李猛, 王超, 李荣社, 等. 北祁连肃南地区阴沟群形成时代及沉积源区讨论——碎屑锆石 U-Pb 年龄证据[J]. 中国地质, 2015, 42(3): 601-615. Li Meng, Wang Chao, Li Rongshe, et al. Age and provenance of the Yingou Group in Sunan area of North Qilian Mountain: Evidence from detrital zircon U-Pb dating[J]. Geology in China, 2015, 42(3): 601-615(in Chinese with English abstract).

北祁连肃南地区阴沟群形成时代及沉积源区讨论 ——碎屑锆石U-Pb年龄证据

李猛王超李荣社彭岩

(中国地质调查局西安地质调查中心,陕西西安710054)

提要:北祁连造山带肃南地区是阴沟群的典型分布区,主要由中基性火山岩、火山碎屑岩夹硅质岩、变质泥岩及砂岩 组成。本文对阴沟群上部2件粗砂岩碎屑锆石进行LA-ICP-MS U-Pb年龄的测定,分别获得最小谐和年龄(425±2) Ma、(425±5) Ma,代表其形成时代可能为早一中志留世,说明肃南地区原划为早奥陶世的阴沟群可能存在不同时 代的物质组成,其形成时代需要进一步的厘定。碎屑锆石谐和年龄分布特征表明,其物源主要来自南部的中祁连地 块(800~1000 Ma、1600~1800 Ma),其次来自北祁连岛弧和同碰撞/碰撞后花岗岩(425~510 Ma),而源自北部华北板 块的沉积物(老于1800 Ma的锆石)则极少。

关键 词:北祁连造山带;碎屑锆石;阴沟群;物源;锆石U-Pb;LA-ICP-MS

中图分类号:P588.2 文献标志码:A 文章编号:1000-3657(2015)03-0601-15

Age and provenance of the Yingou Group in Sunan area of North Qilian Mountain: Evidence from detrital zircon U-Pb Dating

LI Meng, WANG Chao, LI Rong-she, PENG Yan

(Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054 Shaanxi, China)

Abstract: The Yingou Group is mainly distributed in Sunan area of North Qilian orogenic belt and consists of intermediate-basic volcanic rocks, pyroclast intercalated with silicalite, metamorphic mudstones and sandstones. U-Pb ages of detrital zircons from two sandstone samples in the Upper Yingou Group were measured using the LA-ICP-MS method. The ages of the youngest zircons, (425±2) Ma and (425±5) Ma, indicate that the deposition took place in the Early to Middle Silurian. Therefore, the age and the composition of the Yingou Group should be redefined. The concordant ages of detrial zircons show that the provenance in the Upper Yingou Group was derived mainly from the Central Qilian block (800–1000 Ma, 1600–1800 Ma), subordinately from the North Qilian arc and synorogenic granites (425–510 Ma), and rarely from the North China plate (> 1800 Ma).

Key words: North Qilian orogenic belt; detrital zircon; Yingou Group; provenance; zircon U-Pb; LA-ICP-MS

About the first author: LI Meng, male, born in 1986, assistant researcher, master, mainly engages in the study of stratigraphy and

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

收稿日期:2014-09-09;**改回日期:**2015-01-19

基金项目:中国地质调查局项目(1212011121258)和陕西省科学技术研究发展计划项目(2014KJXX-19)联合资助。

作者简介:李猛,男,1986年,助理研究员,硕士,从事地层与古生物学工作;E-mail:lm27010501@sina.com。

paleontology; E-mail: lm27010501@sina.com.

About the corresponding author: WANG Chao, male, born in 1979, associate researcher, doctor, engages in the study of petrology and Precambrian geology; E-mail: wangc-mail@163.com.

北祁连造山带位于青藏高原东北缘,是中祁连 地块与华北板块西部之间典型的碰撞造山带(图 1)。近年来,关于北祁连造山带古老基底、洋盆性 质与洋壳俯冲碰撞过程,及大地构造演化等问题, 一直受到众多专家的广泛关注[1-17]。阴沟群在北祁 连造山带内沿走向延伸,分布广泛,以祁连县川刺 沟剖面出露最完整,主要由中基性火山岩、火山碎 屑夹硅质岩、变质泥岩及砂岩组成。该地层单元由 尹赞勋等创立18,命名为阴沟统,依据其中部层位所 采的三叶虫和笔石化石,时代划为早奥陶世,1981 年青海省地研所编图组将其改称为阴沟群,此方案 一直沿用至今^[19]。随着锆石微区原位 U-Th-Pb 同 位素测定技术的发展,一些学者在该造山带盆地形 成及其物源区构造演化研究中取得了重要研究成 果[15-17,20]。然而,对阴沟群的碎屑时代和演化相对较 少,且一直缺乏精确的同位素年龄数据。

本研究通过采用LA-ICP-MS技术对北祁连造 山带肃南地区阴沟群上部粗砂岩样品中的锆石进 行的U-Pb同位素测定,分析其年龄谱特征,取得了 新的认识,进而为肃南地区早古生代构造演化提供 依据。

1 地质概况

北祁连造山带位于华北板块西南缘龙首山与 中祁连地块之间,北界为龙首山断裂,南缘与中祁 连北缘断裂相接,东端为同心一固原断裂,西端为 阿尔金断裂所截切。自北向南,北祁连造山带可以 划分为河西走廊弧后盆地、北祁连岛弧、海沟俯冲 杂岩3个不同构造分区^[2]。

自元古宙以来,北祁连造山带主要经历了大陆 裂谷、板块构造和陆内造山3个阶段^[8]。在古元古代 中期,由于软流圈地幔柱上涌,导致大陆岩石圈开 始逐渐拉伸、裂谷化。至晚寒武世,发生大陆裂解 和分离,形成北祁连早古生代洋盆。至早奥陶世, 北祁连洋盆开始向北俯冲、消减,形成完整的北祁 连早古生代沟-弧-盆系^[1-2,7,11-14]。目前在造山带中 保存的奥陶纪弧后盆地、岛弧、俯冲杂岩和消减洋 壳残片,就是北祁连早古生代洋盆俯冲、消减作用 的产物^[2,8]。至晚奥陶世—早志留世,由于洋壳的不 断消减导致北祁连洋盆闭合,北部奥陶纪岛弧带与

图1 北祁连造山带地质图(据文献[13]修改) Fig.1 Geological map of the North Qilian orogen (modified after reference [13])

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

南部中祁连地块发生弧-陆碰撞^[2,7]。泥盆纪,南部 中祁连地块与北部华北大陆板块发生对接碰撞造 山^[21]。在北祁连河西走廊一带广泛分布的志留纪复 理石和泥盆纪磨拉石,代表了北祁连同造山过程的 沉积响应^[2-3,6]。

北祁连肃南地区,奥陶系一泥盆系分布广泛, 地层发育良好。其中奥陶系分为下奥陶统阴沟群、 中奥陶统中堡群、上奥陶统妖魔山组和南石门子 组,与上伏地层角度不整合接触;志留系出露完整, 为一套复理石建造,以单斜层出现,自下而上可划 分为鹿角沟组、肮脏沟组、泉脑沟山组、旱峡组4个 组,组与组之间整合接触;泥盆系为中下泥盆统老 君山组,是一套陆相磨拉石沉积建造,与下伏地层 角度不整合接触。本文观察剖面位于北祁连造山 带中段,在甘肃省肃南县城西南部白泉门和野牛沟 附近(图2~3)。

