【发现与进展】 doi: 10.12029/gc20170317

新疆东天山地区首次在侵入岩中发现锰矿化线索

刘海生1李卫东2王乐民2陈红旗1

(1. 甘肃省地矿局第二地质矿产勘查院,甘肃 兰州 730000; 2.新疆维吾尔自治区地质勘查基金项目管理中心,新疆 乌鲁木齐 830001)

The first discovery of manganese mineralization in intrusive rocks of Eastern Tianshan Mountains, Xinjiang

LIU Haisheng¹, LEI Weidong², WANG Lemin², CHEN Hongqi¹

(1. No. 2 Geological Prospecting Institute, Gansu Bureau of Geological Exploration, Lanzhou 730000, Gansu, China; 2. Xinjiang Department of Land and Resources, Urumqi 830001, Xinjiang, China)

1 研究目的(Objective)

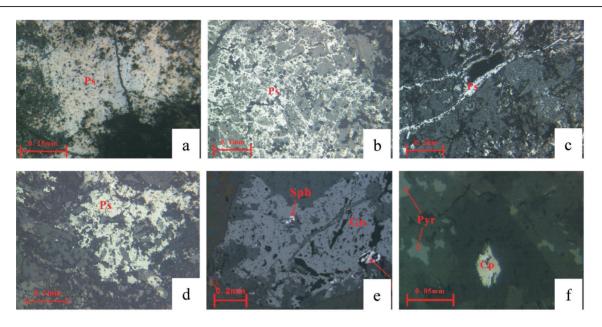
目前据已知锰矿床,划分有4个类型.海相沉积 类型锰矿床(如广西下雷、龙头、湖南湘潭等),沉积 变质类型锰矿床(如陕西黎家营锰矿、湖南棠甘山 等),层控型铅-锌-铁-锰矿床(如湖南的后江桥、玛 瑙山等)和风化类型锰矿床(如广西东平、江苏栖霞 山、闽西南连城等)。以上类型的矿床多与碳酸盐、 页岩、碎屑岩等有关,产于一定的层位,或经区域变 质、接触变质作用及次生富集作用而形成具有工业 价值的矿床,为什么在新疆东天山克孜尔卡拉萨依 地区的晚泥盆纪侵入岩中会存在锰矿,该地区锰矿 其成矿环境、成矿机理是本次研究的目的。

2 研究方法(Methods)

本研究以针对锰矿化区进行系统的大比例尺地质填图工作(1:10000),查明锰矿化区地层、岩浆岩、构造等地质特征,研究与锰矿化有关的地质体,研究其分布形态、规模、产状、矿石类型及其空间分布,了解矿体与围岩和围岩蚀变的关系。通过采取光片、薄片标本,系统研究锰矿石结构、构造、矿物成分及其共生组合关系,研究锰矿物的赋存状态、自然类型、含量、形态、结构构造及次生变化等特征;通过采取电子探针样品,研究锰矿石的岩石地球化学成分,推测锰矿形成的地球物理化学环境和演化过程。

3 研究结果(Results)

通过地质填图工作,锰矿化区位于晚泥盆纪的侵入岩中,分布面积约10 km²,出露的侵入岩有二长花


岗岩、正长花岗岩、似斑状正长花岗岩、花岗斑岩、闪 长玢岩等,深成、浅成相均有,深成相呈岩基产出,浅 成相多呈小的岩脉、岩珠产出。区内构造极为发育, 发育北西、北东向多组构造。矿化体呈透镜状、脉状 或囊状产出,宽数米至数十米,延伸数米至百米不等, 品位15%~21.11%。锰矿化主要发育在似斑状正长 花岗岩的构造破碎带中,在锰矿化蚀变带和似斑状正 长花岗岩之间为一过渡的石英钠长岩带,蚀变石英钠 长岩和构造破碎带中均发育强烈的锰矿化,并伴生铅 锌矿化。岩石中的钠长石仅仅以蚀变残留矿物的形 式出现,呈他形粒状结构,以不规则他形粒状分布,颗 粒之间呈镶嵌构造,粒径0.3~0.5 mm。

