doi: 10.12029/gc20210215

赵芝,臧雯蕊,王臻,陈振宇,陈斌锋,邹新勇. 2021.赣南南华纪变质沉凝灰岩的碎屑锆石U-Pb年代学及其对裂谷盆地形成时间的限定[J].中国地质,48(2):564-579.

Zhao Zhi, Zang Wenrui, Wang Zhen, Chen Zhenyu, Chen Bingfeng, Zou Xinyong. 2021. Detrital zircon U–Pb dating of Nanhua meta-tuffite in South Jiangxi and constraint on the time limit of the rift basin[J]. Geology in China, 48(2):564–579(in Chinese with English abstract).

赣南南华纪变质沉凝灰岩的碎屑锆石 U-Pb 年代学 及其对裂谷盆地形成时间的限定

赵芝1,臧雯蕊2,王臻1,陈振宇1,陈斌锋3,邹新勇3

(1.自然资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京100037;2.中国地质大学(北京)地球
 科学与资源学院,北京100083;3.江西省地质矿产勘查开发局赣南地质调查大队,江西赣州341000)

提要:江西省宁都某地新元古代浅变质岩风化壳中赋存离子吸附型稀土矿,文章对某矿区内原定青白口纪库里组的2件变质沉凝灰岩样品进行了碎屑锆石LA-ICP-MSU-Pb年代学研究,获得了88组和110组谐和年龄。2件样品的碎屑锆石年龄区间相似,主要分布在:810~780 Ma,峰值年龄为798 Ma(n=55);748~727 Ma,峰值年龄为737 Ma(n=127);691~667 Ma,峰值年龄为680 Ma(n=6),此外还有少量的年龄分布在2.85~1.08 Ga。认为,变质沉凝灰岩样品的沉积时代可能为南华纪,地层应归属为上施组;物源可能来自江南造山带东段(赣东北—皖南—浙西)青白口纪晚期—南华纪的火山-沉积岩;赣南区域上同时期的巨厚海相火山-碎屑沉积可能形成于华南古大陆裂解之后的裂谷盆地,赣南次级裂谷盆地的沉积时限为810~727 Ma。

关 键 词:南华纪;变质沉凝灰岩;碎屑锆石U-Pb定年;裂谷盆地;地质调查工程;赣南 中图分类号:P578.496;P597.3 **文献标志码:**A **文章编号**:1000-3657(2021)02-0564-16

Detrital zircon U–Pb dating of Nanhua meta–tuffite in South Jiangxi and constraint on the time limit of the rift basin

ZHAO Zhi¹, ZANG Wenrui², WANG Zhen¹, CHEN Zhenyu¹, CHEN Bingfeng³, ZOU Xinyong³

(1.MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China; 3. Geological Survey Team of Gannan, Bureau of Geology and Mineral Exploration & Development of Jiangxi Province, Ganzhou 341000, Jiangxi, China)

Abstract: Ion-adsorption type REE deposits is hosted in regolith of Neoproterozoic epimetamorphic rocks in South Jiangxi, China. LA-ICP-MS U-Pb dating of detrital zircons from two metamorphic tuff samples of the originally identified Kuli Formation of Qingbaikou System in a mine area yielded the harmonic ages of 88 groups and 110 groups respectively. They are predominantly

收稿日期:2018-09-10;改回日期:2019-03-20

基金项目:中央级公益性科研院所基本科研业务费专项基金(K1506和YYWF201527)资助。

作者简介:赵芝,女,1984年生,高级工程师,主要从事稀土矿床成矿理论研究;E-mail:zhaozhi_sun@163.com。

通讯作者:陈振宇,男,1978年生,教授级高级工程师,主要从事矿物学和微束分析;E-mail:czy7803@126.com。

Neoproterozoic and have ages ranging from 810 to 667 Ma with three age peaks at ca 798 Ma (n=55), 737 Ma (n=127) and 680 Ma (n=6). There are also a few Meso- to Paleoproterozoic zircon grains with ages scattering from 2.85 Ga to 1.08 Ga. The dating results probably suggest that the sedimentary age of the tuffite may be Nanhua Period. It is speculated that the provenance may be volcanic-sedimentary rocks of late Qingbaikou Period to Nanhua Period in the eastern part of Jiangnan orogenic belt (northeast Jiangxi-southern Anhui-western Zhejiang). The super thick marine volcanic-clastic sediments of the same period in southern Jiangxi might be formed in the rift basin after the breakup of the ancient continent of South China, and the sedimentary time of the secondary rift basin in southern Jiangxi is about 810-727 Ma.

