第 41 卷第6期	中 国 地 质	Vol.41, No.6
2014年12月	GEOLOGY IN CHINA	Dec., 2014

付建飞, 王恩德, 夏建明, 等. 辽宁眼前山铁矿元素地球化学特征与沉积古环境研究[J]. 中国地质, 2014, 41(6): 1929–1943. Fu Jianfei, Wang Ende, Xia Jianming, et al. Element geochemical characteristics and sedimentary palaeoenvironment of the Yanqianshan iron deposit in Liaoning Province[J]. Geology in China, 2014, 41(6): 1929–1943(in Chinese with English abstract).

辽宁眼前山铁矿元素地球化学特征 与沉积古环境研究

付建飞 王恩德 夏建明 门业凯 陈慧钧 尤欣慰 成 林

(东北大学资源与土木工程学院,辽宁 沈阳 110819)

提要:辽宁眼前山铁矿位于鞍山地区南北向和东西向铁矿构造变形带的复合部位,为鞍山地区鞍山式铁矿床的典型 代表。本文对眼前山铁矿的岩石学、矿物学进行了研究,对该区铁建造和围岩的主量和微量元素地球化学进行了分 析。该区铁建造以条带状为主,少量为块状,其顶底板围岩及矿体夹层主要为太古宇鞍山群千枚岩。主量分析结果 表明,铁矿石主要由SiO₂和铁的氧化物组成,Al₂O₃含量较低,LOI较大。矿石微量元素分配曲线属于右倾型,强不相 容元素和大离子亲石元素富集,具有显著的Eu正异常,是海底高温热液(>300℃)与海水混合的结果,表明了该区 BIF形成与海底热液活动关系密切。该区BIF中富集重稀土元素,Y/Ho大于26,La和Eu具有正异常。由于缺少陆 源碎屑物质,要形成稳定的条带状构造,推断该区的BIF形成于海水深度大于200 m的浅海环境,形成机制应该是富 含铁的海底热液运移到相对浅水区发生氧化沉积所致。通过A-C-FM原岩恢复,结合Zr/TiO₂-Ni图解可知千枚岩 为变质沉积岩;Sm/Nd比值也显示了沉积岩的特点。该区千枚岩中Th的变化范围为7.9×10⁻⁶~22.5×10⁻⁶,平均为 15.8×10⁻⁶;La的变化范围为17.9×10⁻⁶~71.7×10⁻⁶,平均为38.4×10⁻⁶;La/Sc的平均值为2.3;Th/Sc的平均值为1.0;La/ Th的平均值为2.4。这些值都接近大陆岛弧沉积岩特征。综合分析认为,眼前山铁矿成矿环境相当于弧后盆地。 **关 键 词**:眼前山铁矿;BIF建造;沉积古环境;地球化学;鞍本地区

中图分类号:P618.31 文献标志码:A 文章编号:1000-3657(2014)06-1929-15

1 引 言

BIF 是指含铁 15%以上,以化学沉积方式形成 的具有薄层状或层纹状(条带状)构造的一套富含 铁的沉积岩,称为条带状含铁建造。BIF 是全球铁 矿石的主要来源,约占全球铁矿石产量的90%^[1]。 BIF 铁矿床据形成时代及岩性可分为阿尔戈马型 (Algoma)、苏必利尔湖型(Superior)。Algoma型主 要形成于太古宙,铁矿床与火山岩关系密切,主要 赋存于太古宙绿岩带中。Superior型主要形成于新 太古代和古元古代,铁矿床与正常沉积岩关系密 切,形成于稳定的被动边缘^[2]。全球BIF铁矿床中以 Superior型最为重要^[3-5]。

全球大型BIF铁矿床主要分布于已知太古宇克 拉通中,特别是边缘地区,中国BIF铁矿床主要分布 于华北克拉通中。鞍本地区位于华北克拉通的东 北缘,该地区为中国重要的铁建造富集区域之一, 区内包括东西鞍山、大孤山、齐大山、弓长岭、南芬、

收稿日期:2014-09-08;改回日期:2014-10-09

基金项目:国家973项目(2012CB416801)、国家自然科学基金项目(41372098)、中央高校基本科研业务费专项资金项目 (N120401003)联合资助。

作者简介:付建飞,男,1973年生,博士,从事矿产资源评价与探测研究; E-mail: fujianfei@mail.neu.edu.cn。

质

中

歪头山、思山岭眼前山等大型-特大型铁矿床。从 建国初期至今,中国地质学家在该区进行了大量全 面、深入的研究工作^[6-14],研究认为铁矿床主要赋存 于鞍山群内,并把鞍山群地层按岩相学和变质程度 从老到新划分为茨沟组、大峪沟组和樱桃园组,从 茨沟组到樱桃园组火山沉积岩逐渐减少,陆屑沉积 岩增多¹⁸;近年来,高精度定年技术的迅速发展,为 精确厘定 BIF 型铁矿床的形成时代提供了契机。最 近大量的年代学测试表明太古代鞍山群地层被限 制在25亿年左右,反映了茨沟组、大峪沟组和樱桃 园组地层为同期异相[15-16]。眼前山铁矿作为鞍本地 区的大型铁矿床,位于鞍山地区南北铁矿构造变形 带和东西铁矿构造变形带的复合部位(图1),为鞍 本地区典型铁矿床,但很少受到前人关注,本次研 究在眼前山铁矿岩石学和地球化学分析的基础上, 拟对该矿床的沉积环境、构造背景进行系统探讨。

2 矿区地质

眼前山铁矿床主要赋存于太古宙鞍山群樱桃 园组地层中。该区主要岩石为千枚岩和磁铁石英 岩(图2),矿区变质程度属于低绿片岩相的区域动 力热液变质作用。樱桃园组地层自下而上为:底部 千枚岩、中部闪石磁铁石英岩、磁铁石英岩段和上 部千枚岩段(图3)。底部千枚岩:由千枚岩、云母石 英片岩、绿泥石英片岩、绿泥角闪岩等组成。中部 闪石磁铁石英岩、磁铁石英岩段:由磁铁石英岩、阳 起磁铁石英岩、透闪阳起磁铁石英岩、石榴阳起磁 铁石英岩、绿泥磁铁石英岩、磁铁假像赤铁石英岩、 赤铁石英岩等组成,并夹有石英绿泥片岩,局部见 有零星小的富铁矿体。中部与其上部千枚岩呈整 合接触,常见有方解石小脉穿插。上部千枚岩呈整 合接触,常见有方解石小脉穿插。上部千枚岩呈整 合接触,常见有方解石小脉穿插。上部千枚岩段: 由千枚岩、绿泥千枚岩和磁铁石英岩、闪石磁铁石 英岩组成。该岩段以千枚岩为主,岩石呈灰白-灰 黑色,致密千枚状构造,褶皱和小揉皱发育。

矿区位于鞍本地区寒岭断裂的南侧,断层为区 域内主要的控矿构造,3条北西西向矿带被北东向 或近南北向断层错断,形成大的铁矿块,具体表现 为:眼前山铁矿西邻关门山铁矿,东邻谷首峪铁矿, 这3个铁矿区被北东向走滑断层所分割(图4)。矿 区断层主要可以分为2期,一期为走向断层,其主要 发育于矿区的西北部,断层倾向与含矿岩系倾向一 致,使矿体局部变薄,断层性质为正断层。第二期 断层为斜向断层和倾向断层,第二期断层切割第一 期断层,断层性质为张扭性走滑断层(图4)。岩石

