doi: 10.12029/gc20190412

龚雪婧,曾建辉,曹殿华. 2019. 江西冷水坑矿床含矿花岗斑岩的 Sr-Nd 及锆石 Hf-O 同位素研究[J]. 中国地质, 46(4): 818-831. Gong Xuejing, Zeng Jianhui, Cao Dianhua.. 2019. Sr-Nd and zircon Hf-O isotopic constraints on the petrogenesis of the ore-bearing granitic porphyry at Lengshuikeng, Jiangxi Province[J]. Geology in China, 46(4): 818-831(in Chinese with English abstract).

江西冷水坑矿床含矿花岗斑岩的Sr-Nd 及锆石Hf-O同位素研究

龚雪婧^{1,2},曾建辉3,曹殿华^{1,2}

(1.中国地质科学院,北京100037;2.中国地质调查局-中国地质科学院地球深部探测中心,北京100037;
 3.江西省地质矿产勘查开发局九一二大队,江西 鹰潭335000)

提要:江西冷水坑铅锌矿床是武夷成矿带北段的典型矿床,矿区内含矿花岗斑岩锆石U-Pb年龄为(162.0±2.0)Ma, 岩浆分异程度较高,具有高SiO₂(69.46%~75.52%)、高K₂O(K₂O/Na₂O>3.22)、强过铝质(ASI=1.20~1.96)的特征。岩 体发育较明显的Eu负异常,富集强不相容元素Rb、Th、U,而亏损高场强元素Ba、Sr、Nb、Ta、P、Ti。全岩同位素测试 结果显示,冷水坑含矿花岗斑岩具有极高的^{sr}Sr⁶⁸Sr初始比值(0.74005~0.76518)与低的ɛ_{№d}值(-11.48~-10.78),锆 石Hf-O同位素测定值变化范围较小,¹⁷⁶Hf^{1/17}Hf介于0.282317~0.282460,具有负的ɛ_{Hf}(*t*)值(-12.39~-7.62)和相对较 高的δ¹⁸O值(7.23‰~8.81‰),指示岩浆主要来自于成熟地壳,可能起源于北武夷地区变质基底,源岩为基底变质岩, 这可能与古太平洋板块俯冲形成的挤压背景下的地壳熔融有关。 关键词:Sr-Nd-Hf-O同位素;花岗斑岩;冷水坑;武夷成矿带;华南 中图分类号:P588.13;P597 文献标志码:A 文章编号:1000-3657(2019)04-0818-14

Sr-Nd and zircon Hf-O isotopic constraints on the petrogenesis of the orebearing granitic porphyry at Lengshuikeng, Jiangxi Province

GONG Xuejing^{1,2}, ZENG Jianhui³, CAO Dianhua^{1,2}

(1. Chinese Academy of Geological Sciences, Beijing 100037, China; 2. SinoProbe Center, Chinese Academy of Geological Sciences and China Geological Survey, Beijing 100037, China; 3. No. 912 Geological Party of Jiangxi Bureau of Geology and Mineral Exploration and Development, Yingtan 335001, Jiangxi, China)

Abstract: The Lengshuikeng lead-zinc deposit in Jiangxi Province is a typical deposit in the northern section of the Wuyi metallogenic belt. The zircon SHRIMP U-Pb age of the ore-bearing granite porphyry in the mining area is (162.0 ± 2.0) Ma. The granite porphyries are highly evolved, with high SiO₂ (69.46%~75.52%), high K₂O (K₂O/Na₂O>3.22) and strong peraluminous (ASI= 1.20~1.96). The negative Eu anomalies of the rock mass are relatively strong, and enriched in LILE such as Rb, Th, and U, while the

收稿日期:2019-04-18;改回日期:2019-06-10

基金项目:中国地质调查局项目(DD20160082,DD20190012)、国家自然科学基金(41802097)及国家重点研发计划"深地资源勘查开采" 重点专项(2016YFC0600201)联合资助。

作者简介:龚雪婧,女,1988年生,博士,助理研究员,主要从事岩石地球化学及矿床学研究;Email:xuejinggong@cags.ac.cn。

HFSE such as Ba, Sr, Nb, Ta, P, and Ti are depleted. In this study, the authors also report Sr–Nd and zircon Hf–O isotopic compositions of the granitic porphyries at Lengshuikeng. The results show that the granitic porphyries have relatively high initial ⁸⁷Sr/⁸⁶Sr ratios (0.74005~0.76518) and negative ϵ Nd values (-11.48~-10.78) as well as the zircon Hf–O isotope measurement value. The variation range of ¹⁷⁶Hf/¹⁷⁷Hf values (0.282317~0.282460) is small, with negative ϵ Hf(t) values (-12.39~-7.62) and relatively high δ^{18} O values (7.23‰~8.81‰), indicating that the magma mainly came from the mature crust, which may have originated from metamorphic basement of North Wuyi area, and the source rocks were probably the metamorphic basement. The magmatic activity was probably related to the crust melting under the compressive background formed by northwestward subduction of the Paleo–Pacific Plate.

Key words: Sr-Nd-Hf-O isotopes; granitic porphyry; Lengshuikeng; Wuyi metallogenic belt; Southeast China About the first author: GONG Xuejing, female, born in 1988, doctor, assistant professor, engages in research on petrogeochemistry and economic geology; E-mail: xuejinggong@cags.ac.cn.

Fund support: Supported jointly by Project of China Geological Survey (No.DD20160082,No.DD20190012), National Natural Science Foundation (No. 41802097), National Key Research and Development Program (No. 2016YFC0600201).

1 引 言

位于江西省贵溪市的冷水坑铅锌矿床,因具有 典型的斑岩型矿床特征,被认为是一个超大型斑岩 铅锌矿床(涂光炽, 1989; 孟祥金等, 2009)。前人对 冷水坑矿床开展了大量的研究工作,包括矿床地质 (孟祥金等, 2007; 何细荣等, 2010; 邱骏挺等, 2013; Wang et al., 2014)、含矿斑岩年代学及地球化学(孟 祥金等, 2007, 2012; 左力艳等, 2010; 王长明等, 2011; 邱骏挺等, 2013; 苏慧敏等, 2013; 余明刚等, 2015)、矿床成因 (孟祥金等, 2009; 周建祥, 2009; 何 细荣等, 2010; 毛景文等, 2011; 王长明等, 2011; Wang et al., 2013) 等。研究结果显示,空间上,铅锌 矿化主要产出在花岗斑岩体内及其接触带附近,矿 体产状与岩体一致;时间上,近年来高精度年代学 研究获得冷水坑矿床含矿花岗斑岩的形成时代集 中于155~163 Ma(左力艳等, 2010; 孟祥金等, 2012; 邱骏挺等, 2013; Wang et al., 2013), 孟祥金等(2009) 通过矿区蚀变岩绢云母Ar-Ar年龄测试获得的冷 水坑矿床的形成时代为162.8 Ma,与花岗斑岩成岩 年龄相一致。冷水坑矿床铅锌矿化与花岗斑岩体 密切的时空关系,暗示两者可能具有密切的成因关 联。因此,探究矿区内花岗斑岩的岩浆源区特征, 试图确定其成因机制,对于进一步正确理解花岗斑 岩岩浆起源演化与Pb-Zn成矿可能存在的关系具 有重要意义。

锆石是岩浆岩,尤其是中酸性岩中普遍存在的 副矿物,其化学性质稳定、抗风化蚀变能力强,对 铪、氧同位素组成具有很好的保存性,因此锆石Hf-O同位素常用于约束岩浆源区特征、反演岩浆演化历史,是追踪岩浆物质来源及壳幔相互作用的重要工具(Mojzsis et al., 2001; Peck et al., 2001; Valley et al., 2005; Booth et al., 2005; Li et al., 2009,2010; Cavosie et al., 2011; Grimes et al., 2013; Chen et al., 2015)。为此,本文在对冷水坑矿区含矿花岗斑岩开展了详细的年代学、岩石地球化学及Sr-Nd同位素地球化学研究的基础上,报道了冷水坑含矿花岗斑岩的锆石Hf-O同位素特征,试图对其物质来源及成因机制提供新的制约。

