doi: 10.12029/gc20160420

朱保霖, 柳振江, 成少博, 等. 胶东院格庄岩体中辉钼矿 Re-Os 同位素测年及其地质意义[J]. 中国地质, 2016, 43(4): 1353-1366. Zhu Baolin, Liu Zhenjiang, Cheng Shaobo, et al. Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance[J]. Geology in China, 2016, 43(4): 1353-1366(in Chinese with English abstract).

胶东院格庄岩体中辉钼矿 Re-Os 同位素测年 及其地质意义

朱保霖!柳振江!成少博!薛玉山2王建平!徐磊!

(1.中国地质大学(北京)地球科学与资源学院,北京100083; 2. 西安西北有色地质研究院有限公司,陕西西安710054)

提要: 院格庄花岗岩体位于烟台市牟平区境内, 是胶东地区燕山晚期伟德山超单元一个典型的复式岩体。本次研究 针对花岗岩体内发育的辉钼矿开展 Re-Os 同位素测年, 同时对采集于花岗岩体的新鲜样品进行了主量元素、微量元 素和稀土元素测试分析。结果显示, 院格庄花岗岩属于高钾富碱的钙碱性岩, 具准铝质-过铝质特征, 是壳幔混合来 源的花岗岩。此外, 辉钼矿 Re-Os 等时线年龄为(117.8±5.7) Ma, 加权平均年龄为(118.27±0.70) Ma, 与胶东已知多个 燕山晚期铜钼矿赋矿岩体特征及成矿时代一致, 显示该区可能具有良好的钼多金属成矿前景。 关键词: 院格庄岩体; 辉钼矿 Re-Os 同位素年龄; 岩石地球化学; 胶东 中图分类号: P618.65; P597 文献标志码: A 文章编号: 1000-3657(2016)04-1353-14

Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance

ZHU Bao-lin¹, LIU Zhen-jiang¹, CHENG Shao-bo¹, XUE Yu-shan², WANG Jian-ping¹, XU Lei¹

(1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 2. Northwest Geological Research Institute of Non-ferrous Metallic Ores, Xi'an 710054, Shaanxi, China)

Abstract: The Yuangezhuang pluton lies in Muping block, Yantai, Shandong Province. It is a typical granitic complex of Weideshan Late Yanshanian super-unit in Jiaodong. In this study, direct Re–Os dating of molybdenites collected from the granitoids was carried out, and the major elements and trace elements in whole rock samples were also analyzed. The results show that the pluton probably belongs to a kind of granite derived from mantle–crust and is characterized by high potassium and alkali as well as metaluminous to peraluminous nature. Besides, the isochron age is 117.8±5.7 Ma, with a weighted average of 118.27±0.70 Ma, similar to data of the metallogenetic epoch and characteristics of the host rock from many known Cu– Mo deposits in Late Yanshanian period. This suggests that it probably has a good prospect for molybdenum polymetallic mineralization.

Key words: Yuangezhuang pluton; molybdenites Re-Os isotopic dating; petrogeochemical characteristics; Jiaodong

作者简介:朱保霖,男,1990生,硕士,矿床学专业;E-mail:zhbln90@163.com。

收稿日期:2016-01-08;改回日期:2016-03-23

基金项目:国家自然科学基金(41202062,41230311)和中央高校基本科研业务费专项资金(2652015043)联合资助。

通讯作者:柳振江,男,1983生,博士,讲师,从事矿床学研究与教学工作;E-mail:lzj@cugb.edu.cn。

About the first author: ZHU Bao-lin, male, born in 1990, master, majors in deposit geology; E-mail: zhbln90@163.com. About the corresponding author: LIU Zhen-jiang, male, born in 1983, lecturer, doctor., majors in mineral deposits, engages in study and teaching of ore deposit geology; E-mail: lzj@cugb.edu.cn.

Fund support: Supported by the National Natural Science Foundation of China (No. 41202062, 41230311); Fundamental Research Funds for Central Universities (No. 2652015043).

1 引 言

胶东地区是中国重要的金矿集中区之一,累计 探明金资源储量超过2000 t,该区面积仅占中国陆 地总面积的0.27%,但探明金资源储量和黄金产量 均超过全国的25%^[1-3]。前人对胶东金矿亦研究颇 多,矿床特征、地球化学特征、成矿时代、成矿物质 来源、成矿模式和找矿预测等均有涉及^[1,4-11]。同时, 胶东地区也发育一些大中型铜钼多金属矿床,可以 划分为胶西北成矿带、栖蓬福成矿带和牟乳成矿带 (图 1),金矿主要分布在胶西北成矿带和牟乳成矿带, 而有色金属矿床则主要集中于栖蓬福成矿带内。有 色金属的成因类型包括砂卡岩型(福山邢家山钨钼矿 床, 牟平孔辛头铜钼矿床, 牟平杏山北铜钼矿床), 斑 岩型(栖霞香夼铅锌矿床, 栖霞尚家庄钼矿床, 荣成冷 家钼矿床), 似层状热液交代型(福山王家庄铜矿床), 条带状铁建造(昌邑铁矿床)等[13-16]。

从20世纪80年代开始,前人陆续对该区有色 金属矿床就有所研究,例如,赵伦华¹¹⁷初步总结了胶 东地区钼矿床的类型和成矿特征,将钼矿分为接触 交代(砂卡岩)型、斑岩型和岩浆热液型,并简要概括 了其矿床特征;孔庆友等¹¹⁸较全面地总结了胶东地 区钼矿的地质工作程度、开发利用状况,并划分出3 种矿床类型,即接触交代(砂卡岩)型、斑岩(细脉浸

图1 胶东地区地质图及主要贵金属、有色金属矿床分布图(转引自参考文献[12]) Fig.1 Geological map and distribution of precious and nonferrous metal deposits in Jiaodong region (modified after reference [12])

染)型和热液充填型,阐述了邢家山、尚家庄、孔辛头 等主要矿床的地质特征;王奎峰四洋细探讨了栖霞 香夼铅锌矿床的地质特征和成因,认为该矿床属典 型的与花岗闪长斑岩岩浆有关的斑岩型矿床;孙丰 月等^[20]初步讨论了福山区北部斑岩成矿系统,将与 斑岩成矿有关的有色金属矿床划分为邢家山式、王 家庄式和隆口式,找矿方向主要为邢家山式;王奎 峰等[16,19]详细总结了胶东地区铅锌矿和铜矿的矿床 类型及典型矿床特征,并根据其成矿地质背景、时 空分布特征圈定出成矿远景区;薛玉山等四对邢家 山钼矿地质地球化学特征作了详细分析,由此得出邢 家山钼成矿过程可划分为岩浆热液期(包括矽卡岩阶 段、石英硫化物阶段和碳酸盐化阶段)和表生氧化期, 邢家山钼矿成矿与幸福山岩体有关,属于传统的岩浆 接触交代成因;柳振江、李杰、成少博等[22-24]对胶东地 区钼矿进行过Re-Os辉钼矿测年,结果显示钼成矿 与金矿形成时代大体一致。