岩石中的蚀变作用主要以碳酸盐化为主,其次为硅化、黏土矿化等。岩石中的矿化作用主要以填充裂隙和交代钠长石为主,结合电子探针结果(表1),在石英钠长岩中锰矿化主要为氧化锰和碳酸锰两种,氧化锰矿石主要以硬锰矿和软锰矿为主,其次为碳酸锰矿石,锰矿多呈碎裂状构造,也可见浸染状和网脉状构造(图 1a,b,c,d),粒度 0.01~0.15 mm;团块状硬锰矿也较为多见,粒度在 1mm 左右。矿石中还见伴生的微细粒闪锌矿、方铅矿、磁黄铁矿和黄铜矿等硫化物(图 1e,f),方铅矿粒度在 0.5~1.4 mm,闪锌矿粒度在 0.02~0.1 mm。矿石主要呈他形粒状结构、交代结构,浸染状、团块状构造。

4 结论(Conclusions

- (1) 锰矿化赋存在晚泥盆纪似斑状正长花岗岩 的构造破碎带及石英钠长岩中。
 - (2) 未在锰矿化区发现有沉积岩、火山岩及存在

第44卷第3期 609

- a—团块状锰矿(Ps),光片 K-b1;b-网脉状锰矿(Ps),光片 K-b3;c—细脉浸染状锰矿(Ps),光片 K-b2;d—浸染状锰矿(Ps),光片 K-b3;e—石英钠长岩中的方铅矿(Gn)和闪锌矿(Sph),光片 K-b3;f—石英钠长岩中的黄铜矿(Cp)和磁黄铁矿(Pyr),光片 K-b2
 - 图 1 锰矿石显微照片 Fig.1 Photomicrograph of manganese ore

表1 锰矿石电子探针结果(%)

Table 1 Electron microprobe analyses of manganese ore (%)

样品号	Na ₂ O	K ₂ O	FeO	MgO	P_2O_5	MnO	Al_2O_3	CaO	NiO	SiO ₂	TiO ₂	Cr ₂ O ₃	合计
K-B1-1	5.27	0.34	1.26	1.51	_	38.48	0.57	1.10	0.003	0.26	_	0.49	49.27
K-B1-1	4.92	0.53	0.96	1.29	_	39.85	0.91	1.16	_	0.26	0.03	0.92	50.82
K-B2-1	0.13	_	3.74	0.33	_	23.02	_	7.85	0.006	45.67	0.02	_	80.76
K-B2-2	0.1	_	3.29	0.33	_	24.30	_	9.21	0.006	46.82	_	_	84.05
K-B2-2	0.04	_	2.62	0.02	_	28.04	_	3.43	0.008	45.37	_	_	79.52
K-B2-3	0.1	_	1.92	0.23	_	26.48	_	7.77	_	45.83	0.03	_	82.36
K-B2-4	0.04	_	2.5	0.25	_	27.20	_	4.80	0.025	45.16	0.04	0.02	80.03
K-B2-4	11.5	0.11	0.03	0.02	0.03	0.03	19.8	0.06	0.012	70.47	0.01	0.27	102.35
K-B2-5	0.12	0.01	1.57	0.16	_	23.26	0.02	10.24	_	46.18	_	_	81.55
K-B3-1	7.15	0.22	0.83	1.13	_	37.81	0.03	1.02	_	0.59	0.05	0.56	49.37
K-B3-1	0.08	0.01	3.79	0.5	_	26.34	0.01	6.11	0.028	46.36	_	_	83.21
K-B3-2	0.23	0.09	10.5	2.4	_	18.87	_	8.50	0.033	0.07	0.03	0.08	40.76
K-B3-3	_	_	1.14	0.17	_	23.89	_	15.08	_	0.05	_	0.03	40.36
K-B3-3	0.04	_	0.09	0	_	11.86	_	41.47	0.025	_	_	0.06	53.53
K-B3-4	0.02	0.01	5.43	0.7	_	25.22	0.02	4.62	0.014	46.13	0.03	_	82.18
K-B3-4	0.01		0.94	0.2		24.39	0.01	16.70	_	0.03	_	_	42.28

的多金属锰矿化风化带,锰矿化在构造交汇的部位 具有膨大富集的现象,与花岗岩围岩界线清楚,局 部具有混染现象,表明区内锰矿化的形成可能与岩 浆热液作用有关,而非沉积及次生成因。与已知的 锰矿床类型存在着较大的差异。

5 致谢(Acknowledgement)

本文为中央返还新疆两权价款项目(T15-1-LQ10)资助的成果。感谢庄道泽、蒙轸教授级高级工程师的指导与帮助,杨斌、张向文高工及田轲工程师等的交流和启发。

第一作者:刘海生,1988年生,工程师,从事成矿带与成矿规律研究;E-mail: 429727669@qq.com。