2 矿区地质特征及样品采集

冷水坑铅锌矿床位于江西省鹰潭市,产出于华 夏板块北西缘,钦杭结合带南侧,受北北东向鹰潭 一安远深断裂及北东向萍乡一绍兴深断裂控制(图 la);成矿带尺度上属于中国东部环太平洋成矿带内 带,武夷银多金属成矿带北段。矿区基底地层为震 旦系老虎塘组变质岩,盖层为矿区内广泛分布的侏 罗系一白垩系打鼓顶组和鹅湖岭组火山岩,打鼓顶 组岩性为晶屑凝灰岩夹铁锰含矿层、安山岩、角砾 安山岩及凝灰质粉砂岩、沉凝灰岩;鹅湖岭组岩性 为晶屑凝灰岩、熔结凝灰岩并夹铁锰含矿层、凝灰 质粉砂岩及流纹岩。矿区东北部零星出露石炭纪 地层,岩性主要为石英细砂岩、砂岩、砂砾岩及紫红 色粉砂岩。

矿区构造以断裂构造为主,主要表现为断层发育,其次变质基底及火山岩地层构成简单的褶皱构

中

图1 冷水坑矿床区域构造简图(a)、冷水坑矿区地质简图 (b)及100勘探线剖面图(c)(b,c 据江西省地质矿产勘查开 发局912地质队,1997)

Fig.1 Tectonic framework of the Lengshuikeng area (a), geological map of the Lengshuikeng deposit(b) and No.100 cross section(c)(b and c are modified after No.912 Geological Team of Geology and Mineral Resources Exploration Development Bureau of Jiangxi Province, 1997)

造。分布于矿区中部的F₂断裂(图1c),为一推覆构 造,是区域推覆构造在矿区的出露部分,震旦系上 统变质岩被该断裂推覆至侏罗系上统火山岩之 上。总体走向北东45°,倾向北西,倾角15~35°,断 裂破碎带宽数米至40m左右,带内糜棱岩、断层角 砾岩、碎裂岩及构造透镜体发育。断裂破碎带中见 有硅化、绿泥石化、碳酸盐化、绢云母化、黄铁矿化 及银铅锌矿化等。F2断裂构造旁侧的次级派生断 裂、裂隙较发育,展布方向有北东向、北北东向、近 东西向、近南北向及北西向5组。派生断裂构造的 延伸规模、位移均相对较小,但其与成矿关系比较 密切,为重要的容矿储矿构造。花岗斑岩体与铅锌 矿体的产状均明显受到近南北与近东西向两组断 裂的控制,从而显示F2断裂控制了岩体就位与储矿 空间(图 1c),由于 F_2 断裂上盘震旦系上统变质岩的 良好封闭条件,含矿流体在屏蔽环境中得以进行充 分交代、充填而成矿。

矿区内岩浆岩主要形成于加里东中晚期、燕山 中期和燕山晚期。其中燕山中期岩浆活动强烈,主 要形成浅成一超浅成的侵入岩体,岩性主要有花岗 斑岩及石英正长斑岩;燕山晚期则主要形成流纹斑 岩和钾长花岗斑岩,其岩体规模较小,主要呈岩脉、 岩墙、岩瘤或岩盆产出,切割了较早形成的岩脉。 与矿化关系密切的岩浆岩为花岗斑岩(图1b),分布 于矿区的中部,自北西向南东呈不规则岩株状产 出,出露总面积约为0.36 km²。 样品采集于冷水坑矿区银珠山矿田钻孔 ZK11111中(图1b)。岩石样品较新鲜,呈浅灰色至 浅灰绿色,块状构造,斑状结构,斑晶主要为石英和 斜长石(15%~35%),粒径大小不一为0.5~5 mm,基 质(65%~85%)多为显微花岗结构(图2)。主要矿物 组成有斜长石(35%~45%)、石英(25%~30%)、钾长石 (15%~20%),黑云母较少(1%~2%),副矿物见磷灰 石、锆石等。

3 测试方法与结果

3.1 测试方法

样品由河北省诚信地质服务公司进行预处理, 用于全岩主微量元素及Sr-Nd同位素测试的样品 采用无污染法粉碎至200目,用于锆石U-Pb定年及 Hf-O同位素分析的样品,将其破碎至100目以下, 经淘洗后用电磁选和重液浮选方法选出重矿物,再 在双目镜下挑选无明显裂痕且晶形和透明度较好 的单颗粒锆石。挑选出的锆石样品在北京离子探 针中心进行制靶及透射光、反射光和阴极发光(CL) 显微照相。根据透射光、反射光和CL图像分析锆 石颗粒内部显微结构特征,选择锆石内部无包裹 体、无裂纹、阴极发光图像结构均匀或生长环带规 则部位,进行原位U-Pb年龄及Hf-O同位素测定。 3.1.1 SHRIMP 锆石U-Pb定年

错石 SHRIMP U-Pb分析在北京离子探针中心 SHRIMP II上完成。测试时一次流 O⁻²强度为 3~5 nA, 東斑直径 25~30 μm。标样 M257(U=840×10⁻⁶, Nasdala et al.,2008)和 TEM(年龄 417 Ma, Black et al., 2003)分别用于锆石U含量和年龄校正。每分析 3个样品点,分析一次标准锆石 TEM 进行同位素分 馏校正,详细分析方法及原理见 Williams(1998)。数 据处理采用 SQUID 和 ISOPLOT 程序 (Ludwig, 2001)。根据实测 ²⁰⁴Pb含量校正普通铅,采 用²⁰⁶Pb/²³⁸Pb年龄为锆石年龄,同位素比值和单点年 龄误差均为 1σ。

3.1.2 主微量元素测试

主、微量元素分析在中国地质科学院国家地质 实验测试中心完成,其中,主量元素含量采用X射 线荧光光谱仪(XRF)测定,分析相对误差低于5%; 稀土元素和微量元素采用等离子质谱(Excell)ICP-MS测定,分析相对误差低于10%。 第46卷第4期

3.1.3 Sr-Nd同位素测试

Sr-Nd同位素测试在南京大学内生金属矿床成 矿机制研究国家重点实验室完成。将粉末样品烘 干后称取约100 mg,完全溶解于HF+HNO₃混合酸 中,采用Bio-Rad50WX8阳离子交换树脂法将Sr和 Nd分离提纯出来。分离产物采用Thermo Finnigan 公司的Triton TI热电离质谱仪(TIMS)进行Sr和Nd 同位素比值测定,详细实验流程参见濮巍等(2004, 2005)。Sr和Nd测定过程中质量分馏效应分别采 用 ⁸⁶Sr/⁸⁷Sr=0.1194和¹⁴⁶Nd/¹⁴⁴Nd=0.7219进行校正。 实验过程中国际标样NIST SRM987的⁸⁶Sr/⁸⁷Sr测定 值为0.710259±4(2 σ),与参考值0.710252±13(2 σ) (Weis et al., 2006)在误差范围内一致;国际标样JNdi 的¹⁴⁶Nd/¹⁴⁴Nd测定值为0.512116±4(2 σ),与参考值 0.512115±7(2 σ)(Tanaka et al., 2000)在误差范围内 一致。

3.1.4 SHRIMP 锆石 O 同位素测试

锆石O同位素分析在北京离子探针中心多接 收二次离子质谱(SHRIMP II e-MC)上完成。在对 锆石进行氧同位素测试之前,对已经进行过年龄测 试的靶进行抛光,除去定年时形成的凹坑,使其平 滑并消除可能存在的O污染,清洗烘干后在样品靶 表面镀一层厚度约12 nm的Au膜。锆石氧同位素 原位测试分析点与U-Pb年龄测试分析点位置相 同,以保证测得的O同位素值与年龄值相对应。测 试采用的Cs⁺离子束约3.0 nA,通过10 kV加速电压 轰击锆石样品表面,剥蚀斑束直径约20 μm,产生的 二次¹⁶O⁻离子计数为10[°]cps,经过30 eV能量过滤窗 后,进入多接收器。每分析3个样品点分析1次标 样锆石 TEM(δ¹⁸O=8.2‰)以确保仪器状态稳定,同 时对被测样品进行校正。δ¹⁸O的分析结果以 VSMOW为标准进行报道(‰),详细分析流程及原 理见Ickert et al.(2008)。

