第 41 卷第 6 期	中 国 地 质	Vol.41, No.6
2014年12月	GEOLOGY IN CHINA	Dec., 2014

费详惠,张招崇,韩鎏.山东张家洼砂卡岩型铁矿矿物学特征及其对成矿环境的指示意义[J]. 中国地质, 2014, 41(6): 1873-1896. Fei Xianghui, Zhang Zhaochong, Han Liu. Mineralogy of the Zhangjiawa skarn iron deposit in Shandong Province and its implications for metallogenic environment[J]. Geology in China, 2014, 41(6): 1873-1896(in Chinese with English abstract).

山东张家洼矽卡岩型铁矿矿物学特征 及其对成矿环境的指示意义

费详惠 张招崇 韩 鎏 1.2

(1.中国地质大学(北京)地球科学与资源学院,北京 100083;2.山东省地矿工程勘察院,山东济南 250014)

提要:张家洼砂卡岩型铁矿位于华北克拉通东南部,赋存在石炭系本溪组与奥陶系马家沟组之间的假整合面处及闪 长岩体与奥陶系马家沟组大理岩的接触带附近,富铁矿石资源量已达大型规模。研究发现砂卡岩矿物种类在内外 接触带分布有一定区别,内带为石榴石等钙质砂卡岩矿物,而外带为阳起石、金云母等镁质砂卡岩矿物,整体构成钙 镁质砂卡岩。对砂卡岩矿物系统的研究表明,透辉石及石榴石发育有环带,其氧化物含量随矿物环带的形成比例不 断变化,暗示酸碱度及氧逸度随着成矿流体的演化而发生相应的变化,即由早期砂卡岩阶段的相对还原的酸性环境 演化为退化蚀变阶段相对氧化的碱性环境从而导致铁质逐渐萃取多次富集、沉淀,后期随着磁铁矿的沉淀又逐渐在 硫化物阶段转化为还原环境生成金属硫化物。

关 键 词: 砂卡岩; 矿物学; 环带结构; 形成顺序; 物理化学环境 中图分类号: P618.31 **文献标志码:** A **文章编号**: 1000-3657(2014)06-1873-24

1 引 言

砂卡岩矿床在全球广泛分布^[1-3],而砂卡岩型铁 矿则是中国富铁矿的主要来源,占整个富铁矿石的 50%以上^[4-7]。然而,前人研究表明,砂卡岩富铁矿 的成因较为复杂,其不仅受到岩体深度、岩体与围 岩的接触带构造、围岩、流体成分特征的影响,还与 岩体是否经历多期次侵入而保持稳定热源有关,更 与围岩的物理化学环境的变化紧密相关^[5]。前人的 研究发现^[5],虽然不同类型的铁矿其蚀变类型和蚀 变分带及矿化的空间具有一定差别,但是其矿化过 程存在着相似性:即钠长石化-干砂卡岩化-退化蚀 变作用-硫化物阶段-石英碳酸盐化。其中,铁矿主 要形成于退化蚀变作用,相似的蚀变矿化过程往往 反映了其物理化学环境的相似性,说明富铁矿的形 成可能受到物理化学环境的影响,那么形成富铁矿 过程中物理化学条件是如何发生变化的?这些问 题的解决对于阐明富铁矿的形成机制将起到极为 关键的作用。

位于鲁西矿集区中的莱芜张家洼铁矿床,是一 个典型的"邯邢式"砂卡岩型铁矿,也是一个大型富 铁矿。尽管前人仅对其地质特征、地质构造、矿床 类型、赋矿位置、蚀变矿物标型特征等基本特征上 进行了一定的研究^[8-14],但是缺乏与铁矿密切相关

通讯作者:张招崇,男,1965年生,教授,博士生导师,主要从事火成岩岩石学以及相关金属矿床的教学和研究;

收稿日期:2014-11-10;改回日期:2014-11-20

基金项目:国家重点基础研究发展计划("973"计划)项目(2012CB416806)。

作者简介:费详惠,女,1992年生,硕士生,岩石学、矿物学、矿床学专业;E-mail:fay_feixianghui@163.com。

E-mail: zczhang@ cugb.edu. cn₀

质

中

的砂卡岩的矿物学研究。众所周知,砂卡岩矿物记录了成矿流体的演化过程及其物理化学条件,所以通过对砂卡岩矿物的详细研究可以反演成矿流体的演化过程,而为铁的富集机理提供一定的约束。鉴于此,本文拟在野外地质研究的基础上,结合岩相学和矿相学的观察,通过对矿区内砂卡岩矿物的电子探针数据分析,阐明砂卡岩的性质及其形成机制,进而探讨其形成环境,为富铁矿的形成提供一些信息。

2 区域地质背景

山东省位于华北克拉通东南部,属于中生代环太 平洋金属成矿带的一部分^[15]。作为中生代岩浆活动 和流体运移主要通道的郯庐断裂,将山东分成了鲁东 和鲁西两个地块^[15,16](图1)。鲁西地块地处郯庐断裂 带(沂沭断裂带)以西,东南与苏鲁一大别超高压碰撞 带相邻。其结晶基底为新太古代泰山群和古元古代 花岗岩类。其中泰山群主要由斜长角闪岩、黑云母麻 粒岩和TTG岩类组成^[17]。上覆盖层为古生代、中生代 和新生代的碳酸盐岩、碎屑岩以及火山岩。古生界主 要由陆表海相古生代寒武系一中下奥陶统碳酸盐岩 夹碎屑岩、中石炭统一二叠系海相地层和陆相含煤碎 屑岩建造;中生界发育侏罗系一白垩系,为一套陆相碎屑岩建造,缺失三叠系;新生界主要为陆源碎屑沉积夹火山岩为主^[18,19]。鲁西地区断裂构造非常发育,特别是受到郯庐断裂的影响,断裂构造格局非常醒目,主要呈NW向延伸。基底泰山群变质岩系形成了一系列轴向呈NWW或NW向为主的复背斜和复向斜构造^[20]。古生界及中新生界的褶皱构造很不发育,且形态简单,多为平缓的单斜或宽缓开阔的向斜与背斜构造^[21]。研究区作为中国太平洋中生代构造-岩浆岩带的重要组成部分,中生代侵入岩广泛发育,其中,莱芜杂岩体、金岭岩体及济南杂岩体等为其代表性岩体(图1),在此阶段生成了大量具有经济价值的矿产^[12-25]。

3 矿床地质特征

张家洼铁矿位于莱芜矿集区中部,矿区内主要 出露地层为泰山群变质岩(斜长角闪岩、黑云母麻 粒岩和TTG岩类组成),寒武系灰岩和页岩,奥陶系 灰岩、白云岩,石炭系页岩、砂岩及含煤层,二叠系砂 岩、页岩,侏罗系页岩、砂岩,白垩系安山岩、凝灰质砂 砾岩以及新生代的河湖相砂砾岩等。各个地层之间 呈假整合接触(图2-a)。其中,奥陶系马家沟组为重

要成矿围岩,从下至上依次为五阳山段灰色厚层灰岩、夹薄层泥质灰岩、白云质灰岩、豹皮状灰岩,厚约280m;阁庄段泥质灰岩、白云质灰岩,厚约100m;八陡段豹皮状灰岩、灰岩、白云质灰岩,厚90~130m^[11]。由于晚奥陶世中期加里东运动使鲁西地区上升为陆,该区长期处于风化剥蚀状态,因此缺失上奥陶统、泥盆系、志留系及下石炭统。区内构造以NWW-NW向为主,断裂构造平面上可见其呈放射状或同心环状的展布特征,也出现有小规模褶皱^[27]。

区内有4处岩体,分别为金牛山岩体、矿山岩

体、角峪岩体和铁铜沟岩体(图2)。岩体周围与围 岩接触带附近产有铁矿,两者关系密切^[29],围绕这些 岩体形成的矿床依次为金牛山矿田、矿山矿田、角 峪矿田和铁铜沟矿田。

与张家洼铁矿相关的侵入岩为矿山岩体,其出 露面积约为9km²,为一岩盖。岩体中部为黑云母辉 石闪长岩、黑云母闪长岩和辉石闪长岩,向外渐变 为闪长岩、似斑状闪长岩、含石英闪长岩和正长闪 长岩等。矿山岩体侵入到中奥陶统马家沟组灰岩、 白云质灰岩、中石炭统本溪组页岩和下石炭统太原

图2张家洼矿床地质略图(据文献[8,10,12]修改) 1一侏罗系;2一石炭一二叠系;3一中奥陶统马家沟组;4—寒武系;5一泰山岩群;6一闪长岩体;7一张家洼矿床及研究区位置; 8一岩相边界;9一断裂

Fig. 2 Geological sketch map of the Zhagnjiawa deposit (modified after references [8, 10, 12])

1–Jurassic; 2–Carboniferous; 3–Middle Ordovician Majiagou Formation; 4–Cambrian; 5–Taishan Group Complex; 6—Diorite pluton; 7–Zhangjiawa deposit and its position; 8–Lithofacies boundary; 9–Fault

质

组砂、页岩等岩层中(图2-b)。前人利用U-Pb锆 石方法测定其中闪长岩的年龄为(131±3)Ma^[14]。莱 芜矿集区中,矿山矿田为规模最大,包含有张家洼 矿床、西尚庄矿床、顾家台矿床、马庄矿床和山子后 矿床等大型和大中型矿床,总资源储量为4.7亿t,共 占矿集区总资源储量的98.61%^[12]。

张家洼铁矿为一大型铁矿,资源储量共约2.9 亿t,平均品位约为46.87%,产于矿山闪长岩体与中 奥陶统马家沟组灰岩的接触带及其附近(图2),赋 矿地层为马家沟组八陡石灰岩段,矿床整体呈 NE 向展布,与矿区地层、主构造线方向一致。由于后 期断裂作用,矿床被分割成3个矿体,分别为张家洼 I、II和III矿体^[12,14]。

张家洼I矿体:为单式褶皱背斜型矿床,分布在 矿山岩体东侧,矿体沿走向全长1000m,沿倾向最 宽处为220m,埋深在400~670m。其形态复杂,呈 似层状、透镜状和不规则状等。矿体两端向外倾, 倾角10°~20°,较缓。其中张家洼I矿床矿石TFe品 位约为47.43%。由于后期风化剥蚀,矿体形态和连 续性遭受严重破坏。

张家洼II矿体:为复式褶皱背斜型矿床,分布于 矿山岩体的西侧,有多层矿体,呈似层状及透镜状, 矿体沿走向长1600m,沿倾向最宽处约为550m, 埋深166~475m。矿石TFe品位约为46.42%。

张家洼III矿体:为单式褶皱背斜型矿床,分布 在矿山岩体北部背斜倾没端,成小似层状矿体,沿 走向全长1000m,但矿体不连续,沿倾向最宽约 300m,埋深569~782m。矿体两端向外倾,倾角20° ~40°。矿石TFe品位约为45.43%。

张家洼铁矿矿石矿物主要为磁铁矿,其次为赤铁 矿,少量褐铁矿、黄铁矿以及黄铜矿等(图3),矿石结 构主要有:边缘状结构(图3-a)、自形晶粒状结构或 他形粒状结构(图3-b)、假象结构、交代残留结构(图 3-c)、网格结构、压碎结构。矿石构造主要为致密块 状(图3-d、e)、浸染状(图3-f)及松散状构造。

脉石矿物主要为透辉石-钙铁辉石、钙铁榴石-钙铝榴石、阳起石、浅闪石、绿帘石、金云母、蛇纹 石、方解石、绿泥石、透辉石以及少量的石英和绢云 母等(图4)。

矿区经历的围岩蚀变有碱质交代作用、接触变 质作用以及砂卡岩化作用。 碱质交代作用:发育在闪长岩体的边缘,主要 表现为闪长岩中的斜长石、暗色矿物的钠长石化, 角闪石的透辉石化等,碱质交代作用使岩石中的 Na₂O含量相对增高,岩石变为偏碱性,在矿区分布 较为普遍(图4-a)。

热变质作用:由于受到岩体的高温作用,围岩 中奥陶系灰岩变为多种大理岩、石炭系页岩变为各 种板岩或角岩(图4-b)。

砂卡岩化作用:主要砂卡岩有石榴石砂卡岩、 透辉石砂卡岩,石榴石透辉石砂卡岩、绿帘石透辉 石砂卡岩等,蚀变带主要发育在闪长岩与奥陶系灰 岩的接触带上,也有沿层间破碎带顺层发育。与矿 体有非常密切的空间关系,为找矿的重要标志(图 4),后期为蛇纹石化、绿泥石化、碳酸盐化等。

