doi: 10.12029/gc20190309

任军平, 王杰, 孙宏伟, 冯琳, 左立波, 古阿雷, 贺福清, Chipilauka Mukofu, Alphet Phaskani Dokowe, Ezekiah Chikambwe, Chishimba Canisius, Daniel Malunga. 2019. 赞比亚东北部卡萨马群形成环境:碎屑锆石U-Pb年龄与Hf同位素的限定[J]. 中国地质, 46(3): 575-586.

Ren Junping, Wang Jie, Sun Hongwei, Feng Lin, Zuo Libo, Gu Alei, He Fuqing, Chipilauka Mukofu, Alphet Phaskani Dokowe, Ezekiah Chikambwe, Chishimba Canisius, Daniel Malunga. 2019. Depositional environment of the Kasama Group, northeastern Zambia: Evidence from detrital zircon U–Pb–Hf isotopic compositions[J]. Geology in China, 46(3): 575–586(in Chinese with English abstract).

赞比亚东北部卡萨马群形成环境:碎屑锆石 U-Pb 年 龄与 Hf 同位素的限定

任军平',王杰',孙宏伟',冯琳2,左立波',古阿雷',贺福清',

CHIPILAUKA Mukofu³, ALPHET PHASKANI Dokowe³, EZEKIAH Chikambwe³,

CHISHIMBA Canisius³, DANIEL Malunga³

(1.中国地质调查局天津地质调查中心,天津 300170;2.贵州省地质资料馆,贵州 贵阳 550002;
 3.赞比亚地质调查局,赞比亚 卢萨卡 P.O.Box 50135)

提要:赞比亚东北部班韦乌卢地块受到其东北部的古元古代乌本迪构造带、西北部的中元古代基巴拉构造带、东南部的中元古代伊鲁米德构造带及西南部泛非期卢弗里安构造带的影响。班韦乌卢地块主要由基底和沉积盖层两部分组成。其中,基底主要由片岩带、安山质-流纹质变质火山岩、花岗岩类岩基及其他侵入体组成。沉积盖层从老至新依次为姆波罗科索群、卡萨马群、加丹加超群及新生代的河流相和湖泊相沉积。本文对卡萨马地区的卡萨马群地质特征、碎屑锆石U-Pb-Hf同位素及地球化学特征进行了系统研究,获得卡萨马群中紫红色粉砂岩的32颗碎屑锆石U-Pb年龄多集中在(1849±23)~(1993±21) Ma,卡萨马群的形成时代可能晚于(1434±14) Ma,属于中元古代,其中22颗锆石(¹⁷⁶Hf/¹⁷⁷Hf),为0.281049~0.281618, ε_{Hf}(t)为-12.8~-1.6,二阶段模式年龄变化范围为2406~3487 Ma。对卡萨马群的砂岩进行了稀土元素分析和微量元素分析,结果显示卡萨马群砂岩 δEu负异常明显,投点主要落在沉积岩区;微量元素显示砂岩形成于被动大陆边缘环境。

关键词:卡萨马群;碎屑锆石U-Pb-Hf同位素;稀土元素和微量元素;班韦乌卢地块;赞比亚东北部 中图分类号:P597 文献标志码:A 文章编号:1000-3657(2019)03-0575-12

Depositional environment of the Kasama Group, northeastern Zambia: Evidence from detrital zircon U-Pb-Hf isotopic compositions

REN Junping¹, WANG Jie¹, SUN Hongwei¹, FENG Lin², ZUO Libo¹, GU Alei¹, HE Fuqing¹, CHIPILAUKA Mukofu³, ALPHET PHASKANI Dokowe³, EZEKIAH Chikambwe³, CHIWSHIMBA Canisius³, DANIEL Malunga³

收稿日期:2018-03-22;改回日期:2018-06-09

基金项目:中国地质调查局项目(1212011220910、121201006000150014)和商务部技术援外项目([2012]558、[2015]352)共同资助。 作者简介:任军平,男,1980生,高级工程师,从事地质矿产勘查与研究工作;E-mail:rjp2333@126.com。

通讯作者:王杰,男,1964生,教授级高级工程师,从事地质矿产勘查工作;E-mail:wangjie513046@163.com。

(1. Tianjin Geological Survey Center of China Geological Survey, Tianjin 300170, China; 2. Geological Archives of Guizhou Province, Guiyang 550002, Guizhou, China; 3. Geological Survey Departmentof Zambia, Lusaka, P.O.Box 50135, Zambia)

Abstract: The Bangweulu Block of northeastern Zambia which consists mainly of basement and sedimentary rocks is affected by northeastern Paleoproterozoic Ubendian Belt, northwestern Mesoproterozoic Kibaran Belt, southeastern Mesoproterozoic Irumide Belt and southwestern Pan African Lufulian Belt. The basement rocks are mainly composed of schist, andesitic– rhyolitic metamorphic volcanic rocks, granitoids and other intrusions. From lower to upper part the sedimentary rocks are mainly composed of the Mporokoso Group, the Kasama Group, the Katanga supergroup and Cenozoic fluvial and lacustrine sediments. The authors systematically studied the geological characteristics of the Kasama Group, U– Pb– Hf isotopic compositions and geochemical characteristics of detrital zircon from the Kasama Group in Kasama area and obtained 32 detrital zircons U–Pb ages of the purplish red siltstone from the Kasama Group. Specifically, their ages mainly vary from (1849±23) to (1993±21) Ma, suggesting that the Kasama Group was formed younger than (1434±14) Ma and should belong to Mesoproterozoic. (¹⁷⁶Hf/¹⁷⁷Hf), values of 22 zircons are 0.281049–0.281618 and $\varepsilon_{tit}(t)$ values are–12.8–1.6 with corresponding T_{DM2} ages of 2406–3487 Ma. The REE and trace elements of sandstones from Kasama Group were analyzed. The REE have obviously negative δ Eu anomalies and the points mainly fall in the sedimentary area; the trace elements characteristics of sandstones show that sandstones formed in the passive continental margin.

Key words: Kasama Group; detrital zircon U-Pb-Hf isotopic compositions; REE and trace elements; Bangweulu Block; northeastern Zambia

About the first author: REN Junping, male, born in 1980, senior engineer, majors in geological survey and research; E-mail: rjp2333@126.com.

About the corresponding author: WANG Jie, male, born in 1964, professor, mainly engages in geological survey and research; E-mail:wangjie513046@163.com.

Fund support: Supported by Chinese Geological Survey (No. 1212011220910 and No. 121201006000150014) and Sino–Zambian Co– operation in Geological and Geochemical Survey on the Scale of 1:100 000 in Kasama, Northern Province of Zambia and China–Aid Airborne Geophysical Survey and Geochemical and Geological Mapping Technical Cooperation Project in the northeast of Zambia.