图2 肃南地区地质简图

 1—羊虎沟组;2—中晚泥盆世地层;3—志留纪地层;4—阴沟群;
 5—中堡群;6—黑茨沟组;7—托赖岩群;8—中奥陶世斜长花岗岩;
 9—早奧陶世二长花岗岩;10—早奧陶世辉长岩;11—早奧陶世辉石 闪长岩;12—早奧陶世超基性岩;13—志留纪超基性岩;
 14—泥盆纪花岗岩;15—断层/推测断层;16—采样位置 Fig.2 Simplified geological map of the Sunan area
 1-Yanghugou Formation; 2–Middle-late Devonian strata; 3–Silurian strata; 4–Yingou Group; 5–Zhongbao Group; 6–Heicigou Formation; 7–Tuolai Group; 8–Middle Ordovician plagiogranite; 9–Early Ordovician adamellite; 10–Early Ordovician gabbro; 11–Early Ordovician pyroxene diorite; 12–Early Ordovician ultrabasic rocks; 13–Silurian ultrabasic rocks; 14–Devonian granite; 15–Fault/ inferred fault; 16–Sampling location

2 样品采集与分析方法

本研究中的2件碎屑锆石样品(12-38-R1和 12-25-R2),为肃南地区前人划为阴沟群上部的砂 岩,其各自的采样位置:样品12-38-R1的点位为北 纬38°23'45"、东经99°28'33.05",样品12-25-R2的 点位为北纬38°39'27.60"、东经99°29'23"(图2~3)。 锆石的分选工作由河北省廊坊市宇能岩石矿物分 选技术服务有限公司完成。锆石样品靶制备及反 射光、透射光拍摄在西北大学大陆动力学国家重点 实验室完成,锆石阴极发光图像拍摄在中国科学院 地质与地球物理研究所扫描电镜实验室完成。

锆石LA-ICP-MS U-Pb 同位素分析在天津地 质调查中心同位素实验室完成。分析使用的激光器 型号为美国ESI公司UP193-FX ArF 准分子激光器, 激光波长为193 nm,脉冲宽度 5 ns。束斑直径为35 μm,激光频率为8~10 Hz;预剥蚀时间和剥蚀时间分 别为5 s 和45 s。实验过程使用He作为载气,流速为 0.85 L/min。等离子质谱仪(ICP-MS)为 Themo Fisher 公司制造的 Neptune。数据处理软件使用 ICPMS Data Cal 程序^[22]和 Ludwig 的 Isoplot 程序^[23]。 年龄计算时以标准锆石GJ-1为外标进行同位素比值 校正^[24]。元素含量以标准玻璃 NIST612 为外标计算。

对于锆石年龄大于10亿年的数据,采用²⁰⁷Pb/ ²⁰⁶Pb年龄,而对于锆石年龄小于10亿年的数据,采 用²⁰⁶Pb/²³⁸U年龄^[25-26]。以²⁰⁶Pb/²³⁸U年龄和²⁰⁷Pb/²⁰⁶Pb 年龄比值为标准选择U-Pb年龄数据^[25,27-29],谐和度 介于90%~110%的数据为有效数据。

3 分析结果

砂岩样品 12-38-R1 中的碎屑锆石大小不均, 大多数介于 80~180 μm,形状为次圆状和柱状。阴极发光(CL)图像显示(图 4-a),大部分锆石呈次圆 状和柱状,可见明显的振荡环带。该样品共测得 86 个数据(表1),在进行年龄统计分析时,剔除了谐和 度较低的 18 个数据,仅保留谐和度较高的 68 个数 据。这些测点数据大多数位于 U-Pb 谐和线附近, 少数点沿不一致线分布(图 5-a)。所统计的谐和年 龄(谐和度为 90%~110%)在频率分布图中形成 425~500 Ma、800~1000 Ma、1000~1200 Ma 等多个 峰值,并以 800~1000 Ma为主峰值(图 5-b),其中 2

图3 肃南地区白泉门和野牛沟地质剖面图

Fig.3 Geological sections of Baimenquan and Yeniugou in Sunan area, Gansu Province

图4 北祁连造山带志留纪碎屑锆石 CL 图像 (数字代表测点位置和测点号,a—12-38-R1,b—12-25-R2) Fig.4 Cathodoluminescence images of Silurian zircons in the North Qilian orogenic belt (The numerals represent the positions and the serial number of measuring points, a-12-38-R1, b-12-25-R2)

个较年轻锆石年龄为(425±2) Ma、(427±3) Ma。

样品 12-25-R2 的碎屑锆石大小不等,大多数 介于 50~120 μm,形状为次圆状和柱状。阴极发光 (CL)图像显示(图4-b),大部分锆石为次圆状和次 棱角状,呈无环带或面状分带,可能为变质成因或 经历部分熔融的锆石,少部分锆石呈弱振荡环带。 对该样品共进行 70 个测点分析,剔除谐和度较差的 24个点,对剩下的46个点进行年龄统计,分析数据 见表1。这些测点数据大多数位于U-Pb谐和图的 谐和线附近,少数点沿不一致线分布(图5-c)。其 谐和年龄值(谐和度为90%~110%)介于425~1983 Ma(图5-d),在年龄频率分布图上主体形成425~ 550 Ma、700~800 Ma、1600~1800 Ma等多个峰值, 并以425~550 Ma为主峰值(图5-d),其中2个较年 轻锆石年龄为(425±5) Ma、(427±4) Ma。

4 讨 论

4.1 阴沟群形成时代的厘定

尹赞勋等¹¹⁹根据在阴沟群中部层位所采集的三 叶虫和笔石化石将其时代界定为早奥陶世,这是目 前地层时代界定的唯一依据。以后地质工作者均 沿用这一观点,但未能提供更详细的证据。而碎屑 锆石U-Pb年龄能够判断地层时代的下限。本文通 过对前人划为阴沟群上部粗砂岩进行碎屑锆石的 同位素分析,结果显示,样品12-38-R1两个较年轻 锆石年龄分别为(425±2) Ma(谐和度104%)、(427± 2) Ma(谐和度100%),样品12-25-R2两个较年轻 锆石年龄分别为(425±5) Ma(谐和度104%)、(427± 4) Ma(谐和度105%)。这些数据谐和度高,表明阴 沟群上部砂岩形成时代不是前人原定义的早奥陶 世,而可能为早一中志留世。肃南地区原划为早奥 陶世的阴沟群可能存在不同时代的物质组成,其形 成时代需要进一步的厘定。

4.2 沉积物源区

北祁连造山带及其邻区前泥盆纪岩浆及其变

图 5 锆石 U-Pb 谐和图和年龄频谱图 (深灰色区域为谐和度介于 90%~110%的锆石年龄频谱图,浅灰色区域为所有锆石年龄频谱图; n指谐和度介于 90%~110%的年龄数据/所有年龄数据) Fig.5 Zircon U-Pb concordia diagrams and age spectra dark gray area shows given age aporter with according darks area between 90%~110% the light gray area for