4 矽卡岩矿物期次划分

根据矿物交代关系和矿物共生组合特点,可划 分为干砂卡岩阶段、退化蚀变阶段、硫化物期及表 生阶段4个阶段(表1)。

4.1 矽卡岩阶段

此阶段主要生成石榴石和透辉石为主的无水 硅酸盐矿物,部分被后期生成的矿物所穿插和交 代。石榴石基本产生于内蚀变带(图4-c~e),粒径 在0.3~0.6 mm,存在被磁铁矿交代形成的假象(图 3-a)。根据共生关系和石榴石形态特征,将其分为 两期:第一期呈自形—半自形粒状集合体,多为均 质体,环带不发育,颗粒间可见被绿帘石交代现象 (图4-c);第二期为自形—半自形多连晶集合体,环 带明显(图4-d、e),表现为颜色深浅变化交替出 现,常与透辉石共生(图4-d),在环带边缘可见被绿 帘石交代现象(图4-e),还保留有假象。

辉石主要集中在1.2~1.8 mm,野外观察中在内 外蚀变带均有分布,是最发育的矽卡岩矿物。常呈 集合体形式出现,分布普遍但不均匀,常被绿帘石 交代。透辉石也有环带现象。

4.2 退化蚀变阶段

此阶段主要形成含水硅酸盐矿物,如金云母、 绿帘石、角闪石、蛇纹石等,交代干砂卡岩阶段形成 的石榴石及透辉石,并生成磁铁矿。其中,角闪石 可见双晶现象(图4-h),常被绿泥石交代(图4-i); 金云母与磁铁矿共生(图4-g);绿帘石主要出现在

图3矿石显微镜、手标本及岩心照片(a,b为反光镜)

a—边缘形成赤铁矿交代磁铁矿;b—自形黄铁矿与自形磁铁矿共生;c—黄铁矿、黄铜矿、赤铁矿交代磁铁矿;d—块状矿石岩心,其中有晚期的 细小的方解石脉穿插;e—块状矿石;f—浸染状矿石;Hem—赤铁矿;Py—黄铁矿; Mt—磁铁矿; Ccp—黄铜矿 Fig. 3 Photomicrographs of ores, hand samples and drilling cores of the Zhangjiawa orefield a-Hematite replacing magnetite; b-Euhedral pyrite and magnetite; c-Pyrite chalcopyrite and hematite replacing magnetite; d-Massive ore penetrated by late-stage fine calcite veins; e-Massive ore; f-Disseminated ore; Hem-Hematite; Py-Pyrite; Mt-Magnetite; Ccp-Chalcopyrite

图4张家洼铁矿蚀变作用和典型矽卡岩矿物及其相关关系

a—暗色矿物钠长石化,正交偏光;b—围岩大理岩化;c—第一阶段形成石榴石,无环带,被绿帘石交代,并在内部形成裂隙,正交偏光; d—第二阶段石榴石环带,透辉石与石榴石交错共生,正交偏光;e—第二阶段石榴石环带,被后期形成绿帘石交代,单偏光;f—粒状透辉石,正 交偏光;g—金云母与磁铁矿共生,正交偏光;h—角闪石双晶,正交偏光;i—角闪石被绿泥石所交代,单偏光;j—交代蚀变形成的叶片状蛇纹石 集合体,正交偏光;k—具有异常干涉色的绿帘石,正交偏光;l—方解石双晶,正交偏光;

a-Albite replacing mafic minerals (crossed nicols); b-Marbleization of carbonate rock; c-the first stage of garnet with no zonation replaced by epidote (crossed nicols); d—the second stage of garnet with zonation associated with diopside (crossed nicols); e-the second stage of garnet with zonation replaced by epidote (plainlight); f-Granular diopside (crossed nicols); g-Phlogopite with III interference colors associated with magnetite (crossed nicols); h-Twin crystal of amphibole (plainlight); i-Chlorite replacing amphibole; j-Interference colors of serpentine (crossed nicols); k-Anomalous interference color of epidote (crossed nicols); l-Twin crystal of calcite;

Ab-Albite; Am-Amphibole; Chl-Chlorite; Cpx-Clinopyroxene; Ep-Epidote; Grt—Garnet; Mt-Magnetite; Phl-Phlogopite; Px-Proxene; Sep-Serpentine

内接触带中(图4-k),镜下可见绿帘石交代石榴石 现象(图4-c、e);蚀变带还发现有少量蛇纹石(图 4-j),交代完全,已辨别不出原生矿物。

磁铁矿于开始少量生成,粒径在0.04~1 mm,广 泛分布于矽卡岩中。在磁铁矿颗粒边缘或颗粒之 间,存在次生氧化形成的赤铁矿自颗粒边缘向中心 交代磁铁矿及黄铁矿、黄铜矿交代磁铁矿现象,并 与绿帘石、金云母等共生;在退化蚀变作用后期,磁 铁矿大量富集沉淀,此时形成的磁铁矿多呈半自形 晶粒状(图3-b)最终导致含量逐渐降低,此时形成 的磁铁矿多富集形成磁铁矿矿石(图3-b),呈自形 一半自形,保存较为新鲜。并开始逐渐生成黄铁 矿,可见黄铁矿与磁铁矿共生现象(图3-b)。

含水矽卡岩矿物分布具有分带特征,在内接触 带主要为阳起石、透闪石、绿帘石等;外接触带可见 有大量透闪石、蛇纹石。

4.3 硫化物阶段

退化蚀变作用阶段至硫化物阶段逐渐生成金 属硫化物及石英,后期逐渐生成方解石、绢云母 等。金属硫化物主要为黄铁矿、黄铜矿等,呈浸染 状、脉状或团块状充填于砂卡岩的间隙、裂隙中,并 大量交代其中的磁铁矿(图3-c)。石英和方解石 (图4-1)常呈脉状集合体形态产出。绿泥石(图4f)继续在此时期形成交代退化蚀变阶段形成的角闪 石,晚期开始出现有绢云母。

4.4 表生作用阶段

此阶段矿体在地表或者近地表被空气中氧气所 氧化,使得磁铁矿、黄铁矿分别氧化为赤铁矿、褐铁 矿。不利于铁矿的富集,但是野外重要的找矿标志。

各矿物的生成顺序以及贯穿时间如表1所示。

5 电子探针数据特征

5.1 测试方法

硅酸盐矿物及砂卡岩中磁铁矿的电子探针分析 在中国地质科学院矿产资源研究所电子探针实验室 进行。测试仪器为JEOL-JXA-8230,工作条件为: 加速电压15 kV;电流20 nA;束斑直径5 μm。另有7 组矿石磁铁矿电子探针实验于中国地质大学电子探 针实验室进行,使用仪器型号为EMPA-6000,测试加 速电压为15 kV;电子岁月微20 nA;束斑直径5 μm。 矿物中各元素占位与端元成分计算采用 Geokit 软 件[28]处理。

5.2 分析结果

5.2.1 石榴石

本次实验共计完成23个点位分析,电子探针测 试结果、阳离子数及端元组分如表2所示。结果表 明,其端元组分明显分为以钙铝榴石(Gro)端元为主 至以钙铁榴石(And)端元为主(图6)。其中第一期以 钙铝榴石为主(图4-d),钙铁榴石(And)端元变化范 围为14.16%~35.24%,钙铝榴石(Gro)端元变化范围 为60.48%~81.88%;第二期环带石榴石(表2中gj 8-1-1~8-1-5;gl8-11~8-16;gl8-21~8-26),整体为 钙铁榴石,Fe质和Al质含量发生震荡变化,但整体Fe 质升高,Al质降低,钙铁成分偏高(图4-a、b),其中 And端元变化范围为70.99%~99.11%,Gro端元变化 范围为0.30%~26.17%。铁铝榴石(Alm)和锰铝榴石 (Sps)端元含量较低,平均含量分别只有0.30%和 0.56%,Q有一个点含量超过2%。但均处于世界矽卡 岩铁矿中石榴石所处范围之内^[2](图5-a)。

5.2.2 辉石

分析结果表明(表3),矿区内的辉石主要为透辉 石,钙铁辉石(Hd)端元含量为2.6%~21.6%,平均值为 13.3%;钙锰辉石(Jo)端元含量微弱,处于0.3%~0.6%, 平均值为0.4%;透辉石(Di)端元含量占主要部分,为 75.9%~97.0%,平均值为86.3%。Mn/Fe比值在0.02~ 0.06,平均值为0.04。张家洼铁矿中,透辉石Al₂O₃含 量变化较大而且普遍比较高,仅有2个值低于1%,为 0.79%和0.97%,整体变化范围为0.79%~3.55%,平均 值为1.87%。这表明,其大部分为过铝质透辉石^[6],仅 有少部分为低铝较纯透辉石。辉石成分均投在世界砂 卡岩铁矿中辉石所处范围之内^[2](图5-b)。

5.2.3 磁铁矿

张家洼矿床中早期于含矿砂卡岩中形成的磁铁矿计完成5个点位分析(表4),含铁量(TFeO)超过80%,为81.0%~84.7%,平均含量为83.2%;含镁量(MgO)高,为5.2%~6.6%,平均值为5.7%;含锰量(MnO)也较高,为1.1%~1.3%,平均值为1.2%;CaO、SiO₂、K₂O和Na₂O均较低。其TiO₂和V₂O₃也与岩浆岩中的的磁铁矿有明显区别,显示出较低的特点,分别为0.09%~0.15%和0~0.05%。其全铁量w(TFeO)与w(SiO₂),w(CaO),w(MgO),w(Al₂O₃)呈现一种负相关或者微弱负相关的关系(图6)。在

矿物名称	干矽卡岩阶段	退化蚀变阶段	硫化物阶段	表生作用阶段
钠长石				
辉石				
石榴石		-		
磁铁矿	-			
绿帘石				
角闪石				
蛇纹石			-	
金云母			•	
绿泥石			<u> </u>	
赤铁矿				
黄铜矿				
黄铁矿				
石英				
方解石				
绢云母				—
褐铁矿				

表1张家洼铁矿主要矿物生成顺序

Table 1 Formation sequence of minerals and ore-forming stages in the Zhangjiawa iron deposit

TiO₂-Al₂O₃-(MgO+MnO)磁铁矿成因判别图中落 在镁质矽卡岩型区域^[29-31](图7)。

晚期矿石中形成的磁铁矿共计完成7个点位分析(表4),含铁量(TFeO)平均值为90.7%,高于矽卡 岩中磁铁矿7.5%;含锰量(MnO)平均值为0.16%, 低于矽卡岩中含锰量(MnO)0.9%~1.1%。含镁量 (MgO)除一个样品,均低于检测限。其他氧化物含 量较低,部分或全部低于检测限。

5.2.4 角闪石

实验共计完成11个点位分析(表5),w(Al₂O₃)含量为1.1%~11.9%,平均值为5.65%;w(TFeO)含量为4.6%~12.1%,平均值为8.25%;w(MgO)含量为12.1%~17.0%,平均值为15.7%;w(CaO)含量为10.8%

~21.9%平均值为16.4%;w(Na₂O)含量为0.2%~2.6%, 平均值为1.6%,;w(SiO₂)含量为43%~48.1%,平均值 为48.1%。根据Leake等^[32]于1997年的分类,角闪石 有明显分带性,在内带为阳起石和透闪石,在外矽卡 岩带主要为韭闪石和透闪石(图8)。

5.2.5 金云母

实验共计完成4个金云母矿物点位分析(表6)。 w(SiO₂)含量为37.9%~38.7%;w(MgO)含量为22.3%~ 24.9%,平均值为24.0%;w(K₂O)含量为9.5%~9.8%; w(Al₂O₃)含量为16.2%~19.0%,平均值为17.5%; w(TFeO)含量为2.5%~5.7%,平均值为3.7%; w(Na₂O)含量为0.22%~0.50%。