1 引 言

赞比亚东北部的卡萨马群位于班韦乌卢地块 (Bangweulu Block)中,班韦乌卢地块是一个古老的 克拉通单元,也称为赞比亚克拉通(Kröner,1977),位 于赞比亚东北部,与坦桑尼亚和刚果(金)毗邻,出露 面积约150000 km²。在地质历史演化过程中,班韦 乌卢地块长期受到其东北部的古元古代乌本迪构 造带、西北部的中元古代基巴拉构造带、东南部的 新元古代伊鲁米德构造带及西南部泛非期卢弗里 安构造带的影响。赞比亚的区域图件整理工作开 始于20世纪60年代,班韦乌卢地块由Drysdall et al. (1972)进行总结,他首次提出"班韦乌卢地块可能存在太古 宙基底。Unrug(1984)对赞比亚北部中元古代姆波 罗科索群地层学和沉积演化进行过研究。 Andersen and Unrug(1984)对班韦乌卢地块的地球 动力学演化进行了研究。Andrews-Speed(1986, 1989)对班韦乌卢地块中含金地层进行了较为深入 研究。Waele et al.(2006)利用地球化学和同位素方 法对太古宙班韦乌卢变质克拉通的南部边缘、曼萨 地区及伊鲁米德带元古宙地壳残片进行了研究,推 测圈定了太古宙班韦乌卢变质克拉通范围,并且他 们推测认为班韦乌卢地块来源于中非刚果克拉通 (未见直接证据)。笔者前期对赞比亚地质资料进 行了系统收集和整理(任军平等,2013,2017a, 2017b;Ren et al.,2017),特别是对赞比亚东北部班 韦乌卢地块的地球动力学演化和矿产资源研究现 状进行了总结,认为班韦乌卢地块主要形成于1.9~ 1.8 Ga(任军平等,2016)。

近年来,锆石 U-Pb-Hf 同位素研究成果丰硕 (Diwu et al., 2008; Liu et al., 2012; 张正平, 2017; 王 振涛等, 2017; 康昱等, 2018; 吴昊等, 2018; 赵利刚 等, 2018),其中碎屑锆石不仅可以获得地层最大沉 积时限和源区属性,进而揭示了地壳早期演化历 古代。 史,而且沉积岩的地球化学特征也对其进行了补充 科索((戴朝成等,2014)。目前,公开能收集到卡萨马群 群,新 的研究资料非常少,而且研究区附近的多数研究成 普拉(果还以早期的野外描述为主(Andersen and Unrug, 物。其 1984;Andrews-Speed, 1986, 1989)。卡萨马群的沉 科索君

1984; Andrews-Speed, 1986, 1989)。卡萨马群的沉积时限因缺乏火山岩夹层而长期以来精确的同位素年代学讨论甚少,且缺乏地球化学特征探讨。鉴于此,本文选取卡萨马群中的样品进行碎屑锆石U-Pb-Hf同位素及地球化学分析,进而探讨卡萨马群原岩的沉积时代、物源属性及其构造环境。

2 地质概况与样品描述

班韦乌卢地块主要由基底和沉积盖层两部分 组成。基底主要由片岩带、安山质-流纹质变质火 山岩、花岗岩类和其他侵入体组成。笔者等获得的 基底中花岗岩类和闪长岩的锆石U-Pb年龄为2.0~ 1.9 Ga(分析数据将在其他论文中发表),属于古元

古代。沉积盖层从下至上依次为古元古代姆波罗 科索(Mporokoso)群和中元古代卡萨马(Kasama) 群,新元古代加丹加超群中的Luitikila地层和卢阿 普拉(Luapula)地层以及新生代河流相和湖泊沉积 物。其中,直接覆盖在基底之上的古元古代姆波罗 科索群与其上覆的中元古代卡萨马群呈不整合接 触。卡萨马群与新元古代以来的地层无直接接触 关系。姆波罗科索群主要分布于班韦乌卢地块中 的姆波罗科索盆地中, Andersen and Unrug(1984)认 为姆波罗科索群整套陆相沉积地层厚度 > 5 km,从 下至上可分为4个组:姆巴拉(Mbala)组主要为冲积 扇和辫状河流相沉积,成熟度低,主要包括紫红色石 英质砾岩及砂岩,局部夹石英砂岩,厚度>2km;萨 马(Nsama)组主要为湖泊环境中的凝灰岩和火山碎 屑沉积;卡布韦卢马(Kabweluma)组主要为河流相 石英砂岩和少量泥岩;奇波特(Chibote)组主要为源 于湖泊环境的硅质泥岩。卡萨马群主要出露于班 韦乌卢地块卡萨马城市附近(图1),主要为一套河

图1 大地构造位置图(a,据Haest et al.,2011修改)和卡萨马地区区域地质图(b) Fig.1 Tectonic map(a, after Haest et al.,2011)and geological map of the Kasama region(b)

http://geochina.cgs.gov.cn 中国地质, 2019, 46(3)

质

中

流相和河漫滩相沉积,厚度80~300 m,岩性主要包括 成熟度高的石英砂岩、赤铁矿化砂岩和红色泥岩, 少量石英砾岩,向东厚度逐渐增厚并进入伊鲁米德 带,在伊鲁米德带中同时期沉积了厚约3500 m的 Mitoba河群(Andersen and Unrug, 1984)。

本次研究将研究区的卡萨马群划分为下卡萨 马组和上卡萨马组(图1),其中下卡萨马组进一步 划分为下卡萨马组一段和下卡萨马组二段。下卡 萨马组一段岩性主要为页岩,呈薄层状,风化面为 紫红色,新鲜面为浅紫红色。粉砂泥质结构,层状 构造,岩石致密细腻,具贝壳状断口。发育页理和 水平层理,见少量绢云母,含量约10%。下卡萨马 组二段岩性主要为紫红色粉砂岩(图2)和细砂岩, 局部含有少量青灰色粉砂岩。该段底部为紫红色 粉砂岩,粉砂质结构,薄层状构造。见少量白云母 和绢云母,含量约9%,岩石夹灰黑色赤铁矿铁质细 条带,具韵律层理、水平层理。向上过渡为青灰色 粉砂岩。该段顶部为紫红色石英细砂岩,矿物成分 以石英为主,含量约85%,含少量白云母和暗色金 属矿物。局部可见灰黑色赤铁矿铁质条带,宽0.2~ 1 cm,顺层理发育。岩石中水平层理和楔状交错层 理发育。上卡萨马组主要发育中厚层中细粒石英 砂岩。新鲜面颜色以灰白色为主。该组野外一般 可见较大面积基岩露头,厚层一巨厚层状,呈孤岛 突起状出露地表,风化较弱。中细粒砂质结构,中 厚层状构造。岩性及矿物成分单一,石英含量可达 95%,含少量暗色矿物。石英颗粒约0.1~0.2 mm,分选、磨圆均较好。岩石普遍发育大中型楔状、羽状交错层理和水平层理,局部可见包卷层理。整个卡萨马群未见生物化石及遗迹化石。