图1 鞍山地区地质简图

1一第四系及中生代花岗岩;2一新元古代钓鱼台组;3一辽河岩群浪子山岩组;4一鞍山岩群樱桃园岩组;5一铁矿体;6一变辉长-辉绿岩; 7一太古宙花岗岩;8一断裂

Fig. 1 Geological sketch map of Anshan area

1-Quaternary and Mesozoic granites; 2-Late Proterozoic Diaoyutai Formation.; 3-Liaohe rock group of Langzishan Formation; 4-Anshan rock group of Yintaoyuan Formation; 5-Iron ore; 6-Metagabbro-metadiabase; 7-Archean granite; 8-Fracture

图 2 眼前山铁矿地质平面图 1—铁矿体;2—千枚岩;3—正长斑岩;4—花岗岩;5—剖面线;6—断层;7—采样线;8—铁矿石采样点;9—千枚岩采样点 Fig. 2 Geological map of the Yanqianshan iron deposit 1–Iron orebody; 2–Phyllite; 3–Syenite porphyry; 4–Granite; 5–Section line; 6–Fault; 7–Sampling line; 8–Sampling point; 9–Sampling point of phyllite

中常见复杂的褶皱,可定出二期片理,后一期系韧 性变形带同期的产物^{117]}。 矿区太古宙花岗岩按其结构、构造及组成成分 的不同,分为片麻状花岗岩、眼球状花岗岩和混合 花岗岩,以片麻状花岗岩为主。岩脉以酸性和中性 为主,见有闪长岩、花岗斑岩、闪长玢岩、伟晶岩脉、 石英岩脉和碱性正长岩等。

眼前山铁矿总体走向 270°~300°,由 Fe1、Fe2、 Fe3 3个矿体组成,以Fe1 矿体为主(图2)。矿区的 岩、矿石蚀变以石榴阳起石化、闪石化和绿泥石化 为主,普遍呈硅化,其次为碳酸盐化、黄铁矿化和菱 铁矿化等现象,硅化强,多呈石英团块状或石英细 脉状,穿插矿体和围岩。方解石与菱铁矿相伴出 现,呈细脉状沿节理裂隙不均匀分布,黄铁矿呈散 点浸染或细脉状沿节理裂隙分布。

3 样品采集、测试及分析结果

3.1 岩矿(相)学

本次研究主要以眼前山铁矿条带状矿石、块状 矿石、千枚岩为主要对象,铁矿石采自矿区 Fel 矿 体,千枚岩采自矿体夹层和矿体上层,采样位置见 上图(图2)。千枚岩与矿体界线明显,且二者产状 一致(图5)。

该区铁矿石主要以磁铁石英岩为主,该类矿石 呈条带状构造,主要由石英、磁铁矿组成,磁铁矿呈 自形、半自形或他形粒状,石英呈半自形或他形粒 状,在矿石中局部见有脉状方解石、脉状黄铁矿和 绿泥石(图6-A~D)。

图4 眼前山铁矿矿区构造图 1—钓鱼台组;2—第四系;3—太古代花岗岩;4—樱桃园组; 5—辉绿岩;6—铁矿带;7—断层;8—矿区位置 Fig.4 Structural map of the Yanqianshan Iron deposit 1–Diaoyutai Formation; 2–Quaternary; 3– Archean granite; 4–Yintaoyuan Formation; 5– Diabase; 6–Iron ore zone; 7–Fault; 8–Ore district

其他矿石包括菱铁磁铁石英岩、阳起磁铁石英 岩和磁铁假象赤铁石英岩。菱铁磁铁石英岩主要 由石英、菱铁矿、赤铁矿、磁铁矿组成,菱铁矿主要 分布于磁铁矿边缘,可见到菱铁矿包裹磁铁矿现 象。表明菱铁矿是由磁铁矿后期改造形成(图6-E、 F)。阳起磁铁石英岩主要由磁铁矿、石英、阳起石、 透闪石及少量方解石、石榴子石、赤铁矿等组成,阳 起石主要分布于暗色条带中(图6-G、H)。磁铁假 像赤铁石英岩主要由磁铁假像赤铁矿、磁铁矿、石 英和少量赤铁矿、褐铁矿、透闪石组成。

千枚岩:该区千枚岩分布于铁矿层上部、下部, 与中部铁矿层呈整合接触关系。其主要组成矿物 为石英、云母和绿泥石,含少量的长石(图7-A、 B)。局部因黑云母增多为二云千枚岩,多分布在闪 长岩脉外接触带和构造断裂带附近。千枚岩中构 造至少分为3期构造,早期的S0构造受S1构造的影 响呈现为S型,且S0与S1成近垂直,表明其似乎产 出于褶皱的顶部,局部地区形成片岩(图7-C、D)。

3.2 分析方法

本次样品测试单位为"澳实分析检测(广州)有

图 5 假象赤铁矿与千枚岩的接触关系 Fig.5 Contact relationship between martite and phyllite

限公司",全岩采用ME-XRF06化验分析(偏硼酸锂 溶解,X荧光光谱分析,各氧化物检测范围为0.01% ~100%);微量和稀土元素采用ME-MS61r化验分析 (四酸消解,质谱/光谱仪综合分析)。

3.3 分析结果

3.3.1 主量元素

矿石主量元素结果见表1。从表中可知,磁铁 石英岩主要由SiO₂和铁的氧化物组成,两者之和达 到83.3%~94.5%,平均为91.6%,两者呈明显的负相 关,其中SiO₂含量为35.33%~52.57%,平均为 43.2%。Al₂O₃含量非常低,平均仅0.43%;部分样品 CaO含量较高,从0.32%~4.39%,平均为1.89%,原 因为磁铁石英岩存在有后期的脉状碳酸盐岩;MgO 含量从0.39%~6.14%,平均为2.35%;LOI含量从 -0.54%~8.47%,平均为2.4%,原因为部分矿石为菱 铁磁铁石英岩;其他氧化物含量较低。

千枚岩中SiO₂含量较高,为58.09%~64.21%,平 均含量为60.8%;Al₂O₃含量次之,平均含量17.96%; 再次是铁氧化物,平均含量6.8%;MgO含量平均为 1.8%,明显高于含量仅为0.7%的CaO;K₂O平均含 量为4.1%;Na₂O平均含量为1.4%;其他氧化物含量 较低。

3.3.2 微量元素

眼前山磁铁石英岩和千枚岩的岩石组合的微 量元素分析结果见表 1。

铁矿石微量元素原始地幔标准化蛛网图属于 右倾型(图8)。大离子亲石元素 Rb、Ba、U、K 明显 富集,但 Sr 中等亏损;高场强元素中只有 P 富集,而 Zr、Nb、Ti 亏损。Cr/Ni 比值大于1,说明与火山作用

图6 磁铁石英岩手标本及镜下特征

A-含脉状黄铁矿的磁铁石英岩手标本; B-含脉状黄铁矿的磁铁石英岩反射光照片; C-含脉状碳酸岩的绿泥磁铁石英岩手标本; D-含脉 状碳酸岩的绿泥磁铁石英岩单偏光照片(磁铁矿物在暗色条带中较粗大,而在石英条带中颗粒较小,条带被后期碳酸盐岩脉切断); E-菱铁磁 铁石英岩手标本; F-菱铁磁铁石英岩反射光照片(含菱铁矿的磁铁矿矿石,菱铁矿分布于磁铁矿边缘或缝隙中,是后期交代成因); G-阳起磁 铁石英岩手标本; H-阳起磁铁石英岩正交偏光照片(由阳起石和粗粒磁铁矿物组成暗色条带,细粒磁铁矿物和石英组成明亮条带) Fig.6 Hand specimen and microscopic characteristics of magnetite quartzite