3.1.5 LA-MC-ICP-MS 锆石 Hf 同位素测试

锆石 Hf 同位素测试在中国地质科学院地质研究所 LA-MC-ICP-MS 实验室完成。实验仪器为 Neptune Plus 多接收等离子质谱仪和 193 nm GeoLasPro 激光发射器。实验过程中采用 He 作为剥蚀物质载气,剥蚀激光直径44 μm,测试位置采用 U-Pb 定年分析点原点测试。实验选用的锆石标样 GJ-1 作为参考物质,测试中锆石标准 GJ-1 的¹⁷⁶Hf/¹⁷⁷Hf 加权平均值为0.282008±20。相关仪器运行条件及分析流程详见侯可军等(2007),Hf 同位素计算公式参考吴福元等(2007)。

3.2 测试结果

3.2.1 锆石U-Pb年龄

本次工作采集冷水坑矿区银珠山矿段钻孔 ZK11111中花岗斑岩样品,花岗斑岩样品中锆石为 无色透明或浅黄色柱状,震荡环带特征明显(图3), 测试样品中锆石 Th/U比值均大于0.3(表1),与变质 重结晶锆石 Th/U比值(<0.1)差别较大,为岩浆成因 (Hoskin and Black,2000;Belousova et al.,2002),其 年龄可以代表岩浆冷却结晶及岩体侵位的时代。 测试获得花岗斑岩锆石加权平均年龄为(162.0± 2.0)Ma(MSWD=1.4)(图3),Th、U含量均较高,分 别为90×10⁻⁶~1337×10⁻⁶和137×10⁻⁶~3395×10⁻⁶,Th/ U值介于0.36~0.88。

3.2.2 全岩主、微量及稀土元素组成

冷水坑花岗斑岩主量元素分析结果见表2,各 主量元素含量从大到小为:SiO₂含量较高,为

图 2 冷水坑花岗斑岩样品矿物组合特征 Pl--斜长石; Qtz--石英; Bt--黑云母 Fig.2 Microscopic characteristics of the granite porphyry samples in the Lengshuikeng Pb--Zn mining area Pl--Plagioclase; Qtz--Quartz; Bt--Biotite

图 3 冷水坑花岗斑岩锆石阴极发光图像、测试位置(小圆圈代表 SHRIMP U-Pb和O同位素分析点,大圆圈代表 LA-MC-ICP-MS Hf同位素分析点)和结果(分析点旁边的数字表示 U-Pb年龄和 ɛнı(t)/ð¹⁸O值)及 SHRIMP 锆石 U-Pb 协和图 Fig.3 Cathodoluminescence images of zircons from granite porphyry in the Lengshuikeng Pb-Zn deposit with their data and the SHRIMP U-Pb concordia diagram

69.46%~75.52%,平均值73.27%; Al₂O₃含量为 12.04%~14.07%,平均值13.07%; K2O为4.99%~ 6.29%,平均值5.59%; FeO为0.84%~1.53%,平均值 1.18%; Fe₂O₃为0.10%~2.30%,平均值0.83%; Na₂O 为 0.01%~1.64%, 平均值 0.65%; MgO 为 0.25%~ 0.90%,平均值0.55%;CaO为0.07%~1.68%,平均值 0.54%; TiO2为0.08%~0.30%,平均值0.20%; P2O5为 0.02%~0.08%,平均值0.05%;全碱含量即(K₂O+ Na2O)为5.04%~7.27%,平均值6.24%;岩体显示出 K₂O相对于Na₂O的强烈富集,K₂O/Na₂O比值介于 3.22~503.00,平均值103.34(表2)。在岩浆/火山岩 系统全碱-硅(TAS)分类图(图4a)中,花岗斑岩所 有投点均位于花岗岩系中,结合岩石手标本及镜下 观察将其定名为花岗斑岩。在SiO₂-K₂O图解(图 4b)中,花岗斑岩投点落入高钾钙碱性-钾玄岩系列 区域;里特曼指数(σ=(Na₂O+K₂O)²/(SiO₂-43))为 0.85~1.81(表2),说明岩体均属于钙碱性系列。花 岗斑岩铝饱和指数为1.20~1.96,显示出过铝质的特 征,在ASI-SiO2图解(图4c)中,数据点均落在强过 铝质区域内。

花岗斑岩稀土元素总量(ΣREE)为114.79× 10⁻⁶~206.23×10⁻⁶,其中轻稀土元素总量(ΣLREE) 为101.24×10⁻⁶~194.33×10⁻⁶,重稀土元素总量 (ΣHREE)为11.90×10⁻⁶~14.13×10⁻⁶,LREE/HREE 比值为7.47~16.33(表2)。稀土元素球粒陨石标准 化(Sun et al., 1989)配分曲线呈右倾平滑的平行曲 线簇(图 5a),富集轻稀土元素,(La/Yb)_№=9.26~ 23.94;负Eu异常较强,δEu为0.42~0.67。总体上具 有富集强不相容元素 Rb、Th、U,而亏损高场强元素 Ba、Sr、Nb、Ta、P、Ti的特点(图 5b)。

3.2.3 全岩 Sr-Nd 同位素地球化学特征

冷水坑花岗斑岩具有较高含量的 Rb,为235× 10⁶~280×10⁶, Sr 含量为33.2×10⁶~71.4×10⁶, (⁸⁷Sr/⁸⁶Sr)_i较高,为0.74005~0.76518(表3)。Sr初始 值比地壳部分熔融形成花岗岩的 Sr初始值(0.719) 更大(韩吟文等,2003),这种 Sr 同位素特征可能反 映出花岗斑岩来源于地壳物质的熔融。 ε_{Nd} 值较低, 为-11.48~-10.78,二阶段模式年龄介于1910~1828 Ma(表3)。

3.2.4锆石Hf-O同位素地球化学特征

锆石 Hf-O 同位素测试结果见表4。结果显示 冷水坑矿床花岗斑岩锆石的 Hf-O 同位素测定值相 对较为集中,且变化范围较小,¹⁷⁶Hf/¹⁷⁷Hf介于 0.282317~0.282460(表4), $\varepsilon_{\rm Hf}$ (*t*)=-12.39~-7.62(*t*= 161 Ma)(表4),平均值为-9.83,相对应的二阶段模 式年龄集中于1697~1993 Ma(表4); δ^{18} O=7.23‰~ 8.81%(表4),平均值为7.83‰,其累积频数直方图 呈明显单峰分布特征(图6)。