本次研究中采集的卡萨马群碎屑锆石U-Pb-Hf同位素样品(DPM01-18-U-Pb-01)采自下卡萨 马组二段底部紫红色粉砂岩,采样位置见图1,GPS 坐标:10°14′10.1″S,31°17′16.8″E,H:1332 m。紫红 色粉砂岩的镜下特征(图3):岩石具粉砂质结构,薄 层状构造,岩石分选性和磨圆度较差,颗粒呈点接 触,碎屑颗粒含量约80%,主要由石英和白云母组 成,石英以单晶石英为主,具波状消光,石英隐约见 定向排列,粒径0.01~0.38 mm;白云母呈他形片状, 片径0.10~0.80 mm,正交偏光下干涉色鲜艳(图 3a),部分受外力作用晶体弯曲变形(图3b),含量约 5%;胶结物为铁质胶结,含量约15%,另含约5%泥 质杂基,成岩作用过程中泥质杂基部分绢云母化, 绢云母呈他形细鳞片状,粒径均<0.10 mm,定向排 列明显。

3 锆石U-Pb-Hf同位素分析

3.1 分析方法与数据处理

锆石分选由河北省区域地质矿产调查研究所 实验室完成。首先将新鲜采集的岩石样品经过粉 碎和自然晾干,再利用电磁选、重液选和介电选等 手段,对粗选后的矿物颗粒进行单矿物提纯,分离

图 2 下卡萨马组二段紫红色粉砂岩野外特征 a一野外照片;b—手标本 Fig.2 The outcrop characteristics of the purplish red siltstone from the 2nd member of the Lower Kasama Formation a-Field photograph; b-Hand specimen

http://geochina.cgs.gov.cn 中国地质, 2019, 46(3)

图 3 下卡萨马组二段紫红色粉砂岩镜下照片 (a)和(b)为正交偏光; Hem一赤铁矿; Ms—白云母; Q—石英 Fig.3 The microphotographs of the purplish red siltstone from the 2nd member of the Lower Kasama Formation (a) and (b) are under crossed nicols; Hem-Hematite; Ms-Muscovite; Q-Quartz

出锆石单矿物颗粒。随后将挑选出的纯净锆石黏 贴在不含U、Pb及Th的环氧树脂靶上,样品靶表面 要进行抛光处理以保证锆石的出露。在分析锆石 的U/Pb含量之前,要用光学显微镜来确定锆石颗粒 的位置、显微结构和要分析的靶区位置,观察其晶 体表面的裂纹与包裹体,避免分析时打到Pb亏损区 域。将选好的锆石用阴极发光图像来区分锆石颗 粒内部的不同结构,完成锆石成因等研究。在中国 地质调查局天津地质调查中心实验室利用激光烧 蚀多接收器等离子体质谱仪(LA-ICP-MS)完成错 石U-Pb-Hf同位素测年分析,具体参数见Geng et al.(2017)。其中,本次锆石年龄测试用的激光束斑 直径为35 µm,剥蚀深度约为20 µm。采用中国地质 大学刘勇胜博士研发的 ICPMSDataCal 程序(Liu et al., 2010)和Ludwig(2003)的Isoplot程序进行数据 处理,采用²⁰⁴Pb校正法或者 Anderson(2002)的方法 对普通铅进行校正。利用SRM610玻璃标样作为外 标计算锆石样品的U、Pb和Th含量。

3.2 锆石U-Pb年代学

随着碎屑锆石研究程度的提高,利用沉积岩中最小谐和碎屑锆石的年龄峰值或者最年轻碎屑锆石年龄的加权平均值可以限定其沉积下限(Yang et al.,2013)。采自下卡萨马组二段紫红色粉砂岩(DPM01-18-U-Pb-01)样品中的锆石中的大部分锆石粒度为90~140 µm,少数超过150 µm,呈次圆状和圆状,长宽比为1:1~2:1,多数发育振荡生长环带

(图4),Th/U值为0.1614~1.3106,表明它们为岩浆 成因, 月具有明显的碎屑锆石的特征。挑洗代表性 的32颗锆石颗粒分析了32个点(表1,图5)。这些 锆石分析点的年龄分布于(1540±36)~(2783±20) Ma,集中于(1849±23)~(1993±21) Ma,代表了该地 区主要物源区地质体的形成时代。在分析结果中, 获得一颗振荡环带发育的较为年轻的锆石年龄为 (1540±36) Ma,其可能代表了紫红色粉砂岩的形成 的最大年龄即下卡萨马组二段的最大沉积年龄。 Waele et al. (2007) 认为卡萨马市东部姆韦拉 (Mwela)自然历史公园附近上卡萨马组中成熟度高 的石英砂岩具有非常好的磨圆度和分选性,其碎屑 锆石多呈次圆状或圆状,锆石分析点的年龄分布于 (1434±14)~(2593±5) Ma,集中于1900~2050 Ma, 他们认为样品中最年轻的锆石年龄(1434±14) Ma 代表了上卡萨马组沉积岩的最大年龄即中元古代。

3.3 锆石原位Lu-Hf同位素

本次锆石 Hf 同位素测试是在 U-Pb 测年的基础上进行的,对下卡萨马组二段紫红色粉砂岩碎屑 锆石样品(DPM01-18-U-Pb-01)进行了锆石 Lu-Hf 同位素测试,分析结果见表2和图6。本次所测 锆石的¹⁷⁶Lu/¹⁷⁷Hf 比值均小于0.002(0.0003~0.0017),显示锆石形成以后具有较低的放射性成因 Hf 的积累,锆石的现今¹⁷⁶Lu/¹⁷⁷Hf 比值可以代表锆石形成时的¹⁷⁶Lu/¹⁷⁷Hf 比值(Amelin et al., 1999)。紫红 色粉砂岩碎屑锆石样品(DPM01-18-U-Pb-01)同

图4 下卡萨马组二段紫红色粉砂岩碎屑锆石的CL图像

Fig.4 Representative cathodoluminescence images of the purplish red siltstone detrital zircons from the 2nd member of the Lower Kasama Formation

位素分析的22颗锆石(¹⁷⁶Hf/¹⁷⁷Hf)₁为0.281049~0.281618, ε_{Hf}(t)为-12.8~-1.6,均为负值;二阶段模式年龄变化范围为2406~3487 Ma,明显大于锆石的形成年龄。在锆石年龄图解(图6)中锆石投点较为分散,整体位于地壳演化线附近,偏离亏损地幔演化线,表明卡萨马组碎屑物质的源区主要是由古老的地壳物质部分熔融形成。

4 地球化学特征

本次研究是在卡萨马东部地区的卡萨马群中 从下至上依次选取了具有代表性5件新鲜的砂岩样 品进行了地球化学分析,样品分析由中国地质调查 局天津地质调查中心实验室采用电感耦合等离子 体发射光谱仪(ICP-MS)完成。

4.1 稀土元素特征

卡萨马群5件砂岩样品的稀土元素分析结果见 表3:稀土总量(质量分数)(不包括Y)为16.282~ 85.36 mg/kg,平均值为51.84 mg/kg。稀土元素样品 采用Leed球粒陨石标准化后,绘制配分模式曲线如 图7。从图7可以看出:样品的球粒陨石标准化配分 模式曲线相似,为轻稀土元素富集、重稀土元素亏 损型的特点,并且存在明显δEu负异常;La-Eu段轻 稀土配分曲线较陡、斜率较大,表现出明显的"右倾",说明轻稀土元素之间的分馏程度较高;Gd-Lu 段重稀土配分曲线较为平坦、斜率较小,说明重稀 土元素之间分馏程度较低。