A-Hand specimen of magnetite-quartzite with pyrite veins; B-Microscopic photos of magnetite-quartzite with pyrite veins; C-Hand specimen of chlorite magnetite-quartzite with carbonate veins; D- Microscopic photo of chlorite magnetite-quartzite with carbonate veins (magnetite material exhibits big particles in the dark matter stripes, and assumes small particles in quartz-based Meishoku stripe, with the stripe cut off by late carbonate veins); E-Hand specimen of siderite magnetite quartzite; F-Microscopic photo of siderite magnetite quartzite (magnetite quartzite exists with siderite, and siderite is distributed at the edges or in gaps of magnetite, formed by the late replacement); G-Hand specimen of actinolite magnetite quartzite (the dark stripe is composed of tremolite and coarse-grained magnetite, and the bright stripe is composed of fine-grained magnetite and quartz material)

图7二云千枚岩手标本与镜下特征

A,B 二云母石英千枚岩手标本(B 为正交偏光照片);C,D 二云母石英片岩(D 为正交偏光照片) Fig. 7 Hand specimen and microscopic photo of biotite and muscovite phyllite A-Hand specimen of biotite and muscovite phyllite; B-Microscopic photo of biotite and muscovite phyllite; C- Hand specimen of quartz schist with biotite and muscovite; D- Microscopic photo of quartz schist with biotite and muscovite

关系密切。

千枚岩微量元素原始地幔标准化蛛网图属于 右倾型(图9),(Rb/Yb)_№值为6.11~12.2,平均值为 9.08,为强不相容元素富集型。大离子亲石元素 Rb、Ba、U、K、Th明显富集,但Sr亏损;高场强元素 中Nb、Ti、P、Zr、Hf亏损。

3.3.3 稀土元素

(1) 千枚岩和铁矿石都表现为轻稀土富集, LREE/HREE 比值大于 1。千枚岩中轻重稀土分异 程度较强,LREE / HREE 比值范围为7.83~20.4,平 均为12.5; 矿石中 LREE / HREE 分异程度下降,比 值变小,除闪石磁铁矿为15.57外,其他的值都在8 以下,平均为6.44。

(2)铁矿石和千枚岩稀土元素 PAAS 标准化配 分型式图(图 10~11)显示铁矿石稀土元素整体亏 损,标准化后数据几乎全部小于1,特别是菱铁磁铁 矿和块状磁铁矿中的稀土总量低;而在千枚岩中稀

土元素总量相对较高。

(3)铁矿石均具有十分明显的正铕异常(δEu为 1.48~3.14), Ce具有弱正异常(δCe为1.04~1.21), 这 与海底喷气沉积产物的正铕异常明显、铈异常不明 显的特征一致。千枚岩中无明显Eu异常(δEu为 0.96~1.63), 平均为1.16; δCe的范围为0.99~1.07, 相 对比较稳定。

(4)铁矿石 Y/Ho 比值范围为 30~44.3;千枚岩 Y/Ho 比值范围为 24.36~28.46。由于新太古代海洋 表层水与现代海水 Y/Ho 比值类似,为 44~65^[11],陆 源碎屑的 Y/Ho 比值约为 26^[18],因此该矿石 Y/Ho 比 值既不同于海水,也不同于陆源碎屑,可能来自海 底喷气热液。而千枚岩主要来源可能是陆源碎屑。