4 讨 论

4.1 岩浆源区特征

冷水坑花岗斑岩总体上具有富集强不相容元

Table 1 Results of zircon U-Pb SHRIMP dating of granite porphyry in the Lengshuikeng Pb-Zn deposit															
测点号	含量	含量/10-6		同位素比值						年龄/Ma					
	Th	U	In/U	207Pb/206Pb	1σ	207Pb/235U	1σ	$^{206}Pb/^{238}Pb$	lσ	207Pb/206U	1σ	206Pb/238U	1σ	208Pb/232Th	1σ
ZK11111-1-1.1	979	1591	0.64	0.0494	2.1	0.1833	2.6	0.0269	1.5	167.6	48.8	171.1	2.6	164.9	3.2
ZK11111-1-2.1	156	441	0.37	0.0498	4.6	0.1723	4.9	0.0251	1.7	186.6	107.7	159.7	2.7	152.5	8.0
ZK11111-1-3.1	520	1271	0.42	0.0488	2.8	0.1698	3.2	0.0252	1.6	140.0	65.7	160.5	2.5	155.6	4.7
ZK11111-1-4.1	235	670	0.36	0.0469	5.9	0.1615	6.2	0.0250	1.7	43.0	141.5	159.1	2.7	132.0	9.8
ZK11111-1-5.1	102	174	0.61	0.0393	18.0	0.1310	18.0	0.0242	2.2	-395.9	478.0	153.9	3.3	142	15.2
ZK11111-1-6.1	219	539	0.42	0.0480	4.6	0.1746	5.0	0.0264	1.8	97.3	109.8	168.0	3.0	156.4	9.6
ZK11111-1-7.1	397	631	0.65	0.0447	5.4	0.1572	5.7	0.0255	1.7	-69.3	133.1	162.2	2.7	151.5	5.7
ZK11111-1-8.1	117	137	0.88	0.0371	22.0	0.1340	22.0	0.0262	2.2	-546.6	591.3	166.6	3.7	156	13.8
ZK11111-1-9.1	153	188	0.84	0.0455	11.0	0.1520	11.0	0.0243	2.0	-31.4	272.1	154.9	3.1	140.2	9.6
ZK11111-1-11.1	1337	3074	0.45	0.0501	1.2	0.1796	2.0	0.0260	1.6	199.8	27.3	165.4	2.6	164.3	3.1
ZK11111-2-1.1	1239	3395	0.38	0.0482	1.4	0.1727	2.1	0.0260	1.6	108.9	33.5	165.4	2.6	158.9	3.5
ZK11111-2-3.1	157	345	0.47	0.0375	19.0	0.1330	19.0	0.0257	2.1	-518.9	497.2	163.8	3.4	124	19.8
ZK11111-2-4.1	227	588	0.40	0.0469	6.6	0.1730	6.8	0.0267	1.8	43.1	157.7	169.9	3.0	157	10.7
ZK11111-2-5.1	316	404	0.81	0.0406	13.0	0.1420	13.0	0.0254	1.9	-311.6	327.2	161.5	3.1	149	10.0
ZK11111-2-6.1	256	584	0.45	0.0528	3.2	0.1831	3.6	0.0251	1.6	321.8	72.4	160.0	2.6	166.1	5.9
ZK11111-2-7.1	1178	1944	0.63	0.0500	1.5	0.1739	2.2	0.0252	1.5	193.8	35.9	160.6	2.4	142.3	2.8
ZK11111-2-8.1	90	144	0.64	0.0495	5.4	0.1682	5.7	0.0247	2.0	169.3	125.6	157.1	3.1	166.4	7.0
ZK11111-2-9.1	106	186	0.59	0.0446	5.6	0.1517	5.9	0.0247	1.9	-79.9	136.7	157.3	2.9	151.8	6.3
ZK11111-2-10.1	573	1046	0.57	0.0488	2.0	0.1732	2.5	0.0257	1.6	137.9	46.6	163.8	2.6	158.9	3.5
ZK11111-2-11.1	540	1078	0.52	0.0510	1.8	0.1795	2.4	0.0255	1.6	241.8	40.6	162.4	2.5	165.4	3.9

表1 冷水坑矿床花岗斑岩锆石 SHRIMP U-Pb 年龄分析结果 Table 1 Results of zircon U-Pb SHRIMP dating of granite porphyry in the Lengshuikeng Pb-Zn deposi

素 Rb、Th、U,而亏损高场强元素 Ba、Sr、Nb、Ta、P、Ti 的特点,近年来的研究显示,岩石 Sr、Ba亏损可能 与岩浆演化过程中斜长石的分离结晶作用有关,Ti、 P的相对亏损可能与岩浆分异过程有关,归因于铁 钛氧化物、磷灰石的分离结晶。由于 Rb通常在成熟 度高的地壳中富集,而Sr通常富集于成熟度低、演 化不充分的的地壳中,因此Rb/Sr比值能灵敏地反 映其源区特征(王德滋等,1993)。冷水坑花岗斑岩 的Rb/Sr值介于2.76~7.80,平均值为4.95,远高于中 国东部上地壳平均值(0.31,高山等,1999)和全球上

a—SiO₂-(Na₂O+K₂O)图解(分类据Wilson,1989):1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗 闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石 二长闪长岩;15—副长石二长正长岩;16—副长石正长岩;17—副长石深成岩;18—霓方钠岩/磷霞岩/粗白榴岩);b—SiO₂-K₂O图解(据Le Maitre,2002);c—ASI-SiO₂图解

Fig.4 Classification and series of diagrams of the granite porphyries

a-SiO₂-(Na₂O+K₂O) diagram (after Wilson,1989): 1-Olivine gabbro;2a-Alkaline gabbro;2b- Subalkaline gabbro;3-Gabbro diorite;4- Diorite; 5- Granodiorite; 6- Granite; 7-Quartzolite; 8-Monzogabbro;9- Monzodiorite;10- Monzonite;11- Adamellite;12- Syenite;13-Parafeldspar gabbro;14- Parafeldspar monzodiorite;15- Foid monzosyenite;16- parafeldspar syenite;17- parafeldspar plutonic rocks; 18- Tawite/ urtite/ italite); b-SiO₂-K₂O diagram(after Le Maitre,2002); c- ASI- SiO₂ diagram

表2 冷水坑铅锌矿床花岗斑岩主量(%)、稀土及微量元素(10°)分析结果

Table 2 Major, rare earth and trace element compositions of granite porphyry in the Lengshuikeng Pb-Zn deposit

样品号	ZK11111-120.1	ZK11111-120.2	ZK11111-124.1	ZK11111-126.1	ZK11111-158	ZK11111-162.6	ZK11111-200.3
SiO ₂	75.52	72.23	74.75	72.82	69.46	72.97	75.16
TiO ₂	0.18	0.19	0.18	0.19	0.28	0.30	0.08
Al_2O_3	12.93	12.86	13.05	12.79	13.74	14.07	12.04
Fe_2O_3	0.10	2.30	0.41	0.82	0.54	0.11	1.52
FeO	1.24	0.84	1.06	1.53	1.28	1.35	0.95
MnO	0.57	0.46	0.59	1.13	0.49	0.24	0.16
MgO	0.49	0.47	0.54	0.68	0.90	0.50	0.25
CaO	0.26	0.20	0.69	0.58	1.68	0.27	0.07
Na ₂ O	1.09	0.63	0.04	0.01	1.64	1.04	0.13
K ₂ O	4.99	5.32	5.99	5.03	5.28	6.23	6.29
P_2O_5	0.05	0.05	0.05	0.05	0.08	0.08	0.02
Al ₂ O ₃ /TiO ₂	71.83	67.68	72.50	67.32	49.07	46.90	150.50
LOI	2.44	3.38	2.68	3.56	3.56	2.22	2.42
Mg [#]	0.40	0.22	0.40	0.35	0.48	0.38	0.16
K ₂ O+Na ₂ O	6.08	5.95	6.03	5.04	6.92	7.27	6.42
K ₂ O/Na ₂ O	4.58	8.44	149.75	503.00	3.22	5.99	48.38
里特曼指数	1.14	1.21	1.15	0.85	1.81	1.76	1.28
ASI	1.69	1.80	1.67	1.96	1.20	1.57	1.68
La	33.90	33.70	30.80	38.30	41.40	48.40	23.50
Ce	61.80	62.60	57.80	71.70	77.90	90.80	44.90
Pr	7.61	7.84	7.15	8.46	9.28	10.60	5.83
Nd	27.20	26.90	24.90	29.40	34.20	36.90	21.20
Sm	5.58	5.40	4.95	5.86	6.18	6.62	5.15
Eu	0.74	1.10	0.75	0.86	0.89	1.01	0.66
Gd	4.25	4.30	4.23	4.55	4.23	4.19	4.18
Tb	0.61	0.57	0.56	0.66	0.58	0.56	0.65
Dy	3.46	3.46	3.39	3.97	3.36	3.17	3.85
Но	0.61	0.57	0.63	0.67	0.58	0.58	0.68
Er	1.71	1.67	1.77	1.88	1.75	1.49	1.82
Tm	0.27	0.24	0.26	0.29	0.26	0.24	0.28
Yb	1.75	1.68	1.76	1.85	1.63	1.45	1.82
Lu	0.25	0.24	0.27	0.26	0.26	0.22	0.27
Rb	242.00	235.00	276.00	259.00	224.00	280.00	249.00
Ba	617.00	619.00	650.00	457.00	782.00	982.00	671.00
Th	21.60	22.40	21.50	22.40	22.90	25.20	21.90
U	5.93	5.18	4.71	6.90	4.97	4.95	6.56
Nb	18.90	19.10	18.40	19.80	17.90	17.90	21.70
Та	1.73	1.79	1.77	1.81	1.56	1.52	2.17
Sr	60.60	48.50	40.80	33.20	81.20	71.40	54.40
Zr	106.00	99.40	103.00	110.00	126.00	140.00	68.30
Hf	3.67	3.83	3.83	3.90	4.22	4.50	3.17
Υ	17.40	15.80	17.90	19.40	16.90	15.10	17.50
Rb/Sr	3.99	4.85	6.76	7.80	2.76	3.92	4.58
Sr/Ba	0.10	0.08	0.06	0.07	0.10	0.07	0.08
Nb/Ta	10.92	10.67	10.40	10.94	11.47	11.78	10.00
Zr/Hf	28.88	25.95	26.89	28.21	29.86	31.11	21.55
ΣREE	149.74	150.27	139.22	168.71	182.50	206.23	114.79
LREE/HREE	10.60	10.80	9.82	10.94	13.43	16.33	7.47
La_N/Yb_N	13.90	14.39	12.55	14.85	18.22	23.94	9.26
δEu	0.45	0.67	0.49	0.49	0.50	0.55	0.42
δCe	0.91	0.91	0.92	0.93	0.93	0.94	0.91