The dark grey area shows zircon age spectra with concordant degree between 90%-110%, the light gray area for the all; "n" refers to the number of the zircons with concordant degree between 90%-110% / the total

质事件比较复杂。北祁连造山带内部岩浆事件主要与北祁连洋消减产生的岛弧岩浆作用(460~510 Ma)以及同碰撞/碰撞后花岗岩(420~460 Ma)有关^[30]。此外,北祁连蛇绿岩和裂谷火山岩年龄主要集中在500~700 Ma^[31,32]。同时,与北祁连洋壳俯冲产生的高压变质年龄集中在460~490 Ma^[9-14]。中祁连地块基底区域岩浆事件主要集中在630~1000 Ma、1000~1200 Ma、1200~1600 Ma、1600~1800 Ma,尤其以800~1000 Ma的岩浆事件为主^[33-38]。阿拉善地块(华北板块)区域岩浆事件则主要集中在1700~1800 Ma、2300~2400 Ma、2500~2600 Ma、2900~3000 Ma,其中在600~1600 Ma基本上没有岩浆活动的记录^[39-47]。

从样品 12-38-R1 的年龄分布特征来看,800~1000 Ma和425~510 Ma的锆石年龄最为集中,所占比例最多(分别为39.1%和30.4%),其他年龄值零星分布。锆石年龄存在 860 Ma的主峰值和472 Ma的

次峰年龄值。从锆石CL图像特征上看(图4-a),大 多数472 Ma和860 Ma左右的锆石具有岩浆锆石振 荡环带构造,颗粒较大,形态呈自形长板状,表明源 区经历了岩浆事件。结合区域地质分析,表明800~ 1000 Ma的碎屑锆石很可能来自中祁连地块,为其 主要的物源区,425~510 Ma的锆石大多数来自于北 祁连岛弧(460~510 Ma),仅有少部分可能来自同碰 撞/碰撞后花岗岩(420~460 Ma),而来自于华北地块 的沉积物极少(老于1800 Ma的锆石)。

从样品 12-25-R2 的年龄分布特征来看,1600~1800 Ma 和 425~510 Ma 的锆石年龄最为集中,所占比例最多(分别为 31.1%和 26.7%),其他年龄值零星分布。锆石年龄存在 475 Ma 的主峰值和 726 Ma、1726 Ma 2个次峰年龄值。从锆石 CL 图像特征上看(图 4-b),大多数 475 Ma、726 Ma 和 1726 Ma 左右的锆石具有变质锆石特征,部分具有岩浆锆石振

	Ta	ble 1 U–Pt	表) isotopic d	E1 阴沟群上音 ata for detric	部粗砂岩(al zircons	12-38-R1 s from the u	,12–25– upper Yin	R2)碎屑结 gou Group	石 U-Pb sandston	同位素数据 e (sample	1 2-38-	-R1, 12-2	5-R2)			
<i>4</i> π	3重/10 ⁻⁶					同位素比	「值					表面年龄/1	Ma			
	Th	n	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1 σ	²⁰⁶ Pb/ ²³⁸ U	1σ	谐和度
	40	236	0.17	0.0702	0.0005	1.4186	0.0084	0.1466	0.0009	933	15	897	5	882	5	102
	36	67	0.54	0.1041	0.0021	2.5383	0.0565	0.1768	0.0011	1699	37	1283	29	1050	7	162
	45	361	0.12	0.0781	0.0006	1.4403	0.0081	0.1338	0.0008	1149	14	906	5	809	5	112
	32	205	0.16	0.0687	0.0006	1.2777	0.0094	0.1350	0.0009	888	18	836	9	816	5	102
	92	333	0.28	0.0719	0.0005	1.4220	0.0079	0.1435	0.0008	983	14	898	5	864	5	104
	210	147	1.43	0.0805	0.0008	1.8514	0.0159	0.1668	0.0011	1209	21	1064	6	995	7	122
	22	202	0.11	0.0752	0.000	1.5067	0.0171	0.1454	0.0008	1073	24	933	11	875	5	107
	127	483	0.26	0.0575	0.0006	0.6043	0.0066	0.0762	0.0005	511	25	480	5	473	ŝ	101
	27	228	0.12	0.0706	0.0005	1.4263	0.0078	0.1466	0.0009	945	14	006	5	882	9	102
	78	144	0.54	0.1137	0.0007	4.7304	0.0218	0.3018	0.0020	1859	Π	1773	×	1700	Ξ	109
	61	422	0.14	0.0681	0.0004	1.0185	0.0072	0.1085	0.0008	871	13	713	5	664	5	107
	70	295	0.24	0.0693	0.0005	1.3679	0.0070	0.1431	0.0009	606	14	875	4	862	5	102
	71	371	0.19	0.0704	0.0004	1.3829	0.0061	0.1425	0.0009	940	12	882	4	859	5	103
	25	51	0.48	0.0948	0.0013	2.5524	0.0352	0.1953	0.0011	1524	26	1287	18	1150	7	133
	85	215	0.39	0.0670	0.0005	1.2639	0.0072	0.1368	0.0009	839	14	830	5	826	5	100
	67	337	0.29	0.0612	0.0005	0.6538	0.0043	0.0775	0.0005	647	17	511	б	481	ŝ	106
	36	68	0.53	0.1766	0.0010	11.3799	0.0520	0.4675	0.0030	2621	6	2555	12	2473	16	106
	64	248	0.26	0.0584	0.0007	0.6151	0.0068	0.0763	0.0005	546	25	487	5	474	ŝ	103
	20	176	0.11	0.0676	0.0005	1.2898	0.0097	0.1384	0.0008	856	16	841	9	835	5	101
	63	124	0.51	0.1075	0.0006	4.7299	0.0234	0.3192	0.0021	1757	Π	1773	6	1786	12	98
	34	255	0.13	0.0665	0.0004	1.2115	0.0075	0.1321	0.0009	823	14	806	5	800	9	101
ŧ.																