4.2 微量元素特征

卡萨马群5件砂岩样品的微量元素分析结果见 表4,结合样品中稀土元素La的分析结果,投点于 Bhatia and Crook(1986)提出的砂岩构造环境判别 图解中。从卡萨马群的构造环境判别图解(图9)可 以看出:在Th-Zr图解(图9a)、La-Th-Sc图解(图 9b)和Th-Co-Zr/10图解(图9c)中,样品的投点很 集中,落在被动大陆边缘区域。

5 讨 论

5.1 物源区分析

前人对各类碎屑锆石U-Pb-Hf同位素进行了 大量的研究(苏慧敏等,2012;霍腾飞等,2015;陈岳 龙等,2016)。本文采自下卡萨马组二段底部紫红 色粉砂岩(DPM01-18-U-Pb-01)样品中的锆石具 有明显的碎屑锆石的特征,32个分析点的锆石U-Pb年龄分布于(1540±36)~(2783±20) Ma,集中于 (1849±23)~(1993±21) Ma,代表了该地区主要物源

$3.3.7$ Pb I In $2.06 P_{\rm J} c^{38} U$ 1 79 208 158 0.7570 0.3494 2 115 309 114 0.3678 0.3607 3 211 591 95 0.1614 0.3580 4 50 133 98 0.7402 0.3502 5 92 271 235 0.8657 0.3144 6 68 189 186 0.9857 0.3449 9 270 139 0.5157 0.3449 0.3502 9 110 293 243 0.8289 0.3449 11 86 216 195 0.9017 0.3634 113 9 30 243 0.8289 0.3449 113 86 216 195 0.9017 0.3634 113 9 30 251 0.8041 0.7701 114 81 185	10 - TH TI		同位素比(苴						表面年散	\$∕Ma		
		$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}\text{Pb}/^{235}\text{U}$	1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}\text{Pb}/^{235}\text{U}$	1σ	$^{207}\text{Pb}/^{206}\text{Pb}$	1σ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58 0.7570	0.3494	0.0033	5.6750	0.0753	0.1178	0.0014	1932	18	1928	26	1923	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 0.3678	0.3607	0.0034	6.0688	0.0812	0.1220	0.0014	1986	19	1986	27	1986	21
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 0.1614	0.3580	0.0034	5.9564	0.0775	0.1207	0.0014	1973	19	1970	26	1966	21
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	8 0.7402	0.3502	0.0033	5.6998	0.0755	0.1180	0.0014	1936	18	1931	26	1927	21
	35 0.8657	0.3144	0.0030	4.6523	0.0610	0.1073	0.0012	1762	17	1759	23	1754	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 0.9857	0.3270	0.0031	5.0084	0.0668	0.1111	0.0013	1824	17	1821	24	1817	21
8 97 270 139 0.5157 0.3461 9 110 293 243 0.8289 0.3449 11 86 216 195 0.9017 0.3532 11 86 216 195 0.9017 0.3634 12 70 167 187 1.1201 0.3674 13 9 30 24 0.8094 0.3674 14 81 185 122 0.6592 0.3413 16 107 300 150 0.5010 0.3721 17 25 63 34 0.5457 0.3532 19 99 256 144 0.5457 0.3535 21 37 61 31 0.5057 0.3535 224 45 114 92057 0.3535 224 45 114 92057 0.3535 224 45 114 0.5057	37 0.9846	0.4082	0.0038	7.7648	0.1018	0.1380	0.0016	2207	21	2204	29	2202	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 0.5157	0.3461	0.0033	5.5862	0.0744	0.1171	0.0014	1916	18	1914	25	1912	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 0.8289	0.3449	0.0033	5.5682	0.0746	0.1171	0.0014	1910	18	11911	26	1912	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.2016	0.3232	0.0031	4.8918	0.0714	0.1098	0.0014	1805	17	1801	26	1795	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	95 0.9017	0.3634	0.0035	6.1395	0.0814	0.1225	0.0014	1998	19	1996	26	1993	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	87 1.1201	0.3674	0.0036	6.3076	0.0946	0.1245	0.0016	2017	20	2020	30	2202	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0.8094	0.2721	0.0026	3.5866	0.0737	0.0956	0.0019	1552	15	1547	32	1540	36
	22 0.6592	0.3980	0.0042	7.2617	0.1518	0.1323	0.0022	2160	23	2144	45	2129	29
	49 0.8001	0.3520	0.0034	5.8453	0.0820	0.1205	0.0015	1944	19	1953	27	1963	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 0.5010	0.3413	0.0033	5.4314	0.0779	0.1154	0.0014	1893	18	1890	27	1886	22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 0.5457	0.3753	0.0038	6.1563	7660.0	0.1190	0.0016	2054	21	1998	32	1941	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 0.5645	0.3632	0.0035	6.1163	0.0855	0.1221	0.0015	1997	19	1993	28	1988	22
20 86 230 302 1.3106 0.3171 21 37 61 31 0.5057 0.5395 22 124 355 274 0.7706 0.3210 23 65 176 151 0.8574 0.3306 24 45 114 92 0.8036 0.3554 25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.3655 27 53 142 110 0.7746 0.3655 27 53 142 110 0.7746 0.3559 28 71 183 97 0.5283 0.3559 28 71 183 97 0.5283 0.3559 30 32 83 1.0522 0.3369 31 137 363 272 0.3368 31 137 363 272 0.7483 0.3366 <	44 0.5412	0.3518	0.0033	5.7283	0.0785	0.1181	0.0014	1943	18	1936	27	1928	21
21 37 61 31 0.5057 0.5395 22 124 355 274 0.7706 0.3210 23 65 176 151 0.8574 0.3306 24 45 114 92 0.8036 0.3516 25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.3653 27 53 142 110 0.7746 0.3653 27 53 142 110 0.7746 0.3559 28 71 183 97 0.5283 0.3559 28 71 183 97 0.5283 0.3359 29 23 88 1.052 0.3369 30 32 83 1.052 0.3369 31 137 363 272 0.3368 31 137 363 272 0.7483 0.3366	02 1.3106	0.3171	0.0030	4.7439	0.0655	0.1085	0.0013	1776	17	1775	25	1774	22
22 124 355 274 0.7706 0.3210 23 65 176 151 0.8574 0.3306 24 45 114 92 0.8036 0.3554 25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.36554 27 53 142 110 0.7746 0.3559 27 53 142 110 0.7746 0.3559 28 71 183 97 0.5283 0.3559 29 29 90 1.3062 0.3356 30 32 83 1.0592 0.3359 31 137 363 272 0.7483 0.3358 31 137 363 272 0.7483 0.3388	1 0.5057	0.5395	0.0051	14.4859	0.1966	0.1947	0.0023	2781	27	2782	38	2783	20
23 65 176 151 0.8574 0.3306 24 45 114 92 0.8036 0.3554 25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.3653 27 53 142 110 0.7746 0.3561 28 71 183 97 0.5283 0.3597 28 71 183 97 0.5283 0.3597 29 29 90 1.3062 0.3369 30 32 83 1.0522 0.3369 31 137 363 272 0.7483 0.3386 31 137 363 272 0.7483 0.3388	74 0.7706	0.3210	0.0030	4.8640	0.0679	0.1099	0.0013	1794	17	1796	25	1798	22
24 45 114 92 0.8036 0.3554 25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.3655 27 53 142 110 0.7746 0.3551 28 71 183 97 0.5283 0.3597 28 71 183 97 0.5283 0.3597 29 29 90 1.3062 0.3369 30 32 83 88 1.0592 0.3369 31 137 365 272 0.7483 0.3386	51 0.8574	0.3306	0.0031	5.0793	0.0707	0.1114	0.0014	1841	17	1833	26	1823	22
25 123 366 226 0.6189 0.3150 26 80 188 210 1.1163 0.3635 27 53 142 110 0.7746 0.3561 28 71 183 97 0.5283 0.3597 29 28 69 90 1.3062 0.3369 30 32 83 88 1.0592 0.3369 31 137 363 272 0.7483 0.3386	2 0.8036	0.3554	0.0034	5.8868	0.0810	0.1201	0.0015	1961	19	1959	27	1958	22
26 80 188 210 1.1163 0.3635 27 53 142 110 0.7746 0.3361 28 71 183 97 0.5283 0.3597 29 28 69 90 1.3062 0.3369 30 32 83 10.592 0.3369 31 137 363 272 0.3365 31 137 363 272 0.7483 0.3365	26 0.6189	0.3150	0.0030	4.6690	0.0636	0.1075	0.0013	1765	17	1762	24	1757	22
27 53 142 110 0.7746 0.3361 28 71 183 97 0.5283 0.3597 29 28 69 90 1.3062 0.3369 30 32 83 1.0592 0.3363 31 137 363 272 0.7483 0.3365	1.1163	0.3635	0.0035	6.1255	0.0829	0.1222	0.0015	1999	19	1994	27	1989	22
28 71 183 97 0.5283 0.3597 29 28 69 90 1.3062 0.3369 30 32 83 88 1.0592 0.3365 31 137 363 272 0.7483 0.3388	10 0.7746	0.3361	0.0032	5.3274	0.0780	0.1150	0.0015	1868	18	1873	27	1879	24
29 28 69 90 1.3062 0.3369 336	7 0.5283	0.3597	0.0034	6.0417	0.0848	0.1218	0.0015	1981	19	1982	28	1983	22
30 32 83 8.0592 0.3365 31 137 363 272 0.7483 0.3388	0 1.3062	0.3369	0.0032	5.4235	0.0831	0.1168	0.0016	1872	18	1889	29	1907	24
31 137 363 272 0.7483 0.3388	8 1.0592	0.3365	0.0032	5.2454	0.0726	0.1131	0.0014	1870	18	1860	26	1849	23
	72 0.7483	0.3388	0.0032	5.3221	0.0703	0.1139	0.0013	1881	18	1872	25	1863	21
32 39 80 38 0.4786 0.4474	8 0.4786	0.4474	0.0042	9.4761	0.1300	0.1536	0.0019	2384	23	2385	33	2386	21