Key words: Nanhua Period; meta-tuffite; detrital zircon U-Pb age; rift basin; geological aurvey engineering; South Jiangxi About the first author: ZHAO Zhi, female, born in 1984, senior engineer, engaged in the mineralization of rare earth deposits in China; E-mail; zhaozhi_sun@163.com.

About the corresponding author: CHEN Zhengyu, male, born in 1978, senior engineer, engaged in the mineralogy and microbeam analysis, E-mail:czy7803@126.com.

Fund support: Supported by Central Level, Scientific Research Institutes for Basic R & D Special Fund Business (No.K1506 and No.YYWF201527).

1 引 言

华南新元古代构造-岩浆演化一直存在较大争 议。江西地处华南腹地,新元古代地层及岩浆岩出 露较好,是研究华南新元古代构造演化的重要地 区。赣南广泛出露新元古代浅变质岩系,其原岩为 一套海相火山-碎屑沉积,厚度达千米,近年在其风 化壳中发现了离子吸附型稀土矿(赵芝等,2017)。 目前,对浅变质岩系的研究程度很低,因缺乏精确 的同位素年代学依据其沉积时代归属不一致:1:20 万宁化幅地质报告中将其归属为震旦纪(福建省冶 金工业局,1972●),而1:5万长胜幅中归属为青白口 纪(南方工业学校,1997[●])。对浅变质岩系沉积的 构造环境认识也存在分歧:一种观点认为其沉积于 裂谷盆地(舒良树,2012; Wang et al., 2013; 杨明桂 等,2015;邓奇等,2016);另一种观点认为其沉积于 弧-盆体系(周博文等,2018)。为了限定江西宁都 某离子吸附型稀土矿区内变质沉凝灰岩的沉积时 限、探讨其物质来源和沉积盆地的构造性质,本文 对矿区内的2件变质沉凝灰岩样品进行了碎屑锆石 LA-ICP-MS U-Pb年代学研究。

2 地质概况及样品特征

赣中南地区(F₂萍乡一广丰断裂带以南)零星分 布中元古代结晶基底(寻乌岩组片岩、变粒岩和片 麻岩)(图1),其上为青白口系一下古生界强烈褶皱 的基底,其中青白口系一南华系为浅变质的火山- 碎屑沉积,震旦系、寒武系和奥陶系为笔石相碎屑 岩系,以韵律状泥砂质岩层为特征(舒良树, 2012)。沉积盖层由未变质的上泥盆统、石炭系、二 叠系、下三叠统等浅海相碳酸盐岩和泥砂岩以及上 三叠统、侏罗系、白垩系和古近系陆相碎屑-火山岩 组成,新近系仅零星分布(舒良树等,2006)。

宁都县位于赣南东部、宜黄一定南断裂带以东 (图1),出露青白口系—寒武系褶皱基底,缺失奥陶 系一泥盆系,零星分布石炭系和侏罗系,白垩系出 露较广,印支期和燕山期岩浆活动较为发育(图 2)。某地青白口系浅变质岩风化壳中发育离子吸 附型稀土矿,矿区出露的地层主要为神山组和库里 组,其中神山组呈东西向带状分布,与库里组呈平 行不整合接触,岩石类型以千枚岩为主,少量片 岩。库里组呈东西向带状展布,与上覆中生代地层 呈角度不整合,岩石主要为变沉凝灰岩类和变质砂 岩(赵芝等,2018)。