中

玉

地

质

606

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

(中国) (中国)	暗种反	100	101	105	120	105	101	101	109	100	101	104	112	66	98	103	105	109	103	108	102	100	102	111	131
	1σ	3	9	3	9	9	5	5	9	7	б	ŝ	4	7	5	10	7	б	5	4	7	7	5	9	ſ
	²⁰⁶ Pb/ ²³⁸ U	427	919	467	1067	830	872	863	741	1147	472	472	506	1083	868	1378	425	473	885	675	1070	1066	841	842	
Ma	1σ	4	S	б	9	5	S	4	12	9	б	ŝ	9	5	5	10	9	5	4	8	5	5	6	5	
表面年龄/	²⁰⁷ Pb/ ²³⁵ U	427	929	489	1139	874	879	868	807	1146	476	489	566	1081	851	1396	445	516	908	730	1077	1066	857	938	
	1σ	23	13	15	12	11	14	13	22	12	17	17	14	12	14	11	31	21	14	21	11	12	24	14	
	²⁰⁷ Pb/ ²⁰⁶ Pb	427	953	596	1277	988	896	879	995	1146	495	567	816	1076	808	1424	553	711	964	903	1092	1068	898	1169	
	1σ	0.0004	0.0010	0.0005	0.0011	0.0010	6000.0	6000.0	0.0010	0.0012	0.0005	0.0005	0.0007	0.0012	0.0009	0.0018	0.0004	0.0004	0.0009	0.0007	0.0011	0.0011	0.0009	00000	
	²⁰⁶ Pb/ ²³⁸ U	0.0684	0.1532	0.0751	0.1801	0.1374	0.1448	0.1433	0.1218	0.1947	0.0760	0.0760	0.0816	0.1829	0.1442	0.2384	0.0681	0.0761	0.1472	0.1105	0.1805	0.1798	0.1394	0.1396	
值	1σ	0.0049	0.0078	0.0037	0.0101	0.0079	0.0071	0.0056	0.0186	0.0109	0.0039	0.0036	0.0077	0.0089	0.0071	0.0203	0.0077	0.0059	0.0071	0.0109	0.0080	0.0089	0.0145	0.0080	
同位素比	²⁰⁷ Pb/ ²³⁵ U	0.5223	1.4969	0.6194	2.0695	1.3650	1.3755	1.3506	1.2145	2.0921	0.5981	0.6179	0.7458	1.8985	1.3129	2.9561	0.5501	0.6617	1.4456	1.0532	1.8881	1.8585	1.3253	1.5184	
	lσ	0.0006	0.0005	0.0004	0.0005	0.0004	0.0005	0.0004	0.0008	0.0005	0.0004	0.0005	0.0004	0.0004	0.0005	0.0005	0.0008	0.0006	0.0005	0.0007	0.0004	0.0005	0.0008	0.0006	
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.0554	0.0709	0.0598	0.0833	0.0721	0.0689	0.0684	0.0723	0.0779	0.0571	0.0590	0.0663	0.0753	0.0660	0.0899	0.0586	0.0631	0.0712	0.0692	0.0759	0.0750	0690.0	0.0789	
	Th/U	0.53	0.16	0.28	0.13	0.11	0.10	0.13	0.11	66.0	0.23	0.18	0.10	0.20	0.15	0.27	0.58	0.35	0.14	0.11	0.16	0.34	0.57	0.11	
	n	278	249	426	316	841	439	639	215	183	422	632	1755	295	215	231	310	284	206	153	388	314	96	1223	
含量/ 10 ⁻⁶	Th	147	40	119	40	16	43	84	23	180	76	111	174	59	33	63	180	66	28	17	61	108	55	129	
	Pb	21	37	32	56	110	61	89	26	44	32	47	137	54	30	57	23	23	30	16	69	59	15	166	
마	т Р	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	

第42卷第3期

								F	P		玉		地)	<u></u> 贞								
池利雨	Х7-1 Ц	105	108	119	111	120	106	106	104	105	107	105	100	107	120	103	102	104	109	110	102	103	102	153
	lσ	33	7	7	9	3	9	3	5	5	5	3	9	5	5	5	б	7	ю	8	3	5	3	6
	²⁰⁶ Pb/ ²³⁸ U	468	869	1064	1063	494	1074	478	822	892	870	482	899	882	751	878	470	1067	445	1324	490	876	488	1235
Лa	1σ	4	9	4	9	9	Ś	ŝ	6	10	5	5	4	12	8	8	б	5	б	17	4	12	б	47
表面年龄/1	²⁰⁷ Pb/ ²³⁵ U	494	758	1131	1100	594	1097	509	858	937	934	504	668	941	903	902	482	1081	484	1378	498	006	496	1498
	lσ	19	17	12	13	24	12	15	21	23	13	22	13	25	17	19	17	12	19	23	19	27	18	57
	$^{207}\text{Pb}/^{206}\text{Pb}$	614	937	1261	1175	966	1143	651	950	1043	1087	609	901	1082	1295	960	536	1110	675	1462	535	958	532	1893
	1 σ	0.0005	0.0012	0.0011	0.0011	0.0005	0.0010	0.0005	0.0008	6000.0	0.0008	0.0005	0.0010	0.0009	0.0008	6000.0	0.0004	0.0012	0.0004	0.0013	0.0005	6000.0	0.0005	0.0016
	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	0.0754	0.1144	0.1794	0.1792	0.0797	0.1812	0.0770	0.1361	0.1484	0.1445	0.0776	0.1496	0.1467	0.1236	0.1459	0.0757	0.1800	0.0714	0.2281	0.0789	0.1456	0.0786	0.2111
值	1σ	0.0047	0.0093	0.0079	0.0098	0.0087	0.0092	0.0039	0.0132	0.0165	0.0077	0.0060	0.0069	0.0189	0.0132	0.0120	0.0038	0.0082	0.0043	0.0355	0.0045	0.0193	0.0038	0.1064
同位素出	²⁰⁷ Pb/ ²³⁵ U	0.6264	1.1092	2.0452	1.9553	0.7955	1.9451	0.6515	1.3272	1.5158	1.5080	0.6431	1.4251	1.5271	1.4334	1.4301	0.6072	1.9008	0.6107	2.8848	0.6328	1.4252	0.6291	3.3719
	1σ	0.0005	0.0006	0.0005	0.0005	6000.0	0.0005	0.0004	0.0007	0.0008	0.0005	0.0006	0.0004	0.0009	0.0008	0.0006	0.0005	0.0005	0.0005	0.0011	0.0005	0.0010	0.0005	0.0037
	$^{207}{\rm Pb}/^{206}{\rm Pb}$	0.0603	0.0703	0.0827	0.0791	0.0724	0.0778	0.0613	0.0707	0.0741	0.0757	0.0601	0.0691	0.0755	0.0841	0.0711	0.0582	0.0766	0.0620	0.0917	0.0581	0.0710	0.0580	0.1159
	Th/U	0.24	0.19	0.54	0.53	0.38	0.07	0.35	0.10	0.14	0.08	0.24	09.0	0.12	0.52	0.18	0.27	0.22	0.52	0.49	0.83	0.47	0.32	3.55
	n	598	357	555	212	447	574	495	251	181	386	527	318	240	291	287	564	459	735	92	366	127	496	16
含量/10 ⁶	Th	142	69	302	112	169	43	174	26	25	30	128	190	29	151	51	151	66	380	45	303	60	157	57
	Pb	45	40	105	43	39	100	39	33	27	54	41	53	35	40	42	42	81	56	23	34	20	40	7
다 나 나	1	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68