院格庄岩体位于烟台市牟平区院格庄村和莱 山镇南部,前人曾经针对其成岩年龄、地球化学特 征以及侵位机制方面开展过工作,取得了许多重要 成果。张田和张岳桥[25]在2007年测得院格庄岩体 黑云母 Ar-Ar 等时年龄为(116.8±1.4) Ma, 锆石 SHRIMP年龄为(113.4±2.5) Ma, 即成岩时代为早白 **垩世。金秉福^[26]在1997年对院格庄岩体进行过岩** 石地球化学分析,认为燕山运动晚期,太平洋板块 下插欧亚板块,形成上地幔与下地壳物质同熔,底 辟作用下岩浆沿北东向深大断裂上侵混染分异,形 成了现在的花岗岩体。笔者于2011年在院格庄岩 体野外考察时发现有辉钼矿化,随后针对岩体东北 缘发育的杏山北和孔辛头矽卡岩型铜钼矿区开展 了研究工作。本文主要对发育在院格庄岩体中的 辉钼矿进行了精确的Re-Os同位素测年工作,并开 展了岩石地球化学分析工作,结合前人研究成果, 进一步探讨该岩体的成因机制和铜钼成矿机制,该 成果对解释杏山北和孔辛头铜钼矿区成矿时代、成 因机制具有重要意义,对该区域的铜钼有色金属找 矿勘查工作也有所裨益。

2 区域地质背景

院格庄岩体大地构造位置处于沂沐断裂带(郯 庐断裂带)以东,苏鲁超高压变质带以西,胶莱盆地 以北, 胶北地体的北部, 牟乳成矿带西部(图1)。区 内地层复杂, 岩浆岩分布广泛, 断裂构造发育。 2.1 地层

区域内地层主要出露古元古界荆山群(Pt_i*f*)、粉子山群(Pt_i*f*)、中生界白垩系(K)及新生界第四系(Q) (图 2)。古元古界荆山群(Pt_i*f*)地层出露于岩体东北 部和东部,分布较广,包括禄格庄组(Pt_i*f*)、野头组 (Pt_i*fy*)和陡崖组(Pt_i*fd*),主要是黑云母片岩夹透辉 岩、大理岩、透辉岩、斜长角闪岩和变粒岩等;古元 古界粉子山群(Pt_i*f*)地层出露于岩体西北部,面积较 小,主要为黑云母变粒岩等。已有研究表明,荆山 群与粉子山群为同时异相的古元古界沉积变质岩 组合^[27]。中生界白垩系(K)出露于岩体东部,面积不 大,主要是莱阳群(K*I*)的巨砾岩、粗砾岩等盆地边部 的洪积扇沉积岩相。新生界第四系(Q)出露广泛,主 要为残坡积含砾黏土、冲积泥质砂和含砾砂等沉积 物。

2.2 构造

区域内构造主要为断裂构造, NE向断裂是区域上的主要断裂, 以桃村一东陡山断裂为代表。牟平一即墨断裂带有 6 条主要断裂, 其中包括桃村一东陡山断裂, 该断裂带由一系列 NNE 向斜列的断层及其所夹变质岩-岩浆岩组成^[28], 每条断裂以脆性变形为特征, 切割基底变质岩系、燕山期花岗岩体。牟平一即墨断裂带晚侏罗世一白垩纪运动学的历史和构造应力场的演化较完整地记录了中国东部晚中生代构造体制转换过程^[29, 30]。NW 向断裂属后期断裂构造, 为压扭性断裂。

2.3 岩浆岩

区域内岩浆岩发育,分布广泛,中酸性-酸性岩 浆活动频繁。西南部主要发育有中生代伟德山超 单元似斑状二长花岗岩、花岗岩,中东部中生代玲 珑超单元弱片麻状二长花岗岩、伟晶不等粒花岗 岩,中北部新太古代栖霞超单元云英闪长岩。其中 的中生代伟德山超单元岩浆活动形成了院格庄岩 体。脉岩主要有煌斑岩、闪长玢岩等。

3 岩体地质特征

院格庄岩体整体呈椭圆状, NW-SE向延伸, 地表出露面积约90 km², 风化剥蚀很深, 岩相均一稳定, 大致可分为3个岩相带(图2)。

图2 院格庄岩体区域地质图●

1-第四系; 2-白垩系莱阳群; 3-古元古界粉子山群; 4-古元古界荆山群陡崖组; 5-古元古界荆山群野头组; 6-古元古界荆山群禄格庄组; 7-中生代伟德山超单元斑状角闪二长花岗岩; 8-中生代伟德山超单元巨斑状角闪二长花岗岩; 9-中生代伟德山超单元巨斑状黑云二长花 岗岩; 10-中生代玲珑超单元伟晶花岗岩; 11-中生代玲珑超单元弱片麻状二长花岗岩; 12-新太古代栖霞超单元条带状英云闪长岩; 13-/煌斑岩; 14-闪长玢岩; 15-铜矿体; 16-铁矿体; 17-韧性断裂; 18-压扭性断裂; 19-断裂破碎带; 20-采样点

Fig.2 Regional geological map of the Yuangezhuang pluton[•]

1-Quartnary; 2-Cretaceous Laiyang Group; 3-Paleoproterozoic Fenzishan Group; 4-Paleoproterozoic Jingshan Group Douya Formation; 5 Paleoproterozoic Jingshan Group Yetou Formation; 6-Paleoproterozoic Jingshan Group Lugezhuang Formation; 7-Mesozoic Weideshan superunit porphyritic hornblende monogranite; 8-Mesozoic Weideshan superunit megaporphyritic hornblende monogranite; 9-Mesozoic Weideshan superunit megaporphyritic biotite monogranite; 10-Mesozoic Linglong superunit giant granite; 11-Mesozoic Linglong superunit weakly gneissic monogranite; 12-Neoarchean Qixia superunit banded tonalite; 13-Lamprophyre; 14-Dioritic porphyrite; 15-Copper orebody; 16-Iron orebody; 17-Ductile fault; 18-Compresso-shear fault; 19-Fault fracture zone; 20-Sampling locations

岩石一般为灰白色, 似斑状结构, 块状构造。 斑晶一般为钾长石, 肉红色, 较自形, 粒径 10~40 mm、1~5 cm不等, 最大的甚至可以达到 7 cm, 有些 斑晶角闪石、黑云母等暗色矿物包裹其中。岩石周 围含有同源或异源暗色微粒包体(图 3-a, 图 3-b), 斜长石斑晶粒度不一, 为 3~13 mm, 最大者 50 mm; 包体岩性单一,体积较小,数量较少。后期有细晶 岩脉侵入,宽20~30 mm,另有暗色基性岩脉和闪长 玢岩脉侵入。岩石蚀变发育显著,主要有钾化、绿 泥石化等,发育有黄铁矿化和辉钼矿化等。

通过显微镜下观察鉴定,院格庄岩体岩性主要 为花岗闪长岩、花岗岩(图3-c,图3-k,图3-l)。花

●山东正元地质资源勘查有限责任公司.山东省烟台市莱山区杏山北矿区铜钼矿详查报告[R].济南:山东黄金集团有限公司,2010.