其中,Mg/Fe比值在7.03~16.58,远大于2,为典

		Table 2	表 2 张 刻 proportions an	京洼铁矿石榴 id end membe	石电子探针分 ers of represe	}桥结果(%) . ntative garne	、阳离子数及 ts from the 2	端元组分 Zhangjiawa j	iron deposit		
样品号	ZJ-8-2-3	GL-5-5	GL-5-5-2	GL-4-1-1	GL-3-1-5	GL-6-8-1	GL-6-9	GJ-8-1-1	GJ-8-1-2	GJ-8-1-4	GJ-8-1-5
SiO_2	35.73	35.02	35.52	38.59	36.23	39.33	38.91	36.31	36.16	37.30	36.16
TiO_2	0.06	1.10	0.58	0.32	0.50	0.14	0.60	0.00	0.00	0.07	0.01
Al_2O_3	0.28	5.78	5.49	18.92	13.74	16.41	16.82	0.15	0.16	4.69	0.06
Cr_2O_3	0.01	0.03	0.00	0.00	0.08	0.04	0.00	0.00	0.02	0.03	0.04
FeO	27.13	20.13	20.25	5.03	11.09	7.39	8.06	27.49	27.68	22.86	27.62
MnO	0.22	0.52	0.45	0.47	0.36	0.48	0.42	0.22	0.12	0.31	0.28
MgO	0.06	0.27	0.19	0.42	0.52	0.44	0.71	0.01	0.04	0.03	0.04
CaO	33.26	32.07	32.45	34.93	33.73	34.18	33.82	32.80	32.51	33.24	32.69
Si	3.02	2.95	2.99	2.98	2.93	3.05	3.00	3.05	3.05	3.04	3.05
Τi	0.00	0.07	0.04	0.02	0.03	0.01	0.03	0.00	0.00	0.00	0.00
Al	0.03	0.57	0.54	1.72	1.31	1.50	1.53	0.01	0.02	0.45	0.01
Cr	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{3+}	1.92	1.41	1.43	0.28	0.71	0.46	0.45	1.93	1.95	1.52	1.95
Fe^{2^+}	0.00	0.01	0.00	0.04	0.03	0.02	0.07	0.00	0.00	0.04	0.00
Mn	0.02	0.04	0.03	0.03	0.02	0.03	0.03	0.02	0.01	0.02	0.02
Mg	0.01	0.03	0.02	0.05	0.06	0.05	0.08	0.00	0.01	0.00	0.01
Са	3.01	2.90	2.93	2.89	2.92	2.84	2.79	2.95	2.94	2.90	2.95
Ura	0.04	0.11	0.00	0.00	0.26	0.12	0.00	0.00	0.07	0.09	0.13
And	94.78	70.99	71.71	14.16	35.24	23.41	22.83	97.59	99.11	77.12	98.08
Pyr	0.26	1.14	0.79	1.61	2.07	1.72	2.76	0.03	0.18	0.11	0.18
Spe	0.51	1.25	1.08	1.01	0.81	1.07	0.93	0.53	0.29	0.71	0.66
Gro	4.41	26.17	26.43	81.88	60.48	73.00	71.21	1.85	0.30	20.79	0.94
Alm	0.00	0.33	0.00	1.35	1.13	0.69	2.27	0.00	0.05	1.19	0.00
Other	0	C	0	0	C	C	0	0	0	0	0

费详惠等:山东张家洼砂卡岩型铁矿矿物学特征及其对成矿环境的指示意义

第41卷第6期

										中		玉		ŧ	也		质									2
续表2	GL-8-2006	35.49	0.00	0.09	0.02	27.49	0.20	0.03	33.72	3.00	0.00	0.01	0.00	1.94	0.00	0.01	0.00	3.05	0.06	94.88	0.13	0.46	4.47	0.00	0	
	GL-8-2005	35.76	0.04	0.62	0.01	27.32	0.11	0.02	33.89	2.99	0.00	0.06	0.00	1.91	0.00	0.01	0.00	3.04	0.02	94.09	0.09	0.24	5.56	0.00	0	
	GL-8-2004	35.79	0.03	0.09	0.01	28.45	0.14	0.02	33.88	2.98	00.00	0.01	00.00	1.98	0.00	0.01	0.00	3.03	0.03	97.90	0.09	0.31	1.67	0.00	0	情度为 0.0n%。
	GL-8-2003	35.59	0.02	0.07	00.00	27.95	0.17	0.04	33.84	2.99	0.00	0.01	00.00	1.96	0.00	0.01	0.01	3.05	0.00	96.15	0.18	0.40	3.27	0.00	0	代表 TFe;分析
	GL-8-2002	35.59	0.01	0.04	0.01	27.86	0.16	0.03	33.99	2.99	0.00	0.00	0.00	1.96	0.00	0.01	0.00	3.06	0.04	95.52	0.10	0.37	3.96	0.00	0	F检测限;FeO1
	GL-8-2001	33.83	0.00	0.08	0.00	28.26	0.07	0.04	33.29	2.92	0.00	0.01	0.00	2.04	0.00	0.01	0.00	3.08	0.01	99.07	0.15	0.16	0.60	0.00	0	; 0.00 表示低号
	GL-8-1006	35.74	0.00	0.61	0.00	27.63	0.12	0.03	33.77	2.99	0.00	0.06	0.00	1.93	0.00	0.01	0.00	3.02	0.00	95.40	0.14	0.28	4.19	0.00	0	Alm=铁铝榴石
	GL-8-1005	35.01	0.02	0.09	0.03	27.97	0.15	0.03	33.54	2.97	0.00	0.01	0.00	1.98	0.00	0.01	0.00	3.05	0.10	97.18	0.13	0.35	2.24	0.00	0	Gro 钙铝榴石;
	GL-8-1004	35.02	0.00	0.05	0.02	28.11	0.17	0.06	33.38	2.97	0.00	0.01	0.00	1.99	0.00	0.01	0.01	3.03	0.08	97.98	0.24	0.40	1.32	0.00	0	pe=锰铝榴石;
	GL-8-1003	35.78	0.01	0.14	0.00	27.99	0.16	0.05	33.57	3.00	0.00	0.01	0.00	1.96	0.00	0.01	0.01	3.02	00.00	97.07	0.19	0.38	2.36	0.00	0	ra=钙铬榴石;S
	GL-8-1002	35.11	0.06	0.18	0.02	27.76	0.22	0.02	33.62	2.97	0.00	0.02	0.00	1.97	0.00	0.02	0.00	3.05	0.07	96.09	0.07	0.52	3.24	0.00	0	r=镁铅榴石;U1
	GL-8-1001	35.24	0.00	0.62	0.02	26.88	0.11	0.04	33.29	3.00	0.00	0.06	0.00	1.91	0.00	0.01	0.01	3.03	0.06	94.15	0.17	0.25	5.38	0.00	0	=钙铁榴石;Py1
	样品号	SiO_2	TiO ₂	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Si	Ti	Al	Cr	Fe^{3+}	Fe^{2^+}	Mn	Mg	Са	Ura	And	Pyr	Spe	Gro	Alm	Other	注:And

http://geochina.cgs.gov.cn 中国地质, 2014, 41(6)

2014年

Sp+ Al

Ad-Andradite; Gr-Grossularite; Al-Almandine; Sp-Spessartite; Jo-Johannsenite; Di-Diopside; Hd-Hedenbergite

图 6 张家洼铁矿磁铁矿中氧化物相关图解 Fig.6 Oxide relationship diagram of magnetite from the Zhangjiawa iron deposit

样品号	ZJ-2-2-1	ZJ-2-2-2	ZJ-2-2-3	ZJ-2-2-4	ZJ-2-3-1	ZJ-2-4-1	ZJ-2-5-1	ZJ-2-7-1	ZJ-2-8-1	ZJ-2-9-1	ZJ-9-2-1	GJY-1-2-2-1
SiO_2	54.76	54.34	52.36	53.78	53.12	52.74	53.40	53.13	52.63	51.93	53.72	53.18
TiO_2	0.13	0.13	0.42	0.27	0.15	0.22	0.26	0.19	0.21	0.26	0.10	0.22
Al_2O_3	1.04	1.33	2.83	1.47	1.75	2.35	2.15	1.61	1.83	1.96	1.11	0.97
Cr_2O_3	0.71	0.78	0.18	0.16	0.39	0.51	0.45	0.49	0.73	0.40	0.48	0.06
FeO	4.66	4.62	7.37	6.77	5.00	6.02	5.87	5.30	4.90	6.19	4.59	6.86
MnO	0.18	0.12	0.13	0.18	0.09	0.15	0.16	0.14	0.12	0.19	0.19	0.21
MgO	18.04	17.42	15.00	16.02	16.67	16.65	15.85	16.57	17.45	16.49	15.98	16.15
CaO	20.27	20.67	20.65	20.62	20.61	20.66	21.26	21.20	20.55	20.34	21.97	21.72
Na_2O	0.19	0.27	0.34	0.20	0.30	0.32	0.32	0.27	0.31	0.30	0.39	0.34
K_2O	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.00	0.02	0.01	0.02
				Ŭ (5个氧原子和,	4个阳离子为	基准计算的阻	离子数				
Si	1.99	1.98	1.94	1.98	1.97	1.94	1.96	1.97	1.95	1.94	1.99	1.97
Al(iv)	0.01	0.02	0.06	0.02	0.03	0.06	0.04	0.03	0.05	0.06	0.01	0.03
Al(vi)	0.03	0.04	0.07	0.05	0.05	0.04	0.06	0.04	0.03	0.03	0.04	0.01
Τi	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	00.00	0.01
Cr	0.02	0.02	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.00
Fe^{3+}	00.00	0.00	0.00	0.00	00.00	0.02	0.00	0.00	0.02	0.03	00.00	0.05
Fe^{2+}	0.14	0.14	0.23	0.21	0.16	0.17	0.18	0.16	0.13	0.16	0.14	0.16
Mn	0.01	0.00	0.00	0.01	0.00	0.00	0.00	00.00	00.00	0.01	0.01	0.01
Mg	0.98	0.95	0.83	0.88	0.92	0.91	0.87	0.91	0.96	0.92	0.88	0.89
Са	0.79	0.81	0.82	0.81	0.82	0.81	0.84	0.84	0.81	0.82	0.87	0.86
Na	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						端元组分/%						
рН	0.14	0.14	0.23	0.21	0.16	0.17	0.18	0.16	0.13	0.16	0.14	0.16
Jo	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
Di	0.98	0.95	0.83	0.88	0.92	0.91	0.87	0.91	0.96	0.92	0.88	0.89

中

玉

地

质

http://geochina.cgs.gov.cn 中国地质, 2014, 41(6)