图 6 下卡萨马组二段紫红色粉砂岩碎屑锆石年龄-ɛн(t)图解 Fig.6 U-Pb ages vs. ɛн(t)value plot of the purplish red siltstone detrital zircons from the 2nd member of the Lower Kasama Formation

表2下卡萨马组二段紫红色粉砂岩碎屑锆石Hf同位素测试结果
Table 2 Hf isotopic compositions of the purplish red siltstone detrital zircons from the 2 nd member of the Lower Kasama

编号	Age /Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	$\varepsilon_{\text{Hf}}(0)$	$\varepsilon_{\scriptscriptstyle \mathrm{Hf}}(t)$	$T_{\rm DM1}/{ m Ma}$	$T_{\rm DM2}/{ m Ma}$	$f_{ m Lu/Hf}$						
1	1923	0.0440	0.0012	0.281365	0.000044	0.281321	-49.8	-8.5	2651	3075	-0.96						
2	1986	0.0385	0.0011	0.281400	0.000041	0.281360	-48.5	-5.6	2592	2949	-0.97						
3	1966	0.0183	0.0005	0.281226	0.000033	0.281208	-54.7	-11.5	2788	3292	-0.99						
4	1927	0.0284	0.0009	0.281316	0.000039	0.281283	-51.5	-9.7	2697	3155	-0.97						
5	1754	0.0286	0.0009	0.281429	0.000040	0.281400	-47.5	-9.5	2541	3011	-0.97						
6	1817	0.0395	0.0012	0.281366	0.000047	0.281326	-49.7	-10.7	2647	3132	-0.96						
7	2202	0.0631	0.0017	0.281120	0.000048	0.281049	-58.4	-11.8	3025	3487	-0.95						
8	1912	0.0428	0.0012	0.281500	0.000039	0.281455	-45.0	-4.0	2467	2789	-0.96						
9	1912	0.0471	0.0014	0.281291	0.000046	0.281239	-52.4	-11.7	2770	3260	-0.96						
10	1795	0.0276	0.0008	0.281412	0.000042	0.281385	-48.1	-9.1	2559	3017	-0.98						
11	1993	0.0331	0.0009	0.281293	0.000043	0.281258	-52.3	-9.1	2729	3167	-0.97						
12	2022	0.0225	0.0006	0.281411	0.000056	0.281386	-48.1	-3.9	2551	2871	-0.98						
13	1540	0.0225	0.0007	0.281467	0.000054	0.281448	-46.1	-12.6	2474	3041	-0.98						
14	2129	0.0347	0.0011	0.281214	0.000056	0.281169	-55.1	-9.2	2850	3273	-0.97						
15	1963	0.0269	0.0008	0.281270	0.000046	0.281240	-53.1	-10.4	2752	3225	-0.98						
16	1886	0.0311	0.0010	0.281260	0.000045	0.281224	-53.5	-12.8	2781	3309	-0.97						
17	1941	0.0327	0.0010	0.281367	0.000044	0.281331	-49.7	-7.7	2632	3041	-0.97						
18	1988	0.0237	0.0008	0.281349	0.000040	0.281321	-50.3	-7.0	2641	3034	-0.98						
19	1928	0.0068	0.0003	0.281318	0.000034	0.281309	-51.4	-8.8	2649	3098	-0.99						
20	1774	0.0478	0.0015	0.281463	0.000042	0.281412	-46.3	-8.6	2537	2971	-0.95						
22	1798	0.0397	0.0013	0.281523	0.000033	0.281478	-44.2	-5.8	2442	2813	-0.96						
25	1757	0.0282	0.0010	0.281654	0.000036	0.281618	-39.5	-1.6	2239	2406	-0.97						