图3院格庄岩体露头、手标本和显微照片

a, b—暗色微粒包体; c—花岗闪长岩; d—薄膜状辉钼矿; e—浸染状辉钼矿; f—细脉状辉钼矿; g, h—薄膜状辉钼矿(黑白照片); i—浸染状辉钼 矿(黑白照片); j—细脉状辉钼矿(黑白照片); k—花岗闪长岩(正交偏光); l—花岗岩(正交偏光)Bi—黑云母; Mc—微斜长石; Mo—辉钼矿; Pl—斜长石; Hbl—普通角闪石; Kfs—钾长石

Fig.3 Field, hand specimen and microscopic photos of rocks from the Yuangezhuang pluton

a, b-MME; c-Granodiorite; d-Pellicular molybdenite; e-Disseminated molybdenite;

f-Veinlet molybdenite; g, h-Pellicular molybdenite (black and white photo); i-Disseminated molybdenite (black and white photo); j-Veinlet

molybdenite (black and white photo); k-Granodiorite (CPL); l-Granite (CPL)

Bi-Biotite, Mc- Microcline, Mo-Molybdenite, Pl-Plagioclase, Hbl-Hornblende, Kfs-Potassium feldspar

岗闪长岩为花岗结构, 块状构造, 主要矿物: 斜长石, 含量约为55%, 聚片双晶发育; 钾长石, 含量约为15%, 卡斯巴双晶发育(微斜长石, 格子状双晶发育); 石英, 含量约为25%, 少量黑云母、角闪石, 含量约为5%。花岗岩为花岗结构, 块状构造, 主要矿物: 斜长石, 含量约为10%, 聚片双晶发育, 环带状

构造; 钾长石, 含量约为55%, 卡斯巴双晶发育; 石英, 含量约为25%, 黑云母、角闪石含量为10%。

4 样品采集与实验方法

此次新发现的辉钼矿矿化发育在院格庄花岗 岩体内部,共采集到含辉钼矿矿化的新鲜花岗岩样

中

品 11 件, 具体地理坐标: 37°19′11.05″N, 121°20′46.01″E; 37°19′06.93″N, 121°19′46.06″E; 37°18′02.29″N, 121°19′54.63″E(图 2)。辉钼矿多呈浸染状、薄膜状分布于花岗岩中, 偶见其呈细脉状发育于石英脉内部(图 3)。

经单矿物挑纯后,送6件辉钼矿样品在中国地 质科学院国家地质实验测试中心进行 Re-Os 同位 素年龄测试工作,采用电感耦合等离子质谱仪TJA X-series ICP-MS进行测量。实验全流程空白 Re 为(0.0035±0.0002) ng, 普 Os 为(0.00010±0.00002) ng,¹⁸⁷Os 为(0.00021±0.00006) ng。Re-Os 化学分离 和质谱测定分为4个步骤:分解样品、直接蒸馏分离 Os、萃取分离Re和质谱测定,具体测试步骤见文 献 [31-34]。实验过程采用国家标准物质 GBW04436 (JDC)作为标准样品,监控化学流程和分 析数据的可靠性。普Os是根据量子表^[3]和同位素丰 度表[36],通过测量 192Os/190Os 比值计算得出[35,36]。Re、 Os含量的不确定度包括样品和稀释剂的称量误差、 稀释剂的标定误差、质谱测量的分馏校正误差、待 分析样品同位素比值测量误差,置信水平95%。由 于采用混合稀释剂,模式年龄的不确定度不包括稀 释剂和样品的称量误差,但还包括衰变常数的不确 定度(1.02%),模式年龄置信水平95%。模式年龄t 按下式计算: t=1/λ[ln(1+187Os/187Re)], 式中 187Re 衰变 常数λ=1.666×10⁻¹¹a⁻¹(±1.02%)^[37]。

此次还对该区的8件新鲜花岗岩样品进行了主 量元素、微量元素和稀土元素分析测试,在澳实分 析检测(广州)有限公司澳实矿物实验室完成。主量 元素分析使用硼酸锂/偏硼酸锂熔融, X荧光光谱分 析, 报13种构岩元素及烧失量(LOI)和硼酸锂一硝 酸锂熔融, X荧光光谱分析, 精密控制硅铁铝镁等; 酸消解、重铬酸钾滴定测量FeO, 基于已测定的全铁 和亚铁的数据计算出Fe³⁺的含量。微量元素、稀土 元素分析采用硼酸锂熔融、等离子质谱定量和四酸 消解, 质谱/光谱仪分析。

5 结果分析

质

5.1 主量元素特征

从样品分析结果(表1)中可以看出, SiO2含量介 于67.90%~70.80%,平均为69.51%,富硅; Al₂O₃变化 于13.42%~15.26%,平均14.60%,高铝;K₂O、Na₂O 含量变化范围分别为 3.78% ~4.92% 和 3.28% ~ 3.99%, 高钾高碱; CaO含量为1.54%~2.69%, 钙含量 较低; MgO为0.42%~1.56%, 贫镁; TiO2为0.19%~ 0.36%,低钛。全碱K2O+Na2O含量为7.72%~8.49% 之间,平均为8.01%;分异指数DI为80.34~88.94,分 异演化程度较高;固结指数SI为4.15~12.73,酸性程 度较高;碱度率AR为2.67~3.43,碱性较强;里特曼 指数δ为2.13~2.56<3.3,属钙碱性岩。从TAS图解 (图4)可以看出,样品分布在石英二长岩、花岗闪长 岩和花岗岩范围内; SiO,-K,O图解(图5)显示属高 钾钙碱性系列,只有2件落在范围外,可能是样品花 岗岩发生钾化造成:在A/CNK-A/NK图解(图6)中, 显示准铝质-过铝质特征。

表1院格庄岩体主量元素分析结果(%) Table 1 Major element (%) analyses of rocks from the Yuangezhuang pluton

		-		-		-		
分析项目	11-YGZ-2	11-YGZ-5	11-YGZ-7	11-YGZ-8	13-YGZ-1	13-YGZ-18	13-YGZ-30	13-YGZ-33
SiO ₂	68.87	69.01	67.90	70.68	70.00	70.40	70.80	68.40
Al_2O_3	15.26	14.68	14.57	13.42	15.05	14.50	14.65	14.70
Fe_2O_3	0.93	0.63	0.67	0.54	0.73	0.79	0.73	1.36
FeO	0.96	1.28	1.28	0.96	1.03	1.22	1.19	1.33
CaO	1.97	2.23	2.33	1.54	2.03	2.19	2.32	2.69
MgO	0.92	0.84	0.80	0.42	0.79	0.93	0.89	1.56
Na_2O	3.97	3.96	3.99	3.28	3.60	3.76	3.87	3.61
K_2O	4.17	3.78	4.09	4.92	4.89	3.96	3.85	4.41
TiO_2	0.26	0.25	0.26	0.19	0.25	0.30	0.28	0.36
MnO	0.03	0.03	0.04	0.04	0.03	0.04	0.04	0.05
P_2O_5	0.09	0.09	0.09	0.10	0.08	0.10	0.09	0.13
LOI	1.26	1.09	1.80	2.50	0.53	1.05	0.53	0.70
Total	98.69	97.87	97.82	98.59	99.01	99.24	99.24	99.30
DI	84.52	83.60	83.98	88.94	85.27	83.77	83.54	80.34
SI	8.41	8.01	7.39	4.15	7.16	8.72	8.45	12.73
AR	2.79	2.69	2.83	3.43	2.98	2.72	2.67	2.71
δ	2.52	2.26	2.56	2.38	2.65	2.15	2.13	2.51

图4 院格庄岩体TAS图解(底图据文献[38]) Fig.4 TAS diagram of the Yuangezhuang pluton (base map after reference [38])