2014年

第41	卷	第	6期
-----	---	---	----

费详惠等:山东张家洼砂卡岩型铁矿矿物学特征及其对成矿环境的指示意义

1885

ZJ-1-7-2 ZJ-1-8-1 LX-3-7-1 51.19 50.57 53.37	0.24 0.23 0.23		1.91 2.14 1.59	1.91 2.14 1.59 0.75 0.50 0.49	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32 0.36 0.36 0.37	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32 0.36 0.36 0.37 0.01 0.00 0.01	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32 0.36 0.36 0.37 0.01 0.00 0.01	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32 0.36 0.36 0.37 0.01 0.00 0.01 1.93 1.92 1.94	1.91 2.14 1.59 0.75 0.50 0.49 4.83 5.80 5.33 0.14 0.16 0.13 16.85 17.00 18.14 21.19 20.28 21.32 0.36 0.36 0.37 0.01 0.00 0.01 1.93 1.92 1.94 0.01 0.00 0.01 1.93 0.08 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>51.77 48.64</u>	0.22 0.38		1.92 3.55	1.92 3.55 0.72 0.03	1.92 3.55 0.72 0.03 5.17 8.32	1.92 3.55 0.72 0.03 5.17 8.32 0.08 0.17	1.92 3.55 0.72 0.03 5.17 8.32 0.08 0.17 16.47 15.21	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.47 19.97	1.92 3.55 0.72 0.03 5.17 8.32 0.08 0.17 16.47 15.21 16.47 19.97 0.30 0.41	1.92 3.55 0.72 0.03 5.17 8.32 0.08 0.17 16.47 15.21 21.01 19.97 0.30 0.41 0.00 0.02	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.101 19.97 0.30 0.41 0.00 0.02	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.47 15.21 13.0 0.41 0.30 0.41 0.00 0.02 1.94 1.87	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.47 15.21 21.01 19.97 0.30 0.41 0.00 0.02 1.94 1.87 1.94 1.87 0.06 0.13	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.20 0.41 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 1.94 0.03 0.05 0.13 0.03 0.04	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.47 15.21 21.01 19.97 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 1.94 1.87 0.06 0.13 0.03 0.04 0.03 0.04 0.01 0.01	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.20 19.97 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 1.94 1.87 0.06 0.02 0.03 0.04 0.013 0.04 0.02 0.13 0.03 0.04 0.01 0.01 0.02 0.01	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.47 15.21 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 0.06 0.013 0.05 0.04 0.03 0.04 0.01 0.01 0.02 0.04 0.03 0.04 0.01 0.01 0.02 0.03 0.03 0.04 0.01 0.01 0.02 0.05 0.03 0.04 0.03 0.05	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.20 19.97 0.30 0.41 0.30 0.41 0.00 0.41 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.04 0.01 0.01 0.02 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.03 0.15 0.04 0.15 0.03 0.15 0.04 0.15	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.101 19.97 0.30 0.41 0.00 0.02 0.00 0.02 0.01 0.01 0.02 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.03 0.15 0.01 0.01 0.02 0.01 0.03 0.15 0.01 0.01 0.02 0.01 0.03 0.15 0.01 0.01 0.02 0.01 0.03 0.15	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.20 0.41 0.30 0.41 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 0.00 0.02 0.01 0.01 0.02 0.04 0.03 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.03 0.15 0.04 0.15 0.05 0.01 0.06 0.01 0.07 0.01 0.087 0.01 0.092 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.04 0.01 0.052 0.87	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.20 0.30 21.01 19.97 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 1.94 1.87 0.05 0.04 0.06 0.13 0.03 0.04 0.01 0.01 0.02 0.01 0.03 0.15 0.04 0.13 0.05 0.01 0.06 0.13 0.07 0.01 0.08 0.15 0.09 0.01 0.02 0.01 0.02 0.87 0.84 0.82	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.21 19.97 0.30 0.41 0.30 0.41 0.30 0.41 0.00 0.02 1.94 1.87 1.94 1.87 0.05 0.04 0.06 0.13 0.03 0.04 0.03 0.04 0.01 0.01 0.02 0.04 0.03 0.15 0.04 0.15 0.05 0.06 0.06 0.15 0.07 0.01 0.084 0.87 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.01 0.05 0.03	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 15.21 19.97 0.30 0.41 0.30 0.41 0.00 0.02 0.00 0.02 0.03 0.04 0.01 0.01 0.02 0.04 0.03 0.04 0.03 0.01 0.03 0.01 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.01 0.03 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03	1.92 3.55 0.72 0.03 5.17 8.32 5.17 8.32 0.08 0.17 16.47 15.21 16.101 19.97 0.30 0.41 0.30 0.41 0.00 0.13 0.01 0.01 0.02 0.04 0.01 0.01 0.02 0.01 0.03 0.15 0.03 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ZJ-1-2 ZJ 51.13 51	0.15 0.		1.71 1	1.71 1 0.53 0	1.71 1. 0.53 0 5.34 5	1.71 1. 0.53 0 5.34 5 0.14 0	1.71 1. 0.53 0. 5.34 5 0.14 0 17.02 10	1.71 1.71 1. 0.53 0. 5.34 5 0.14 0 17.02 16 21.00 21	1.71 1.71 1. 0.53 0. 5.34 5 0.14 0 17.02 1(6 21.00 21 0.37 0	1.71 1.71 0.53 0.53 5.34 5. 5.34 5. 0.14 0 17.02 16 21.00 21 0.37 0 0.37 0	1.71 1.1 0.53 0.5 5.34 5. 5.34 5. 0.14 0 17.02 16 17.02 16 21.00 21 0.37 0 0.37 0 1.4 0 0.00 0	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 0.14 0 0. 17.02 16 17.02 16 21.00 21 0.37 0 0 0.37 0 0 0.00 0 十算的阻离子数 1 1.93 1	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 5.34 5. 0.14 0. 17.02 16 17.02 16 17.02 16 0.37 0 0.37 0 0.00 0 1.93 1 1.93 1 0.07 0	1.71 0.53 5.34 5.34 0.14 0.14 0.14 0.17 02 17.02 16 21.00 21 0.37 0 0.37 0 0.00 1.93 1 1.93 1 0.07 0 0.01 0 0.01 0 0	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 5.34 5. 0.14 0. 17.02 16 21.00 21 21.00 21 21.00 21 0.37 0 0.37 0 0.01 0 0.01 0 0.00 0	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 5. 5.34 5. 16 0.14 0. 16 17.02 16 21 21.00 21 0 21.00 21 0 0.37 0 0 0.37 0 0 1.93 1 1.93 1.93 1 0 0.07 0 0 0.01 0 0 0.02 0 0	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 5. 5.34 5. 16 0.14 0. 16 17.02 16 21.00 21.00 21 0 0.37 0 0 0.37 0 0 1.93 1 1.93 1 0.01 0 0.01 0 0.02 0 0.02 0 0.10 0	1.71 1.71 1. 0.53 0.53 0. 5.34 5. 5. 5.34 5. 16 0.14 0. 17.02 17.02 16 21.00 21.00 21.00 21 0.37 0 0.01 0.07 0 0 0.01 0 0 0.02 0 0 0.02 0 0 0.07 0 0 0.07 0 0 0.07 0 0 0.07 0 0 0.07 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>ZJ-3-5-1 ZJ-3-2-</u> 50.06 51.76	0 39 0 14		3.17 1.39	3.17 1.39 0.15 0.89	3.17 1.39 0.15 0.89 10.07 4.17	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.03	 3.17 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 1.12 0.00 	 3.17 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 1.12 0.16 18,45 20.70 20.68 1.12 0.35 0.00 1.12 0.35 0.00 1.03 1.12 1.12 1.12 1.12 1.12 1.12 1.13 1.12 1.12 1.13 1.13 1.13 1.13 1.13 	 3.17 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 18.45 12.10 18.45 20.70 20.68 1.12 0.35 0.00 千和 4 个阳离子为基准过 1.93 0.08 0.00 	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.02 0.00 0.08 0.00 0.08 0.00 0.06 0.00	3.17 1.39 0.15 0.89 0.16 0.15 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.02 0.00 1.92 1.93 0.03 0.00 0.06 0.00 0.01 0.00 0.01 0.00 0.01 0.00	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.03 0.02 0.00 0.03 0.00 0.06 0.00 0.07 0.00 0.08 0.00 0.01 0.00 0.01 0.00 0.00 0.03	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 20.70 20.68 1.12 0.35 0.02 0.00 0.03 0.00 0.06 0.00 0.08 0.00 0.06 0.00 0.07 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.11 0.10	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.02 0.00 0.03 0.00 0.04 1.93 1.92 0.00 0.03 0.00 0.06 0.00 0.07 0.00 0.08 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.03	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 1.12 0.35 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.00 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 $11.0.07$ 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.035 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 $11.0.07$ 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.04 0.03 0.05 <	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.03 0.00 0.06 0.00 0.08 0.00 0.06 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.61 0.03 0.62 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.03 0.06 0.03 0.07 0.03	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.03 0.00 0.06 0.00 0.07 0.00 0.08 0.00 0.01 0.00 0.01 0.00 0.01 0.03 0.11 0.10 0.11 0.03 0.01 0.03 0.01 0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.03 0.03 0.04 0.03 0.05 0.05	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.00 0.06 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.03 0.11 0.10 0.01 0.03 0.01 0.03 0.01 0.03 0.02 0.03 0.03 0.03 0.69 1.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04	3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.02 0.06 0.02 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.03 0.11 0.00 0.01 0.03 0.01 0.03 0.85 0.83 0.85 0.83 0.08 0.03 0.08 0.03 0.00 0.00 0.01 0.03 0.02 0.03 0.03 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00	3.17 1.39 3.17 1.39 0.15 0.89 10.07 4.17 0.16 0.15 12.10 18.45 20.70 20.68 1.12 0.35 0.00 0.00 1.12 0.35 0.01 193 1.92 0.35 0.03 0.00 0.04 0.00 0.05 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.03 0.01 0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.05 0.03 0.06 0.00 0.00 0.00 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03
<u>-4-1 GJ-8-4-2 z</u> 95 53.01	0 74	14:0	04 2.11	94 2.11 99 0.82	14 2.11 19 0.82 14 4.27	9 0.14 0.14 0.82 0.82 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	6 0.14 2.11 6 0.82 64 4.27 9 0.14 12 16.94	 4 2.11 9 0.82 4 4.27 9 0.14 16.94 40 21.50 	 9 0.24 9 0.82 9 0.14 16.94 40 21.50 8 0.42 	 0.24 0.82 0.82 0.82 0.14 12 16.94 12 1.50 8 0.42 0.00 	 0.02 0.11 0.82 0.82 0.82 0.82 0.14 12 16.94 12 16.94 150 21.50 0.42 8 0.42 15 10.00 	 0.24 0.82 0.82 0.82 0.82 0.14 1.50 16.94 1.50 16.94 0.14 0.00 1.95 	 0.02 0.82 0.82 0.82 0.82 0.14 12 16.94 12 16.94 12 16.94 0.14 0.42 0.43 0.44 0.45 0.64 0.45 0.64 0.65 0.05 	6 0.05 1.10 1.24 2.11 1.2 1.11 1.2 1.50 0.14 1.2 1.50 $1.6.94$ 1.2 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.05 1	 0.04 0.82 0.82 0.82 0.82 0.14 1.94 1.95 <	 0.02 0.82 0.82 0.82 0.82 0.82 0.14 12 16.94 16.94 16.94 0.14 0.12 0.42 0.42 0.42 0.42 0.42 1.95 1.95	 0.02 0.82 0.82 0.82 0.82 0.14 1.2 16.94 16.94 0.14 0.15 0.42 0.04 0.01 0.01 0.01 	 0.02 0.82 0.82 0.82 0.82 0.14 1.2 16.94 16.94 0.14 0.42 0.42 0.42 0.42 0.42 0.42 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.05 0.01 	 0.02 0.82 0.82 0.82 0.82 0.14 1.2 16.94 1.6.94 0.14 0.12 0.01 0.01 0.01 0.01 0.00 0.00 0.00 	 0.02 0.82 0.82 0.82 0.82 0.14 1.2 16.94 1.2 16.94 1.95 0.04 0.02 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.01 0.01 0.01 0.03 0.04 	4 2.11 4 2.11 9 0.82 4 4.27 9 0.14 12 16.94 40 21.50 8 0.42 8 0.42 9 0.04 1 95 1 95 1 95 1 0.01 1 0.01 3 0.12 3 0.03 3 0.12 3 0.03 3 0.0	4 2.11 9 0.82 14 4.27 9 0.14 12 16.94 12 16.94 40 21.50 8 0.42 1.95	4 2.11 9 0.82 14 4.27 9 0.14 12 16.94 12 16.94 40 21.50 8 0.42 1.95 1.95 1.95 1.95 1 0.01 1 0.01 2 0.02 0 0.01 3 0.12 3 0.03 3 0.03 9 0.00 0 0.	 0.02 0.82 0.82 0.82 0.82 0.14 4.27 0.14 4.27 0.14 0.15 0.042 0.05 0.05 0.04 0.05 0.05 0.04 0.01 0.01 0.02 0.03 0.03 0.00 0.00 0.03 0.00 	 0.02 0.82 0.82 0.82 0.82 0.14 4.27 0.14 0.14 0.14 0.15 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.01 	10.0090.8290.141216.941216.941216.94120.02130.42140.05110.01130.02130.03130.03130.03100.00110.01130.03140.03150.01160.01170.03180.03190.00100.00110.00
GJ-8-3-1 GJ-8-4- 54.54 53.95	0.11 0.19		0.79 2.04	0.73 0.69	0.79 2.04 0.33 0.69 3.90 4.34	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.33 0.02 0.02 1.96 1.96	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.96 1.96	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.98 1.96 1.98 1.96 0.01 0.05	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.98 1.96 0.02 0.04 0.01 0.05 0.01 0.05	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.22 0.38 0.02 0.02 1.98 1.96 0.04 0.01 0.05 0.01 0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.98 1.96 0.02 0.04 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.13	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.02 0.02 0.02 1.96 0.02 0.04 0.01 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.96 0.02 0.04 0.01 0.05 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.00 0.01 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.38 0.02 0.02 1.96 0.02 0.04 0.01 0.00 0.11 0.13 0.01 0.00 0.11 0.13 0.01 0.00 0.11 0.13 0.93 0.93 0.94 0.83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.33 0.22 0.33 0.22 0.33 0.22 0.33 0.22 0.33 0.02 0.02 1.96 1.96 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.94 0.93 0.92 0.93 0.93 0.93 0.91 0.03 0.01 0.03 0.91 0.03 0.91 0.03 0.92 0.93 0.94 0.83 0.90 0.93 0.91 0.03 0.91 0.03 0.92 0.03 0.93 0.94 0.91 0.03 0.91 0.03 0.91 0.91 0.91 0.91	0.79 2.04 0.33 0.69 3.90 4.34 0.20 0.09 16.59 17.12 24.16 21.40 0.22 0.03 0.22 0.03 0.22 0.02 0.22 0.02 0.22 0.02 0.02 0.04 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.03 0.05 0.03 0.01 0.03 0.02 0.03 0.03 0.03 0.01 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
GJ-8-2-1 51.62	0.15		1.03 2.98	1.03 2.98 0.35 0.00	1.03 2.98 0.35 0.00 5.03 7.85	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 2.00 1.92	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.00 0.02 0.00 1.92 0.00 0.08	1.03 2.98 0.35 0.00 5.03 7.85 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.08 0.02 0.08 0.02 0.00 0.08 0.05 0.05	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.00 1.92 0.00 0.08 0.00 0.06 0.00 0.06	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.08 0.02 0.00 1.92 0.00 1.92 0.00 0.06 0.00 0.06 0.00 0.06 0.01 1.92 0.02 0.06 0.03 0.06 0.01 0.00 0.01 0.00	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.08 0.02 0.09 0.02 0.00 0.03 0.01 1.92 0.00 0.06 0.01 0.07 0.02 0.06 0.01 0.07 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.08 0.02 0.09 0.08 0.00 0.08 0.01 0.06 0.02 0.06 0.03 0.06 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.00 13.29 0.01 13.29 0.95 0.45 0.08 0.02 0.00 0.08 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.18 0.18 0.115 0.18 0.01 0.00 0.01 0.00	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.98 0.45 0.09 0.45 0.00 1.92 0.01 1.92 0.00 0.08 0.01 0.06 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.04 0.01 0.05 0.00	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.09 0.02 0.00 0.45 0.01 1.92 0.02 0.02 0.03 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.01 0.87 0.34	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 0.95 0.45 0.08 0.45 0.09 0.45 0.00 0.02 0.01 1.92 0.02 0.03 0.00 0.06 0.01 0.02 0.02 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.00 0.03 0.01 0.87 0.74 0.83 0.03 0.03 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.03 2.98 0.35 0.00 5.03 7.85 0.18 0.11 15.60 13.29 20.78 23.63 0.95 0.45 0.08 0.02 0.00 1.92 0.01 1.92 0.00 0.08 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.18 0.74 0.18 0.18 0.01 0.00 0.11 0.01 0.02 0.01 0.03 0.04 0.04 0.03 0.05 0.03 0.06 0.00 0.07 0.00 0.00 0.00 0.015 0.018	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
47	17			0.1	1.(0.3 5.(1.0 5.0	1.(5.(0.5 15.	1.0 0.5 0.5 15. 20.2	1.0 5.0 0.1 5.0 20.0	1.0 5.0 0.1 15. 20. 0 20. 0.0	1.0 0.3 5.0 0.1 15. 20. 0 20. 0 .0	1.0 0.3 5.0 0.5 15. 15. 0 0.0 20. 2.0	1.0 0.3 5.0 0.1 15.0 20.0 20.0 20.0 2.0	1.0 5.0 1.5 1.5 1.5 0 1.5 0 0.0 0.0 0.0 0.0	1.0 0.3 5.0 0.3 1.5 1.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 5.0 1.5 1.5 2.0 2.0 0.4 0.0 0.0 0.0	1.0 5.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0	0.1 5.0 0.1 15 20 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0	0.1 0.2 15.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.11 0.12 0.15	0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	1.0 0.1