4 讨 论

4.1 沉积环境

眼前山铁矿床形成于新太古代,后期遭受了变

			Y-4-10	43.51 0.30	45.93 4.24	6.14	0.16	0.12 ≤0.01	0.019 0.01	0:0 ≤0:01	-0.54	0.5 0.5	0.22 0.03	0.1 0.04	0.03 <0.05	0.01 0.05 0.03 0.03	≤0.010.03	<0.01	040	10	0.4 ≦0.1	200.00 <0.05	0.3	577	0 , 0
			Υ-4-7	42.97 0.10	51.52 0.68	3.04	0:04	0:08 0:05	0.066 0.01	0.01 40.01	0.26	c/.86 1.0	1.85 0.21	0.0 0.19	0.09 0.20	0.03 0.20 0.05 0.15	0.02 0.13	0.02	0.46	10	0.2 0.1	100.00 <0.05	0.4	ارخ 65	280 ∂0.5
			Y-3-7	43.56 0.11	48.09 2.55	0.93	0:03	0.12 ⊲0.01	0.127 0.01	0.01 ≤0.01	3.66	2.8 2.8	4.66 0.51	2.1 0.45	0.27 0.64	0.10 0.69 0.17 0.48	0.07 0.45	0.07	0.40	10	$^{0.2}_{0.2}$	100.00 <0.05	0.4	6.1 15.6	540 0.5
罰岩主量(%) 和微量(10^e) 元素成分表 ents of iron ores and their wall rocks in the Yanqianshan iron deposit		Y-2-10	39.99 0.08	43.27 4.39	1.37	0.03	0.41 ⊲0.01	0.108 0.01	10:0≥	8.47	98.12 1.5	2.63 0.32	1.4 0.33	0.24 0.46	0.07 0.43 0.11 0.35	0.05 0.39	0.07 4.6	6.0 76	10	0.2 0.1	<100 <0.05	0.5	3.2 15.9	470 0.5	
	(岩)	Y-4-12	35.33 0.21	54.97 2.82	2.88	0.03	0.13 40.01	0.062 0.02	0.0 10.0⊳	2.68	91.96 1.3	2.47 0.28	1.1 0.24	0.09 0.29	0.04 0.27 0.05 0.13	0.02 0.13	0.02	0.47	307	0.4 0.1	200.00 <0.05	0.5	23.4	230 1.0	
	磁铁石英	Y-4-9	45.60 0.46	46.87 0.33	5.86	01.0	0.11 ≤0.01	0.040 0.02	0.01 ≤0.01	0.08	79.66 1.1	1.93 0.20	0.7 0.14	0.05 0.13	0.02 0.14 0.03 0.10	0.02 0.10	0.02	0.39	50	0.4 0.1	1400.00 <0.05	0.4	د ا 1.7	140 0.6	
	矿石	Y-4-4	40.12 1.98	51.98 1 00	2.61 0.06	0.04	0.09	0.121 0.01	0.01 ≤0.01	1.42	10.40 10.4	18.00 1.92	6.9 0.98	0.26 0.74	0.10 0.58 0.13 0.13	0.06 0.39	0.06 4.4	0.77	30	2.2 0.4	500.0 0.10		6.1 2.9 2.9	500 20.2	
		Y-4-2	41.74 0.15	49.83 2.17	1.11	0.05	0.20 0.01	0.102 0.01	0.01 ≜0.01	2.73	98.14 3.4	5.31 0.56	2.2 0.39	0.15 0.41	0.06 0.36 0.09	0.04	0.04	0.46	10	0.2 0.1	200.00 ≺0.05	0.4	6.7 19.5	140 12	
		Y-3-14	52.57 0.95	40.93 1 26	0.90	0.06	0.07 0.02	0.157 0.07	0.01 0.01	1.65	98.97 6.4	12.40 1.38	5.3 1.02	0.31 1.06	0.15 0.89 0.20 0.56	0.08 0.53	0.09	0.36	670	$\frac{1.3}{0.3}$	2800.00 0.06	0.8	800	700 3.8	
		Y-2-12	40.20 0.31	54.14 1 03	0.60	0.03	0:09 0:01	0.092 0.01	0.01 ≤0.01	2.34	98.80 1.5	2.71 0.32	$1.3 \\ 0.28$	0.15 0.38	0.06 0.39 0.10 0.31	0.05 0.30	0.05	0.47	10	$\frac{1.9}{0.2}$	100.00 <0.05	0.6	4.1 8.4	390 2.7	
		Y-2-6	49.89 0.06	44.25 0.32	0.39	0.03	0.07 ⊲0.01	0.056 0.01	0.01 0.05	3.70	98.77 1.9	3.00 0.34	1.4 0.28	0.16 0.39	0.05 0.34 0.07 0.20	0.03 0.15	0.02	0.88	10.4	0.2 0.2	100.00 <0.05	0.4 0.5	9.0 4.4	220 0.5	
		Y-3-13	54.81 19.13	11.98 0.31	2.39	0.34	0.13 1.25	0.101 0.07	0.01 ≤0.01	4.24	98.89 20.6	48.6 5.86	24.0 4.75	1.22 4.60	0.59 3.34 0.66 1.98	0.27 1.75	0.23	0.27	680	13.7 2.9	\$2700.00 0.85	12.0	40.3	460 57.8	
		Y-3-8	63.39 18.11	7.43 0.16	1.69	0.31	0.07 0.66	0.056 0.06	0:0 10:0≥	3.43	30.9 30.9	66.1 7.57	28.3 4.82	0.87 4.14	0.56 3.26 0.65 2.01	0.28 1.85	0.25	0.21	670	18.0 2.9	36300.00 0.88	10.9	14.6 39.0	220 78.1	
`矿石与	10 ⁻⁶) elen		Y-3-5	60.07 19.25	6.83 0.28	1.50	1.49	0.10 0.74	0.062 0.06	10:0≻ 10:0	4.47	71.7	142.0 15.50	57.2 8.81	1.69 6.52	0.75 3.34 0.56 1 51	0.20 1.43	0.21	0.23	640	17.0 3.2	35000.00 1.06	12.6	1.62	240 90.4
前山铁矿	d trace (Y-2-4	64.49 17.66	4.20 0.29	1.07	0.98	0.05 0.61	0.110 0.06	0:01 0:01	4.91	45.6	92.4 10.70	39.7 6.99	1.23 5.54	0.73 3.94 0.79 2.45	0.37 2.48	0.36	0.17	590	19.5 3.6	40000.00	14.1	0.0 55.8	480 143.0
表1 眼	· (%) an	·枚岩)	Y-2-3	62.10 16.91	5.47 0.62	1.39	1.00	0.06 0.63	0.059 0.05	10:0≥	5.94	98.50 39.3	81.9 9.29	35.4 5.71	1.06 4.59	0.62 3.57 0.72 2.21	0.33 2.24	0.33	0.19	510	16.6 4.7	37100.00 0.94	10.5	53.6 53.6	250 120.0
ositions of major	围岩 (ゴ	Y-1-11	58.09 20.68	6.34 0.38	1.42	1.08	0.07 0.77	0.073 0.10	10:0	5.13	36.8	79.1 9.09	34.6 6.01	1.03 5.10	0.60 2.91 0.55 1.64	0.24 1.70	0.24	0.20	950	15.3 3.1	43900.00 1.12	13.4	10.7 71.5	290 61.6	
		Y-1-8	60.64 19.43	6.69 0.34	1.51	1.46	0.07 0.73	0.063 0.08	10:0 10:0	3.54	98.8/ 31.9	65.5 7.39	28.2 4.88	0.96 4.58	0.69 0.86 0.86 2.59	0.36 2.41	0.35 77 8	0.21	810	17.1 3.6	36000.00 1.06	12.7	6.9 59.9	250 116.5	
	1 Comp		Y-2-2	60.37 14.52	6.89 2.49	2.99	2.23	0.08 0.45	0.140 0.08	0.02	4,44	98.30 17.9	37.8 4.22	16.2 2.79	0.82 2.39	0.29 1.58 0.31 0.93	0.13 0.92	0.13	0.17	850	7.9 2.2	30600.00 0.49	5.6	6.0 153.5	640 35.4
	Table		Y-1-7	60.12 19.71	6.58 0.24	1.62	1.74	0.11 0.61	0.083 0.06	0.01 0.01	3.75	98.76 65.3	132.0 14.75	55.5 9.73	1.62 7.37	0.82 3.70 0.67 1 99	0.30 2.12	0.32	0.24	570	22.5 3.8	3800.00 1.22	15.4	12.1	330 97.6

0.330.2460.4660.070.0110.0110.0350.0110.0350.0550.0350.055 $\begin{array}{c} 0.24\\ 0.09\\ 0.09\\ 0.02\\$ 2028 2028 2029 2029 2020 $\begin{array}{c} 0.28\\ 0.16\\ 0.39\\ 0.05\\ 0.034\\ 0.00\\ 0.03\\ 0.03\\ 0.03\\ 0.00\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.02$ $\begin{array}{c} 4.82\\ 0.87\\ 0.87\\ 0.87\\ 0.85\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.028\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.23\\ 0.02\\ 0.00\\$ 6.01 1.03 5.10 0.60 0.64 0.52 1.64 1.70 0.22 1.70 0.22 950 950 950 950 950 1.1.3 1.1 Y-1-5 元 NAMA N 出力