图 5 院格庄岩体 SiO₂-K₂O 图解(底图据文献[39, 40]) Fig.5 SiO₂-K₂O diagram of the Yuangezhuang pluton (base map after reference [39, 40])

5.2 微量元素特征

从样品分析结果(表 2)中可以看出, Ba含量 599.00×10⁻⁶~1795.00×10⁻⁶, Sr含量254.00×10⁻⁶~ 716.00×10⁻⁶, Nb含量6.50×10⁻⁶~18.40×10⁻⁶, Ta含量 0.60×10⁻⁶~1.70×10⁻⁶, Hf含量3.10×10⁻⁶~4.70×10⁻⁶, 整体Ba、K和Sr(LILE)相对富集, Ta、Nb和Hf (HFSE)相对亏损。在微量元素原始地幔标准化蛛 网图(图7)上, Pb、Sr、Nd有明显的正异常, Hf和Y有 正异常, 而Nb、La、P有显著的负异常。从(Y+Nb)-

Rb图解(图8)上可以看出,样品分布在火山弧花岗 岩范围内。

5.3 稀土元素特征

从样品分析结果(表 2)中可以看出,稀土元素总 量∑REE变化较大,为89.30×10⁻⁶~203.78×10⁻⁶,平均 为132.94×10⁻⁶。LREE介于85.27×10⁻⁶~193.75×10⁻⁶, HREE变化于4.03×10⁻⁶~10.03×10⁻⁶,LREE/HREE为 19.32~23.62,平均值为21.60,轻重稀土元素分异明 显,岩浆分异程度较高。(La/Sm)_N介于5.94~8.23, LREE比较富集,(Gd/Yb)_N介于1.74~2.37,LREE分 馏程度比HREE分馏程度高。δEu介于0.56~1.21, 平均为0.90,Eu异常不明显。在稀土元素球粒陨石 标准化配分图(图9)上,呈右倾斜近平滑曲线,无明 显的"V"字形分布。

5.4 辉钼矿 Re-Os 年龄

院格庄岩体辉钼矿 Re-Os 同位素测定结果(表 3)表明,¹⁸⁷Re含量介于5.573×10⁻⁶~7.301×10⁻⁶,¹⁸⁷Os 含量变化于10.99×10⁻⁹~14.42×10⁻⁹,得到模式年龄 变化范围在(117.7±1.7) Ma~(118.9±1.9) Ma,所获得 的 Re-Os 同位素数据结果利用 Isoplot 软件^[44]对其 进行等时线年龄和加权平均年龄计算,得到等时线 年龄为(117.8±5.7) Ma(MSWD=0.44,图10),与加权 平均年龄(118.27±0.70) Ma(MSWD=0.20,图11)基本 一致。初始¹⁸⁷Os含量为(0.05±0.60)×10⁻⁹,接近于0, 表明辉钼矿形成时含有¹⁸⁷Os 的量是很低的,辉钼矿

表2院格庄岩体微量元素、稀土元素分析结果(10-6)

Table 2 Analytical data and characteristic ratios (10⁻⁶) of trace and rare earth elements from the Yuangezhuang pluton

分析项目	11-YGZ-2	11-YGZ-5	11-YGZ-7	11-YGZ-8	13-YGZ-1	13-YGZ-18	13-YGZ-30	13-YGZ-33
Rb	120.50	119.50	135.00	238.00	132.50	119.00	122.50	89.60
Ba	1575.00	913.00	961.00	599.00	1795.00	1160.00	950.00	1625.00
Th	10.25	12.20	12.05	34.00	8.72	12.50	12.40	18.25
U	2.21	4.42	5.34	6.95	2.51	4.41	3.83	2.51
Та	0.60	0.80	0.70	1.70	0.70	0.80	0.90	0.90
Nb	6.50	8.70	8.10	18.40	7.90	9.70	8.80	11.10
La	24.40	31.50	30.10	56.70	28.50	30.90	32.70	44.80
Ce	39.70	51.40	48.60	91.60	52.50	60.60	63.90	83.30
Sr	716.00	539.00	429.00	254.00	489.00	456.00	444.00	623.00
Nd	14.10	18.00	16.60	30.50	17.70	21.30	20.90	25.90
Zr	113.00	124.00	127.00	164.00	101.00	121.00	110.00	146.00
Hf	3.10	3.50	3.50	4.70	2.80	3.50	3.30	4.10
Sm	2.13	2.65	2.36	4.72	2.85	3.46	2.97	3.83
Y	6.20	8.00	7.60	16.50	7.10	8.50	7.70	10.10
Yb	0.52	0.71	0.66	1.36	0.67	0.78	0.70	1.06
Lu	0.08	0.12	0.11	0.21	0.11	0.13	0.10	0.19
Pr	4.20	5.39	5.03	9.47	5.16	5.92	6.08	7.62
Eu	0.74	0.76	0.68	0.76	0.67	0.74	0.76	0.93
Gd	1.49	1.77	1.62	3.36	1.72	2.16	1.91	2.23
Tb	0.19	0.22	0.20	0.45	0.22	0.29	0.28	0.34
Dy	0.97	1.27	1.14	2.57	1.26	1.52	1.30	1.86
Но	0.18	0.23	0.22	0.48	0.25	0.30	0.26	0.33
Er	0.52	0.70	0.64	1.40	0.59	0.85	0.74	0.93
Tm	0.08	0.10	0.09	0.20	0.10	0.13	0.10	0.16
Со	4.60	4.20	5.70	2.00	3.60	4.10	3.80	6.90
Ni	8.00	5.00	5.00	5.00	4.80	7.80	5.00	12.80
V	31.00	30.00	30.00	15.00	25.00	28.00	29.00	47.00
Cr	20.00	10.00	10.00	10.00	10.00	10.00	10.00	40.00
Ga	18.70	18.50	18.30	18.40	17.80	18.50	18.40	18.50
Tl	0.50	0.50	0.50	1.20	0.66	0.58	0.61	0.34
Sn	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00
Pb	26.00	24.00	21.00	36.00	28.70	27.60	26.00	19.90
Zn	34.00	32.00	32.00	35.00	35.00	40.00	38.00	35.00
ΣREE	89.30	114.82	108.05	203.78	112.30	129.08	132.70	173.48
LREE	85.27	109.70	103.37	193.75	107.38	122.92	127.31	166.38
HREE	4.03	5.12	4.68	10.03	4.92	6.16	5.39	7.10
LREE/HREE	21.16	21.43	22.09	19.32	21.83	19.95	23.62	23.43
(La/Yb) _N	33.66	31.82	32.71	29.91	30.51	28.42	33.51	30.32
δEu	1.21	1.01	1.01	0.56	0.86	0.77	0.91	0.89
δCe	0.88	0.89	0.88	0.88	0.98	1.03	1.03	1.01

图7院格庄岩体微量元素原始地幔标准化蛛网图 (底图据文献[42])

Fig.7 Preliminary mantle-normalized trace element patterns of the Yuangezhuang pluton (base map after reference [42])

图 8 院格庄岩体(Y+Nb)-Rb图解(底图据文献[43]) Fig.8 Y+Nb-Rb diagram of the Yuangezhuang pluton (base map after reference [43])