图5 稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化配分曲线图(b)(球粒陨石、原始地幔数据据 Sun et al., 1989)

Fig.5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) (data of chondrite and primitive mantle after Sun et al.,1989)

地壳平均值(0.32, Taylor and MeLennan, 1985)。此 外,花岗斑岩Nb/Ta比值介于10.00~11.78,平均值为 10.88,远低于中国东部上地壳平均值(16.2,高山 等, 1999)和全球上地壳平均值(12.0, Taylor and MeLennan, 1985),这种较高的Rb/Sr比值和较低的 Nb/Ta比值都指示其源区为成熟度较高的壳源物 质,但还需同位素特征的进一步约束。

冷水坑花岗斑岩具有极高的 Sr 同位素特征值 (0.74005~0.76518) 和低的 Nd 同位素特征值 (-11.48~-10.78),计算的二阶段模式年龄介于 1910~1828 Ma,指示其源区为较老的壳源物质。在 Sr-Nd同位素相关图中(图7),样品点全部位于华 夏陆块古元古代变质基底区域内,表明物质主要来

自于成熟地壳,可能起源于北武夷地区变质基底, 源岩为基底变质岩。冷水坑花岗斑岩锆石δ¹⁸O值介 于7.23‰~8.81‰,均值为7.87‰,除3颗锆石外(分 别为7.23‰、7.25‰和7.29‰),其余锆石δ¹⁸O值均高 于太古宙岩浆锆石 δ¹⁸O 值(6.5‰~7.5‰, Valley et al., 2005), 暗示其岩浆来自于表壳物质。锆石较老 的二阶段Hf模式年龄(1697~2024 Ma),也指示了成 熟地壳物质的贡献。根据花岗斑岩全岩的SiO2含 量(73.27%)估算出全岩δ¹⁸O值大致介于14.21‰~ 15.79‰ ($\delta^{18}O_{zm} - WR = \delta^{18}O_{Zm} - \delta^{18}O_{WR} \approx -0.0612$ (wt.%SiO₂)+2.5, Valley et al., 2005),高于全球典型S 型花岗岩(δ¹⁸O=9.9‰~10.5‰, O'Neil, 1977)的全岩 氧同位素组成。在 $\varepsilon_{\rm Hf}(t) - \delta^{18}O$ 二端元图解中(图8), 冷水坑花岗斑岩锆石Hf-O同位素组成非常靠近但 并未完全落入地壳(S型花岗岩)端元区,这样的同 位素特征可能与侏罗纪岩浆活动来源于变质基底 的熔融有关,加入的地幔物质可能是古老地壳中先 存的火成岩(Chappell and Stephens, 1988; Sylvester, 1998; Clemens, 2003).

4.2 地球动力学背景

由微量元素原始地幔标准化蛛网图(图5b)可 以看出,冷水坑花岗斑岩总体上具有富集强不相容 元素 Rb、Th、U,而亏损高场强元素 Ba、Sr、Nb、Ta、 P、Ti的特点,其配分模式具有明显的 Nb-Ta槽和Ti 谷,表现出与俯冲相关的弧花岗岩的特征(Rogers et al., 1989; Stern, 2002)。在花岗岩类构造环境判 别图(图9a,b)中,花岗斑岩样品均投点于同碰撞花 岗岩或同碰撞花岗岩与弧花岗岩过渡范围内,指示 其形成与板片俯冲、碰撞作用相关。在Zr/TiO₂-Ce/ P₂O₅图解(图9c)中,样品点均落入大陆弧范围内,由 此推测花岗斑岩为产出在活动大陆边缘的陆缘弧 岩浆岩。在 Nb-Rb/Zr 图解(图9d)中,绝大多数投 点位于正常弧范围,少数位于成熟弧或正常弧与成 熟弧过渡范围内,暗示花岗斑岩为正常弧向成熟弧 环境过渡的岩浆产物(Brown, 1984)。

前人研究普遍认为华南地区白垩纪(晚燕山 期)岩浆活动主要受到古太平洋板块俯冲的影响, 发生于与之相关的活动大陆边缘环境,然而对于侏 罗纪(燕山早期)岩浆活动的地球动力学过程尚存 争议(Zhou et al., 2000; Li et al., 2007; Chen et al., 2008)。为进一步诠释侏罗纪华南板块内部的岩浆

	表3 冷水坑铅锌矿床花岗斑岩Sr-Nd同位素分析结果	
Table 2 C	Sy Nd isstance compositions of granite normhyrry in the Longshuiltong Dh	7n denosit

Table 5 SI-100 isotope compositions of granite por phyry in the Lengshuikeng 1 b Zh deposit													
样品号	Rb/10-6	Sr/10 ⁻⁶	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr(i)	Sm/10	⁶ Nd/10 ⁻⁶	147Sm/144Nd	(¹⁴³ Nd/ ¹⁴⁴ Nd)t	$\epsilon_{\rm Nd}(t)$	$T_{\rm DM}/{ m Ma}$	$T_{\rm DM2}/{ m Ma}$	
ZK11111-120.2	235	48.5	12.023	0.747	0.74454	5.4	26.9	0.121	0.512	-11.04	1908	1857	
ZK11111-126.1	259	33.2	19.308	0.769	0.76518	5.86	29.4	0.120	0.512	-11.48	1928	1890	
ZK11111-162.6	280	71.4	9.736	0.742	0.74005	6.62	36.9	0.108	0.512	-11.15	1703	1828	
ZK11111-200.3	249	54.4	11.355	0.749	0.74655	5.15	21.2	0.147	0.512	-10.78	2541	1910	

表4 冷水坑铅锌矿床花岗斑岩锆石原位 Hf-O 同位素组成 Table 4 Zircon in situ Hf-O isotopic composition of granite porphyry in the Lengshuikeng Pb-Zn deposit