_	-10	-	0	-	Н	94)1	8	20	2	2	0	06	g	11	92	2	0	0	0	80	8	2	0	2	32	0	
续表	Y-4	8	Ŷ	0.	3.4	0.7	3.(30.	0.0	11	0.0	0.2	4.6	1.2	0.3	1.2	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.4	0.0	1.2	5.0	4.(
	Y-4-2	<0.1	<50	0.1	1.81	1.21	2.30	40.00	0.023	5.04	4.24	0.80	5.30	0.57	0.88	1.01	0.03	0.03	0.03	0.03	0.39	0.76	0.30	0.21	0.07	5.00	10	2.00
	Y-3-7	<0.1	≪50	0.1	1.81	1.19	2.54	37.65	0.020	13.46	10.79	2.67	4.04	0.46	0.84	1.01	0.09	0.06	0.06	0.06	0.15	2.65	0.39	0.21	0.22	14	28	2.00
	Y-2-10	<0.1	<50	0.2	1.94	1.17	3.14	41.82	0.050	8.35	6.42	1.93	3.33	0.28	0.82	1.03	0.05	0.04	0.04	0.04	0.08	2.29	0.17	0.24	0.19	7.50	7.50	1.00
岩)	Y-4-12	≤0.1	60	0.1	1.33	1.08	1.78	38.00	0.029	6.43	5.48	0.95	5.77	0.74	0.89	1.06	0.04	0.03	0.04	0.03	1.18	0.76	0.91	0.22	0.07	3.25	13	4.00
磁铁石英	Y-4-9	<0.1	60	0.1	1.22	1.05	1.80	36.67	0.018	4.68	4.12	0.56	7.36	0.81	0.89	1.06	0.03	0.03	0.03	0.02	10.84	0.59	6.38	0.20	0.04	2.75	11.00	4.00
矿石 (Y-44	0.5	240	0.6	1.27	1.04	1.48	33.85	0.041	40.93	38.46	2.47	15.57	1.97	0.87	1.07	0.33	0.25	0.24	0.21	0.92	2.29	2.11	0.14	0.21	4.73	17.33	3.67
	Y-4-2	≪0.1	<50	0.1	1.75	1.16	1.88	43.33	0.024	13.53	12.01	1.52	7.90	1.00	0.82	1.02	0.11	0.07	0.07	0.07	0.97	1.47	1.42	0.18	0.12	17	34	2.00
	Y-3-14	0.1	160	1.0	1.26	1.07	1.51	31.00	0.015	30.37	26.81	3.56	7.53	0.89	0.91	1.06	0.20	0.17	0.17	0.16	4.42	3.12	13.79	0.19	0.25	4.92	6.40	1.30
	Y-2-12	0.1	<50	0.1	1.48	1.08	2.30	40.00	0.025	7.90	6.26	1.64	3.82	0.37	0.85	1.06	0.05	0.04	0.04	0.04	0.10	1.76	0.17	0.22	0.12	0.79	15	19.0
	Y-2-6	<0.1	<50	0.1	1.84	1.15	2.65	44.29	0.038	8.33	7.08	1.25	5.66	0.94	0.80	1.03	0.06	0.04	0.04	0.04	0.20	0.88	0.17	0.20	0.13	9.50	19	2.00
	Y-3-13	1.7	5440	24.0	1.14	1.07	1.35	25.76	0.011	118.45	105.03	13.42	7.83	0.87	0.96	1.06	0.64	0.67	0.74	0.73	8.67	10.29	89.22	0.20	0.98	1.50	0.86	0.57
	Y-3-8	2.3	3070	18.3	1.04	1.01	0.97	28.46	0.007	151.56	138.56	13.00	10.66	1.23	0.94	1.09	0.97	0.91	0.96	0.86	9.70	10.88	105.60	0.17	0.70	1.72	1.69	0.98
	Y-3-5	2.6	4140	19.4	1.14	1.05	1.12	25.00	0.008	311.42	296.90	14.52	20.45	3.70	0.93	1.07	2.24	1.95	1.96	1.73	12.20	8.41	102.59	0.15	1.36	4.22	3.70	0.88
	Y-2-4	4.3	3350	16.9	1.07	0.99	0.97	25.70	0.006	213.28	196.62	16.66	11.80	1.36	0.91	1.10	1.43	1.27	1.35	1.20	8.42	14.59	122.84	0.18	0.99	2.34	2.70	1.15
千枚岩)	Y-2-3	3.7	3210	15.3	1.13	1.04	1.02	25.56	0.007	187.27	172.66	14.61	11.82	1.30	0.93	1.07	1.23	1.12	1.18	1.07	8.54	13.18	112.50	0.16	0.85	2.37	2.57	1.08
国者(Y-1-11	1.8	4150	17.9	1.07	1.03	0.96	24.36	0.007	179.61	166.63	12.98	12.84	1.60	0.94	1.08	1.15	1.08	1.15	1.05	11.34	10.00	113.36	0.17	0.83	2.41	2.06	0.85
	Y-1-8	3.4	3790	17.3	1.15	1.05	66.0	26.51	0.007	154.89	138.83	16.06	8.64	0.98	0.93	1.07	1.00	06.0	0.94	0.85	7.51	14.18	106.47	0.17	0.77	1.87	1.84	66:0
	Y-2-2	1.1	2800	11.7	1.15	1.07	1.63	26.45	0.006	86.41	79.73	6.68	11.94	1.44	0.95	1.06	0.56	0.52	0.53	0.49	9.76	5.41	52.80	0.17	0.66	2.27	1.53	0.68
	Y-1-7	3.0	3350	15.7	1.14	1.04	0.97	26.87	600.0	296.19	278.90	17.29	16.13	2.27	0.93	1.07	2.04	1.81	1.87	1.68	8.61	12.47	107.33	0.18	1.31	2.90	4.16	1.43
	Y-1-5	1.1	2490	10.8	1.09	1.02	1.61	27.84	0.005	112.55	104.48	8.07	12.95	1.84	0.92	1.08	0.76	0.68	0.71	0.62	6.11	5.76	35.22	0.17	0.82	2.46	2.26	0.92
岩石	元素	Hf	Τ	Sc	La/La*	Ce/Ce*	Eu/Eu*	Y/Ho	Ge/Si	ZREE	LREE	HREE	LREE/HREE	La _N /Yb _N	Ce/Ce*	Pr/Pr*	Lasn	Cesn	Prsn	Ndsn	$(Rb/Yb)_N$	Yb_N	Rb _N	Sm/Nd	EuSN	La/Th	La/Sc	Th/Sc

样品/PAAS

Fig.10 PAAS-normalized REE patterns of the iron ore in the Yanqianshan deposit (PAAS values after McLennan, 1989)

质作用,在以下讨论过程中,选取了活动性低的元 素作为讨论对象,以达到揭示铁矿床形成的沉积环 境的目的。

4.1.1 物质来源

对前寒武纪铁矿床分布规律的研究显示:世界 上不同时期的铁矿储量与形成时的地幔柱和铁镁 质火山活动量成明显的正相关[19-22]。眼前山铁矿床 形成于2.5 Ga左右^[23],当时地球上地幔柱和铁镁质 火山活动强烈。

铁矿石含有低的陆源碎屑物(Al₂O₃ $\leq 0.95\%$, $TiO_2 < 0.05\%$, $Hf \le 0.25 \times 10^{-6}$, $Th \le 0.81 \times 10^{-6}$, $Zr \le 0.05\%$ 12.67×10⁻⁶)。该区BIF高场强元素亏损,也表明其在 形成过程中只有很少的陆源碎屑加入,这些表明该区

Gć Тb D He Er Tm Yb Lu

稀土元素PAAS标准化分布型式图

Y-2-3

V-3-8

Vh Lu

× Y-1-8 - Y-1-11 --- Y-2 - V-2-4 - V-3-5 - V-3-

-V 2 12

BIF 形成于开放海洋环境,由化学沉积方式形成。

海底热液可以是高温(>300℃)或是低温(< 200℃), 而 Eu 的分离需要 200℃以上, 所以高温热液 产生的流体具有显著的Eu正异常,低温热液产生的 流体没有或只有弱的Eu异常^[24-26]。该区具有显著 的Eu正异常,是海底高温热液(>300℃)与海水混合 的结果,表明了该区BIF形成与海底热液活动关系 密切。这个结果与国内外太古宙 BIF 研究结果一 致^[27-34]。铁矿石中Eu异常值和稀土总含量变化范 围较大,反映了海底热液与周围海水的混合比例在 不同时间存在着差异^[35]。

Hamade et al.(2003)利用 BIF 硅层的 Ge/Si 比 值,其与SiO,含量成负相关性,从而认为BIF中的硅

图 12 Ge / Si和Si的相关图 Fig.12 Correlogram of Ge / Si and Si

质主要为陆源风化产物^[36]。Heck et al.(2011)研究 了太古宙与元古宙 BIF 中石英的硅、氧同位素,认 为硅主要来自海底热液,但大陆风化来源的硅也是 一个重要组成部分^[37]。该区 BIF 中 Ge/Si 与 SiO2呈 负相关性(图 12)(除个别菱铁磁铁矿以及闪石磁铁 矿外,其他铁矿石中 Ge/Si 与 Si 呈明显的负相关), 表明该区 BIF 中的硅至少部分来之陆地风化所产生 的硅。