中的¹⁸⁷Os都是由¹⁸⁷Re衰变形成,符合Re-Os同位素 体系模式年龄计算条件,也说明所获得模式年龄有 效,等时线可代表辉钼矿的成矿年龄^[45]。已有的研 究发现,辉钼矿晶体或粗颗粒辉钼矿样品中的Re-Os同位素体系可能会出现失耦现象^[46-48],但对成矿 时代较年轻、粒度<2 mm的辉钼矿而言,并不存在 Re-Os同位素体系失耦作用^[49,50],同时遵循"多采 样,细磨碎"的原则,尽量采集细颗粒、完全均匀的

辉钼矿,准备1g左右的样品,可以有效减少失耦现 象^[51,52],但有时稳定的Re-Os体系也会受到后期构 造和变质事件的影响。此次采集的样品粒度较细, 相对均匀,未见明显的变形现象(图3),6件样品具有 相似的模式年龄。因此,等时线年龄(117.8±5.7) Ma 可以准确代表院格庄岩体辉钼矿成矿年龄,即形成 于燕山晚期。

6 讨 论

6.1 岩浆源区分析

院格庄岩体富集轻稀土和大离子亲石元素, 亏 损重稀土, 表明源区内有角闪石、石榴石和辉石等 残留^[53]; 亏损 Nb、Ta、Ti等高场强元素, 表明源区内 有含角闪石或金红石等矿物残留^[54]。 Rb/Sr 值为 0.14~0.94, 平均值为0.32, 介于上地幔平均值(0.034) 与地壳平均值(0.35)^[55]之间; Nb/Ta 值为9.78~12.33, 平均值为11.20, 介于地壳平均值(11~12)^[56]与地幔平 均值(17.4)^[42]之间; Zr/Hf 值为33.33~36.45, 平均值为 35.33, 类似于平均陆壳值(35.7)^[57], 又接近于原始地 幔和球粒陨石值(34~36)^[42, 58, 59]; Sr 含量介于254.00× 10⁻⁶~716.00×10⁻⁶, 平均值为493.75×10⁻⁶, 介于壳源 花岗岩(Sr 通常小于 300×10⁻⁶)^[60, 61]和幔源花岗岩(Sr 大于1400×10⁻⁶)^[62, 63]之间。因此, 院格庄岩体属于壳 幔混合来源花岗岩, 同时暗色微粒包体的存在也能 为此提供地质证据^[64-66]。

胶东地区中生代花岗质岩石有3个显著不同的 演化序列,即晚三叠世(205~255 Ma)幔源型花岗岩、 晚侏罗世(150~160 Ma)地壳重熔型花岗岩和早白垩

	表3 院格庄岩体辉钼矿 Re-Os 同位素分析结果											
	Table	3 Analytic	cal results	of Re-C)s isotope	s of moly	bdenites f	rom the	Yuangezh	uang p	luton	
	样号	样重/g	Re/10 ⁻⁶		普 Os/10 ⁻⁹		187 Re/10 ⁻⁶		¹⁸⁷ Os/10 ⁻⁹		模式年龄/Ma	
			测定值	2σ	测定值	2σ	测定值	2σ	测定值	2σ	测定值	2σ
	13-YGZ-7	0.04072	8.868	0.072	0.0387	0.0050	5.573	0.045	10.99	0.07	118.3	1.7
	13-YGZ-8	0.04074	9.436	0.072	0.0002	0.1074	5.931	0.045	11.76	0.11	118.9	1.9
	13-YGZ-11	0.04017	11.616	0.104	0.0143	0.0029	7.301	0.065	14.42	0.09	118.4	1.7
	13-YGZ-12	0.04058	9.622	0.087	0.0241	0.0072	6.048	0.055	11.94	0.07	118.4	1.7
	13-YGZ-15	0.04060	10.966	0.106	0.0215	0.0048	6.892	0.067	13.56	0.09	118.0	1.8
	13-YGZ-19	0.04057	9.867	0.079	0.0225	0.0073	6.202	0.050	12.17	0.08	117.7	1.7

世(105~130 Ma)壳幔混合型花岗岩^[25]。张岳桥和张田^[25]对院格庄花岗岩体中的锆石测年,得到锆石SHRIMP年龄为(113.4±2.5) Ma,属于其中的典型花岗岩。

6.2 辉钼矿同位素年龄对胶东钼矿成因的指示意义

Re主要富集于地幔中,并且地球化学行为与 Mo相似,在辉钼矿中能达到最大的富集程度,因此 辉钼矿中Re元素的含量可以在一定程度上反映相 关矿床的物质来源^[67]。随着研究成果的不断积累, 绝大多数研究者赞同这样的说法,即Re-Os同位素 体系不仅可以精确地确定硫化物矿床形成的时间, 同时可以示踪成矿物质来源以及指示成矿过程中 不同来源物质混入的程度^[47,68-70]。毛景文等人在综 合分析、对比了中国各种类型钼矿床中辉钼矿的Re 含量后,发现从地幔来源到壳幔混合来源再到地壳 来源,辉钼矿中Re的含量逐次呈数量级下降,依次 为 n×10⁻⁴, n×10⁻⁵和 n×10^{-6(68]}。院格庄岩体Re 含量 介于8.868×10⁻⁶~11.616×10⁻⁶,平均为10.062×10⁻⁶,表 明钼可能为壳幔混合来源。

胶东地区的钼矿床不仅在空间上与中酸性花 岗质侵入体具有密切的关系,而且最新的高精度成 岩成矿年代学研究表明,在同一矿区的砂卡岩型或 斑岩型矿化的成岩和成矿在时间上一致,均形成于 晚侏罗世—早白垩世(表4)。

砂卡岩型钼矿化与晚侏罗世一早白垩世的似 斑状花岗闪长岩、似斑状二长花岗岩等关系密切, 常产于中酸性岩体与大理岩地层的接触带及外接 触带部位,该类矿床通常金属成矿元素多且组合复 杂,可能主要与被交代的地层围岩岩性有关。斑岩

表 4 胶东地区钼矿成矿年龄统计 Table 4 The formation age of molybdenite in the Jiaodong rogion

_											
矿床/矿化点		测试矿物	测试方法	年龄/Ma	资料来源						
	邢家山钨钼矿	辉钼矿	Re-Os	157.6±3.9	[14]						
	尚家庄钼矿	辉钼矿	Re-Os	116.4 ± 1.6	[23]						
	冷家钼矿	辉钼矿	Re-Os	113.5 ± 1.6	[71]						
	南宿钼矿化	辉钼矿	Re-Os	(111.8±0.3)~(128.9±0.3)	[22]						
	三山岛钼矿化	辉钼矿	Re-Os	149.7 ± 1.5	[72]						

型矿化常产于含斑中细粒花岗闪长岩、斑状中粒花 岗闪长岩及绢英岩化花岗闪长质碎裂岩中。综合 以上分析,晚侏罗世一早白垩世可能是胶东地区成 矿强度较大、较具有经济意义的钼金属成矿期。此 次测得的院格庄岩体中辉钼矿 Re-Os 同位素等时 线年龄为(117.8±5.7) Ma,可以准确代表辉钼矿的成 矿年龄。杏山北矿床辉钼矿 Re-Os 同位素等时线 年龄为122.986 Ma[•], 孔辛头矿床辉钼矿年龄也与 此一致(另文待发表),表明院格庄岩体可能为其成 矿母岩,具有一定的找矿潜力,可为本区接触交代 铜钼矿的勘查工作提供一定的指示意义。

7 结 论

(1)院格庄花岗岩体 SiO₂、Al₂O₃、Na₂O 和 K₂O 含 量较高,属高钾富碱的钙碱性岩系列,并且为准铝 质-过铝质,是壳幔混合来源的花岗岩。

(2)院格庄花岗岩体中辉钼矿 Re-Os 同位素测年结果显示,模式年龄变化在(117.7±1.7) Ma~(118.9±1.9) Ma,等时线年龄为(117.8±5.7) Ma,形成

[●]山东正元地质资源勘查有限责任公司.山东省烟台市莱山区杏山北矿区铜钼矿详查报告[R].济南:山东黄金集团有限公司,2010.