样品采自宁都某地的离子吸附型稀土矿区,2 件样品均为原定的青白口纪库里组第一段,ND-b5 的采集层位更靠库里组二段,ND-b34的采集层位 更靠神山组二段(图3)。ND-b5(图4a、c、e):呈土 黄色,变余碎屑结构,变余层理构造,弱风化。显微 镜下见少量的石英晶屑和岩屑(<5%),岩屑绢云母 化仅残留轮廓;基质多为变质新生的绢云母和经重 结晶作用形成的细小的长英质矿物。ND-b34(图 4b、d、f),呈土黄色,变余碎屑结构,变余层理构造, 弱风化,粒度较ND-b5稍粗一些。显微镜下可见长

图1 江西省中一新元古代地层分布略图(据刘亚光,1997修改)

1—寻乌岩群(1.8~1.7 Ga, 刘邦秀等, 2001);2—铁沙街组(1.13~1.17 Ma,高林志等, 2013;张恒等, 2015b);3—田里片岩(1.5~1.04 Ga, Li et al., 2007);4—万年群和珍珠山群(860~849 Ma, Le et al., 2010; 刘树文等, 2012);5—张村群(860 Ma,高林志等, 2014);6—翁家岭组(841 Ma,张恒等, 2015a);7—庐山垄群(840~831 Ma,高林志等, 2012a);8—星子群(825~834 Ma, Shu et al., 2008;关俊朋等, 2010);9—双桥山群(840~823 Ma,高林志等, 2008, 2010, 2011, 2012b;董树文, 2010);10—周潭岩群(834~809 Ma, 王孝磊等, 2013);11—登山群(≪830 Ma,陈小勇等, 2015);12—赣南青白口—南华系(800~737 Ma,郭娜欣, 2015;周博文等, 2018);13—赣北青白口—南华系(803~751 Ma,高林志等, 2012b; Wang et al., 2013;王剑等, 2013);14—震旦系;F₁—宜丰—景德镇断裂带;F₂—萍乡—广丰断裂带;F₃—婺源—丰城断裂带;F₄—德兴—东乡断 裂带;F₅—葛源—樟村断裂带;F₅—宜黄—定南断裂带

Fig.1 Distribution of the Meso-Neoproterozoic strata in Jiangxi Province (modified from Liu Yaguang, 1997)

1–Xunwu rock Group (1.8~1.7 Ga, Liu Bangxiu et al.,2001) ; 2–Tieshajie Formation (1.13~1.17 Ma, Gao Linzhi et al.,2013, Zhang Heng et al., 2015b) ; 3–Tianli schist (1.5~1.04 Ga, Li et al.,2007) ; 4–Wannian and Zhenzhushan Group (860~849 Ma, Le et al.,2010; Liu Shuwen et al.,2012) ; 5–Zhangcun Group (860 Ma, Gao Linzhi et al.,2014); 6–Wengjialing Formation (841Ma, Zhang Heng et al.,2015a) ; 7–Lushanlong Group (840~831Ma, Gao Linzhi et al.,2012a); 8–Xingzi Group (825~834 Ma, Shu et al.,2008; Guan Junpeng et al.,2010) ; 9–Shuangqiaoshan Group (840~823 Ma, Gao Linzhi et al.,2008,2010,2011,2012b; Dong Shuwen et al.,2010) ; 10–Zhoutan rock group (834~809 Ma,Wang Xiaoleng et al.,2013) ; 11–Dengshan Group (≤ 830 Ma, Chen Xiaoyong et al., 2015) ; 12–Qingbaikou to Nanhua strata in southern Jiangxi (800~737 Ma, Guo Naxin, 2015; Zhou Bowen et al.,2018) ; 13– Qingbaikou to Nanhua strata in northern Jiangxi (803~751 Ma, Gao Linzhi et al.,2012) b; Wang et al.,2013; Wang Jian et al.,2013) ; 14–Sinian strata; F₁–Yifeng–Jingdezhen fault zone; F₂–Pingxiang – Guangfeng fault zone; F₃–Wuyuan – Fengcheng fault zone; F₄–Dexing –Dongxiang fault zone; F₅–Geyuan – Zhangcun fault zone; F₆–Yihuang – Dingnan fault zone