2015年

																<i></i>	メイト・
ם בי		含量/10-6					同位素日	に値					表面年龄/ N	ſa			相陸翔
- P I	Pb	Th	n	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	lσ	²⁰⁶ Pb/ ²³⁸ U	1 σ	頃仲茂
70	133	218	577	0.38	0.0973	0.0006	2.8620	0.0150	0.2133	0.0014	1574	12	1372	7	1246	~	126
71	47	329	540	0.61	0.0601	0.0005	0.6477	0.0046	0.0782	0.0005	606	19	507	4	485	3	104
72	59	192	750	0.26	0.0579	0.0005	0.6264	0.0041	0.0784	0.0005	528	18	494	$\tilde{\omega}$	487	ŝ	101
73	27	237	331	0.72	0.0568	0.0005	0.5570	0.0047	0.0711	0.0004	485	21	450	4	443	3	102
74	52	36	282	0.13	0.0769	0.0005	1.9943	0.0130	0.1881	0.0012	1119	13	1114	7	1111	7	101
75	10	36	129	0.28	0.0599	0.0011	0.6429	0.0112	0.0778	0.0005	600	39	504	6	483	3	104
76	182	2452	2065	1.19	0.0882	0.0005	0.9008	0.0035	0.0741	0.0005	1386	12	652	б	461	З	301
77	19	39	130	0.30	0.0744	0.0007	1.4893	0.0123	0.1452	0.0008	1053	19	926	8	874	5	106
78	30	18	208	60.0	0.0713	0.0006	1.4635	0.0100	0.1488	6000.0	67	17	915	9	894	5	102
79	26	45	134	0.34	0.0789	0.0006	2.0759	0.0127	0.1909	0.0011	1168	15	1141	7	1126	7	104
80	57	156	160	0.97	0.1040	0.0006	4.1856	0.0169	0.2920	0.0017	1696	11	1671	7	1651	10	103
81	80	25	226	0.11	0.1433	0.0010	6.8239	0.0666	0.3453	0.0025	2268	12	2089	20	1912	14	119
82	36	78	225	0.35	0.0712	0.0006	1.5076	0.0106	0.1535	6000.0	964	17	933	7	921	5	101
83	110	93	608	0.15	0.0786	0.0005	2.0066	0.0094	0.1852	0.0011	1162	14	1118	5	1095	7	106
84	32	76	173	0.44	0.0823	0.0009	1.9230	0.0205	0.1695	0.0010	1252	20	1089	12	1009	9	124
85	35	28	239	0.12	0.0723	0.0007	1.5072	0.0155	0.1511	6000.0	966	20	933	10	907	5	103
86	113	216	478	0.45	0.0839	0.0005	2.5377	0.0107	0.2194	0.0013	1290	12	1283	5	1279	7	101
样品号: 1	2-25-R2																
1	79	149	275	0.54	0.0935	0.0006	3.1528	0.0350	0.2445	0.0031	1499	13	1446	16	1410	18	106
2	15	59	180	0.33	0.0592	0.0023	0.6074	0.0263	0.0744	0.0011	576	86	482	21	462	7	104
3	61	59	525	0.11	0.0636	0.0006	1.0432	0.0138	0.1189	0.0010	729	21	725	10	724	9	100
4	172	162	571	0.28	0.1056	0.0005	4.0761	0.0384	0.2801	0.0030	1724	6	1650	16	1592	17	108
5	80	TT	261	0.29	0.1040	0.0007	4.0946	0.0411	0.2856	0.0029	1696	12	1653	17	1620	16	105
9	64	95	206	0.46	0.1110	0.0008	4.1640	0.0436	0.2720	0.0025	1817	13	1667	17	1551	14	117

第42卷第3期

										中		玉		丬	<u>h</u>		质									
븇表 1	田 臣将	頃仲戊	103	107	104	115	103	183	112	111	112	105	133	107	129	107	105	102	106	109	117	100	66	109	102	105
112		lσ	=	16	16	6	15	15	17	Ξ	11	5	12	14	13	15	6	10	6	16	17	5	5	15	5	4
		²⁰⁶ Pb/ ²³⁸ U	1176	1655	1780	<i>L</i> 66	1795	747	1540	1122	1302	483	1367	1575	1471	650	1131	937	740	1486	1533	459	476	1230	496	427
	Ma	1σ	15	22	18	12	19	47	18	19	17	11	17	18	21	16	15	24	25	19	19	17	17	14	8	7
	表面年龄/	²⁰⁷ Pb/ ²³⁵ U	1188	1707	1813	1046	1819	923	1621	1164	1360	505	1555	1625	1652	698	1150	952	783	1543	1648	459	472	1272	508	450
		lσ	17	19	11	14	13	82	15	27	18	41	21	21	16	32	19	46	59	17	14	75	69	14	29	25
		²⁰⁷ Pb/ ²⁰⁶ Pb	1210	1773	1851	1149	1848	1370	1726	1244	1454	609	1820	1690	1890	855	1187	986	907	1622	1798	457	452	1344	564	571
		1σ	0.0019	0.0028	0.0029	0.0016	0.0027	0.0025	0.0030	0.0019	0.0020	6000.0	0.0020	0.0024	0.0023	0.0024	0.0016	0.0017	0.0014	0.0029	0.0029	0.0008	0.0009	0.0025	0.0008	0.0007
		²⁰⁶ Pb/ ²³⁸ U	0.2002	0.2926	0.3181	0.1672	0.3210	0.1228	0.2699	0.1901	0.2238	0.0778	0.2363	0.2768	0.2563	0.1060	0.1918	0.1564	0.1217	0.2593	0.2684	0.0738	0.0766	0.2102	0.0800	0.0684
	北值	lσ	0.0271	0.0575	0.0491	0.0204	0.0530	0.0762	0.0443	0.0355	0.0358	0.0142	0.0404	0.0431	0.0515	0.0224	0.0276	0.0396	0.0367	0.0449	0.0464	0.0207	0.0209	0.0278	0.0108	0600.0
	同位素	²⁰⁷ Pb/ ²³⁵ U	2.2230	4.3733	4.9641	1.8003	5.0002	1.4808	3.9333	2.1479	2.8185	0.6449	3.6236	3.9560	4.0869	0.9879	2.1050	1.5529	1.1623	3.5709	4.0666	0.5708	0.5916	2.5004	0.6499	0.5578
		1σ	0.0007	0.0011	0.0007	0.0006	0.0008	0.0037	0.0008	0.0011	0.0009	0.0011	0.0013	0.0012	0.0011	0.0010	0.0008	0.0016	0.0020	0.0009	0.0009	0.0019	0.0017	0.0006	0.0008	0.0007
		²⁰⁷ Pb/ ²⁰⁶ Pb	0.0805	0.1084	0.1132	0.0781	0.1130	0.0874	0.1057	0.0819	0.0913	0.0602	0.1112	0.1036	0.1157	0.0676	0.0796	0.0720	0.0693	6660'0	0.1099	0.0561	0.0560	0.0863	0.0589	0.0591
		Th/U	0.68	0.25	0.27	0.23	0.33	0.28	0.27	0.40	0.43	0.06	0.11	0.48	0.67	0.38	0.69	0.79	0.32	0.63	0.23	0.58	0.48	1.04	0.0	0.08
		n	336	148	370	570	228	136	736	199	395	414	509	362	165	321	341	138	141	316	407	312	265	432	577	693
	含量/10%	Th	227	38	100	129	74	38	200	79	169	27	57	173	111	122	235	108	46	199	95	182	128	449	51	53
		qd	81	46	126	66	80	19	210	41	96	32	123	114	52	37	79	27	19	94	114	27	23	122	44	46
	Ţ	р Щ	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