于燕山晚期,并且与成岩年龄一致。

(3)院格庄花岗岩体及矿化辉钼矿形成时代与 胶东已知多个燕山晚期铜钼矿赋矿岩体特征及成 矿时代一致,表明该区可能具有良好的钼多金属成 矿前景。

致谢: 衷心感谢匿名审稿专家提出的宝贵修改 意见;感谢中国地质大学(北京)宓奎峰博士、李春风 硕士在图件绘制方面的帮助。

参考文献(References):

[1] 李旭芬, 刘建朝, 张学仁, 等. 牟平—乳山金矿带构造特征及成矿

预测[J]. 黄金科学技术, 2013, 21(3): 10-15.

Li Xufen, Liu Jianchao, Zhang Xueren, et al. Structural features and metallogenic prognosis of Muping–Rushan gold ore belt[J]. Gold Science and Technology, 2013, 21(3): 10–15 (in Chinese with English abstract).

- [2] 宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿 理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104.
 Song Mingchun, Li Sanzhong, Yi Pihou, et al. Classification and metallogenic theory of the Jiaojia-atyle gold deposit in Jiaodong peninsula, China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 87-104 (in Chinese with English abstract).
- [3] 宋明春, 伊丕厚, 崔书学, 等. 胶东金矿"热隆-伸展"成矿理论及 其找矿意义[J]. 山东国土资源, 2013, 29(7): 1-12. Song Mingchun, Yi Pihou, Cui Shuxue, et al. Thermal upliftingextension ore- forming theory and its prospecting significance in Jiaodong gold deposit[J]. Shandong Land and Resources, 2013, 29 (7): 1-12 (in Chinese with English abstract).
- [4] Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique? [J]. Geoscience Frontiers, 2014, 5(2): 139–153.
- [5] Guo P, Santosh M, Li S R. Geodynamics of gold metallogeny in Shandong Province, NE China: An integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24: 1172–1202.
- [6] 李士先, 刘长春, 安郁宏, 等. 胶东金矿地质[M]. 北京: 地质出版 社, 2007: 1-423.

Li Shixian, Liu Changchun, An Yuhong, et al. Geology of Gold Deposits in Jiaodong[M]. Beijing: Geological Publishing House, 2007: 1–423 (in Chinese with English abstract).

[7] 李兆龙,杨敏之. 胶东金矿床地质地球化学[M]. 天津: 天津科学 技术出版社, 1993: 1-300.

Li Zhaolong, Yang Minzhi. The Geology–Geochemistry of Gold Deposits in Jiaodong Region[M]. Tianjin: Science and Technology Press, 1993: 1–300 (in Chinese with English abstract).

[8] 宋明春, 崔书学, 伊丕厚, 等. 胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010: 1-353. Song Mingchun, Cui Shuxue, Yi Pihou, et al. Deep Large-Super Large Gold Deposit Forming and Prospecting Model in the Northwestern Jiaodong Gold Deposit Concentrating Area[M]. Beijing: Geological Publishing House, 2010: 1-353 (in Chinese with English abstract).

[9] 宋明春, 宋英昕, 沈昆, 等. 胶东焦家深部金矿矿床地球化学特征 及有关问题讨论[J]. 地球化学, 2013, 42(3): 274-289.
Song Mingchun, Song Yingxin, Shen Kun, et al. Geochemical features of deeply- seated gold deposit and discussions on some associated problems in Jiaojia gold ore field, Shandong peninsula, China[J]. Geochimica, 2013, 42(3): 274-289 (in Chinese with English abstract).

[10] 宋雪龙,李俊健,李秀章,等. 胶东金矿床成矿流体、稳定同位素

质

中

及成矿时代研究进展[J]. 地质找矿论丛, 2014, 29(1): 13-19.

Song Xuelong, Li Junjian, Li Xiuzhang, et al. The research progress of ore– forming fluids, stable isotope and mineralizing age in Jiaodong peninsular of eastern China[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(1): 13–19 (in Chinese with English abstract).

- [11] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.
 Yang Liqiang, Deng Jun, Wang Zhongliang, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 2014, 30(9): 2447-2467 (in Chinese with English abstract).
- [12] 柳振江. 胶东西北部金矿床变化保存及找矿潜力分析[D]. 北京: 中国地质大学(北京), 2011.

Liu Zhenjiang. Post-ore Denudation and Exploration Potential of the Northwestern Jiaodong Gold Province, China[D]. Beijing: China University of Geosciences (Beijing), 2011.

[13] 蓝廷广,范宏瑞,胡芳芳,等.鲁东昌邑古元古代BIF铁矿矿床地 球化学特征及矿床成因讨论[J].岩石学报,2012,28(11):3595-3611.

Lan Tingguang, Fan Hongrui, Hu Fangfang, et al. Geological and geochemical characteristics of Paleoproterozoic Changyi banded iron formation deposit, Jiaodong peninsula of eastern China[J]. Acta Petrologica Sinica, 2012, 28(11): 3595–3611 (in Chinese with English abstract).

[14] 刘善宝, 王登红, 陈毓川, 等. 胶东半岛烟台地区邢家山钨钼矿 床地质特征及其辉钼矿 Re-Os 同位素测年[J]. 地质通报, 2011, 30(8): 1294-1302.

Liu Shanbao, Wang Denghong, Chen Yuchuan, et al. Geological characteristics and molybdenite Re– Os age of the Xingjiashan W– Mo deposit in Yantai area, Jiaodong peninsula, Shandong Province[J]. Geological Bulletin of China, 2011, 30(8): 1294–1302 (in Chinese with English abstract).

- [15] 王奎峰, 郭宝奎, 陈晓曼, 等. 山东省铅锌矿床类型、地质特征及 找矿远景[J]. 地质调查研究, 2012, 35(4): 260-267.
 Wang Kuifeng, Guo Baokui, Chen Xiaoman, et al. Lead-zinc deposits and geological characteristics, ore- prospecting in Shandong Province[J]. Geological Survey and Research, 2012, 35 (4): 260-267 (in Chinese with English abstract).
- [16] 王奎峰, 李文平, 杨德平, 等. 山东省铜矿床类型、时空分布、典型矿床特征及成矿远景[J]. 地质学报, 2013, 87(4): 565-576.
 Wang Kuifeng, Li Wenping, Yang Deping, et al. Types, distribution and feature of typical copper ore deposits in Shandong province and its ore- forming prospect[J]. Acta Geologica Sinica, 2013, 87(4): 565-576 (in Chinese with English abstract).
- [17] 赵伦华. 胶东地区钼矿床类型及其成矿特征[J]. 山东地质, 1988, 4(1): 101-112.