石和石英晶屑(~20%),呈棱角状,边部裂隙发育;基 质为变质新生的绢云母和黑云母,以及重结晶作用 形成的细小的长英质矿物。

3 测试方法

碎屑锆石由北京中兴美科科技有限公司挑选

和制靶,锆石靶子上黏贴的锆石颗粒在200~300颗 之间。锆石的阴极发光图像由中国地质科学院矿 产资源研究所电子探针实验室技术人员拍摄。笔 者在显微镜下观察了锆石的透射和反射光特征并 采集了相关图像。在此基础上开展了锆石U-Pb测 试,测试工作在中国地质科学院矿产资源研究所

图2 江西省宁都地区地质图(据福建省冶金工业局,1972和南方工业学校,1997修编)

1-青白口系未分组;2-青白口系神山组;3-青白口系库里组;4-南华系上施组;5-南华系沙坝黄组;6-南华系洪山组;7-震旦系坝里组; 8-寒武系;9-石炭系;10-侏罗系;11-白垩系;12-早古生代花岗岩;13-侏罗纪花岗岩;14-侏罗纪闪长岩;15-断层;16-角度不整合; 17-整合/假整合;18-样品

Fig.2 Geological map of Ningdu County, Jiangxi Province (modified from Fujian Metallurgical Industry Bureau, 1972; Southern Industrial School, 1997)

1-Qingbaikou System; 2-Shenshan Formation; 3-Kuli Formation; 4-Shangshi Formation; 5-Shabahuang Formation; 6-Hongshan Formation;
 7-Bali Formation; 8-Cambrian System; 9-Carboniferous System; 10-Jurassic System; 11-Cretaceous System; 12-Early Paleozoic granite;
 13-Jurassic granite; 14-Jurassic diorite; 15-Fault; 16-Angular unconformity; 17-Conformity/disconformity; 18-Sampling site

图 3 用于碎屑锆石 U-Pb 测年的变质沉凝灰岩样品的采集层位示意图(据南方工业学校,1997绘编) Fig.3 Sampling locations of meta-tuffite rocks for the detrital zircon U-Pb dating (modified from Southern Industrial School, 1997)

图 4 江西省宁都地区变质沉凝灰岩的野外及显微镜下特征 Kfs—钾长石;Qtz—石英 Fig.4 Field and microscopic photographs of the meta-tuffites in Ningdu County of Jiangxi Province Kfs-Potash feldspar; Qtz-Quartz

LA-MC-ICP-MS实验室完成,所用仪器为 Finnigan Neptune型MC-ICP-MS及New Wave UP213激光剥蚀系统。实验中激光剥蚀斑束直径为 40 µm,频率为10Hz,能量密度为2.5 J/cm²,以He为 载气,采样方式为单点剥蚀。锆石逐一测试,仅排 除了裂隙和包体发育的锆石,每10个测试点前后各 插入一组标样,以确保标样和测试错石的仪器条件 一致。标样顺序为 SRM 610(人造硅酸盐玻璃标 样)、GJ-1std(错石标样)、GJ-1std和 Plesovice(错 石标样),详细的实验测试过程参见文献(侯可军 等,2009)。数据处理采用 ICPMS Data Cal 程序处 理,年龄谐和图用 Isoplot3.0 程序完成,测试数据误 差为1σ。对于年轻锆石(<1000 Ma)采用²⁰⁶Pb/²³⁸年 龄,对于较老的锆石(>1000 Ma)采用²⁰⁷Pb/²⁰⁶Pb年 龄。谐和图中所有年龄数据都有显示,加权平均年 龄只选择了谐和度≥95%的年龄,谐和图中灰色背 景的数据没有参与加权平均年龄的计算,测试结果 见表1。