电 唯	頃仲戊	100	103	102	101	135	106	103	101	101	100	103	106	66	138	102	127	118	125	132	130	108	103	104	130
	lσ	4	14	19	18	12	15	7	7	16	23	10	7	13	14	9	Π	14	15	21	13	13	12	6	22
	²⁰⁶ Pb/ ²³⁸ U	474	1670	096	1830	1241	1578	833	615	1589	1604	582	458	1285	1387	501	1176	1480	1169	1332	1364	1598	521	703	1461
Ma	lσ	7	18	17	20	19	22	16	14	28	28	13	24	16	19	21	16	17	15	20	16	17	41	23	20
表面年龄/	²⁰⁷ Pb/ ²³⁵ U	473	1692	983	1837	1410	1617	856	618	1594	1604	599	483	1282	1608	514	1292	1595	1275	1505	1535	1654	537	730	1652
	1σ	20	12	23	13	19	18	29	37	25	24	40	86	17	15	84	16	13	17	18	12	12	150	63	16
	²⁰⁷ Pb/ ²⁰⁶ Pb	468	1719	1035	1845	1676	1668	919	629	1602	1603	665	608	1277	1161	568	1490	1750	1458	1758	1778	1726	605	816	1905
	1α	0.0007	0.0025	0.0032	0.0032	0.0021	0.0026	0.0012	0.0011	0.0029	0.0041	0.0017	0.0011	0.0023	0.0024	0.0010	0.0018	0.0025	0.0026	0.0037	0.0022	0.0023	0.0019	0.0014	0.0038
	²⁰⁶ Pb/ ²³⁸ U	0.0762	0.2958	0.1605	0.3284	0.2122	0.2774	0.1379	0.1001	0.2794	0.2825	0.0944	0.0736	0.2207	0.2401	0.0809	0.2002	0.2581	0.1988	0.2296	0.2357	0.2813	0.0842	0.1152	0.2543
:值	1σ	0.0085	0.0448	0.0290	0.0554	0.0416	0.0538	0.0248	0.0188	0.0677	0.0670	0.0177	0.0303	0.0317	0.0448	0.0273	0.0312	0.0408	0.0303	0.0445	0.0366	0.0417	0.0528	0.0334	0.0484
同位素出	²⁰⁷ Pb/ ²³⁵ U	0.5929	4.2929	1.6322	5.1056	3.0086	3.9159	1.3244	0.8382	3.8079	3.8518	0.8037	0.6098	2.5349	3.8728	0.6583	2.5698	3.8105	2.5090	3.4032	3.5342	4.0989	0.6970	1.0529	4.0883
	1σ	0.0005	0.0007	0.0008	0.0008	0.0011	0.0010	0.0010	0.0010	0.0013	0.0013	0.0012	0.0027	0.0007	0.0010	0.0023	0.0008	0.0007	0.0008	0.0011	0.0007	0.0007	0.0042	0.0020	0.0010
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.0564	0.1053	0.0738	0.1128	0.1028	0.1024	0.0697	0.0607	0.0988	0.0989	0.0617	0.0601	0.0833	0.1170	0.0590	0.0931	0.1071	0.0915	0.1075	0.1087	0.1057	0.0600	0.0663	0.1166
	Th/U	0.10	0.26	0.39	96.0	0.38	0.21	0.19	0.09	0.28	0.40	0.28	0.44	0.29	0.56	0.22	1.41	0.21	0.40	0.67	0.40	0.10	0.43	0.48	0.26
	n	2014	790	389	363	218	508	446	718	491	251	347	179	357	252	212	359	668	284	201	452	1067	126	300	384
含量/10%	Th	206	206	152	349	83	108	86	62	135	66	76	78	103	140	47	507	140	113	134	180	107	55	143	101
	Pb	148	246	70	155	52	144	63	71	144	LL	35	15	83	75	18	104	181	63	56	121	297	13	37	103
박	F	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54

续表1	2011年3月 21日年3月	「日本」	137	102	108	208	104	101	105	115	104	86	103	120	115	101	140	111
		1σ	14	15	18	20	5	5	∞	26	17	∞	9	7	Π	7	12	5
		$^{206}{\rm Pb}/^{238}{\rm U}$	1227	1636	1835	1164	425	478	535	2006	1658	730	549	490	686	504	1245	356
	Ma	lσ	26	20	20	34	13	٢	~	26	20	6	6	10	12	10	18	6
	表面年龄/	$^{207}{\rm Pb}/^{235}{\rm U}$	1401	1653	1905	1689	443	482	562	2157	1688	717	567	588	1036	510	1439	396
		lσ	29	17	12	25	56	25	23	15	16	20	26	31	18	41	17	44
		²⁰⁷ Pb/ ²⁰⁶ Pb	1678	1675	1983	2422	537	503	675	2303	1727	679	640	988	1138	536	1740	640
		1σ	0.0024	0.0027	0.0032	0.0033	0.0008	0.0008	0.0013	0.0048	0.0030	0.0013	0.0010	0.0011	0.0019	0.0012	0.0020	0.0008
		$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	0.2096	0.2888	0.3292	0.1979	0.0682	0.0769	0.0865	0.3650	0.2933	0.1199	0.0889	0.0790	0.1658	0.0813	0.2130	0.0567
	比值	1σ	0.0542	0.0498	0.0585	0.0860	0.0161	0.0088	0.0110	0060.0	0.0509	0.0126	0.0119	0.0135	0.0213	0.0128	0.0388	0.0110
	同位素比	²⁰⁷ Pb/ ²³⁵ U	2.9750	4.0929	5.5301	4.2798	0.5474	0.6078	0.7393	7.3640	4.2740	1.0270	0.7484	0.7849	1.7753	0.6520	3.1269	0.4772
		1σ	0.0016	0.0009	0.0008	0.0023	0.0015	0.0007	0.0007	0.0013	0.000	0.0006	0.0007	0.0011	0.0007	0.0011	0.0010	0.0013
		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	0.1030	0.1028	0.1218	0.1568	0.0582	0.0573	0.0620	0.1463	0.1057	0.0621	0.0610	0.0721	0.0776	0.0582	0.1065	0.0610
		Th/U	0.41	0.25	0.72	0.65	0.25	0.07	0.10	2.55	0.13	0.26	0.12	0.32	0.27	0.14	0.31	0.36
		U	112	201	427	338	477	945	1123	385	1013	780	749	338	409	374	714	488
	含量/10 ⁶	Th	46	51	308	220	117	63	109	980	127	205	16	109	111	51	219	177
		Pb	26	61	173	95	34	69	76	256	301	96	69	29	71	30	168	30
	म म्	r P L	55	56	57	58	59	09	61	62	63	64	65	99	67	68	69	70

注:表中所列误差均为10误差。

http://geochina.cgs.gov.cn 中国地质, 2015, 42(3)

荡环带构造,锆石颗粒较小,形态呈他形、均质,表 明源区发生了一定程度的变质作用,同时也伴随有 岩浆活动。结合区域热事件分析对比发现,1600~ 1800 Ma的碎屑锆石最有可能来自南部的中祁连地 块。425~510 Ma的锆石与北祁连岛弧(460~510 Ma) 和同碰撞/碰撞后岩浆活动时间一致。另外,极少有 来自于华北地块的锆石(老于1800 Ma的锆石)。