Zhao Lunhua. Types of molybdenum ore deposits in the eastern Shandong region and its characteristics of minerlization[J]. Geology of Shandong, 1988, 4(1): 101-112 (in Chinese with English abstract).

[18] 孔庆友, 张天祯, 于学峰, 等. 山东矿床[M]. 济南: 山东科学技术 出版社, 2006: 1-902.

Kong Qingyou, Zhang Tianzhen, Yu Xuefeng, et al. Deposits in Shandong Province[M]. Jinan: Shandong Scientific and Technical Publishing House, 2006: 1–902 (in Chinese with English abstract).

[19] 王奎峰. 胶东栖霞香夼铅锌多金属矿床地质特征及成因[J]. 地质调查与研究, 2008, 31(2): 89-96.
Wang Kuifeng. Geochemical characteristics and origin of the Xiangkuang lead-zinc polymetallic deposit in Qixia City, eastern Shandong Province[J]. Geological Survey and Research, 2008, 31 (2): 89-96 (in Chinese with English abstract).

[20] 孙丰月, 丁正江, 刘殿浩, 等. 初论胶东福山北部地区斑岩成矿 系统[J]. 黄金, 2011, 1(32): 14-19.

Sun Fengyue, Ding Zhengjiang, Liu Dianhao, et al. Garch forecast model of international gold price considering exogenous variables[J]. Gold, 2011, 1(32): 14–19 (in Chinese with English abstract).

- [21] 薛玉山,柳振江,成少博,等. 胶东邢家山大型钼矿地质地球化 学特征及成因意义[J]. 中国地质, 2014, 41(2): 540-561.
 Xue Yushan, Liu Zhenjiang, Cheng Shaobo, et al. Geologicalgeochemical characteristics of the Xingjiashan Mo deposit in Jiaodong and their geological significance[J]. Geology in China, 2014, 41(2): 540-561 (in Chinese with English abstract).
- [22] 柳振江, 王建平, 刘家军, 等. 胶东南宿花岗岩中辉钼矿的同位 素年龄及其地质意义[J]. 矿床地质, 2010, 29(增刊): 483-484. Liu Zhenjiang, Wang Jianping, Liu Jiajun, et al. Isotopic dating of molybdenite from Nansu granite in Jiaodong and its geological significance[J]. Mineral Deposits, 2010, 29(Supp.): 483-484 (in Chinese).
- [23] 李杰, 宋明春, 王美云, 等. 胶东尚家庄钼矿床 Re-Os 同位素年 龄及其地质意义[J]. 中国地质, 2013, 40(5): 1612-1621.
 Li Jie, Song Mingchun, Wang Meiyun, et al. The molybdenite Re-Os age and genetic analysis of the Shangjiazhuang Mo deposit in Jiaodong area[J]. Geology in China, 2013, 40(5): 1612-1621 (in Chinese with English abstract).
- [24] 成少博, 柳振江, 薛玉山, 等. 胶东尚家庄钥矿区岩体地球化学 特征及地质意义[J]. 高校地质学报, 2013, 19(增刊): 263. Cheng Shaobo, Liu Zhenjiang, Xue Yushan, et al. Geochemical characteristics of pluton in the Shangjiazhuang molybdenum deposit of Jiaodong and its geological significance[J]. Geological Journal of China Universities, 2013, 19(Supp.): 263 (in Chinese).
- [25] 张田, 张岳桥. 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007, 13(2): 323-336. Zhang Tian, Zhang Yueqiao. Geochronological sequence of mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints[J]. Geological Journal of China Universities, 2007, 13(2): 323-336 (in Chinese with English abstract).
- [26] 金秉福. 牟平院格庄花岗岩体的地球化学特征分析[J]. 烟台师 范学院学报(自然科学版), 1997, 13(4): 308-312.

Jin Bingfu. Geochemical characteristics of granite of Yuangezhuang pluton in Muping[J]. Yantai Teachers University Journal(Natural Science), 1997, 13(4): 308-312 (in Chinese with English abstract).

- [27] 李洪奎, 李逸凡, 耿科, 等. 鲁东地区古元古界形成的大地构造环境探讨[J]. 地质调查与研究, 2013, 36(2): 114-130.
 Li Hongkui, Li Yifan, Geng Ke, et al. Palaeoproterozoic tectonic setting in the eastern Shandong Province[J]. Geological Survey and Research, 2013, 36(2): 114-130 (in Chinese with English abstract).
- [28] 徐扬,杨坤光,李日辉,等.北苏鲁超高压变质带前寒武纪基底研究新进展[J]. 現代地质, 2013, 27(2): 248-259.
 Xu Yang, Yang Kunguang, Li Rihui, et al. Main progresses in the study of precambrian basement of the North Sulu ultra- high pressure metamorphic belt, Eastern China[J]. Geoscience, 2013, 27(2): 248-259 (in Chinese with English abstract).
- [29] 张勇, 任凤楼, 龚淑云, 等. 牟平一即墨断裂带白垩纪构造应力 场及转化机制[J]. 海洋地质与第四纪地质, 2013, 33(2): 79-85. Zhang Yong, Ren Fenglou, Gong Shuyun, et al. Cretaceous stress field of the Muping- Jimo fault belt and its implication for tectonic evolution[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 79-85 (in Chinese with English abstract).
- [30] 张岳桥, 李金良, 张田, 等. 胶东半岛牟平—即墨断裂带晚中生 代运动学转换历史[J]. 地质论评, 2007, 53(3): 289-300.
 Zhang Yueqiao, Li Jinliang, Zhang Tian, et al. Late Mesozoic kinematic history of the Muping-Jimo fault zone in Jiaodong Peninsula, Shandong Province, East China[J]. Geological Review, 2007, 53(3): 289-300 (in Chinese with English abstract).
- [31] Markey R, Stein H, Morgan J. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS[J]. Talanta, 1998, 45: 935-946.
- [32] Shirey S B, Walker R J. Carius tube degetion for low-blank rhenium- osmium analysis[J]. Analytical Chemistry, 1995, 67: 2136-2141.
- [33] 王礼兵, 屈文俊, 李超, 等. 负离子热表面电离质谱法测量铼的 化学分离方法研究[J]. 岩矿测试, 2013, 32(3): 402-408.
 Wang Libing, Qu Wenjun, Li Chao, et al. Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 402- 408 (in Chinese with English abstract).
- [34] 周利敏, 高炳宇, 王礼兵, 等. Carius管直接蒸馏快速分离银方法的改进[J]. 岩矿测试, 2012, 31(3): 413-418.
 Zhou Limin, Gao Bingyu, Wang Libing, et al. Improvements on the separation method of osmium by direct distillation in Carius tube[J]. Rock and Mineral Analysis, 2012, 31(3): 413-418 (in Chinese with English abstract).
- [35] Wieser M E. Atomic weights of the elements 2005 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2006, 78(11): 2051–2066.
- [36] Bohlkea J K, de Laeter J R, De Bievre P, et al. Isotopic compositions of the elements, 2001[J]. Journal of Physical and Chemical Reference Data, 2001, 34(1): 57–67.
- [37] Smoliar M I, Walker R J, Morgan J W. Re-Os ages of group IIA,

IIIA, IVA, and IVB iron meteorites[J]. Science, 1996, 271: 1099–1102.