4 测试结果

样品ND-b5中的锆石多呈自形的长柱状,粒度 多在50~200 μm,大部分锆石表面脏、被熔蚀,也常 见锆石内部含包裹体。阴极发光(CL)图像上锆石 边部均有亮色边,且发育程度不同(图5a)。根据 CL图像特征可分为两类锆石:第一类锆石发育典型 的岩浆震荡环带结构,发光亮度均一;第二类锆石 也发育典型的岩浆震荡环带结构,但是环带往往遭 受不同程度的破坏,呈现不一样的亮度,这类锆石 的年龄往往不谐和。对108颗锆石进行了测年,大 部分为第一类锆石,少部分为第二类锆石。其中, 88颗锆石的206Pb/238U年龄谐和度≥95%,年龄分布 在840~667 Ma,集中在3个年龄区间:809~780 Ma, 加权平均年龄为797 Ma(n=35);746~728 Ma,加权 平均年龄为737 Ma(n=46):685~667 Ma(n=4)(图 6a)。18颗锆石的²⁰⁶Pb/²³⁸U年龄谐和度 < 95%, 未参 与加权平均年龄的计算。1颗锆石的²⁰⁶Pb/²³⁸U年龄 为277 Ma,谐和度为99%,呈长柱状、晶形完好目环 带结构发育,推测为外来混入锆石,本文不予考 虑。1颗锆石的²⁰⁷Pb/²⁰⁶Pb年龄为2876 Ma,谐和度 为97%,呈浑圆状,环带结构发育,可能经历了较长 距离的搬运,推测为物源区的古老锆石。

样品 ND-b34 中的锆石多呈自形晶,长柱状,粒 度为 100~250 μ m,多为无色,少部分呈淡红色,大部 分锆石表面干净,少部分锆石内部含包裹体。CL 图 像显示个别锆石边部发育亮边,大部分锆石发育典 型的岩浆震荡环带结构,亮度均一,也有的锆石环 带遭受不同程度的破坏,内部具熔蚀结构(图 5b)。 对 120颗锆石进行了测年,测试的锆石内部无包体、 表面较干净。110颗锆石的年龄谐和度≥ 95%,²⁰⁶Pb/²³⁸U年龄主要在 810~685 Ma(图 6c),可划 分为两个年龄区间: 810~785 Ma,加权平均年龄为 798 Ma(*n*=20);748~727 Ma,加权平均年龄为737 Ma(*n*=81)。2颗年龄最小的锆石,其年龄分别为 691 Ma和686 Ma,与样品ND-b5中最小锆石年龄 区间吻合。4颗锆石的²⁰⁷Pb/²⁰⁶Pb年龄为1970 Ma、 1887 Ma、1789 Ma和1139 Ma均有磨圆,推测为物 源区的古老锆石。10颗锆石的年龄谐和度 < 95%, 未参与加权平均年龄的计算。

5 讨 论

5.1 碎屑锆石的年龄意义

赣南青白口纪一南华纪浅变质岩系出露于新 余市、永丰县及宁都县等地(图1),自下而上划分为 神山组、库里组和上施组。已有的LA-ICP-MS 锆 石U-Pb年代学资料显示:于都地区库里组变质沉 凝灰岩的年龄为(789.6±2.9) Ma(n=105, MSWD= 0.52)(郭娜欣,2015),永丰地区上施组凝灰质黏土 岩的年龄为(774.1±8.8) Ma(n=38, MSWD=1.6)、 (774.3 ± 8.5) Ma(n=26, MSWD=1.02) $\pi(756\pm7.5)$ Ma(n=30,MSWD=0.58)(周博文等,2018)。本文对 宁都某地原定库里组中的变质沉凝灰岩的碎屑锆 石LA-ICP-MS U-Pb年代学研究表明,两件样品 具有相似的年龄峰值。188颗锆石年龄集中在810~ 667 Ma,最年轻的一组锆石年龄峰值约为680 Ma (n=6,占3%),次年轻的年龄峰值约为737 Ma(n= 127,占67.5%),从统计学的角度考虑后者的年龄更 可靠。沉凝灰岩是由火山碎屑物质落入水盆地中 与正常沉积物混杂组成,经化学沉积物和黏土杂基 胶结与压实作用成岩的火山作用同期产物。因此, 沉凝灰岩中最年轻的一组锆石年龄可以代表区域 内最晚期的一次火山事件。研究样品中次年轻的 一组锆石均呈自形晶,未显示长距离搬运的特征, 可能来自距离较近的火山灰,推测矿区内的变质沉 凝灰岩成岩于南华纪,地层归属为上施组,而非库 里组。由于岩石组合相似,区域上库里组和上施组 的地层归属较为混乱。同时,样品中含较多青白口 纪晚期的锆石(~798 Ma的峰值年龄,占29%),与于 都地区库里组变质沉凝灰岩的年龄一致,推测赣南 地区青白口纪—南华纪火山-碎屑沉积建造的形成 时限在810~727 Ma。