4.1.2氧化还原环境

Eu的分离是由价态的转变所引起的,Eu²⁺具有 更高的活动性,而Eu³⁺活动性较低,所以Eu运移需 要相对还原的环境。这一现象被现代海洋环境所 证实,由于海底热液与氧化的海水混合在一起,在 距离火山口几百米之外的高温热液开始失去Eu,形 成负异常^[38]。然而与现代海洋相比,新太古代海洋 处于低氧环境,因此可以允许在距离热液源的更远 的地方出现Eu的异常^[39]。

负 Ce 异常可以被正 La 异常所隐蔽。Bau and Dulski (1996)叙述了判别这两种异常的方法^[40]。Ce (Ce/Ce*=Ce_{SN}/($0.5La_{SN} + 0.5Pr_{SN}$))和 Pr(Pr/Pr* = Pr_{SN}/ ($0.5Ce_{SN} + 0.5Nd_{SN}$))的异常可以解释真正的 Ce 异 常,当 Ce/Ce*和 Pr/Pr*的值分别小于和大于单一异 常时。Ce/Ce* < 1 和 Pr/Pr* < 1 的综合体现了正的 La 异常。该区所有样品落入了正 La 异常区, 而无 明显的 Ce 异常(图13)。

类似于世界其他的BIF^[41-42],负Ce异常出现于 氧化条件下,Ce³⁺向Ce⁴⁺转化,稀土中的Ce被分离出

图 13 铁矿石的 Ce 负异常的判别图解 (底图据 Bau and Dulski,1996)

来。因此,一些BIF样品中出现的负Ce异常归功于 当时海洋表面水可能已具有一定的氧化能力,而样 品中正的La异常是海底热液水比例降低的结果。

综上所述,该区 BIF 中富集重稀土元素和 Y/Ho 大于 26,且该区 BIF 中 La具有正异常,是源于海洋 表面水的特征;而正 Eusn异常则是源于洋底热液的 特征;同时该区 BIF 中缺少陆源碎屑物质,要形成稳 定的条带状构造,沉积环境应该在海洋风暴线以 下。据以上分析结果可以推断该区 BIF 形成环境应 该是海水相对较浅但深度至少大于 200 m的海洋环 境,BIF 的形成机制应该是富含铁的海底热液运移 到相对浅水区发生氧化沉积所致。

4.2 构造背景

为了研究该区铁矿床形成的构造背景,选取与 铁矿床关系密切的千枚岩为研究对象,通过原岩恢 复确定其物质来源,并结合本区地质特征来推断该 区构造背景。

考虑到在变质过程中H₂O、CO₂、K₂O和Na₂O都 属于活动组分,易发生变化,采用A-C-FM图解对 千枚岩加以原岩恢复(图14)。

该区千枚岩Eu无正异常,表明其形成过程与热 液活动无关;Ce呈弱负异常,表明其形成于弱氧化 环境。Y/Ho的比值接近上地壳平均值26;推测该 值应与上地壳平均值一致。表明该区千枚岩原岩 来源于上地壳。

通过 a-c-fm 原岩恢复,可知千枚岩原岩为粘 土岩及亚杂砂岩或火山岩,采用 Zr/TiO₂-Ni图解可 知千枚岩为变质沉积岩而不是变质火山岩(图15); Sm/Nd 比值也是反映 REE 分馏程度的重要参数之 一,而且也是反映物质来源的一个重要参数。如地 幔为0.260~0.375,大洋玄武岩为0.234~0.425,而源 于壳层的花岗岩类以及各类沉积岩一般小于0.3,本 区千枚岩中 Sm/Nd 比值范围为0.15~0.20,平均值

图 14 眼前山铁矿千枚岩原岩恢复图解 (底图据王仁民等,1987)^[43] 其中: Σ =Al₂O₃+CaO+2Fe₂O₃+MgO; A(铝质系数)=Al₂O₃/ Σ ×100; C (钙质系数)=CaO/ Σ ×100; F(铁质系数)=2Fe₂O₃/ Σ ×100; M(镁质系 数)=MgO/ Σ ×100(注:各氧化物均以分子数进行计算) Fig.14 Protolith restoration diagram of phyllite in the Anqianshan iron deposit (base map after Wang et al.,1987) Where: Σ = Al₂O₃ + CaO +2Fe₂O₃ + MgO; A (aluminum coefficient) = Al₂O₃/ Σ ×100; C (calcium coefficient) = CaO / Σ ×100; F (iron coefficient) = 2Fe₂O₃ / Σ ×100; M (magnesia coefficient) = MgO / Σ ×100 (Note: The oxide were calculated by their molecules) 0.17,显示了沉积岩的特点,野外现象也显示了千枚 岩沉积岩的特征(见图5),以上这些表明该区千枚 岩原岩为粘土岩或杂砂岩。

Bhatia等[™]给出了不同构造位置的杂砂岩的微量元素丰度和比值(图16),从海洋岛弧→大陆岛弧

图 15 Zr/TiO₂和Ni的相关图(底图据王仁民,1987)^[43] Fig. 15 Correlogram of Zr/TiO₂ and Ni (base map after Wang, 1987)

→活动大陆岛弧边缘→被动边缘,LREE(La、Ce、 Nd)、Hf、Ba/Sr、Rb/Sr、La/Y和Ni/Co系统增加,而铁 镁质元素如Sc、V、Cu、Co、Zn和Ba/Rb、K/Th、K/U 值减少,这与源区的变化(从安山岩→英安岩→花 岗片麻岩→沉积岩)是同步的,因此可以利用此图 解分析沉积岩的源区。

该区千枚岩中Th的变化范围为7.9×10⁻⁶~22.5× 10⁻⁶,平均为15.8×10⁻⁶;La的变化范围为17.9×10⁻⁶~ 71.7×10⁻⁶,平均为38.4×10⁻⁶;La/Sc的平均值为2.3; Th/Sc的平均值为1.0;La/Th的平均值为2.4。这些 值都接近大陆岛弧沉积岩的特征。由以上分析可 知,该区千枚岩来源为大陆岛弧的沉积岩。

鞍本地区铁矿主要赋存于鞍山群内,鞍山群被 限定内两期花岗岩之间,其底部为TTG造陆岩体, 目前,对 Algoma 型 BIF 形成构造环境的主流认识 有2种:岛弧与弧后盆地或克拉通内部裂谷带^[4,49]。

鞍本地区鞍山群3组地层的形成年代据最新测 年测试结果显示全部形成于距今2.5 Ga左右^[12],表 明3组地层为同期异相的关系;茨沟组中广泛分布 有斜长角闪岩,铁矿层与斜长角闪岩互层产出,且 斜长角闪岩的原岩为拉斑玄武岩;经大峪沟组到樱 桃园组地层中斜长角闪岩分布逐渐减少,而变质沉 积岩逐渐增多,表明樱桃园组地层形成环境较茨沟 组地层形成环境更加靠近岸边。结合物质来源分 析结果:眼前山铁矿床中铁矿层主要与大陆岛弧沉 积岩互层产出,大陆岛弧外侧一般为海沟环境,因 为海沟环境属于深海环境,在2.3 Ga之前其始终处 于还原环境,不利于成矿。所以铁矿床成矿环境应 该为弧后盆地环境。

据以上分析可以推断该地区铁矿成矿环境相 当于弧后盆地。在鞍本地区出现的铁矿床也许正 是沿新太古代的克拉通周围存在有适合铁矿床成 矿的弧后盆地环境所决定的。

5 结 论

本文通过对眼前山铁矿的矿石和围岩的主量和 微量元素地球化学进行了分析研究,主要认识如下:

