373–400.
- [15] 吴元保,郑永飞. 锆石成因矿物学研究及其U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589-1604.
 Wu Yuanbao, Zhen Yongfei. Zircon genetic mineralogy research and constrains for interpretation of U-Pb ages[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604(in Chinese).
- [16] Belousova E, Griffin W L, O'reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602– 622.
- [17] Möller A, O' Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh- temperature granulites of Rogaland (SW Norway) [J]. EMU Notes in Mineralogy, 2003, 5: 65-82.
- [18] 聂凤军, 江思宏, 张义, 等. 中蒙边界及邻区斑岩型铜矿床地质特征及成因[J]. 矿床地质, 2004, 23(2): 176-189.
 Nie Fengjun, Jiang Sihong, Zhang Yi, et al. Geological features and origin of porphyry copper deposits in China-Mongolia border region and its neighboring areas[J]. Mineral Deposits, 2004, 23 (2): 176-189(in Chinese with English abstract).
- [19] 徐贵忠, 边千韬, 王艺芬. 额尔古纳造山带构造演化与成矿作

用[J]. 地质学报, 1998, 33(1): 84-92.

质

Xu Guizhong, Bian Qiantao, Wang Yifen. Tectonic evolution and metallization of the Erguna orogenic belt[J]. Scientia Geologica Sinica, 1998, 33(1):84–92(in Chinese with English abstract).

- [20] 赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社,1997:1-318.
 Zhao Yiming, Zhang Dequan. Metallogenic Regularity and Prospect Evaluation of Copper Polymetallic Deposites, in Daxinganling Mountains and Its Neighboring Areas[M]. Beijing: Seismological, 1997: 1-318(in Chinese).
- [21] 裴荣富, 梅燕雄, 瞿泓滢, 等. 矿床类型模型的地质构造背景、成 矿环境和容矿岩石组合[J]. 中国地质, 2013, 40(1): 31-42.
 Pei Rongfu, Mei Yanxiong, Qu Hongying, et al. Geological tectonic settings, depositional environments and ore-hosting rock assemblages for mineral deposits model with universality[J]. Geology in China, 2013, 40(1): 31-42(in Chinese with English abstract).
- [22] Singer D A, Berger V I, Menzie W D, et al. Porphyry copper deposit density[J]. Economic Geology, 2005, 100(3): 491–514.

[23] 田京,李进文,向安平,等.内蒙古额仁陶勒盖银矿区侵入岩LA-ICP-MS锆石U-Pb定年及其地球化学特征[J].中国地质,2014,41(4):1092-1107.
Tian Jing, Li Jinwen, Xiang Anping, et al. Zircon LA-ICP-MS U- Pb dating for intrusions and geochemical features in erentaolegai silver deposit in Inner Mongolia Province, China[J]. Geology in China, 2014, 41(4): 1092-1107(in Chinese with English abstract).

- [24] Tang J, Xu W L, Wang F, et al. Geochronology and geochemistry of Early– Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol–Okhotsk Ocean[J]. Lithos, 2014, 184–187: 1–16.
- [25] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石 U-Pb测 年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2):571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 2012, 28(2): 571-594(in Chinese with English abstract).
- [26] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in north- eastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1–30.
- [27] 隋振民, 葛文春, 吴福元, 等. 大兴安岭北部察哈彦岩体Hf同位 素特征及其地质意义[J]. 吉林大学学报:地球科学版, 2009, 39 (5): 849-856.

Sui Zhenmin, Ge Wenchun, Wu Fuyuan, et al. Hf isotopic characteristics and geological significance of the Chahayan pluton in northern Daxing'anling mountains[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(5): 849– 856(in Chinese with English abstract).

[28] Li S, Wang T, Wilde S A, et al. Evolution, source and tectonic

significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment) [J]. Acta Geoscientica Sinica, 2013, 126: 206–234.

- [29] Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801–818.
- [30] Richards J P. Tectono- magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515–1533.
- [31] 江思宏, 聂凤军, 苏永江, 等. 蒙古国额尔登特特大型铜钼矿床 年代学与成因研究[J]. 地球学报, 2010, 31(3): 289-306.

Jiang Sihong, Nie Fengjun, Su Yongjiang, et al. Geochronology and origin of the Erdenet superlarge Cu– Mo deposit in Mongolia[J]. Acta Geoscientica Sinica, 2010, 31(3): 289–306(in Chinese with English abstract).

[32] 刘翼飞, 聂凤军, 江思宏, 等. 蒙古国阿林诺尔钼矿床赋矿花岗 岩年代学及地球化学特征[J]. 地球学报, 2010, 31(3): 350-356. Liu Yifei, Nie Fengjun, Jiang Sihong, et al. The Geochronology and geochemical features of ore-hosting granite in the Arynnuur molybdenum deposit, Mongolia[J]. Acta Geoscientica Sinica, 2010, 31(3): 350-356(in Chinese with English abstract).

Indo-Chinese magmatic activity in the Badaguan ore district of Inner Mongolia and its metallogenic implications

KANG Yong-jian¹, SHE Hong-quan¹, XIANG An-ping¹, TIAN Jing^{1,2}, LI Jin-wen¹, YANG Yun-cheng¹, GUO Zhi-jun¹, DONG Xu-zhou²

(1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. School of Earth Science and Resource, China University of Geosciences, Beijing 100083, China)

Abstract: Systematical sampling of major granite rocks in the Badaguan ore district was conducted in this paper. Microscopic identification results reveal that the primary rocks include granite, biotite granite, granitic porphyry, moyite, and granodiorite porphyry, whereas LA–MC–ICP–MS zircon U–Pb ages of the six samples vary in the range of 243.87–231.63 Ma. Combined with emplacement ages of the metallogenic porphyry, it is inferred that all intrusive rocks were developed in the Indo–Chinese period, without existence of Hercynian or Yanshanian intrusions. According to the distribution of the ages, Indosinian magmatic activities were mainly concentrated in 243.87–237.11 Ma and 231.63–229.00 Ma, and surrounding rocks formed at the early stage of magmatic activity. Copper and molybdenum mineralization principally occurred at the late stage of magmatic activity. In addition, Indo–Chinese magmation on both sides of Okhotsk orogenic belt also have the similar two–stage characteristics, which was closely related to subduction of the Okhotsk Ocean. Based on summarizing the situation on both sides of the identified porphyry deposit, the authors consider that there exists possibility in the search for porphyry deposits of the early Indosinian period in the periphery of the Badaguan ore district or/and Ergun area.

Key words: zircon U-Pb dating; magmatic activity; Indo-Chinese epoch; Badaguan

About the first author: KANG Yong-jian, male, born in 1989, master candidate, majors in mineralogy, petrology and deposit geology; E-mail: YJ Kang2012@126.com.

About the corresponding author: SHE Hong-quan, male, born in 1965, senior researcher, supervisor of doctor candidates, mainly engages in the study of mineral deposits; E-mail: shehongquan@sina.com.