5.2 碎屑锆石的来源

变质沉凝灰岩的碎屑锆石有两个主要的年龄 区间:810~780 Ma和748~727 Ma,暗示2件样品具 有相似的物质源区。锆石磨圆程度差,说明沉积物

表1	江西省宁都变质沉凝灰岩的LA	-ICPMS 碎屑锆石 U-I	Pb 年龄测试结果

Table 1 LA-ICPMS detrital	zircon U–Pb dating results of the meta-	-tuffites in Ningdu County of Jiangxi Provi	nce
		to ment to be the	2111.00

上口	- Db 232Th /38TI										谐和				
从专	PD	In/ U	$^{207}Pb/^{206}Pb$	1σ	207Pb/235U	1σ	$^{206}Pb/^{238}U$	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	度%
ND-b34-1	19.30	0.62	0.064270	0.001431	1.073149	0.028216	0.120586	0.001554	750	48	740	14	734	9	99
ND-b34-2	21.17	1.29	0.066335	0.001506	1.089063	0.024010	0.119337	0.001115	817	48	748	12	727	6	97
ND-b34-3	71.54	0.69	0.063816	0.000966	1.065426	0.020111	0.120905	0.001542	744	33	736	10	736	9	99
ND-b34-4	24.97	0.75	0.065270	0.001466	1.092813	0.023866	0.121870	0.001407	783	42	750	12	741	8	98
ND-b34-5	29.17	0.93	0.064631	0.001090	1.085136	0.021488	0.121955	0.001754	761	35	746	10	742	10	99
ND-b34-6	54.35	0.72	0.069331	0.000915	1.286275	0.027861	0.133932	0.002045	909	59	840	12	810	12	96
ND-B34-7	16.41	1.70	0.064322	0.001757	1.078349	0.031268	0.121568	0.001905	754	57	743	15	740	11	99
ND-b34-8	91.34	1.06	0.065736	0.000927	1.106285	0.016001	0.122166	0.001184	798	30	756	8	743	7	98
ND-b34-9	69.20	0.91	0.066148	0.000925	1.109976	0.018949	0.121598	0.001420	811	28	758	9	740	8	97
ND-b34-10	1386.63	1.08	0.343647	0.041147	223.038072	39.047321	1.958537	0.324097	3679	184	5495	179	6992	709	76
ND-b34-11	98.01	0.73	0.066990	0.001126	1.122905	0.021115	0.121698	0.001561	839	-164	764	10	740	9	96
ND-b34-12	12.44	1.10	0.066907	0.002759	1.205497	0.048401	0.131081	0.001542	835	87	803	22	794	9	98
ND-b34-13	40.01	0.88	0.063497	0.001347	1.063171	0.023125	0.121382	0.001139	724	44	735	11	739	7	99
ND-b34-14	79.16	1.01	0.065593	0.000942	1.194746	0.020739	0.131887	0.001312	794	34	798	10	799	7	99
ND-b34-15	102.24	1.84	0.065038	0.001014	1.091590	0.018452	0.121775	0.001323	776	33	749	9	741	8	98
ND-b34-16	63.10	0.71	0.065995	0.001052	1.208897	0.025606	0.133102	0.002258	806	33	805	12	806	13	99
ND-b34-17	105.15	0.73	0.064863	0.000765	1.094575	0.016593	0.122170	0.001221	769	24	751	8	743	7	98
ND-b34-18	43.35	2.46	0.066216	0.001575	1.114296	0.027313	0.122141	0.001258	813	49	760	13	743	7	97
ND-b34-19	52.52	1.10	0.063932	0.001174	1.170650	0.026147	0.132580	0.001642	739	38	787	12	803	9	98
ND-b34-20	68.89	1.25	0.063511	0.001394	1.052614	0.026318	0.120091	0.001732	724	46	730	13	731	10	99
ND-b34-21	15.91	2.45	0.071647	0.003176	1.184036	0.049290	0.121380	0.002595	976	91	793	23	738	15	92
ND-b34-22	80.83	1.11	0.077655	0.001072	1.947383	0.032458	0.181631	0.001977	1139	27	1098	11	1076	11	98
ND-b34-23	64.07	0.63	0.068516	0.001535	1.249290	0.044377	0.130474	0.002327	883	46	823	20	791	13	95