	测点号	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\epsilon_{\text{Hf}}\left(t ight)$	T _{DM/} Ma	$T_{\rm DM2}/{ m Ma}$	$\delta^{_{18}}\mathrm{O}/\%$	1σ	T/Ma
ZK1	1111-1-1.1	0.037879	0.001202	0.282434	0.000018	-8.34	1163	1747	_	_	171
ZK1	1111-1-2.1	0.041230	0.001317	0.282401	0.000016	-9.76	1213	1828	7.71	0.27	160
ZK1	1111-1-3.1	0.040955	0.001325	0.282376	0.000016	-10.61	1247	1882	7.23	0.19	161
ZK1	1111-1-4.1	0.036203	0.001203	0.282409	0.000015	-9.48	1198	1810	7.29	0.19	159
ZK1	1111-1-5.1	0.036567	0.001231	0.282376	0.000018	-10.74	1244	1886	7.25	0.31	154
ZK1	1111-1-6.1	0.036666	0.001162	0.282392	0.000015	-9.89	1220	1843	7.73	0.24	168
ZK1	1111-1-7.1	0.040912	0.001281	0.282380	0.000013	-10.43	1240	1872	7.71	0.25	162
ZK1	1111-1-8.1	0.012516	0.000421	0.282395	0.000015	-9.73	1193	1832	8.14	0.20	167
ZK1	1111-1-9.1	0.038456	0.001237	0.282358	0.000018	-11.38	1271	1927	8.06	0.23	155
ZK1	1111-1-11.1	0.059403	0.001878	0.282460	0.000016	-7.62	1146	1697	—		165
ZK1	1111-2-1.1	0.068686	0.002188	0.282420	0.000020	-9.05	1213	1787	7.59	0.30	165
ZK1	1111-2-3.1	0.043414	0.001372	0.282417	0.000017	-9.12	1192	1791	7.79	0.15	164
ZK1	1111-2-4.1	0.025488	0.000827	0.282431	0.000017	-8.44	1156	1753	7.77	0.19	170
ZK1	1111-2-5.1	0.034679	0.001085	0.282372	0.000015	-10.73	1246	1891	8.32	0.26	162
ZK1	1111-2-6.1	0.035441	0.001149	0.282412	0.000015	-9.33	1191	1801	—	—	160
ZK1	1111-2-7.1	0.046875	0.001510	0.282381	0.000017	-10.46	1247	1873	8.29	0.14	161
ZK1	1111-2-8.1	0.026586	0.000766	0.282364	0.000018	-11.06	1246	1909	7.67	0.20	157
ZK1	1111-2-9.1	0.015614	0.000510	0.282326	0.000017	-12.39	1291	1993	8.81	0.29	157
ZK1	1111-2-10.1	0.035758	0.001144	0.282410	0.000015	-9.34	1194	1805	7.96	0.24	164
ZK1	1111-2-11.1	0.056093	0.001768	0.282431	0.000016	-8.69	1185	1763	_	_	162

注:锆石原位O同位素测试单位为北京离子探针中心;原位Hf同位素测试单位为中国地质科学院地质研究所。

活动,许多构造模型被提出,如 Charvet(2010)和 Jiang(2011)提出的低角度俯冲模型,Hou et al. (2009)提出的陆内造山及造山后伸展作用模型, Gilder(1991)提出的伸展环境盆岭省模型,板内裂 谷模型(Chen, 1999; Li 2000;Xie et al., 2006)。尽 管存在一些争议,但大多数学者认为这些模型中的 任何一种,都与古太平洋的平板俯冲相关(Martin et al., 1995; Lapierre et al., 1997; Zhou et al., 2012)。从 构造演化历史看,本区在中生代属于中国东南大陆 边缘体系,经历了三叠纪一中晚侏罗世(220~150 Ma)的陆内俯冲一陆内拼贴碰撞造山、晚侏罗世 ((145±5) Ma)由挤压向伸展扩张的转换、早白垩世 (125~105 Ma)的陆内扩张增强以及92 Ma开始的 裂解阶段(孟祥金等,2007; Wang et al., 2013)。本 次研究查明冷水坑含矿斑岩形成于162 Ma左右,处 于陆内造山阶段的晚期,结合冷水坑含矿花岗斑岩 的岩石地球化学特征,我们倾向性地认为冷水坑含 矿花岗斑岩岩浆活动总体构造环境为古太平洋板 块持续的俯冲与挤压,是古太平洋板块北西向俯冲 引起的岩浆活动在北武夷地区的响应。

5 结 论

(1)冷水坑花岗斑岩分异程度较高,具有高 SiO₂、高K₂O、强过铝质的特征。岩体发育较明显的

Fig.6 The cumulative probability histogram of in situ zircon ε_{Hf} (*t*) (a) and δ^{18} O (b) for the Lengshuikeng granite porphyries

Eu负异常,富集强不相容元素 Rb、Th、U,而亏损高 场强元素 Ba、Sr、Nb、Ta、P、Ti。其配分模式具有明 显的 Nb-Ta 槽和 Ti谷,表现出与俯冲相关的弧花岗 岩的特征。

(2)冷水坑含矿花岗斑岩 SHRIMP U-Pb 年龄 为(162.0±2.0)Ma,具有均一的锆石 Hf-O 同位素组 成,ε_{Hf}(t)=-12.39~-7.62,均值-9.83;δ¹⁸O=7.23‰~ 8.81‰,均值 7.83‰,且具有极高的 ⁸⁷Sr/⁸⁶Sr 初始比 值 (0.74005~0.76518) 与 低 的 ε_{Nd} 值 (-11.48~-10.78)。指示岩浆主要来自于成熟地壳,可能起源 于北武夷地区变质基底,源岩为基底变质岩。其岩 浆活动总体构造环境为古太平洋板块持续的俯冲 与挤压,是古太平洋板块北西向俯冲引起的岩浆活 动在北武夷地区的响应。

致谢:野外工作中得到了江西省地质矿产勘查 开发局九一二大队工作人员的大力支持。中国地

图 7 冷水坑花岗斑岩 ε_{Nd}(*t*)-(⁸⁷Sr/⁸⁶Sr)_i(底图据 Wang et al., 2013)图解

Fig.7 ⁸⁷Sr/⁸⁶Sr versus $\varepsilon_{Nd}(t)$ diagram (after Wang et al., 2013) showing the isotope signatures for the Lengshuikeng granite porphyry

图 8 冷水坑花岗斑岩锆石原位 ε_{Hf}(t)-δ¹⁸O关系图解 (不同端元 Hf 同位素数据据 Chauvel et al., 2008; O 同位素数据据 Hoefs et al., 2009.MORB: δ¹⁸O=5.8‰, ε_H=13.9; 沉积岩: δ¹⁸O=20‰, ε_{HI}=2; S 型花岗岩: δ¹⁸O=10‰, ε_{HI}=-12). 混合线根据不同 Hf_{MORD}/ Hf_{sediments}(1:10~10:1)和Hf_{MORD}/Hf_{granits}(1:2~20:1)值做出,线上空心圆圈 及正方形表示混合比例(10%间隔)

Fig.8 In-situ zircon δ^{18} O vs $\varepsilon_{Hf}(t)$ isotope plot of the Lengshuikeng granite porphyry (hafnium isotope sources after Chauvel et al., 2008 and oxygen isotopes after Hoefs et al., 2009. The compositions of the members for mixing calculations are: MORB: δ^{18} O=5.8‰, ε_{Hf} =13.9; sediments: $\delta 1^{8}$ O=20‰, ε Hf=2; S-type granites: δ^{18} O=10‰, ε Hf=-12). The mixing curves were constructed using different Hf_{MORB}/ Hf_{sediments} and Hf_{MORB}/Hf_{granites} elemental ratios from 1:10 to 10:1 and 1:2 to 20:1 respectively; the circles and squares on mixing curves are at 10% intervals

质科学院地质研究所潘小菲副研究员、张智宇副研 究员在野外工作中给予了帮助,中国地质科学院的

图 9 冷水坑花岗斑岩构造环境判别图解(a、b,底图据 Pearce et al., 1984;c,底图据 Müller et al., 1992;d,底图据 Brown et al., 1988)

Fig.9 Tectonic setting discrimination diagrams of granite porphyry from the Lengshuikeng Pb–Zn deposit(a, b, after Pearce et al., 1984; c, after Müller et al., 1992; d, after Brown et al., 1988)

赵苗博士、庄亮亮博士在测试和数据处理过程中给 予了支持和帮助,在此一并表示衷心的感谢。

References

- Belousova E A, Griffin W L, O' Reilly S Y, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602– 622.
- Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology[J]. Chemical Geology, 200(1– 2): 155–170.
- Booth A L, Kolodny Y, Chamberlain C P, McWilliams M, Schmitt A K, Wooden J. 2005. Oxygen Isotopic Composition and U– Pb Discordance in Zircon[J]. Geochimica et Cosmochimica Acta, 69 (20): 4895–4905.
- Brown C G, Thorpe R S, Webb P C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources[J]. Journal of the Geological Society, 141(3): 411– 426.
- Brown C G, Thorpe R S, Webb P C. 1984. The geochemical

characteristics of granitoids in contrasting arcs and comments on magma sources[J]. Journal of the Geological Society, 141(3): 411–426.