中

图7TiO₂-Al₂O₃-MgO磁铁矿成因三角图解(底图据文献[30]) I-花岗岩区(酸性岩浆岩、伟晶岩);I-玄武岩区(拉斑玄武岩等); Ⅲ一辉长岩区(辉长岩、橄榄岩、二长岩、斜长岩、副矿物及铁矿石); Ⅳ-橄榄岩区(橄榄岩、纯橄榄岩、辉岩、副矿物及铁矿石);V1-角闪 岩区(包括单斜辉石岩),V2-闪长岩区;VI-金伯利岩区;VI-热液型 及钙砂卡岩型(虚线以上主要为深成热液型,以下为热液型及钙砂卡岩 型);W-热液型,镁砂卡岩型(深成热液型,部分为热液交代型;镁砂卡 岩型);X-沉积变质、热液叠加型;X-碳酸盐岩区(靠上部者与超基 性岩有关,靠下部者与围岩交代有关);XI-过渡区

Fig.7 TiO₂-Al₂O₃-MgO genetic diagram of magnetite (after reference [30])

I-Granite area (acid magmatic rocks and pegmatite); II-Basalt area (tholeiitic basalt etc.); III-Gabbro area (gabbro, peridotite, monzonite, plagioclasite, accessory mineral and iron ore); IV-Peridotite area (dunite, peridotite, pyroxenite, accessory mineral and iron ore); V1-Amphibolite area (including clinopyroxenite); V2-iorite area; VI-Kimberlite area; VII-Hydrothermal and calcium skarn area; VIII-Hydrothermal and magnesium skarn

area; IX-Sedimentary metamorphism plus hydrothermal fluid; X-Carbonate area; XI-Transition zone

型的金云母^[33-35](图9),其镁质Mg/(Mg+Fe+Mn+Ti) 介于0.87~0.94,平均值为0.91;Fe/(Mg+Fe+Mn+Ti) 介于0.06~0.12,平均值为0.08,明显富镁贫铁。 5.2.6 绿帘石和蛇纹石

3个绿帘石测试结果如表7所示,w(SiO₂)含量 为36.6%~36.8%,平均值为36.7%;w(MgO)含量较 低,平均值为0.05%;w(Al₂O₃)含量为23.0%~26.4%, 平均值为24.5%;w(TFeO)含量为8.8%~12.1%,平 均值为9.9%;w(CaO)含量为22.0%~22.7%,平均值 为22.5%;w(TiO₂)平均值为0.06%。明显表现出富 Al、富Ca、富Fe、贫Ti的性质,其与石榴石的成分有 一定的继承和演化关系。

2个蛇纹石测试结果(表7),w(MgO)较高,平均 值为39.2%,w(TFeO)和w(CaO)均较低,表现为典型 的镁质砂卡岩。

6 讨 论

6.1 矽卡岩类型

交代砂卡岩可以根据矿物共生组合和围岩岩 性分成钙质砂卡岩和镁质砂卡岩^[1,2,36,37],赵一鸣等根 据实际情况和研究方便又补充了碱质砂卡岩和锰 质砂卡岩^[6]。本区砂卡岩中出现的砂卡岩矿物种类 在不同的蚀变带有不同的矿物组合。在内蚀变带 矿物为:钙铁榴石-钙铝榴石(图4-a~c)、透辉石-钙铁辉石(图4-d)、绿帘石及阳起石等钙质砂卡岩 矿物;在外蚀变带为金云母(图4-g)、韭闪石、透闪 石及蛇纹石(图4-j)等镁质砂卡岩矿物。角闪石在 内蚀变带为阳起石、透闪石,在外蚀变带主要为韭 闪石和透闪石。因此,笔者认为张家洼铁矿区内, 在内蚀变带发育钙质砂卡岩,在外蚀变带镁质砂卡 岩较发育。这种现象在中国"邯邢式铁矿"砂卡岩 矿床中广泛发育^[6,38]。

赵一鸣等师研究发现,围岩中MgO含量小于2% 时,只生成钙砂卡岩矿物;含量为10%~15%时,形成 镁橄榄石、硅镁石等典型矽卡岩矿物:MgO含量为 2%~10%时,形成金云母、透辉石等矿物。莱芜地区 围岩主要为豹皮灰岩、厚层灰岩、白云质灰岩,整体 MgO含量偏低,为生成的矽卡岩矿物类型介于典型 钙、镁砂卡岩矿物之间提供了可能性。但是,其砂 卡岩矿物类型出现内外分带的原因,笔者认为有两 种可能:一是由于围岩在不同位置的岩性差异导致 Ca和Mg含量不同,二是围岩中Ca²⁺和Mg²⁺的化学 活度存在一定差异。梁祥济等130研究表明,生成钙 质或镁质砂卡岩不完全取决于CaO或者MgO的含 量,而是取决于Ca²⁺和Mg²⁺的活度。Helgeson^[40]认为 热液在碳酸盐岩中不能太长时间保持活性,而且 CaCO₃比MgCO₃更易与酸发生发应,因此,白云岩 比灰岩地层能更长时间地保持反应的活性。反应 后离子形态的 Mg²⁺比 Ca²⁺优先进入溶液中与 Si、 H₂O及O₂结合,从而在外接触带易形成镁质砂卡 岩,而在内接触带形成钙质矽卡岩。至于哪种类型 占主导,笔者认为还需要更详细的野外研究和室内

		Tabl	le 4 Electron 1	microprobe an	nalyses of rep	oresentative n	nagnetite fron	n the Zhangji	awa iron dep	osit		
Comment	xk-1	хк-2	xk-3	xk-4	xk-5	ks-1	ks-2	ks-3	ks-4	ks-5	ks-6	ks-7
SiO_2	0.55	0.08	0.05	0.12	0.08	0.27	2.90	2.68	0.13	3.10	00.00	0.49
TiO_2	0.09	0.15	0.12	0.14	0.12	0.07	00.00	0.21	00.00	0.04	0.00	0.22
Al_2O_3	0.80	0.55	0.75	0.81	0.76	0.00	00.00	00.00	00.00	00.00	00.00	00.00
Cr_2O_3	0.02	0.04	0.00	0.11	0.14	0.00	00.00	00.00	00.00	00.00	0.00	00.00
FeO	82.83	83.44	83.94	81.04	84.69	91.54	89.74	89.58	90.05	89.73	92.60	91.54
MnO	1.16	1.27	1.23	1.25	1.08	0.34	0.13	0.15	0.20	0.16	0.07	0.04
MgO	5.70	5.50	5.22	6.57	5.32	0.00	00.00	00.00	2.76	00.00	0.00	00.00
CaO	0.01	0.01	0.00	0.31	00.00	1.26	00.00	00.00	00.00	00.00	0.00	00.00
Na2O	0.06	0.06	0.06	0.12	0.00	0.00	00.00	00.00	00.00	00.00	0.00	00.00
K_2O	0.00	0.02	0.01	0.02	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00
CI	0.00	0.01	0.01	0.04	00.00	0.00	00.00	0.00	00.00	00.00	0.00	00.00
P_2O5	0.00	0.00	0.03	0.02	0.05	0.00	0.00	00.00	00.00	00.00	0.00	00.00
V_2O_3	0.00	0.04	0.04	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Total	91.23	91.17	91.46	90.59	92.24	93.48	92.77	92.62	93.14	93.03	92.67	92.29
注:前5个	数据位为含矿	"砂卡岩中磁铁1	矿,后7个数据;	为矿石中磁铁矿	"数据;0.00表词	示低于检测限;I	reo代表TFe;分	分析精度为0.0n	1%0 o			

http://geochina.cgs.gov.cn	中国地质,	2014, 41(6)
1 0 00		· · · ·

第41卷第6期

表4张家洼铁矿磁铁矿电子探针分析结果(%)