(1)该区具有显著的Eu正异常,表明了该区BIF 形成与海底热液活动关系密切;该区BIF中富集重稀 土元素和Y/Ho大于26,且该区BIF中La具有正异 常,是源于海洋表面水的特征;同时该区BIF中缺少 陆源碎屑物质;BIF的形成机制应该是富含铁的海底 热液运移到相对浅水区发生氧化沉积所致。

(2)该区千枚岩原岩为粘土岩或杂砂岩,具有 大陆岛弧沉积岩特征。

(3)该区铁矿床成矿环境相当于弧后盆地环境。

参考文献(References):

质

地

- Isley A E. Hydrothermal plumes and the delivery of iron to banded iron formation[J]. The Journal of Geology, 1995, 103(2): 169–185.
- [2] Gross G A, Mcleod C R. A preliminary assessment of the chemical composition of iron formation in Canada[J]. Canadian Mineralogist, 1980, 18(2): 223–229.
- [3] Gross G A. A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 1980, 18(2): 215–222.
- [4] Gross G A. Tectonic systems and the deposition of ironformation[J]. Precambrian Research, 1983, 20(2/4): 171–187.
- [5] Gross G A. Algoma- type previous termiron- formation. Next term[C]//Lefebure D and Hõy T (eds.). Selected British Columbia Mineral Deposits Profiles 2. Ottawa: British Columbia Ministry of Employment and Investment Open File, 1996:25 -28.
- [6] 程裕淇.中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中 富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-180. Cheng YQ. Genesis of the rich iron ore within the Presinian Anshan- type banded iron formation in Liaoning and Shandong provinces, Northeast China[J]. Acta Geologica Sinica, 1957, 37(2): 153-180 (in Chinese).
- [7] 翟明国, Windley B F.鞍本太古代条带状铁建造(BIF)的稀土及微量元素特征[J]. 地球化学, 1989, 3:241-250.
 Zhai Mingguo, Windley B F. The REE and trace element feature of BIF in Archaeozoic in An Shan-Ben Xi area[J]. Geochemistry, 1989, 3: 241-250. (in Chinese with English abstract).
- [8] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[M]. 北京:北京科学 技术出版社, 1993: 1-99.

Wan YS. The Formation and Evolvement of Ferreous Rock Series of Gongchangling, Liaoning Province [M]. Beijing: Beijing Science and Technology Press, 1993: 1 – 99 (in Chinese with English abstract).

[9] 周世泰.鞍山—本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 1-277.

Zhou ST. Geology of the BIF in Anshan–Benxi Area[M]. Beijing: Geological Publishing House, 1994: 1–277 (in Chinese).

[10] 王恩德, 夏建明, 赵纯福, 等.弓长岭铁矿床磁铁富矿形成机制探 讨[J]. 地质学报, 2012, 86(11): 1761–1772.

Wang Ende, Xia Jianming, Zhao Chunfu, et al. Forming Mechanism of High–Grade Magnetite Bodies in Gongchanling, Liaoning Province[J]. Acta Geologica Sinica, 2012, 86 (11) : 1761–1772(in Chinese with English abstract). [11] 李厚民,刘明军,李立兴,等. 辽宁弓长岭铁矿区大理岩地质地 球化学特征及其成矿意义[J]. 岩石学报, 2012, 28(11): 3497-3512.

Li Houmin, Liu Mongjun, Li Lixing, et al. Geology and geochemistry of the marble in the Gongchangling iron deposit in Liaoning Province and their metallogenic significance[J]. Acta Petrologica Sinica, 2012, 28(11) : 3497–3512(in Chinese with English abstract).

[12] 代堰锫, 张连昌, 王长乐, 等. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景[J]. 岩石学报, 2012, 28(11): 3574-3594.

Dai Yanpei, Zhang Lianchang, Wang Changle, et al. Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province[J]. Acta Petrologica Sinica, 2012, 28(11): 3574 –3594(in Chinese with English abstract).

- [13] 李厚民, 王登红, 李立兴, 等.中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质, 2012, 39(3): 559-580.
 Li Houmin, Wang Denghong, Li Lixing, et al. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 2012, 39(3): 559-580(in Chinese with English abstract).
- [14] 孟旭阳, 王鹏, 张东阳, 等. 辽宁思山岭铁矿元素地球化学特征及其地质意义[J]. 中国地质, 2012, 39(6): 1857-1873.
 Meng Xuyang, Wang Peng, Zhang Dongyang, et al. Element geochemistry of the Sishanling iron deposit in Liaoning Province and its geological implications[J]. Geology in China, 2012, 39(6): 1857-1873(in Chinese with English abstract).
- [15] 万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁 建造形成时代-SHRIMP锆石U-Pb定年[J].地质学报, 2012, 86 (9): 1447-1478.

Wan Yusheng, Dong Chunyan, Xie Hangqiang, et al. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP Zircon U-Pb Dating[J]. Acta Petrologica Sinica, 2012, 86(9): 1447–1478(in Chinese with English abstract).

- [16] 王守伦,张瑞华.齐大山铁矿黑云变粒岩单锆石年龄及意义[J]. 矿床地质, 1995, 14(3): 216-219
 Wang Shoulun, Zhang Ruihua. U-Pb isotope age of individual zircon from biotite leptynite in the Qidashan iron deposit and its significance[J]. Mineral Deposits, 1995, 14(3): 216-219(in Chinese with English abstract).
- [17] 许亚光. 鞍山北东部韧性变形带中BIF型铁矿的转变[J]. 长春 地质学院学报, 1987, 17(3): 283-292
 XuYaguang. Transformation of BIF-type iron deposit in ductile zone, north- east Anshan, Liaoning province[J]. Journal of Changchun College of Geology, 1987, 17(3): 283-292 (in Chinese with English abstract).
- [18] Robert F and Ali P. Source heterogeneity for the major components of 3.7 Ga Banded Iron Formations (Isua Greenstone Belt,Western Greenland): Tracing the nature of interacting water

masses in BIF formation[J]. Earth and Planetary Science Letters, 2007, 253: 266-281.

- [19] Jan V, William C. ⁸⁷Sr/⁸⁶Sr in Precambrian carbonates as an index of crustal evolution[J]. Geochimica et Cosmochimica Acta, 1976, 40(8): 905–914.
- [20] Harold L J. Distribution of banded iron-formation in space and time[J]. Developments in Precambrian Geology, 1983, 6: 471– 490.
- [21] Stein B J, Mario R P. And isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans[J]. Earth and Planetary Science Letters, 1988, 87 (1-2): 29-44.
- [22] David L H ,Graham A L. Barite,BIFs and bugs:evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220(1-2): 41-55.
- [23] 宋彪, 赵敦敏, 万渝生.辽宁弓长岭含铁建造年代学研究[J].岩石 矿物学杂志, 1992, 11(4): 317-323.
 Song Biao, Zhao DunMin, Wan YuSheng. Geochronology research of the iron formation of Gongchangling Liaoning Province[J]. Acta Petrologica et Mineralogica, 1992, 11(4): 317- 323(in Chinese with English abstract).
- [24] Michard A , Albarede F,Michard G, et al. Rare–earth elements and uranium in high temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature , 1983, 303: 795–797.
- [25] Mitra A, Elderfield H, Greaves MJ. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid– Atlantic Ridge[J]. Marine Chemistry, 1994, 46: 217–235.
- [26] Douville E,Bienvenu P,Charlou JL,Donval JP,Fouquet Y,Appriou Pand Gamo T. Yttrium and rare earth elements in fluids fromvarious deep- sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627–643.
- [27] Peter W,Uitterdijk A. Rare earth elements in the early archaean Isua iron- formation,West Greenland[J]. Precambrian Research, 1983, 20(2/4): 243–258.
- [28] Thomas S,Gerd M,Lester R M. Complex formation vs. disproportionation: Lanthanie chlorides, MCl₂(M=Nd, Sm, Eu, Dy, Tm, Yb), under the influence of alkali chlorides[J]. Journal of the Less Common Metals, 1988, 137(1/2): 187–193.
- [29] Louis A D,Stein B J. The chemical evolution of Precambrian seawater:Evidence from REEs in banded iron formations[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 2965–2977.
- [30] Danielson A, Moller P, Dulski P. The europium anomalies in banded iron formations and the thermal history of the oceanic crust[J]. Chemical Geology, 1992, 97(1/2): 89–100.
- [31] Yasuhiro K,Kosei E,Hiroshi O. Rare earth elements in Precambrian banded iron formation;Secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen[J]. Memoir– Geological Society of America, 2006, 198: 269–289.
- [32] 李延河, 侯可军, 万德芳等. Algoma 型和 Superior 型硅铁建造地