综合来看,肃南地区阴沟群上部沉积物主要来 自南部的中祁连地块,其次来自北祁连岛弧和同碰 撞/碰撞后花岗岩,而源自北部华北板块的沉积物则 极少。

5 结 论

(1)运用LA-ICP-MS方法,对北祁连造山带肃 南地区阴沟群上部2件粗砂岩进行锆石U-Pb测 年。其中最小谐和年龄值425 Ma,代表了该砂岩形 成时代可能为早一中志留世,而不是前人原定义的 早奧陶世。这表明北祁连造山带肃南地区原划为 早奧陶世的阴沟群可能存在不同时代的物质组成, 其形成时代需要进一步的厘定。

(2)碎屑锆石谐和年龄分布特征表明,其沉积物主要来自南部的中祁连地块(800~1000 Ma、1600~1800 Ma),其次来自北祁连岛弧和同碰撞/碰撞后花岗岩(425~510 Ma),而源自北部华北板块的沉积物(老于1800 Ma的锆石)则极少。

致谢: 锆石分选由河北省廊坊市宇能岩石矿物 分选技术服务有限公司王建华老师完成, 锆石制靶 与透射光和反射光图像拍摄由西北大学梁莎硕士 研究生完成, 锆石数据处理得到天津地质调查中心 同位素实验室耿建珍老师的指导。在此一并表示 衷心的感谢!

参考文献(References):

- Wu H Q, Feng Y M, Song S G. Metamorphism and deformation of blueschist belts and their tectonic implications, north Qilian Mountains, China[J]. Journal of Metamorphic Geology, 1993, 11 (4): 523–536.
- [2] 冯益民,何世平. 祁连山大地构造与造山作用[M]. 北京: 地质出版社, 1996: 1-135.

Feng Yimin, He Shiping. Geotectonics and Orogeny of the Qilian Mountains, China[M]. Beijing: Geological Publishing House, 1996: 1–135 (in Chinese with English abstract).

[3] 左国朝, 吴汉泉. 北祁连中段早古生代双向俯冲-碰撞造山模式

剖析[J]. 地球科学进展, 1997, 12(4): 315-323.

Zuo Guochao, Wu Hanquan. A bisubduction- collision orogenic model of early- Paleozoic in the middle part of North Qilian area[J]. Advance in Earth Science, 1997, 12(4): 315-323 (in Chinese with English abstract).

[4] 葛肖虹, 刘俊来. 北祁连造山带的形成与背景[J]. 地学前缘, 1999, 6(4): 223-230.

Ge Xiaohong, Liu Junlai. Formation and tectonic background of the northern Qilian orogenic belt[J]. Earth Science Frontiers, 1999, 6(4): 223–230 (in Chinese with English abstract).

- [5] 张旗, 王焰, 钱青. 北祁连早古生代洋盆是裂陷槽还是大洋盆 ——与葛肖虹讨论[J]. 地质科学, 2000, 35(1): 121–128. Zhang Qi, Wang Yan, Qian Qing. The North Qilian ocean basin of the Early Paleozoic age-An aulacogen or a large oceanic basin:A discussion with Ge Xianhong[J]. Scientia Geologica, 2000, 35(1): 121–128 (in Chinese with English abstract).
- [6] 杜远生, 张哲, 周道华, 等. 北祁连-河西走廊志留纪和泥盆纪古地 理及其同造山过程的沉积响应[J]. 古地理学报, 2002, 4(4): 1-8. Du Yuansheng, Zhang Zhe, Zhou Daohua, et al. Silurian and Devonian palaeogeography of northern Qilian-Hexi corridor and its sedimentary response to synorogenesis of North Qilian orogenic belt[J]. Journal of Palaeogeography, 2002, 4(4): 1-8(in Chinese with English abstract).
- [7] 杜远生,朱杰,韩欣,等. 从弧后盆地到前陆盆地-北祁连造山带 奥陶纪-泥盆纪的沉积盆地和构造演化[J]. 地质通报, 2004, 23(9/ 10): 911-917.

Du Yuansheng, Zhu Jie, Han Xin, et al. From the back-arc basin to foreland basin—Ordovician– Devonian sedimentary basin and tectonic evolution in the North Qilian Orogenic Belt[J]. Geological Bulletin of China, 2004, 23(9/10): 911–917 (in Chinese with English abstract).

- [8] Xia L Q, Xia Z C, Xu X. Magmagenesis in the Ordovician Backarc Basins of the North Qilian Mountains, China[J]. GSA Bulletin, 2003, 115(12): 1510–1522.
- [9] Zhang J X, Meng F C, Wan Y S. A cold early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U– Pb geochronological constraints[J]. Journal Metamorphic Geology, 2007, 25(3): 285–304.
- [10] Song S G, Zhang L F, Niu Y L, et al. Zircon U–Pb SHRIMP ages of eclogites from the North Qilian Mountains in NW China and their tectonic implication[J]. Chinese Science Bulletin, 2004, 49 (8): 848–852.
- [11] Song S G, Zhang L F, Niu Y L, et al. Eclogite and carpholite– bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle[J]. Journal of Metamorphic Geology, 2007, 25(5): 547–563.
- [12] Song S G, Niu Y, Zhang L F, et al. Tectonic evolution of Early Paleozoic HP metamorphic rocks in the North Qilian Mountains,

NW China: New perspectives[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 334–353.

- [13] Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23: 1378–1401.
- [14] Song S G, Niu Y, Su Li, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth–Science Reviews, 2014, 129: 59–84.
- [15] Yang J H, Du Y S, Cawood P A, et al. Silurian collisional suturing onto the southern margin of the North China Craton: Detrital zircon geochronology constraints from the Qilian orogen[J]. Sedimentary Geology, 2009, 220(1/2): 95–104.
- [16] Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China[J]. Sedimentary Geology, 2010, 230(1/2): 35–45.
- [17] 徐亚军,杜远生,杨江海.北祁连造山带晚奥陶世-泥盆纪构造 演化:碎屑锆石年代学证据[J].地球科学——中国地质大学学 报,2013,38(5):934-946.

Xu Yajun, Du Yuansheng, Yang Jianghai. Tectonic evolution of the North Qilian Orogenic belt from the Late Ordovician to Devonian: evidence from detrital zircon geochronology[J]. Earth Science—Journal of China University of Geosciences, 2013, 38 (5): 934–946 (in Chinese with English abstract).

[18] 解广轰, 汪缉安.祁连山的下古生代地质[J]. 地质科学, 1959, 2 (4): 104-108.

Xie Guanghong, Wang Ji'an. The lower Paleozoic geology of the Qilian[J]. Chinese Journal of Geology, 1959, 2(4): 104–108(in Chinese with English abstract).