1887

0.00

0.07

T 11			নহ ১	饭豕 庄 坎	111 用内口	电丁抹打刀	「別)			
Table	5 Electron	microprol	be analys	es and ion	proporti	ons of repro	esentative a	mphiboles	from the Zi	nangjiawa i	ron deposit
编号	ZJ-3-5-3	ZJ-3-1	ZJ-3-3	ZJ-3-4	ZJ-1-2	ZJ-1-7-2	ZJ-1-8-1	ZJ-1-8-2	GJ-8-5-1	ZJ-9-2-1	GJ-13-2-1
SiO ₂	50.06	42.89	42.83	43.79	51.13	51.19	50.57	48.95	43.64	53.72	50.73
TiO ₂	0.39	1.01	1.14	1.10	0.15	0.24	0.23	0.15	1.76	0.10	1.14
Al_2O_3	3.17	11.35	11.89	11.05	1.71	1.91	2.14	1.66	11.84	1.11	4.29
FeO	10.07	10.91	10.05	10.55	5.34	4.83	5.80	5.91	10.63	4.59	12.12
MnO	0.16	0.16	0.11	0.08	0.14	0.14	0.16	0.14	0.17	0.19	0.39
MgO	12.10	15.24	15.16	15.33	17.02	16.85	17.00	16.57	15.30	15.98	15.75
CaO	20.70	11.08	11.09	11.00	21.00	21.19	20.28	20.15	11.26	21.97	10.81
Na_2O	1.12	2.21	2.38	2.22	0.37	0.36	0.36	0.28	2.59	0.39	1.62
K_2O	0.02	0.50	0.43	0.71	0.00	0.01	0.00	0.07	0.69	0.01	0.40
Total	97.78	95.37	95.08	95.83	96.87	96.71	96.55	93.87	97.89	98.04	97.25
					以 23 个 \$	国为基准计算	的阳离子数				
Si	7.37	6.42	6.40	6.50	7.43	7.43	7.38	7.37	6.36	7.66	7.38
$\mathbf{Al}^{\mathbb{N}}$	0.55	1.58	1.60	1.50	0.29	0.33	0.37	0.30	1.64	0.19	0.62
$\mathbf{Al}^{\mathrm{VI}}$	0.00	0.42	0.49	0.44	0.00	0.00	0.00	0.00	0.40	0.00	0.12
Ti	0.04	0.11	0.13	0.12	0.02	0.03	0.02	0.02	0.19	0.01	0.12
Fe^{3+}	0.53	0.16	0.19	0.21	0.54	0.57	0.53	0.49	0.14	0.55	0.61
Fe^{2+}	0.71	1.20	1.07	1.10	0.11	0.02	0.17	0.25	1.15	0.00	0.87
Mn	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.05
Mg	2.66	3.40	3.38	3.39	3.69	3.65	3.70	3.72	3.33	3.40	3.41
Ca	3.27	1.78	1.78	1.75	3.27	3.30	3.17	3.25	1.76	3.36	1.68
Na	0.32	0.64	0.69	0.64	0.11	0.10	0.10	0.08	0.73	0.11	0.46
К	0.00	0.10	0.08	0.13	0.00	0.00	0.00	0.01	0.13	0.00	0.07
阳离	15.47	15.84	15.81	15.79	15.46	15.43	15.47	15.51	15.86	15.29	15.39
Si_T^*	7.37	6.42	6.40	6.50	7.43	7.43	7.38	7.37	6.36	7.66	7.38
Al_{T}	0.55	1.58	1.60	1.50	0.29	0.33	0.37	0.30	1.64	0.19	0.62
Alc	0.00	0.42	0.49	0.44	0.00	0.00	0.00	0.00	0.40	0.00	0.12
Fe ³⁺ c	0.53	0.16	0.19	0.21	0.54	0.57	0.53	0.49	0.14	0.55	0.61
Ti _C	0.04	0.11	0.13	0.12	0.02	0.03	0.02	0.02	0.19	0.01	0.12
Mg_{C}	2.66	3.40	3.38	3.39	3.69	3.65	3.70	3.72	3.33	3.40	3.41
Fe ²⁺ c	0.71	0.90	0.82	0.84	0.11	0.02	0.17	0.25	0.94	0.00	0.74
Mn _C	0.02	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.00	0.02	0.00
Fe ²⁺ _B	0.00	0.30	0.25	0.26	0.00	0.00	0.00	0.00	0.21	0.00	0.13
Mn _B	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.05
Ca _B	2.00	1.68	1.73	1.73	2.00	2.00	2.00	2.00	1.76	2.00	1.68
Na _B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.14
Сад	1.27	0.10	0.04	0.02	1.27	1.30	1.17	1.25	0.00	1.36	0.00
Na _A	0.32	0.64	0.69	0.64	0.11	0.10	0.10	0.08	0.73	0.11	0.32

业实达进行各间工由了物料八托社田(0/)五阳南了新

0.08 注:0.00表示低于检测限;FeO代表TFe;分析精度为0.0n%。

0.13

0.00

0.10

K_A 0.00

0.00

0.00

0.01

0.13

表 6 张家洼铁矿金云母电子探针分析结果(%)及阳离子数
Table 6 Electron microprobe analyses and ion proportions o
representative phlogopite from the Zhangjiawa iron deposit

1 1	01		00	
样品号	GL-3-2-2	GL-3-2-3	GL-3-2-4	LX-5-3-1
SiO ₂	38.64	38.77	37.89	38.00
TiO ₂	0.28	0.35	0.16	0.35
Al_2O_3	17.29	16.18	17.41	18.98
FeO	3.36	3.27	2.59	5.66
MnO	0.08	0.00	0.05	0.07
MgO	24.27	24.90	24.43	22.32
CaO	0.00	0.00	0.00	0.02
Na ₂ O	0.27	0.22	0.31	0.50
K_2O	9.84	9.70	9.77	9.48
Total	94.03	93.39	92.62	95.38
Si	2.76	2.79	2.74	2.70
$\mathbf{Al}^{\mathbb{N}}$	1.24	1.21	1.26	1.30
Al^{VI}	0.22	0.16	0.23	0.29
Ti	0.01	0.02	0.01	0.02
Fe ³⁺	0.04	0.03	0.02	0.05
Fe ²⁺	0.16	0.16	0.14	0.28
Mn	0.00	0.00	0.00	0.00
Mg	2.59	2.67	2.64	2.37
Са	0.00	0.00	0.00	0.00
Na	0.04	0.03	0.04	0.07
K	0.90	0.89	0.90	0.86
Total	7.96	7.97	7.98	7.95
OH	2.00	2.00	2.00	2.00
Mg/Fe	12.87	13.56	16.85	7.03
Mg/(Mg+Fe+Ti+Mn)	0.92	0.93	0.94	0.87
Fe/(Mg+Fe+Ti+Mn)	0.07	0.07	0.06	0.12

注:0.00表示低于检测限;FeO代表TFe;分析精度为0.0n%。

试验模拟。

另外,野外研究表明,矽卡岩富铁矿位置多与镁 质矽卡岩矿物共生,这与镁质矽卡岩易形成富矿的现 象一致^[12],这可以为寻找富铁矿提供一定线索。

6.2 对张家洼富铁矿形成的约束

前已述及,张家洼铁矿富铁矿石占的比重较大, 富铁矿石的储量已达大型规模。这些富铁矿石的形 成一直是一个备受关注的问题。本次研究发现,退化 蚀变阶段早期与矽卡岩矿物共生的磁铁矿全铁含量 相对较低(表4-xk-1~5),而退化蚀变阶段晚期形成 的矿石中磁铁矿具有明显高的铁含量(表4-ks-1~ 7),表明后期形成的磁铁矿得到进一步的富集。

赵斌等^[47]经研究发现钙铝榴石—钙铁榴石系 列形成的温度和压力范围通常较广,石榴石形成于 较氧化的条件,氧化型矿床常以透辉石和钙铁榴石 为主^[48-52];还原型矽卡岩常发育钙铝榴石和钙铁辉 石。同时,艾永富等^[46]在大量的实验中证实,钙铝榴 石在弱还原的酸性条件下形成,近于等量的钙铁与 钙铝成分的石榴石是在相对中性的条件下形成的, 而钙铁榴石在 pH 为4.5~11 的氧化--弱氧化的碱性 条件下形成。这表明张家洼砂卡岩型铁矿中的石 榴石成分可以作为矿化介质酸度和物理化学环境 的指示剂^[46]。

电子探针数据(表2~3)和矿物分类图解(图5) 表明,石榴石早期以钙铝榴石为主、晚期以钙铁榴 石为主,辉石以透辉石为主。这反映成矿时整体为 一种相对氧化的环境,但砂卡岩早期偏向于酸性的 弱还原环境,酸性环境会提升碳酸盐矿物的解离速 度,为从围岩中萃取Ca²⁺和Mg²⁺提供了条件^[6,39,52],便 于其进入流体中发生运移;晚期生成的钙铁榴石 (表2)则指示一种碱性环境,而碱性条件更有利于 铁矿化,使得Fe以离子的形式进入流体,为Fe质的 富集提供了环境^[39,47,48]。

石榴石的环带能有效记录成矿热液的演化历 史,为研究成矿热液演化提供重要信息^[53]。张家洼 矿床石榴石的环带变化可以反映石榴石形成过程 中物理化学条件的变化规律(图4-a,b)。三组第二 期形成的石榴石单颗粒环带测试分析中发现(图 10-1~3),SiO₂和CaO变化幅度小,反映来源稳定。 第二、三组(图 10 中 gl-8-1 和 gl-8-2 组)两组石榴 石成分明显偏钙铁榴石,内部出现微小波动但逐渐 增高的趋势,反映一种高碱性、高氧化性的环境;第 一组(图10中gj-8-1组)石榴石环带中,从核部到 边部Fe质和Al质含量相对变化出现了较大波动, 指示震荡的环境,这可能是因为石榴石受到围岩多 次交代作用的影响[53],但依然在整体上表现为核部 相对富Al,在边部相对富含Fe的特征。石榴石从相 对富铝到相对富铁的演化规律可以反映出当时的 成矿溶液由偏酸性向碱性演化、氧逸度逐渐升高的 特征。世界上多数的矽卡岩都是早期矽卡岩阶段 形成的石榴石偏向于富 Al 而晚期或退化蚀变阶段 形成的石榴石更富Fe^[2,30,41],张家洼铁矿中石榴石环 带中成分变化也呈现这样一种规律。

从一组透辉石单颗粒环带测试中发现(图10d),其从核部到边部Fe质含量震荡升高,推测流体 Fe质震荡升高所导致^{[54};虽然透辉石含量也出现震 荡变化,但一直处于主导地位,透辉石同样也反映

图 8 张家洼铁矿床角闪石分类图解(底图据文献[32]) 三角形一内砂卡岩带;圆形—外矽卡岩带 Fig.8 Classification of hornblendes from the Zhangjiawa orefield (after reference [32]) Triangle—The inner zone; Circle—The outer zone

一种氧化的条件。

透辉石和石榴石均生成于干砂卡岩阶段,此时 成矿溶液氧逸度逐渐升高,对磁铁矿的形成有重 要的影响^[5,45,55]。另外,石榴石环带与透辉石环带均 出现一定程度的震荡现象,这表明环境是震荡变化 的,可能会导致Fe质沉淀和溶解,从而使得铁质不 断富集。

在退化蚀变阶段中,磁铁矿和大量含水矽卡岩 矿物生成。磁铁矿 TFeO 与 SiO₂、MgO、CaO、Al₂O₃ 这种负相关的相关性(图6)指示了相对酸性的环境 不利于磁铁矿的形成、相对碱性的环境利于磁铁矿 的形成的特征[56-58],暗示在成矿的过程当中,成矿流 体从岩体和其他矿物之中不断萃取Fe质,并使之聚 集沉淀,最终磁铁矿的纯度逐渐升高并富集沉淀: 在当时的高氧逸度、碱性条件下 Si、Al、Mg、Ca等元 素就进入到金云母、绿帘石、角闪石及绿泥石之中 进行结晶。如图6,TFeO并不是与这些氧化物呈现 绝对的负相关关系,这在一定程度上暗示了成矿环 境的不稳定性,而正由于这种一次次的震荡,导致 了Fe的多次萃取富集并沉淀。如表4所示,这一阶 段在含矿砂卡岩磁铁矿中形成的磁铁矿 MgO 较高, 推测是因为Mg与Ca的化学活性存在差异,碱性的 条件下 Mg²⁺比 Ca²⁺更易发生水解反应,使得流体与

图 9 张家洼铁矿床云母分类图解(底图据文献[33]) Fig.9 Classification of micas from the Zhangjiawa orefield (after reference [33])

围岩的强烈交互作用下流体Mg²⁺较高,并随着流体 中Fe一同沉淀下来^[59];在退化蚀变阶段早期,含矿 矽卡岩中磁铁矿的TFeO含量平均值较低,指示流 体中Fe含量较低(表4),说明流体中Fe质含量在砂 卡岩期较低,未富集达到最大规模。绿帘石的电子 探针数据显示(表7)w(TFeO)含量为8.8%~12.1%, 平均值为9.9%,暗示流体呈现含铁量升至较高的状 态;溶液中的氧逸度的升高对于绿帘石的形成具有 重要的作用^[60, 61],证明退化蚀变阶段具有较高的氧 逸度。这与透辉石和石榴石的成分变化所指示的 环境变化特征相一致。