- [38] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth–Science Reviews, 1994, 37(3/4): 215–224.
- [39] Middlemost E A K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology[M]. London: Longman Group United Kingdom, 1985: 1–280.
- [40] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63–81.
- [41] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin, 1989, 101(5): 635–643.
- [42] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313–345.
- [43] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956–983.
- [44] Ludwig K R. User's manual for isoplot/Ex Version 2.49: A geochronological toolkit for Microsoft Excel[M]. Geochronology Center, Berkeley, Special Publication, 2001: 1–58.
- [45] 翟德高, 刘家军, 王建平, 等. 内蒙古太平沟斑岩型钼矿床 Re-Os 等时线年龄及其地质意义[J]. 现代地质, 2009, 23(2): 262-268.

Zhai Degao, Liu Jiajun, Wang Jianping, et al. Re– Os isotopic chronology of molybdenite from the Taipinggou porphyry– type molybdenum deposit in Inner Mongolia and its geological significance[J]. Geoscience, 2009, 23(2): 262–268 (in Chinese with English abstract).

- [46] Stein H, Schersten A, Hannah J, et al. Subgrain-scale decoupling of Re and ¹⁸⁷Os and assessment of laser ablation ICP-MS spot dating in molybdenite[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3673-3686.
- [47] Stein H J, Morgan J W, Markey R J, et al. An introduction to Re-Os: What's in it for the mineral industry[J]. SEG Newsletter, 1998, 32(1): 8–15.
- [48] Stein H J, Markey R J, Morgan J W, et al. The remarkable Re–Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479–486.
- [49] Luck J M, Allegre C J. The study of molybdenites through the ¹⁸⁷Re-¹⁸⁷Os chronometer[J]. Earth and Planetary Science Letters, 1982, 61: 291–296.
- [50] Selby D, Creaser R A. Macroscale NTIMS and microscale LA– MC–ICP–MS Re–Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re– Os age determinations and implications for the decoupling of Re and Os within molybdenite[J]. Geochimica et Cosmochimica Acta, 2004, 68 (19): 3897–3908.
- [51] 杜安道, 屈文俊, 王登红, 等. 辉钼矿亚晶粒范围内 Re 和¹⁸⁷Os 的 失耦现象[J]. 矿床地质, 2007, 26(5): 572-580.

Du Andao, Qu Wenjun, Wang Denghong, et al. Subgrain–size decoupling of Re and ¹⁸⁷Os within molybdenite[J]. Mineral Deposits, 2007, 26(5): 572–580 (in Chinese with English abstract).

- [52] 李超, 屈文俊, 杜安道. 大颗粒辉钼矿 Re-Os 同位素失耦现象及 ¹⁸⁷Os 迁移模式研究[J]. 矿床地质, 2009, 28(5): 707-712.
 Li Chao, Qu Wenjun, Du Andao. Decoupling of Re and Os and migration model of ¹⁸⁷Os in coarse- grained molybdenite[J].
 Mineral Deposits, 2009, 28(5): 707-712 (in Chinese with English abstract).
- [53] Davidson J, Turner S, Handley H, et al. Amphibole "sponge" in arc crust?[J]. Geology, 2007, 35(9): 787–790.
- [54] Castillo P R. Adakite petrogenesis[J]. Lithos, 2012, 134–135: 304–316.
- [55] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241– 265.
- [56] Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3): 267–309.
- [57] Rudnick R L, Gao S. Composition of the Continental Crust[C]// Holland H D, Turekian K K(eds.). Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1–64.
- [58] McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3–4): 223–253.
- [59] Muncker C, Pfander G A, Weyer S, et al. Evolution of planetary cores and the earth- moon system from Nb/Ta systematics[J]. Science, 2003, 301(5629): 84–87.
- [60] Deniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites[J]. Contributions to Mineralogy and Petrology, 1987, 96: 78–92.
- [61] Vidal P, Cocherie A, Le Fort P. Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta, 1982, 46: 2279–2292.
- [62] Chen Bin, Jahn B M, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesisand tectonic implications. Tectonophysics, 2000, 328: 157–182.
- [63] Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of Central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98: 455–489.
- [64] Kocak K. Hybridization of mafic microgranular enclaves: mineral and whole– rock chemistry evidence from the Karamadazı Granitoid, Central Turkey[J]. International Journal of Earth Sciences, 2006, 95: 587–607.
- [65] 马昌前, 王人镜, 邱家骧. 花岗质岩浆起源和多次岩浆混合的标志: 包体——以北京周口店岩体为例[J]. 地质论评, 1992, 38(2): 109-119.

Ma Changqian, Wang Renjing, Qiu Jiaxiang. Enclaves as indicators of the origin of granitoid magma and repeated magma mingling: an example from the Zhoukoudian intrusion, Beijing[J]. Geological Review, 1992, 38(2): 109–119 (in Chinese with English abstract).

- [66] 谢银财, 陆建军, 马东升, 等. 湘南宝山铅锌多金属矿区花岗闪 长斑岩及其暗色包体成因: 锆石 U-Pb年代学、岩石地球化学和 Sr-Nd-Hf同位素制约[J]. 岩石学报, 2013, 29(12): 4186-4214. Xie Yincai, Lu Jianjun, Ma Dongsheng, et al. Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan Pb-Zn polymetallic deposit, southern Hunan Province: Zircon U-Pb chronological, geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrologica Sinica, 2013, 29(12): 4186-4214 (in Chinese with English abstract).
- [67] 李靖辉. 河南嵩县大石门沟钼矿床辉钼矿 Re-Os 同位素年龄及 地质意义[J]. 中国地质, 2014, 41(4): 1364-1374.

Li Jinghui. Re– Os isotopic dating of molybdenites from the Dashimengou molybdenum deposit in Songxian County, Henan Province, and its geological significance[J]. Geology in China, 2014, 41(4): 1364–1374 (in Chinese with English abstract).

- [68] Mao J W, Zhang Z C, Zhang Z H, et al. Re–Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11–12): 1815–1819.
- [69] Mao J W, Du A D, Seltmann R, et al. Re– Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia[J]. Mineralium Deposita, 2003, 38 (2): 251–257.
- [70] 吴福元, 孙德有. Re-Os 同位素体系理论及其应用[J]. 地质科技 情报, 1999, 18(3): 43-46.
 Wu Fuyuan, Sun Deyou. Theory and applications of Re- Os

isotopic system[J]. Geological Science and Technology Information, 1999, 18(3): 43-46 (in Chinese with English abstract).

- [71] 丁正江, 孙丰月, 刘福来, 等. 胶东中生代动力学演化及主要金属矿床成矿系列[J]. 岩石学报, 2015, 31(10): 3045-3080.
 Ding Zhengjiang, Sun Fengyue, Liu Fulai, et al. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China[J]. Acta Petrologica Sinica, 2015, 31(10): 3045-3080 (in Chinese with English abstract).
- [72] 文博杰, 范宏瑞, 胡芳芳, 等. 胶西北三山岛伟晶岩型脉状钼矿 化成因及对胶东钼成矿的指示意义[J]. 岩石学报, 2015, 31(4): 1002-1014.

Wen Bojie, Fan Hongrui, Hu Fangfang, et al. The genesis of pegmatite-type molybdenum mineralization in Sanshandao, and their implications for molybdenum deposit in Jiaodong, East China[J]. Acta Petrologica Sinica, 2015, 31(4): 1002-1014 (in Chinese with English abstract).