[19] 青海省地质矿产局.青海省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 1-340.
 Bureau of Geology and Mineral Resources of Qinghai Province.
 Lithostratigraphy of Qinghai Province[M]. Wuhan: China

University of Geosciences Press, 1997: 1–340 (in Chinese). [20] Yan Z, Xiao W J, Windley, B F, et al. Silurian clastic sediments

- in the North Qilian Shan, NW China: Chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau[J]. Sedimentary Geology, 2010, 231: 98–114.
- [21] 许志琴, 崔军文. 大陆山链变形构造动力学[M]. 北京:冶金工业 出版社, 1996.
 Xu Zhiqin, Cui Junwen. Dynamics of Deformational Structure in the Continental Mountain Chains [M]. Beijing: Metallurgical Industry Press, 1996(in Chinese).
- [22] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling- induced melt- peridotite interactions in the Trans-North China Orogen: U- Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51: 537–571.
- [23] Ludwig K R. User's manual for Isoplot/Ex, version 3.00. A

Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003, 4: 1–70.

- [24] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb ziron geochronology[J]. Chemical Geology, 2004, 211: 47–69.
- [25] Gehrels G, Johnsson M J, Howwell D G. Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U. S. A[J]. Sedi. Res., 1999, 69: 135–144.
- [26] Sircombe K N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedi. Geol., 1999, 124: 47–67.
- [27] Nelson J, Gehrels G. Detrital zircon geochronology and provenance of the southeastern Yukon–Tanana Terran[J]. Cana. J. Ear. Sci., 2007, 44: 297–316.
- [28] Kalsbeek F, Frei D, Affaton P. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: an Amazonian connection[J].Sedi. Geol., 2008, 212: 86–95.
- [29] Naipauer M, Vujovich G I, Cingolani C A, et al. Detrital zircon analysis from the Neoproterozoic– Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie De Palo, Argentina: evidence of a rift and passive margin system[J].J. South Amer. Ear. Sci., 2010, 29: 306–326.
- [30] 吴才来, 徐学义, 高前明, 等. 北祁连早古生代花岗质岩浆作用 及构造演化[J]. 岩石学报, 2010, 26(4): 1027-1044.
 Wu Cailai, Xu Xueyi, Gao Qianming, et al. Early Palaezoic grranitoid magmatism and tectonic evolution in North Qilian, NW China[J]. Acta Petrologica Sinica, 2010, 26(4): 1027-1044(in Chinese with English abstract).
- [31] 史仁灯,杨经绥,吴才来,等.北祁连玉石沟蛇绿岩形成于晚震 旦世SHRIMP年龄证据[J].地质学报,2004,78(5):649-657.
 Shi Rendeng, Yang Jingsui, Wu Cailai, et al. First SHRIMP dating for the Formation of the Late Sinian Yushigou Ophiolite, North Qilian Mountains[J]. Acta Geologica Sinica, 2004, 78: 649-657 (in Chinese with English abstract).
- [32] Tseng C Y, Yang H J, Yang H Y, et al. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo-Qilian Ocean[J]. Chinese Science Bulletin, 2007, 52(17): 2390-2401.
- [33] Gehrels G E, Yin A, Wang X F. Detrital zircon geochronology of the northeastern Tibetan Plateau[J]. GSA Bulletin, 2003, 115(7): 881–896.
- [34] Tseng C Y, Hong Y Y, Wan Y S, et al. Finding of Neoproterozoic(~ 775 Ma) magmatism recorded in metamorphic complexes from the North Qilian Orogen: Evidence from SHRIMP zircon U–Pb dating[J]. Chinese Science Bulletin, 2006, 51(8): 963–970.
- [35] Tung K A, Yang H J, Yang H Y, et al. SHRIMP U- Pb

geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 2007, 52(19): 2687–2701.

- [36] Xu W C, Zhang H F, Liu X M. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications[J]. Chinese Science Bulletin, 2007, 52(4): 531-538.
- [37] 李怀坤, 陆松年, 相振群, 等. 北祁连山西段北大河岩群碎屑锆 石 SHRIMP U-Pb 年代学研究[J]. 地质论评, 2007, 53(1): 132-140.

Li Huaikun, Lu Songnian, Xiang Zhenqun, et al. SHRIMP U– Pb geochronological research on detrital zircons from the Beidahe complex group in the western segment of the North Qilian Mountains, Northwest China[J]. Geological Review, 2007, 53(1): 132–140 (in Chinese with English abstract).

[38] 王洪亮,何世平,陈隽璐,等.甘肃马衔山花岗岩杂岩体 LA-ICPMS 锆石 U-Pb 测年及其构造意义[J]. 地质学报,2007,1(1):72-78.

Wang Hongliang, He Shiping, Chen Junlu, et al. LA– ICPMS dating of zircon U– Pb and its tectonic significance of Maxianshan granitoid intrusive complex, Gansu Province[J]. Acta Geologica Sinica, 2007, 81(1), 72–78 (in Chinese with English abstract).

- [39] Guo J H, Sun M, Chen F K, et al. Sm–Nd and SHRIMP U–Pb zircon geochronology of high–pressure granulite in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Science, 2005, 24(5): 629– 642.
- [40] Hou G T, Liu Y, Li J. Evidence for ~1.8 extension of the eastern block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province[J]. Journal of Asian Earth Science, 2006, 27(4): 392-401.
- [41] Wan Y S, Song B, Liu D Y, et al. SHRIMP U- Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major late Palaeoproterozoic

tectonothermal event[J]. Precambrian Research, 2006, 149(3/4): 249-271.

- [42] Wan Y S, Wilde S A, Liu D Y, et al. Further evidence for ~ 1.85 Ga metamorphism in the central zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan Area, Henan Province[J]. Gondwana Research, 2006, 9(1/ 2): 189–197.
- [43] Tung K A, Yang H Y, Liu D Y, et al. SHRIMP U- Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Chinese Science Bulletin, 2007, 52(10): 1414-1425.
- [44] Zhao G C, Kroner A, Wilde S A, et al. Lithotectonic elements and geological events in the Hengshan– Wutai– Fuping Belt: A synthesis and implications for the evolution of the trans– North China Orogen[J]. Geological Magazine, 2007, 144 (5): 753–775.
- [45] Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implication for the accrection and evolution of the trans- north China orogen[J]. Precambrian Research, 2008, 160(3/4): 213-226.
- [46] 周红英, 刘敦一, Nemchm A, 等. 鞍山地区 3.8 Ga 变质石英闪长 岩遭受 3.0Ga 构造热事件叠加[J]. 地质论评, 2007, 53(1): 120-125.

Zhou Hongying, Liu Dunyi, Nemchim A, et al. 3.0 Ga thermotectonic events suffered by the 3.8 Ga meta-quartz-diorite in the Anshan area: constraints from apatite SHRIMP U- Th- Pb dating[J]. Geol. Rev., 2007, 53 (1): 120-125 (in Chinese with English abstract).

[47] 周红英, 刘敦一, 万渝生, 等. 鞍山地区 3.3 Ga 岩浆热事件—— SHRIMP 年代学和地球化学新证据[J]. 岩石矿物学杂志, 2007, 26(2): 123-129.

Zhou Hongying, Liu Dunyi, Wan Yusheng, et al. 3.3 Ga magmatic events in the Anshan area: New SHRIMP age and geochemical constraints[J]. Acta Petrologica et Mineralogica, 2007, 26 (2): 123–129 (in Chinese with English abstract).