退化蚀变阶段中后期Fe质含量达到最高,此时 生成的磁铁矿富集成矿石且品位较高(表4),在此 阶段磁铁矿大量富集并沉淀。退化蚀变阶段末期 至早晚期石英硫化物阶段生成有黄铁矿和黄铜矿 (表1)。黄铁矿作为一种重要的硫化物,它的出现 表明耗氧严重,暗示当时的成矿环境已经转化为相 对还原的环境,这可能与磁铁矿的大量沉淀导致氧 逸度下降有关。

张家洼铁矿先经历了弱还原的酸性环境而后 逐渐氧逸度增高,在偏向碱性的氧化环境下铁质大 量富集,磁铁矿沉淀。氧化还原条件多次反复导致 了成矿流体中铁质的不断浓集,形成高品位块状矿 石。然而,随着磁铁矿的沉淀和其他的含水矽卡岩 矿物的形成,在氧化物阶段末期开始逐渐转换为较 强的还原环境,最终在硫化物阶段大量生成金属硫 化物。

丰 7	张宏注独矿绿空石由子坯针分析结果()	0/_)	í.
1×1	瓜豕庄切り 冰巾口 化丁环打刀 们 纪本(/0 /	1

Table 7 Electron microprobe analyses of epidote and serpentine from the Zhangjiawa iron deposit

	绿	帘石	蛇纹石			
Comment	GL-5-6	GL-3-1-1	GL-2-1-5	Comment	GL-3-2-1	GL-3-2-5
SiO ₂	36.77	36.78	36.60	SiO ₂	43.23	42.28
TiO ₂	0.00	0.12	0.05	TiO ₂	0.06	0.03
Al_2O_3	26.35	23.02	24.02	Al2O3	0.25	1.64
FeO	8.81	12.14	8.80	FeO	2.33	1.73
MnO	0.63	0.00	0.06	MnO	0.29	0.08
MgO	0.10	0.08	0.08	MgO	38.30	40.29
CaO	21.99	22.76	22.70	CaO	0.12	0.05
Na ₂ O	0.05	0.01	0.09	Na ₂ O	0.02	0.02
K_2O	0.00	0.00	0.03	K_2O	0.01	0.00
P_2O_5	0.26	0.02	0.03	P_2O_5	0.00	0.01
Cl	0.01	0.01	0.03	Cl	0.04	0.05
Total	94.97	94.93	92.61	Total	84.95	86.28

注: 0.00表示低于检测限;FeO代表TFe;分析精度为0.0n%。

7 结 论

(1)根据张家洼矿床矿物组合和围岩岩性,认 为其在内外蚀变带发育有不同种类的矿物,内蚀变 带发育钙砂卡岩矿物,包括:钙铁榴石-钙铝榴石、 透辉石-钙铁辉石、浅闪石、绿帘石等;外蚀变带发 育典型镁砂卡岩矿物包括金云母、韭闪石、镁角闪 石、蛇纹石及绿帘石等。镁质砂卡岩更易富集铁质 形成大规模铁矿。出现不同种类矿物的原因是接 触带围岩中MgO含量的差异,具有明显分带是由围 岩在不同位置的岩性差异以及Ca²⁺和Mg²⁺活性差异 所导致的。

(2)张家洼铁矿在形成过程中其环境不断变 化,处于一种非完全封闭的平衡条件中。干矽卡岩 阶段其经历了弱酸性的环境,而后环境成震荡变化 逐渐氧化且碱性增高,Fe质在这种环境中不断萃取 富集,并在退化蚀变阶段早期少量沉淀,与其他含 水矿物共生于砂卡岩中;在退化蚀变阶段中后期偏 向碱性的环境条件下铁质大量富集沉淀形成富铁 矿石;随着磁铁矿的继续沉淀,流体氧逸度降低逐 渐转换成较强还原的环境生成黄铁矿、黄铜矿等金 属硫化物。

致谢:野外地质工作期间得到了鲁中矿业有限 公司各位领导和工程师的大力支持和帮助;中国地 质科学院矿产资源研究所矿物岩石学研究室陈振 宇老师在论文实验过程中给予了热情的指导和帮助;感谢审稿专家谢桂青研究员和编辑部王学明老师给论文提出的许多建设性的指导和帮助!

参考文献(References):

- Einaudi M T, Burt D M. A special issue devoted to skarn deposits: Introduction-terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982,77(4):745-754.
- [2] Meinert L D, Dipple G M, Nicolescu S. World skarn deposit[J]. Society of Economic Geologists, Inc. Economic Geology 100th Anniversary Volume, 2005 :299–336.
- [3] 翟裕生,姚书振,蔡克勤. 矿床学[M]. 北京:地质出版社,2011: 96-122.

Zhai Yusheng, Yao Shuzhen, Cai Keqin. Mineral Deposits[M]. Beijing: Geological Publishing House, 2011: 96–122(in Chinese with English abstract).

[4] 赵一鸣. 环太平洋地区的夕卡岩矿床[J]. 矿床地质, 1991, 10 (1): 41-51.

Zhao Yiming. Skarn deposits in the Circum- Pacific Belt[J]. Mineral Deposits, 1991, 10(1): 41-51(in Chinese with English abstract).

[5] 张招崇, 侯通, 李厚民, 等. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5): 1189-1204.
Zhang Zhaochong, Hou Tong, Li Houmin, et al. Enrichment mechanism of iron in magnatic- hydrothermal system[J]. Acta Petrologica Sinica, 2014, 30(5): 1189- 1204(in Chinese with English abstract).

[6] 赵一鸣, 林文蔚,毕承思,等. 中国矽卡岩矿床[M]. 北京: 地质出版社, 1990: 1-354.

Zhao Yiming, Lin Wenwei, Bichengsi, et al. Skarn Deposits of China[M]. Beijing: Geological Publishing House, 1990: 1–354(in Chinese with English abstract).

[7] 李厚民, 陈毓川, 李立兴, 等. 中国铁矿成矿规律[M]. 北京: 地质 出版社,2012.

Li Houmin, Chen Yuchuan, Li Lixing, et al. Metallogeny of Iron Deposits in China[M]. Beijing: Geological Publishing House, 1990: 1–354(in Chinese with English abstract).

- [8] 宗信德, 贾东亮, 刘超, 等. 山东莱芜接触交代--热液铁矿矿体形态研究[J]. 山东国土资源, 2010, 26(11): 13-18.
 Zong Xinde, Jia Dongliang, Liu Chao, et al. Study on ore occurrence of Laiwu contact and geothermal metasomatic iron deposit in Shandong Province[J]. Land & Resources of Shandong, 2010, 26(11): 13-18(in Chinese with English abstract).
- [9] 施允亨, 宋世民. 山东莱芜铁矿围岩蚀变及其对成矿的影响[J]. 山东地质, 1987, 3(1): 91-102.
 Shi Yunheng, Song Shimin. Wall rock alteration of the Laiwu iron deposit, Shandong, and its influence on the iron mineralization[J]. Shandong Geology, 1987, 3(1): 91-102(in Chinese with English abstract).
- [10] 宗信德, 李卫, 赵宏生, 等. 山东莱芜接触交代-热液铁矿多因素成矿及特征[J]. 地质与资源, 2011, 20(5): 370-374.
 Zong Xinde, Li Wei, Zhao Hongsheng, et al. The contact metasomatic- hydrothermal iron deposit in Laiwu, Shandong Province: Multi-factor metallogensis[J]. Geology and Resources, 2011, 20(5): 370-374(in Chinese with English abstract).
- [11] 杨昌彬, 宗信德, 卢铁元,等.浅析莱芜接触交代-热液铁矿的双 交代渗滤作用[J]. 地质找矿论丛, 2006, 21: 85-89.
 Yang Changbin, Zong Xinde, Lu Tieyuan, et al. Preliminary analysis of metasomatism infiltration of Laiwu style contact Fe deposits[J]. Contributions to Geology and Mineral Resources Research, 2006, 21: 85-89(in Chinese with English abstract).
- [12] 宗信德,徐建,卢铁元,等.山东莱芜矿山矿田铁矿产出构造、矿体型式及大---大中型矿床赋存规律[J].地质找矿论丛,2010,25
 (3):234-240.

Zong Xinde, Xu Jian, Lu Tieyuan, et al. Strucutral types, ore body styles and occurrence pattern of large– medium iron deposits in Kuangshan iron ore field, Shandong Province[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(3): 234–240 (in Chinese with English abstract).

- [13] 董振信. 山东莱芜接触交代型铁矿中蚀变矿物共生组合及其标型特征[J]. 地质论评, 1982, 28(1): 38-46.
 Dong Zhenxin. The assemblages of altered minerals and some of their typomorphic peculiarities in contact metasomatic iron deposits in the Laiwu area, Shandong Province[J]. Geological Review, 1982, 28(1): 38-46(in Chinese with English abstract).
- [14] 韩鎏. 山东莱芜含矿岩体成因及其与铁矿的关系[D]. 北京: 中国地质大学(北京), 2004.

Han Liu. Genesis Relationship with the Iron Mine of Ore-bearing

Rock Mass in Laiwu of Shandong Province[D]. Beijing: China University of Geosciences in Beijing, 2004(in Chinese with English abstract).

[15] Goldfarb R J, Taylor R D, Collins G S, et al. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 2014, 25: 48–102.

费详惠等:山东张家洼砂卡岩型铁矿矿物学特征及其对成矿环境的指示意义

- [16] Guo P, Santosh M, Li S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: An integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24: 1172–1202.
- [17] 宋明春, 李洪奎. 山东省区域地质构造演化探讨[J]. 山东地质, 2001, 17(6): 12-21.
 Song Mingchun, Li Hongkui. Study on regional structural evolution in Shandong Province[J]. Shandong Geology, 2001, 17 (6): 12-21(in Chinese with English abstract).
- [18] Yang L, Santosh M, Li S R, et al. Stable isotope geochemistry and Re– Os ages of the Yinan gold deposit, Shandong Province, northeastern China[J]. International Geology Review, 2014, 56(6): 695–710.
- [19] 李洪奎, 杨永波, 耿科, 等. 山东重大基础地质问题研究进展[J]. 岩石学报, 2013, 29(2): 594-606.
 Li Hongkui, Yang Yongbo, Geng Ke, et al. Research progress on

major basic geological problems in Shandong Province[J]. Acta Petrologica Sinica, 2013, 29(2): 594–606(in Chinese with English abstract).

[20] 李三忠, 王金铎, 刘建忠, 等. 鲁西地块中生代构造格局及其形成背景[J]. 地质学报, 2005, 4: 487-497.

Li Sanzhong, Wang Jinduo, Liu Jianzhong, et al. Mesozoic structure and its tectonic setting in the Western Shandong Block[J]. Acta Geologica Sinica, 2005, 4: 487–497(in Chinese with English abstract).

 [21] 张锡明,张岳桥,季玮.山东鲁西地块断裂构造分布型式与中生 代沉积-岩浆-构造演化序列[J].地质力学学报,2007,13(2): 170-172.

Zhang Ximing, Zhang Yueqiao, Ji Wei. Fault distribution patterns of the Luxi block, Shandong, and Mesozoic sedimentary-magmatic- structural evolution sequence[J]. Journal of Goemachnics, 2007, 13 (2): 170–172(in Chinese with English abstract).

[22] 郭文魁, 刘兰笙, 俞志杰. 中国东部成矿域与成矿期的基本特征[J]. 矿床地质, 1982, 1(1): 2-14.
Guo Wenkui, Liu Lansheng, Yu Zhijie. The foundamental features of metallogenic megaprovince and epochs of Eastern China[J]. Mineral Deposits, 1982, 1(1): 2-14(in Chinese with English abstract).

[23] 华仁民, 毛景文. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 1999, 18(4): 300-308.

Hua Renmin, Mao Jingwen. A preliminary discussion on the Mesozoic metallogenic explosion in East China[J]. Mineral

质

Deposits, 1999, 18(4): 300-308(in Chinese with English abstract). [24] 姚培慧. 中国铁矿志[M]. 北京: 冶金工业出版社,1993.

Yao Peihui. Records of China's Iron Ore Deposits[M]. Beijing: Metallurgic Industry Press, 1993(in Chinese with English abstract).