区地质体的形成时代。这与Waele et al.(2007)在卡 萨马市东部姆韦拉(Mwela)地区上卡萨马组中成熟 度高的石英砂岩锆石 U-Pb 年龄区间(1434±14)~ (2593±5) Ma 相吻合(集中于1900~2050 Ma)。以上 碎屑锆石 U-Pb 年龄显示,为卡萨马群的形成提供 物源的地质体形成时间与全球范围内 2.0~18 Ga 由 碰撞造山所形成的哥伦比亚超大陆演化时间(李三 忠等,2016)基本一致。根据已获得振荡环带发育 的年轻的锆石年龄为(1540±36) Ma 和(1434±14) Ma 分别代表下卡萨马组二段和上卡萨马组的最大沉

	表3卡萨马群砂岩稀土元素(10°)分析结果													
	Ta	ble 3 R	EE geo	ochemi	cal dat	a (10 ⁻⁶)	of the s	sandsto	ones in	Kasam	a Grou	ıp		
样品	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
DPM01-21-L01	17	36.4	3.72	13.4	2.74	0.48	3.06	0.46	2.88	0.63	1.82	0.31	2.12	0.34
DPM01-22-L02	10.9	17.3	2.32	8.22	1.57	0.38	1.84	0.29	1.79	0.38	1.1	0.19	1.3	0.24
DPM01-24-L01	3.01	5.24	0.67	2.65	0.71	0.25	0.96	0.18	1.1	0.24	0.59	0.091	0.51	0.081
DPM03-2-L01	6.97	10.3	1.33	4.82	0.84	0.16	0.86	0.13	0.7	0.14	0.34	0.049	0.28	0.041
DPM03-14-L01	20.3	35.9	3.63	12.3	2.15	0.45	2.44	0.36	2.13	0.43	1.18	0.18	1.16	0.17

注:稀土元素数据为原始数据,由中国地质调查局天津地质调查中心实验室完成。

in Kasama Group(normalizing parameters after Boynton, 1984)

积年龄,认为卡萨马群的形成可能晚于(1434±14) Ma,属于中元古代。从获得的锆石CL图像上可以 看出主要锆石振荡环带发育,其可能来源于基底的 花岗岩类。锆石的Lu-Hf同位素体系不仅能够抵 抗后期改造作用和蚀变的影响,还能保存近于初始 的Hf同位素比值,进而示踪岩石的源区和成因。因 此,锆石U-Pb年龄结合微区Lu-Hf同位素研究能 够为早期地壳生长及壳--幔演化提供可靠的证据 (Yang et al., 2012)。本次获得的紫红色粉砂岩中22 颗锆石微区Lu-Hf同位素测试分析结果表明锆石 的现今^{1%}Lu/¹⁷⁷Hf比值可以代表锆石形成时 的¹⁷⁶Lu/¹¹⁷Hf比值,二阶段模式年龄变化范围为 2406~3487 Ma。在锆石年龄图解中的投点表明卡 萨马群碎屑物质的源区主要是由古老的地壳物质 部分熔融形成。前人利用地球化学数据分析砂岩 的物质来源及形成环境成果较多(Bhatia and Taylor, 1981; Bhatia and Crook, 1986; 戴朝成等,

图 8 卡萨马群 La/Yb-∑REE 图解(底图参考 McLennan et al., 1993)

Fig. 8 La/Yb- Σ REE diagram of the sandstones in Kasama Group(after McLennan et al., 1993)

2014),本文获得的卡萨马群中5件砂岩在∑REE-La/Yb图解中的投点主要落在沉积岩区域(图8)。从 本次研究获得的卡萨马群碎屑锆石U-Pb年龄、碎屑 锆石微区Lu-Hf同位素及稀土元素特征分析,卡萨 马群沉积岩的主要物质来源于姆波罗科索群沉积岩, 这与Andersen and Unrug(1984)的认识相一致。

5.2 构造环境分析

Kazimoto et al. (2015)认为班韦乌卢地块东北 部的乌本迪构造带从古元古代至新元古代经历了 多阶段演化,其中班韦乌卢地块均处于被动大陆边 缘环境,但未见有利的分析数据。Bhatia and Crook (1986)认为砂岩的微量元素,尤其是La、Th、Y、Zr、 Ti、Co和Ni等元素在研究砂岩物源区及判别构造环 境上有重要的意义,他们提出了可以区分形成于海 洋岛弧、大陆岛弧、活动大陆边缘和被动大陆边缘 的砂岩构造环境判别图解。本次研究中获得的卡

	表4 卞萨马群砂石 咸重兀索 (10°)分析结果													
Ta	ible 4 T	race el	lements	s geoch	emical	data(1	10 ⁻⁶) of 1	the san	dstone	s in Ka	sama (Group		
样品	Cu	Pb	Zn	$\mathbf{C}\mathbf{r}$	Ni	Со	Sr	Ba	V	Se	Zr	Ga	U	Th
DPM01-21-L01	7.22	4.33	15.9	37.1	15.1	8.51	16.5	88.7	20.3	6.30	454	8.40	2.16	12.2
DPM01-22-L02	8.60	3.94	11.0	33.9	9.17	1.25	9.56	225	22.5	4.34	401	8.27	1.41	9.27
DPM01-24-L01	5.23	1.57	20.6	7.73	2.24	0.64	2.69	16.2	3.33	3.22	56.0	1.15	0.58	1.37
DPM03-2-L01	2.90	1.24	21.2	6.79	1.78	0.49	6.85	12.8	2.26	2.70	16.1	0.46	0.32	1.82
DPM03-14-L01	16.9	7.14	60.8	69.9	34.2	4.74	17.5	296	58.4	7.72	369	15.1	2.42	15.7

注:微量元素数据为原始数据,由中国地质调查局天津地质调查中心实验室完成。

萨马群中的5件砂岩微量元素数据在砂岩构造环境 判别图解(图9)中均落入被动大陆边缘,有利地说 明卡萨马群形成于被动大陆边缘环境。Andersen and Unrug(1984)对卡萨马群的沉积岩交错层理研 究认为古水体流向是由班韦乌卢地块向其东南边 部流动,并在伊鲁米德带中形成与卡萨马群同时期 河流相沉积的 Mitoba 河群。卡萨马群砂岩主要为 石英砂岩、粉砂岩和页岩,其中石英砂岩结构成熟 度和成分成熟度均较高,石英含量一般>90%,碎屑 分选性和磨圆度好。卡萨马群以河流三角相和滨 浅湖相等为主,显示出卡萨马群总体是在缓慢沉积、 慢速埋藏条件下形成的,具有远源性特点。长期以来 对班韦乌卢地块的研究主要是围绕基底的形成时代、 是否存在太古宙的古老地壳和古老地壳形成时代及 其出露范围等进行探讨(Waele et al., 2006),盖层中 卡萨马群的研究资料缺乏,且以描述为主,未系统进 行过碎屑锆石U-Pb-Hf同位素及地球化学分析。由 图 1a 可以看出,班韦乌卢地块周围构造带的形成时 间与卡萨马群的形成时间(<1.43 Ga)并不同,并且 班韦乌卢地块及卡萨马地区在1.54~1.43 Ga期间的 地质演化过程目前还尚不清楚,均有待于在以后的工作中进行深入剖析和研究。