- Cavosie A J, Valley J W, Kita N T, Spicuzza M J, Ushikubo T, Wilde S A. 2011. The origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism[J]. Contributions to Mineralogy and Petrology, 162 (5): 961–974.
- Chappell B W, Stephens W E. 1988. Origin of infracrustal (I- type) granite magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2): 71–86.
- Charvet J, Shu L S, Faure M, Choulet F, Wang B, Lu H F, Breton N L. 2010. Structural development of the Lower Paleozoic belt of South China: Genesis of an intra-continental orogen[J]. Journal of Asian Earth Science, 39:309–330.
- Chauvel C, Lewin E, Carpentier M, Anrdt N T, Marini J C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf–Nd Mantle Array[J]. Nature Geoscience, 1: 64–67..
- Chen A. 1999. Mirror– image thrusting in the South China orogenic belt: Tectonic evidence from western Fujian, southeastern China[J]. Tectonophys, 305: 497–519.
- Chen C H, Lee C Y and Shinjo R. 2008. Was there Jurassic Paleo– Pacific subduction in South China?: Constraints from ⁴⁰Ar/³⁹Ar

dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106: 83-92.

- Chen Yaping, Wei Chunjing, Zhang Jinrui, Chu Hang. 2015. Metamorphism and zircon U–Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia[J]. Science Bulletin, 60(19): 1698–1707.
- Clemens J D. 2003. S- type granitic magmas- petrogenetic issues, models and evidence[J]. Earth Science Review, 61: 1–18.
- Gilder S A, Keller G R, Luo M, Goode P C. 1991. Eastern Asia and the western Pacific timing and spatial distribution of rifting in China[J]. Tectonophys, 197: 225–243.
- Grimes C B, Ushikubo T, Kozdon R, Valley J W. 2013. Perspectives on the Origin of Plagiogranite in Ophiolites from Oxygen Isotopes in Zircon[J]. Lithos, 179: 48–66.
- Han Yinwen, Ma Zhendong. 2003. Geochemistry[M]. Beijing: Geological Publishing House, 1–370(in Chinese).
- Hoefs, J., 2009. Stable Isotope Geochemistry[M]. Berlin: Springer-Verlag, 1–286.
- Hoskin P W O, Black L P. 2000. Metamorphic Zircon Formation by Solid– State Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology, 18(4): 423–439.
- Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595- 2604(in Chinese with English abstract).
- Hou Zengqian, Yang Zhiming. 2009. Porphyry deposits in continental settings of China: Geological characteristics, magmatic hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83:1781–1817.
- Ickert R B, Hiess J, Williams I S, Holden P, Ireland T R, Lane P, Schram N, Foster J J and Clement S W. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI– DING silicate– glass reference materials and zircon from contrasting granites[J]. Chemical Geology, 257(1/2): 114–128.
- Jiang Y H, Zhao P, Zhou Q, Liao S Y, Jin G D. 2011. Petrogenesis and tectonic implications of Early Cretaceous S and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 121: 55– 73.
- Lapierre H, Jahn B M, Charvet J, Cddex R. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophys, 274: 321–338.
- Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms[M]. 2nd Edition. Cambridge University Press. 1–256.
- Li Xianhua. 2000. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Science, 18: 293– 305.

- Li Xianhua, Li Zhengxiang, Li Wuxian, Liu Ying, Yuan Chao, Wei Gangjian, Qi Changshi. 2007. U–Pb zircon, geochemical and Sr– Nd–Hf isotopic constraints on age and origin of Jurassic I– and A– typegranites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat–slab[J]. Lithos, 96:186–204
- Li Xianhua, Li Wuxian, Wang Xuance, Li Qiuli, Tang Guoqiang. 2009. Role of Mantle– Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In Situ Zircon Hf–O Isotopic Constraints[J]. Science in China(Series D), 52(9): 1262– 1278.
- Li Xianhua, Li Wuxian, Li Qiuli, Wang Xuance, Liu Yu, Yang Yueheng. 2010. Petrogenesis and Tectonic Significance of the – 850Ma Gangbian Alkaline Complex in South China: Evidence from In Situ Zircon U– Pb Dating, Hf– O Isotopes and Whole– Rock Geochemistry[J]. Lithos, 114(1/2): 1–15.
- Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300 km-wide intracontinental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35: 179–182.
- Ludwig K R. 2001. Squid 1.02: A User's Manual. Berkeley[M]. Berkeley: Geochronology Centre Special Publication, 1–19.
- Mao Jingwen, Chen Maohong, Yuan Shunda, Guo Chunli. 2011. Geological characteristics of the Qinhang(or Shihang) merallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 85(5): 636–658(in Chinese with English abstract).
- Martin H, Bonin B, Capdevila R, Jahn B M, Lameyre J, Wang Y. 1994. The Kuiqi peralkaline granitic complex (SE China): Petrology and geochemistry[J]. J. Petrol. 35 983–1015.
- Meng Xiangjin, Dong Guangyu, Liu Jianguang. 2007. Lengshuikeng Porphyry Pb- Zn- Ag deposit in Jiangxi Province[M]. Beijing: Geological Publishing House, 1-148(in Chinese).
- Meng Xiangjin, Hou Zengqian, Dong Guangyu, Liu Jianguang, Zuo Liyan, Yang Zhusen, Xiao Maozhang. 2009. Geological characteristics and mineralization timing of the Legshuikeng porphyry Pb–Zn–Ag deposit, Jiangxi Province[J]. Acta Geologica Sinica, 83(12): 1951–1967(in Chinese with English abstract).
- Meng Xiangjin, Xu Wenyi, Yang Zhusen, Hou Zengqian, Li Zhenqing, Yu Yushuai, Xiao Maozhang, He Xirong, Wan Haozhang. 2012. Time limit of volcanic-magmatic action in Lengshuikeng orefield, Jiangxi: Evidence from SHRIMP zircon U- Pb ages[J]. Mineral Deposits, 31(4): 831-838(in Chinese with English abstract).
- Mojzsis S J, Harrison T M, Pidgeon R T. 2001. Oxygen–Isotope Evidence from Ancient Zircons for Liquid Water at the Earth's Surface 4300Myr Ago[J]. Nature, 409(6817): 178–181.
- Müller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study[J]. Mineralogy and Petrology, 46(4):

259-289.

- Nasdala L, Hofmeister W, Norberg N, Martinson J M, Corfu F, Dörr W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A and Valley J W. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U– Pb analysis of zircon[J]. Geostandards and Geoanalytial Research, 32(3): 247–265.
- O'Neil J R O, Chappell B W J. 1977. Oxygen and Hydrogen Isotope Relations in the Berridale Batholith[J]. Journal of the Geological Society, 133(6): 559–571.
- Pearce J A, Harris N B W, Tigdle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25:956–983.
- Peck W H, Valley J W, Wilde S A, Graham C M. 2001. Oxygen Isotope Ratios and Rare Earth Elements in 3.3 to 4.4Ga Zircons: Ion Microprobe Evidence for High δ^{18} O Continental Crust and Oceans in the Early Archean[J]. Geochemica et Cosmochimica Acta, 65(22): 4215–4229.
- Pu Wei, Zhao Kuidong, Ling Hongfei, Jiang Shaoyong. 2004. High precision Nd isotope measurement by Triton TI mass spectrometry[J]. Acta Geoscientica Sinica, 25(2): 271–274(in Chinese with English abstract).
- Pu Wei, Gao Jianfeng, Zhao Kuidong, Ling Hongfei, Jiang Shaoyong. 2005. Separation method of Rb- Sr, Sm- Nd using DCTA and HIBA[J]. Journal of Nanjing University(Natural Sciences), 41(4): 445-450(in Chinese with English abstract).
- Qiu Junting, Yu Xinqi, Wu Ganguo, Liu Jiangguang, Xiao Maozhang. 2013. Geochronology of igneous rocks and nappe structures in Lengshuikeng deposit, Jiangxi Province, China[J]. Acta Petrologica Sinica, 29(3): 812–826(in Chinese with English abstract).
- Rogers G, Hawkesworth C J. 1989. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge[J]. Earth and Planetary Science Letters, 91(3/4): 271–285.
- Stern R J. 2002. Subduction zones[J]. Reviews of Geophysics, 40(4): 1–38.
- Su Huimin, Mao Jingwen, He Xirong, Lu Ran. 2013. Timing of the formation of the Tianhuashan Basin in northern Wuyi as constrained by geochronology of volcanic and plutonic rocks[J]. Science China: Earth Sciences, 56: 940–955.
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Saunders A D and Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication. 313– 345.
- Sylvester P J. 1998. Post- collisional strongly peraluminous granites[J]. Lithos, 45(1/4):29–44.
- Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T,

Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi- 1: A neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 168: 279–281.

- Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, Carlton, 1–312.
- Tu Guangchi. 1989. Lead– Zinc Deposit in China, Chinese Deposit (Volume 1)[M]. Beijing: Geological Publishing House, 116–204(in Chinese).
- Valley J W, Lackey J S, Cavosie A J, Clechenko C C, Spicuzza M J, Basei M A S, Bindeman I N, Ferreira V P, Sial A N, King E M, Peck W H, Sinha A K, Wei C S. 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon[J]. Contributions to Mineralogy and Petrology, 150(6): 561–580.
- Wang Changming, Xu Yigan, Wu Ganguo, Zhang Da, Yang Lei, Liu Jianguang, Wan Haozhang, Di Yongjun, Yu Xinqi, He Mingyue, Zhang Yaoyao. 2011. C, O, S and Pb isotopes characteristics and sources of the ore metals of the Lengshuikeng Ag- Pb- Zn ore field, Jiangxi[J]. Earth Science Frontiers, 18(1): 179- 193(in Chinese with English abstract).
- Wang Changming, Zhang Da, Wu Ganguo, Xu Yigan, Carranza E J M, Zhang Yaoyao, Li Huaikun, Geng Jianzhen. 2013. Zircon U– Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: Implications for a continental arc to intra– arc rift setting[J]. Journal of Earth System Science, 122(3): 809–830.
- Wang Changming, Zhang Da, Wu Ganguo, Santosh M, Zhang Jing, Xu Yigan, Zhang Yaoyao. 2014. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China[J]. Miner Deposita, 49: 733-749.
- Wang Dezi, Liu Changshi, Shen Weizhou, Chen Fanrong. 1993. The Contrast between Tonglu I– type and Xiangshan S– type clastoporphyritic lava[J]. Acta Petrologica Sinica, 9(1): 44– 54(in Chinese with English abstract).
- Weis D, Kieffer B, Maerschalk C, Barling J, Jong J, Williams G A, Hanano D, Pretorius W, Mattielli N, Scoates J S, Goolaerts A, Friedman R M, Mahoney J B. 2006. High– precision isotopic characterization of USGS reference materials by TIMS and MC– ICP–MS[J]. Geochemistry, Geophysics, Geosystems, 7(8): 1525– 2027.
- Williams I S. 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben M A, Shanks W C and Ridley W I(eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes[J]. Reviews in Economic Geology, 7: 1–35.
- Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Unwin Hyman, 1–468.
- Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007a.

Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217–1238(in Chinese with English abstract).

- Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007b. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
- Xie X, Xu X S, Zou H B, Jiang S Y, Zhang M and Qiu J S. 2006. Early J2 basalts in SE China: Incipience of largescale late Mesozoic magmatism[J]. Sci. China Ser. D, 49: 796–815.
- Yu Minggang, Zhao Xilin, Qian Maiping, Duan Zheng, Zhang Xuehui, Wan Haozhang, Xiao Maozhang, Sun Jiandong. 2015. The discovery of Late Jurassic volcanic rocks in Lengshuikeng, Jiangxi and their geological significance[J]. Rack and Mineral Analysis, 34 (1): 138–149(in Chinese with English abstract).
- Zuo Liyan, Hou Zengqian, Meng Xiangjin, Yang Zhiming, Song Yucai, Li Zheng. 2010. SHRIMP U–Pb zircon geochronology of the orebearing rock in the Lengshuikeng porphyry type Ag– Pb– Zn deposit[J]. Geology in China, 37(5): 1450–1456(in Chinese with English abstract).
- Zhou Qing, Jiang Yaohui, Zhao Peng, Liao Shiyong, Jin Guodong. 2012. Origin of the Dexing Cu- bearing porphyries, SE China: Elemental and Sr-Nd-Pb-Hf isotopic constraints[J]. International Geology Review, 54(5): 572–592.
- Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophys, 326(3/4): 269– 287.

附中文参考文献

- 高山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹,Hartmut Kern. 1999. 中国东部地壳的结构和组成[J].中国科学(D辑),29(3):204-213.
- 韩吟文, 马振东. 2003. 地球化学[M]. 北京: 地质出版社. 1-370.
- 何细荣, 黄冬如, 饶建锋. 2010. 江西贵溪冷水坑矿田下鲍银铅锌矿 床地质特征及成因探讨[J]. 中国西部科技, 9(25): 1-3.
- 侯可军, 李延河, 邹天人, 曲晓明, 时雨若, 谢桂青. 2007. LA-MC-ICP-MS 锆石 Hf 同位素的分析方法及地质应用[J]. 岩石学报, 29 (11): 3968-3980.

- 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特 征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658.
- 孟祥金, 董光裕, 刘建光. 2007. 江西冷水坑斑岩型铅锌银矿床[M]. 北京: 地质出版社, 1-148.
- 孟祥金,侯增谦,董光裕,刘建光,左力艳,杨竹森,肖茂章.2009.江 西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限[J]. 地质学报,83(12):1951-1967.
- 孟祥金,徐文艺,杨竹森,侯增谦,李振清,于玉帅,肖茂章,何细荣, 万浩章.2012.江西冷水坑矿田火山-岩浆活动时限:SHRIMP 锆 石U-Pb年龄证据[J].矿床地质,2012,31(4):831-838.
- 濮巍, 赵葵东, 凌洪飞, 蒋少涌. 2004. 新一代高精度高灵敏度的表面 热电离质谱仪(Triton TI)的 Nd 同位素测定[J]. 地球学报, 25(2): 271-274.
- 濮巍,高剑峰,赵葵东,凌洪飞,蒋少涌.2005.利用DCTA和HIBA快 速有效分离Rb-Sr、Sm-Nd的方法[J].南京大学学报(自然科 学),41(4):445-450.
- 邱骏挺,余心起,吴淦国,刘建光,肖茂章.2013. 江西冷水坑矿区构造-岩浆活动的年代学约束[J]. 岩石学报, 29(3): 812-826.
- 苏慧敏,毛景文,何细荣,卢燃.2013.北武夷天华山盆地形成时限的 约束:来自火山岩-侵入岩的年代学证据[J].中国科学:地球科 学,43(5):745-759.
- 涂光炽. 1989. 中国铅锌矿床. 中国矿床(上册) [M]. 北京:地质出版 社, 116-204.
- 王长明, 徐贻赣, 吴淦国, 张达, 杨磊, 刘建光, 万浩章, 狄永军, 余心起, 何明跃, 张垚垚. 2011. 江西冷水坑 Ag-Pb-Zn 矿田碳氧硫铅 同位素特征及成矿物质来源[J]. 地学前缘, 18(1): 179-193.
- 王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1993. 桐庐 I 型和相山 S 型两类碎 斑熔岩对比[J]. 岩石学报, 9(1): 44-54.
- 吴福元,李献华,郑永飞,高山.2007.Lu-Hf 同位素体系及其岩石学 应用[J]. 岩石学报,23(2):185-220.
- 余明刚,赵希林,钱迈平,段政,张雪辉,万浩章,肖茂章,孙建东. 2015.江西冷水坑火山-侵入杂岩LA-ICP-MS 锆石 U-Pb 年龄 及地质意义[J]. 岩矿测试, 34(1): 138-149.
- 左力艳, 侯增谦, 孟祥金, 杨志明, 宋玉财, 李政. 2010. 冷水坑斑岩型 银铅锌矿床含矿岩体锆石 SHRIMP U-Pb 年代学研究[J]. 中国地 质, 37(5): 1450-1456.
- 周建祥.2009. 冷水坑矿田层控叠生型矿体特征及成因[J]. 民营科 技,12:4-6.