- [25] Ying J F, Zhou X H, Zhang H F. The geochemical variations of mid-Cretaceous lavas across western Shandong Province, China and their tectonic implications[J]. Int. J. Earth Sci. (Geol Rundsch), 2006, 95: 68 - 79.
- [26] 杨承海. 鲁西中生代高镁闪长岩的年代学和地球化学一对华北 克拉通岩石圈演化的制约[D]. 吉林: 吉林大学,2007.

Yang Chenghai. Chronology and Geochemistry of Mesozoic High– Mg Diorites in Western Shandong: Constraints on Lithospheric Evolution of the North China Craton[D]. Jilin: Jilin University, 2007(in Chinese with English abstract).

[27] 鲁中冶金矿山公司.山东省莱芜市张家洼铁矿 II 矿床资源储量 核实报告[R].2004.

Minmetals Luzhong Mining Corporation. A verification report about the resource reserve of the ore depositl II in Zhangjiawa, Laiwu, Shandong Province[R].2004(in Chinese).

[28] 路远发. Geokit: 一个用 VBA 构建的地球化学工具软件包[J]. 地 球化学, 2004, 33(5): 459-464.

Lu Yuanfa. Geokit—A geochemical toolkit for Microsoft Excel[J]. Geochemica, 2004,33(5):495–464(in Chinese with English abstract).

[29] 林师整. 磁铁矿矿物化学、成因及演化的探讨[J]. 矿物学报, 1982(3): 166-174.

Lin Shizheng. A contribution to the chemistry, origin and evolution of magnetite[J]. 1982(3): 166–174 (in Chinese with English abstract).

- [30] 徐国风, 邵洁涟. 磁铁矿的标型特征及其实际意义[J]. 地质与勘探, 1979(3):30-37.
 Xu Guofeng, Shao Jielian. Typomorphic characteristics of magnetite and its practical significance[J].Gology and Prospecting, 1979.(3):30-37(in Chinese).
- [31] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Miner Deposita, 2011, 46: 319–335.
- [32] Leaker B E, Woolley A R, Arps C E S. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Mineral and Mineral Namens[J]. American Mineralogist, 1997, 82:1019–1037.
- [33] Foster M D. Interpretation of the composition of trioctahedral micas[J]. U. S. Geol. Surey, Prof, 1960,354:11–49.
- [34] 潘兆橹,等.结晶学与矿物学上[M].北京:地质出版社,1993.
 Pan Zhaolu, et al. Crystallography and Mineralogy[M]. Beijing: Geological Publishing House, 1993(in Chinese).
- [35] 潘兆橹, 等. 结晶学与矿物学下[M]. 北京: 地质出版社, 1994.

Pan Zhaolu, et al. Crystallography and Mineralogy[M]. Beijing: Geological Publishing House, 1994(in Chinese).

- [36] Einaudi M T, Meinert L D, Newberry R J. Skarn deposits[J]. Economic Geology, 1981, 75: 317–391.
- [37] FranchiniM B. First Occurrence of Ilvaite in a Gold Skarn Deposit[J]. Economic Geology, 2002, 97(5): 1119–1261.
- [38] 赵一鸣, 林文蔚,毕承思,等.中国矽卡岩矿床基本地质特征[J].中 国地质科学院院报, 1986, 14: 59-87.

Zhao Yiming, Lin Wenwei, Bi Chengsi, et al. Nasic geological characteristics of skarn deposits of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1986, 14: 59–87(in Chinese with English abstract).

[39] 梁祥济. 中国砂卡岩和砂卡岩矿床形成机理的实验研究[M].北京:学苑出版社, 2000.Liang Xiangji. Experimental Studies on the Mechanism of the

Formation of Skarns and Skarn Ore Deposits in China[M]. Beijing: Academy Press, 2000(in Chinese with English abstract).

- [40] Helgeson H C. Reaction rates in hydrothernal flow systems[J]. Economic Geology, 1970, 65: 299–303.
- [41] 段超, 李延河, 袁顺达, 等. 宁芜矿集区凹山铁矿床磁铁矿元素地 球化学特征及其对成矿作用的制约[J]. 岩石学报, 2012, 28(1): 244-257.

Duan Chao, Li Yanhe, Yuan Shunda, et al. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore– forming[J]. Acta Petrologica Sinica, 2012, 28(1): 244–257(in Chinese with English abstract).

- [42] 赵海杰,谢桂清,魏克涛,等. 湖北大冶铜绿山铜铁矿床夕卡岩 矿物学及碳氧硫同位素特征[J]. 地质论评, 2012, 58(2): 79-395.
 Zhao Haijie, Xie Guiqing, Wei Ketao, et al. Skarn mineral and stable isotopic characteristics of Tonglushan Cu- Fe deposit in Hubei Province[J]. Geological Review, 2012, 58(2): 79-395(in Chinese with English abstract).
- [43] Nakano T. Pyroxene geochemistry as an indicator for skarn metallogenesis in Japan[C]//Lentz D R(ed.). Mineralized instrusion- related skarn systems. Mineralogical Association of Canada Short Course, 1998, 26: 147`167.
- [44] 高雪, 邓军, 孟健寅, 等. 滇西红牛砂卡岩型铜矿石榴子石特征[J]. 岩石学报, 2014, 30(9): 2695-2708.
 Gao Xue, Deng Jun, Meng Jianyin, et al. Characteristics of garnet in the Hongniu skarn copper deposit, western Yunnan[J]. Acta Petrologica Sinica, 2014, 30(9): 2695-2708 (in Chinese with English abstract).
- [45] 林文蔚, 赵一鸣, 将崇俊. 砂卡岩矿床中共生单斜辉石-石榴子 石特征及其地质意义[J]. 矿床地质, 1990, 9(3): 195-207.
 Lin Wenwei, Zhao Yiming, Jiang Chongjun. Characteristics of paragenetic clinopyroxene- garnet pairs in skarn deposits and their geological significance[J]. Mineral Deposits, 1990, 9(3): 195-207(in Chinese with English abstract).

[46] 艾永富,金玲年.石榴石成分与矿化关系的初步研究[J].北京大学学报:自然科学版,1981,1:83-90.

Ai Yongfu, Jin Lingnian. The study of the relationship between the mineralization and the garnet in the skarn ore deposits[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1981,1:83–90 (in Chinese with English abstract).

[47] 赵斌,李统锦,李昭平. 夕卡岩形成的物理化学条件研究[J].地 球化学, 1983, (5):3 15-319.

Zhao Bin, Li Tongjin, Li Zhaoping. Experimental study of physicochemical conditions of the formation of skarns[J]. Geochimica, 1983, (5): 315–319(in Chinese with English abstract).

- [48] 梁祥济. 钙铝—钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4): 342-352.
 Liang Xiangji. Garnets of grossular- andradite series: Their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 1994, 13(4): 342-352(in Chinese with English abstract).
- [49] Kwak T A P. Hydrothermal alteration in carbonate-replacement deposits[J]. Geological Association of Canada Short Course Notes, 1994,11: 381–402.
- [50] Lu H Z, Liu Y M, Wang C L, et al. Mineralization and fluid inclusion study of the Shizhuyuan W– Sn– Bi– Mo– Fe skarn deposit, Hunan, China[J]. Economic Geology, 2003, 98: 955–974.
- [51] 姚晓峰, 叶天竺, 唐菊兴, 等. 西藏甲玛矿床硅钙界面对砂卡岩成 岩及多金属成矿的影响[J]. 中国地质, 2014, 41(5): 1577-1593. Yao Xiaofeng, Ye Tianzhu, Tang Jvxing, et al. The effect of Si-Ca interface on skarn formation and pollymetallic mineralization in the Jiama deposit, Tibet[J]. Geology in China, 2014, 41(5): 1577-1593(in Chinese with English abstract).
- [52] 石平方, 於崇文. 化学动力学在地球化学中的某些应用[J]. 地球科学——武汉地质学院学报, 1986, 11(4): 341-349.
 Shi Pingfang, Yu Chongwen. Some applications of chemical kinetics in geochemistry[J]. Earth Science—Journal of Wuhan College of Geology, 1986, 11(4): 341- 349(in Chinese with English abstract).
- [53] Jamtveit B, Andersen T. Contact metamorphism of layered shale– carbonate sequences in the Oslo rift: III. The nature of skarn– forming gluids[J]. Economic Geology, 1993, 88: 1830–1849.

[54] 陈艳, 张招崇. 砂卡岩型铁矿的铁质来源与迁移富集机理探 讨[J].岩矿测试, 2012, 31(5): 889-897.

Chen Yan, Zhang Zhaochong. Study on source, transport and the enrichment mechanism of iron in iron skarn deposit[J]. Rock and Mineral Analysis, 2012, 31(5): 889– 8972(in Chinese with English abstract).

- [55] 于玉帅,杨竹森,刘英超,等. 西藏尼雄矿田日阿铜矿床砂卡岩 矿物学特征及地质意义[J]. 矿床地质, 2012, 31(4): 775-790. Yu Yushuai, Yang Zhusen, Liu Yingchao, et al. Mineralogical characteristics of skran in Ri'a copper deposit of Nixiong orefield, Tibet, and their geological significance[J]. Mineral deposits, 2012, 31(4): 775-790(in Chinese with English abstract).
- [56] 张志欣, 杨富全, 罗五仓, 等. 新疆阿尔泰乌吐布拉克铁矿床砂 卡岩矿物特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2): 267-280.

Zhang Zhixin, Yang Fuquan, Luo Wucang, et al. Skarn mineral characteristics of the Wutubulake iron deposit in Altay, Xinjiang, and their geological sighnificance[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 267–280(in Chinese with English abstract).

- [57] 洪为,张作衡,赵军,等. 新疆西天山查岗诺尔铁矿床矿物学特征及其地质意义[J]. 岩石矿物学杂志, 2012, 31(2): 191-211.
 Hou Wei, Zhang Zuoheng, ZhaoJun, et al. Mineralogy of the Chagangnuoer iron deposit in Western Tianshan Mountains, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica, 2012, 31(2): 191-211(in Chinese with English abstract).
- [58] 赵劲松, R. J. Newberry. 对柿竹园砂卡岩成因及其成矿作用的 新认识[J]. 矿物学报, 1996, 16(4): 442-449. Zhao Jinsong, Newberry RJ. Novel knowledge on the origin and mineralization of skarn from Shizhuyuan[J]. Acta Mineralogica Sinica, 1996, 16(4): 442-449(in Chinese with English abstract).
- [59] Patrick N, Thomas A, Jeffrey L M, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore geology reviews, 2014, 61: 1–32.
- [60] Perkins E H, Brown T H, Berman R G. PTX- system: Three programs for calculation of pressure- temperature- composition phase diagrams[J]. Computers and Geoscience, 1986, 12: 749–755.

Mineralogy of the Zhangjiawa skarn iron deposit in Shandong Province and its implications for metallogenic environment

FEI Xiang-hui¹, ZHANG Zhao-chong¹, HAN Liu^{1,2}

(1. Faculty of Geosciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China; 2. Shandong Bureau of Geology and Mineral Resources, Jinan 250014, Shandong, China)

Abstract: The Zhangjiawa skarn iron deposit with high-grade iron is located in Laiwu of Shandong Province within southeastern North China Craton. The Laiwu hydrothermal metasomatic iron deposit is located at the unconformity between Carboniferous Benxi Formation and Ordovician Majiagou Formation and near the contact zone between Majiagou Formation and Late Yanshanian diorite, with the mineral reserves reaching a large-size deposit. Recent researches show that mineral compositions are somewhat different with the distance from the contact zone. The inner zone consists of calcium skarn minerals such as garnet, pyroxene, amphibole and episode, while the outer zone is composed of magnesium skarn minerals such as phlogopite and serpentine. The zoning structures of garnets and pyroxene in the Zhangjiawa iron deposit indicate that the ore-forming environment of the deposit changed gradually with the evolution of mineralization. The environment was somewhat reducing and acid at the beginning and, with the growth of silicate minerals and magnetite, became oxidative and alkaline. Finally, polymetallic sulfides crystallized and the environment became acid and reducing.

Key words: skarn; mineralogy; zoning structure; sequence of mineral formation; physical and chemical conditions

About the first author: FEI Xiang-hui, female, born in 1992, master candidate, majors in mineralogy, petrology and mineral deposits; E-mail: fay_feixianghui@163.com.

About the corresponding author: ZHANG Zhao-chong, male, born in 1965, professor, supervisor of doctor candidates, engages in the study of igneous petrology, geochemistry and economic geology; E-mail:zczhang@cugb.edu.cn.