质

中

球化学对比研究[J].岩石学报, 2012, 28(11): 3513-3519.

Li YH, Hou KJ, Wan DF and Zhang ZJ. A compare geochemistry study for Algoma– and Superior–type banded iron formations[J]. Acta Petrologica Sinica, 2012, 28(11): 3513 – 3519 (in Chinese with English abstract).

[33] 黄华, 张连昌, 刘显凡, 等. 霍邱矿田李老庄铁矿地质与地球化 学特征及对沉积环境的指示[J]. 岩石学报, 2013, 29(7): 2593-2605.

Huang Hua, Zhang Lianchang, Liu Xianfan, et al. Geological and geochemical characteristics of the Lee Laozhuang iron mine in Huoqiu iron deposit: Implications for sedimentary environment[J]. Acta Petrologica Sinica, 2013, 29(7): 2593 – 2605 (in Chinese with English abstract).

[34] 刘磊, 杨晓勇. 安徽霍邱 BIF 铁矿地球化学特征及其成矿意义: 以班台子和周油坊矿床为例[J]. 岩石学报, 2013, 29(7): 2551-2566.

Liu Lei, Yang Xiaoyong. Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance: Taking the Bantaizi and Zhouyoufang deposits as examples[J]. Acta Petrologica Sinica, 2013, 29(7): 2551–2566 (in Chinese with English abstract).

- [35] Cornelis K. Some Precambrian banded iron- formations(BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin[J]. American Mineralogist, 2005, 90: 1473-1499.
- [36] Hamade T, Konhauser K O, Raiswell R, et al. Using Ge / Si ratios to decouple iron and silica fluxes inPrecambrian banded iron formations[J]. Geology, 2003, 31(1): 35–38.
- [37] Heck P R, Huberty J M, Kita N T, et al. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5879–5891.
- [38] Klinkhammer G, Elderfield H, Hudson A. Rare earth elements in

seawater near hydrothermal vents[J]. Nature, 1983, 305: 185 - 188.

- [39] Barrett T J, Fralick P W, Javris I. Rare- earth element geochemistry of some Archean iron formations north of Lake Superior, Ontario[J]. Canadian Journal of Earth Sciences, 1988, 25: 570-580.
- [40] Bau M and Dulski P. Distribution of yttrium and rare- earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/ 2): 37–55.
- [41] Klein C, Beukes N J. Geochemistry and sedimentology of a facies transition from limestone to iron- formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa[J]. Economic Geology, 1989, 84: 1733-1774.
- [42] Khan R M K, Das Sharma S, Patil D J, et al. Trace, rare– earth element, and oxygen isotopic systematics for the genesis of banded iron– formations: Evidence from Kushtagi schist belt, Archaean Dharwar Craton, India[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3285–3294.
- [43] 王仁民, 贺高品, 陈珍珍, 等.变质岩原岩图解判别法[M]. 北京: 地质出版社, 1987.
 Wang Renmin, He Gaopin, Chen Zhenzhen, et al. The Diagram Distinguish of Original Rock for Metamorphic Rock [M]. Beijing: Geological Publishing House, 1987 (in Chinese with English abstract).
- [44] Bhatia MR. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611–627.
- [45] 赵振华.微量元素地球化学原理[M]. 北京: 科学出版社, 1997, 1-238.

Zhao ZH. Geochemistry of Trace Elements[M]. Beijing: Science Press, 1997, 1–238 (in Chinese).

[46] Veizer J. Geologic evolution of the Archean–Early Proterozoic Earth. In: Schopf JW (ed.). Earth's Earliest Biosphere [M]. Princeton: Princeton University Press, 1983, 240–259.

Element geochemical characteristics and sedimentary palaeoenvironment of the Yanqianshan iron deposit in Liaoning Province

FU Jian-fei, WANG En-de, XIA Jian-ming, MEN Ye-kai, CHEN Hui-jun, YOU Xin-wei, CHENG Lin

(School of Resource and Civil Engineering, Northeast University, Shenyang 110819, Liaoning, China)

Abstract: Located in the central eastern part of Liaoning Province, the Yangianshan iron deposit is a typical iron deposit of this area. The authors studied the petrographic and mineralogical characteristics of the Yanqianshan iron deposit, and analyzed the major and trace element geochemical characteristics of the iron formation and rocks. The iron formation is mainly the banded iron formation (BIF) and contains a small amount of lump ore, with its roof and floor rock as well as orebody interbed being mainly Archean Anshan Group phyllite. Analyses of major elements show that the iron ore is mainly composed of SiO₂ and iron oxides, with low Al₂O₃ content and high LOI. The trace element distribution curve of the ore is of the right-oblique type, with the enrichment of the highly incompatible elements and LILE. There is a significant positive Eu anomaly, which resulted from the mixture of the seafloor hydrothermal fluid (> 300°C) with the seawater. It is shown that the BIF formation of this area was closely related to the seafloor hydrothermal activity. The HREE are abundant in the BIF in this area, the Y / Ho ratios are greater than 26, and La and Eu have positive anomalies. Due to lack of terrigenous material, the authors infer that the BIF formed in shallow water with the depth greater than 200m, and the iron-rich hydrothermal fluids migrated to relatively shallow water area and then experienced oxidation and precipitation to form a stable banded structure. A-C-FM restoration of the original rock in combination with Zr/TiO₂-Ni diagram shows that phyllite is a kind of metasedimentary rock, and Sm / Nd ratios also suggest the characteristics of sedimentary rocks. Th values vary from 7.9 to 22.5×10^{-6} with an average of 15.8×10^{-6} . La values vary from 17.9 to 71.7×10^{-6} with an average of 38.4×10^{-6} . the average of La / Sc ratios is 2.3, the average of Th / Sc ratios is 1.0, and the average of La / Th ratios is 2.4 in the phyllite of this area. These data suggest the continental island arc sedimentary characteristics. It is thus concluded that the metallogenic environment of the Yanqianshan iron deposit was a back-arc basin around the Archean craton.

Key words: Yanqianshan iron ore field; Banded Iron Formation; sedimentary palaeoenvironment; geochemistry; Anshan-Benxi area

About the first author: FU Jian-fei, male, born in 1973, doctor, majors in mineral resource prospecting and evaluation; E-mail: fujianfei@mail.neu.edu.cn.