6 结 论

(1)对利用LA-ICP-MS方法获得卡萨马群碎 屑锆石的测年数据分析,为卡萨马群的形成提供物 源的地质体形成时间与全球范围内2.0~1.8 Ga由碰 撞造山所形成的哥伦比亚超大陆演化时间基本一 致,研究区卡萨马群的形成可能晚于(1434±14)Ma, 属于中元古代。

(2)对卡萨马群碎屑锆石的CL图像、U-Pb年龄、微区Lu-Hf同位素、5件卡萨马群砂岩稀土元素特征及其La/Yb-ΣREE图解分析,研究区卡萨马群的主要物质是来源于盖层中早期沉积的姆波罗科索群沉积岩。

(3)对卡萨马群5件砂岩微量元素的构造环境 判别图解分析,研究区卡萨马群形成于被动大陆边 缘环境。

致谢:碎屑锆石挑选由河北省区域地质矿产调 查研究所实验室完成,碎屑锆石U-Pb-Hf同位素及 地球化学样品分析由中国地质调查局天津地质调 查中心实验室完成,成文过程中得到东华理工大学 地球科学学院戴朝成副教授的帮助,在此一并表示 真诚的感谢。

References

- Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the Earth' s earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399: 252–255.
- Andersen L S, Unrug R. 1984. Geodynamic evolution of the Bangweulu Block, northern Zambia[J]. Precambrian Research, 25: 187–212.
- Anderson T. 2002. Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology,192(1/2):59–79.
- Andrews– Speed C P. 1986. Gold– bearing fluvial and associated tidalmarine sedimentary of Proterozoic age in the Mporokoso Basin, northern Zambia[J]. Sediment Geology, 48:193–222.
- Andrews– Speed C P. 1989. The Mid–Proterozoic Mporokoso basin, northern Zambia: Sequence stratigraphy,tectonic setting and potential for gold and uranium mineralization [J]. Precambrian Research, 44:1–17.
- Bhatia M R, Taylor S R. 1981. Trace element geochicmistry and sedimentary provinces: Study from the Tasman Geosyncline, Australia[J]. Chemical Geology, 33(1/2/3/4):115–125.
- Bhatia M R, Crook K A W. 1986. Trace element characteristics of greywacks and tectonic setting discrimination of sedimentary basin[J].Contributions to Mineralogy and Petrology, 92:181–193.
- Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements[C]// Henderson P (ed.). Rare Earth Element geochemistry. Developments in Geochemistry, 3–114.
- Chen Yuelong, Li Dapeng, Bao Chuang, Li Zhao, Liu Changzheng. 2016. Chemically geodynamic significances of Sm- Nd isotopic system and U-Pb dating and Hf isotopic compositions of zircons in clastic sedimentary rocks/sediments: Theory, methods and practices[J]. Geology in China, 43(4): 1200-1215(in Chinese with English abstract).
- Dai Chaocheng, Zheng Rongcai, Ren Junping, Zhu Rukai. 2014. Provenance analysis of Xujiahe Formation of Upper Triassic in Sichuan Foreland Basin and its geology implications[J]. Journal of Jilin University (Earth Science Edition), 44(4): 1085–1096(in Chinese with English abstract).
- Diwu Chunrong, Sun Yong, Yuan Honglin, Wang Hongliang, Zhong Xingping, Liu Xiaoming. 2008. U– Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton[J]. Chinese Science Bulletin, 53(18): 2828–2839.
- Drysdall A R, Johnson R L, Moore T A, Thieme J G. 1972. Outline of the geology of Zambia[J]. Geologie en Mijnbouw,51:265–276.
- Geng Jianzhen, Qiu Kunfeng, Gou Zongyan, Yu Haocheng. 2017. Tectonic regime switchover of Triassic Western Qinling Orogen:

Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu, China[J]. Geochemistry, 77:637–651.

- Haest M, Muchez P. 2011. Stratiform and vein-type deposits in the pan-african orogen in central and southern Africa: Evidence for Multiphase Mineralisation[J]. Geologica Belgica, 14(1/2): 23-44.
- Huo Tengfei, Yang Debin, Xu Wenliang, Wang Feng, Liu Haibin, Shi Jiangpeng. 2015. U– Pb ages and Hf isotope compositions of detrital zircons from the sandstone in the Early Cretaceous Wawukuang Formation in the Jiaolai Basin, Shandong Province and its tectonic implications[J]. Geotectonica et Metallogenia, 39 (2): 355–368(in Chinese with English abstract).
- Kang Yu, Chen Gang, Xia Xiaoyu, Ren Shuaifeng, Zhang Weigang, Shi Pingping. 2018. Detrial Zircon U– Pb Geochronology and Its Geological Implication of the Nancaode and Zhuanghegou Formations in the Southern Margin Ordos Basin[J]. Acta Geologica Sinica, 92(9): 1829–1842(in Chinese with English abstract).
- Kazimoto E O, Schenk V, Appel P. 2015. Granulite– facies metamorphic events in the northwestern Ubendian Belt of Tanzania: implications for the Neoarchean to Paleoproterozoiccrustal evolution[J]. Precambrian Research, 256:31–47.
- Kröner A. 1977. The Precambrian geotectonic evolution of Africa: Plate accretion versus plate destruction[J]. Precambrian Research, 4:163–213.
- Li Sanzhong, Zhao Guochun, Sun Min. 2016. Paleoproterozoic amalgamation of the North China Craton and the assembly of the Columbia supercontinent[J]. Chinese Science Bulletin, 61(9): 919– 925(in Chinese with English abstract).
- Liu Chaohui, Zhao Guochun, Sun Min, Zhang Jian, Yin Changqing, He Yanhong. 2012. Detrital zircon U–Pb dating, Hf isotopes and whole– rock geochemistry from the Songshan Group in the Dengfeng Complex: Constraints on the tectonic evolution of the Trans– North China Orogen[J]. Precambrian Research, 192–195 (1): 1–15.
- Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling– induced melt– peridotite interactions in the Trans– North China Orogen:U– Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2):537–571.
- Ludwig K R. 2003. User's Manual for Isoplot/Ex, Version 3.70. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 4:1–76.
- Ren Junping, Wang Jie, Zuo Libo, Liu Xiaoyang, Dai Chaocheng, Xu Kangkang, Li Guozhan, Geng Jianzhen, Xiao Zhibin, Sun Kai, He Fuqing, Gu Alei. 2017. Zircon U– Pb and biotite ⁴⁰Ar/⁵⁹Ar geochronology from the Anzan emerald deposit in Zambia[J]. Ore Geology Reviews,91:612–619.
- Ren Junping, Wang Jie, Gu Alei, Zuo Libo, Xu Kangkang, Sun Hongwei, Liu Xiaoyang, He Shengfei, He Fuqing. 2017a. Research status and prospecting potential of mineral resources in Lufilian Arc, Zambia[J]. China Mining Magazine, 26(11):139–144(in Chinese with English abstract).