ND-b34-24	58.29	0.74	0.064229	0.000987	1.073928	0.018964	0.121226	0.001371	750	32	741	9	738	8	99
ND-b34-25	69.82	0.92	0.067824	0.001337	1.139457	0.028242	0.121859	0.002104	865	41	772	13	741	12	95
ND-b34-26	37.17	0.76	0.065256	0.001132	1.087267	0.020918	0.120586	0.001079	783	37	747	10	734	6	98
ND-b34-27	50.34	0.92	0.066447	0.001132	1.100439	0.020379	0.119909	0.001223	820	37	754	10	730	7	96
ND-b34-28	52.60	0.62	0.064362	0.001002	1.060192	0.018168	0.119326	0.001171	754	33	734	9	727	7	99
ND-b34-29	43.44	0.71	0.064650	0.001113	1.067527	0.018528	0.119784	0.001158	765	35	738	9	729	7	98
ND-b34-30	20.37	1.05	0.062694	0.001780	1.042308	0.030420	0.120311	0.001127	698	66	725	15	732	6	98
ND-b34-31	70.00	0.82	0.064876	0.001040	1.087429	0.018642	0.121484	0.001216	770	31	747	9	739	7	98
ND-b34-32	55.89	0.82	0.065614	0.001108	1.090972	0.020863	0.120184	0.001113	794	31	749	10	732	6	97
ND-b34-33	62.78	1.12	0.065725	0.001167	1.091957	0.019674	0.120482	0.001089	798	37	749	10	733	6	97
ND-b34-34	12.74	1.23	0.072107	0.002328	1.307778	0.043926	0.131525	0.001649	991	66	849	19	797	9	93
ND-b34-35	33.44	1.16	0.066481	0.001650	1.211519	0.029637	0.133047	0.002032	820	52	806	14	805	12	99
ND-b34-36	24.24	0.88	0.066333	0.001283	1.103478	0.022491	0.120738	0.001451	817	41	755	11	735	8	97
ND-b34-37	65.66	1.75	0.065456	0.000986	1.106315	0.017133	0.122541	0.001059	791	27	756	8	745	6	98
ND-b34-38	37.31	0.32	0.065177	0.001079	1.095728	0.018403	0.122115	0.001297	789	34	751	9	743	7	98
ND-b34-39	151.65	0.60	0 177700	0.003863	9 600356	0 177041	0 391708	0 004769	2632	69	2397	17	2131	22	88
ND-b34-40	101.23	0.65	0.089155	0.001443	1 656303	0.025599	0 134891	0.001127	1409	31	992	10	816	6	80
ND-b34-41	58 50	1.26	0.066481	0.001062	1 119558	0.023051	0.122111	0.001715	820	33	763	11	743	10	97
ND-b34-42	30.32	0.72	0.066921	0.001309	1 128221	0.026836	0.121890	0.001641	835	41	767	13	741	9	96
ND-b34-43	54.21	0.72	0.068234	0.001166	1.120221	0.024352	0.121690	0.001249	876	36	827	11	808	7	97
ND-b34-44	75 20	0.61	0.066206	0.000946	1 068247	0.017869	0 117322	0.001518	813	30	738	9	715	9	96
ND-b34-45	40.24	0.98	0.066960	0.001332	1 115409	0.025113	0 120807	0.001513	837	42	761	12	735	9	96
ND-h34-46	37 94	0.71	0.067165	0.001354	1 124017	0.023113	0 121364	0.001532	843	-158	765	12	738	9	96
ND-b34-47	48.06	0.70	0.063831	0.001270	1 145743	0.024503	0 130378	0.001577	744	42	775	12	790	9	98
ND-b34-48	28.03	1 98	0.064562	0.001270	1.080012	0.028384	0 121999	0.001609	761	57	744	14	742	9	99
ND-h34-40	19 94	0.90	0.067391	0.001948	1 213541	0.038135	0 130871	0.002192	850	60	807	17	793	12	98
ND-b34-50	29.67	0.85	0.066678	0.001588	1 209919	0.029743	0 131647	0.001259	828	50	805	14	797	7	99
	<u>_</u> ,.07	0.05	5.000070	5.001500	1.20//1/	5.027145	0.10104/	5.001237	040	20	000	1.1	171		