- Ren Junping, Wang Jie, Liu Xiaoyang, He Shengfei, He Fuqing, Xu Kangkang. 2013. Research progresses on the Cu– Co deposits of Lufilian Area in the Mid– Southern Africa[J]. Geological Science and Technology Information,32(5):142–152(in Chinese with English abstract).
- Ren Junping, Wang Jie, Liu Xiaoyang, He Fuqing, He Shengfei, Zuo Libo, Xu Kangkang, Gong Penghui, Sun Kai, Liu Yu. 2017b. Research status and prospecting potential of copper polymetallic deposits in Central– South Africa[J]. Journal of Jilin University (Earth Science Edition), 47(4): 1083–1103(in Chinese with English abstract).
- Ren Junping, Zuo Libo, Xu Kangkang, Wang Jie, Liu Xiaoyang, He Shengfei, Liu Yu, He Fuqing. 2016. Geodynamic evolution and mineral resources present research in Bangweulu Block, Northern Zambia[J]. Geological Review, 4:979–996(in Chinese with English abstract).
- Su Huimin, Zhang Chengshuai. 2012. U–Pb ages and Hf isotopes of detrital zircons from mica quartz schist in Guixi area of northeastern Jiangxi Province and their geological significance[J]. Geology in China,39(6): 1577–1592(in Chinese with English abstract).
- Unrug R. 1984. The Mid–Proterozoic Mporokoso Group of northern Zambia:stratigraphy, sedimentation and regional position[J]. Precambrian Research, 24:99–121.
- Waele B D, Fitzsimons I C W. 2007. The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton; zircon U– Pb geochronology of plutonic, volcanic and clastic units in northern Zambia[J]. Precambrian Research,159: 95–116.
- Waele B D, Liégeois J–P, Nemchin A A, Tembo F. 2006. Isotopic and geochemical evidence of proterozoic episodic crustal reworking within the irumide belt of south– central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 148:225–256.
- Wang Zhentao, Shen Yang, Wang Xunlian, Ma Boyong, Huang Xiaohong. 2017. Detrital Zircon LA–ICP–MS U–Pb Dating of the Changlongshan Formation of Qingbaikou System in Huailai County, Hebei Provinceand Its Tectonic Paleogeographic Significance[J]. Acta Geologica Sinica, 91(8): 1760 – 1775(in Chinese with English abstract).
- Wu Hao, Ding Xiaozhong, Liu Yanxue, Gao Linzhi. 2018. The detrital zircons U – Pb datings of the quartz sandstones from Kangjia Formation in Benxi area and sedimentary provenances[J]. Geology in China, 45(2): 410–411(in Chinese with English abstract).
- Yang Debin, Xu Wenliang, Xu Yigang, Pei Fuping, Wang Feng. 2013. Provenance of sediments from Mesozoic basins in western Shandong: Implications for the evolution of the North China Block[J]. Journal of Asian Earth Sciences, 76(2): 12–29.
- Yang Debin, Xu Wenliang, Xu Yigang, Wang Qinghai, Pei Fuping, Wang Feng. 2012. U- Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning provinces, China:Implications for the Late Precambrian evolution of the southeastern North China Craton[J].

Precambrian Research, 216-219(9): 162-176.

- Zhang Zhenping. 2017. LA ICP MS zircon U Pb dating of amphibolites of the Beishan group in the Beishan area, Inner Mongolia and its geological significance[J]. Geology and Exploration, 53(6): 1129–1139(in Chinese with English abstract).
- Zhao Ligang, Li Chengdong, Wu Zhiyu, Gao Xuesheng, Xu Yawen, Zhang Kuo, Chang Qingsong. 2018. Detrital zircon U – Pb geochronology of the Qinling Group in WulichuanZhaigen area, West Henan[J]. Geology in China, 45(4): 753–766(in Chinese with English abstract).

附中文参考文献

质

- 陈岳龙,李大鹏,包创,李兆,刘长征.2016.碎屑沉积岩/沉积物 Sm-Nd、U-Pb 与Hf同位素的化学地球动力学意义[J].中国地质,43 (4):1200-1215.
- 戴朝成,郑荣才,任军平,朱如凯.2014.四川前陆盆地上三叠统须家 河组物源区分析及其意义[J].吉林大学学报(地球科学版),44(4): 1085-1096.
- 霍腾飞,杨德彬,许文良,王枫,刘海彬,师江朋.2015. 胶莱盆地早白 垩世瓦屋夼组砂岩中碎屑锆石U-Pb-Hf同位素组成及其构造 意义[J]. 大地构造与成矿学, 39(2):355-368.
- 康昱,陈刚,夏晓雨,任帅锋,张卫刚,师平平.2018. 鄂尔多斯盆地南缘 南曹德组与庄河沟组碎屑锆石年代学及其地质意义[J]. 地质学 报,92(9):1829-1842.
- 李三忠,赵国春,孙敏.2016.华北克拉通早元古代拼合与Columbia 超大陆形成研究进展[J].科学通报,61(9):919-925.
- 任军平, 王杰, 刘晓阳, 何胜飞, 贺福清, 许康康. 2013. 非洲中南部卢弗里安弧 Cu-Co矿床研究进展[J]. 地质科技情报, 32(5):142-152.
- 任军平, 左立波, 许康康, 王杰, 刘晓阳, 何胜飞, 刘宇, 贺福清. 2016. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论 评, 4:979-996.
- 任军平, 王杰, 古阿雷, 左立波, 许康康, 孙宏伟, 刘晓阳, 何胜飞, 贺 福清. 2017a. 赞比亚卢弗里安弧地区矿产资源研究现状及找矿 潜力分析[J]. 中国矿业, 26(11):139-144.
- 任军平, 王杰, 刘晓阳, 贺福清, 何胜飞, 左立波, 许康康, 龚鹏辉, 孙 凯, 刘宇. 2017b. 非洲中南部铜多金属矿床研究现状及找矿潜力 分析[J]. 吉林大学学报(地球科学版),47(4):1083-1103.
- 苏慧敏,张承帅.2012.赣东北贵溪地区片岩中碎屑锆石的U-Pb年龄、Hf同位素及其地质意义[J].中国地质,39(6):1577-1592.
- 王振涛,沈阳,王训练,马伯永,黄晓宏.2017.河北怀来龙凤山青白口 系长龙山组碎屑锆石LA-ICP-MSU-Pb年龄及其构造古地理意 义[J].地质学报,91(8):1760-1775.
- 吴昊,丁孝忠,刘燕学,高林志. 2018. 本溪地区康家组石英砂岩中碎 屑锆石 U-Pb 年龄及沉积物源时代限定[J]. 中国地质, 45(2): 410-411.
- 张正平.2017.内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS 锆石U-Pb定年及其地质意义[J].地质与勘探,53(6):1129-1139.
- 赵利刚,李承东,武志宇,高学生,许雅雯,张阔,常青松. 2018. 豫西五里 川一寨根一带秦岭岩群碎屑锆石 U-Pb 年龄研究[J]. 中国地质, 45(4): 753-766.