续表	1

·					同位素	长伯				Ē	表面年龄	/Ma			
点号	Pb	²³² Th/ ²³⁸ U	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	$1\sigma^2$	⁰⁶ Pb/ ²³⁸ U	1σ	谐和度/%
ND-b34-51	16.06	2.31	0.071441	0.002154	1.202270	0.039980	0.122085	0.001697	970	62	802	18	743	10	92
ND-b34-52	71.90	0.77	0.066180	0.000985	1.111470	0.021180	0.121743	0.001522	813	27	759	10	741	9	97
ND-b34-53	69.66	0.43	0.065627	0.000877	1.111144	0.019290	0.122653	0.001338	794	33	759	9	746	8	98
ND-b34-54	49.14	0.81	0.065512	0.001037	1.108331	0.018106	0.123100	0.001395	791	33	757	9	748	8	98
ND-b34-55	67.09	0.82	0.064918	0.000942	1.082068	0.018421	0.120740	0.001021	772	229	745	9	735	6	98
ND-b34-56	36.97	1.06	0.066403	0.001234	1.103017	0.023567	0.120578	0.001637	820	34	755	11	734	9	97
ND-b34-57	90.91	0.97	0.065581	0.000924	1.094469	0.014883	0.121323	0.001070	794	34	751	7	738	6	98
ND-b34-58	103.26	6 0.49	0.067369	0.000895	1.128920	0.018260	0.121720	0.001488	850	28	767	9	740	9	96
ND-b34-59	62.06	2.03	0.066067	0.000965	1.103238	0.017591	0.121117	0.001061	809	31	755	8	737	6	97
ND-b34-60	59.84	0.89	0.064782	0.001085	1.080735	0.019523	0.121151	0.001261	769	234	744	10	737	7	99
ND-b34-61	141.85	5 1.20	0.120921	0.001330	5.836179	0.087585	0.349832	0.003981	1970	20	1952	13	1934	19	99
ND-b34-62	32.51	1.15	0.063831	0.001267	1.074895	0.023517	0.122196	0.001495	744	42	741	12	743	9	99
ND-b34-63	30.53	2.43	0.066108	0.001673	1.100442	0.028372	0.120765	0.001209	809	47	754	14	735	7	97
ND-b34-64	39.27	0.82	0.065551	0.001291	1.090062	0.022672	0.120723	0.001280	791	42	749	11	735	7	98
ND-b34-65	35.84	1.08	0.063457	0.001135	1 061940	0.021502	0 121461	0.001521	724	37	735	11	739	9	99
ND-b34-66	57.18	0.89	0.066370	0.001051	1 107811	0.018456	0.121056	0.001202	818	33	757	9	737	7	97
ND-b34-67	74.41	1.56	0.066775	0.000954	1 128880	0.021079	0.122281	0.001202	831	-169	767	10	744	9	96
ND-b34-68	56.32	1.02	0.064347	0.001029	1.020000	0.019078	0.121571	0.001154	754	33	744	0	740	7	90
ND b34.60	73 55	0.86	0.004547	0.001027	1.0071/1	0.016370	0.120365	0.0001134	800	31	752	8	733	5	07
ND-b34-09	150.18	2 1 26	0.28/381	0.000990	12 647947	1 1/2708	0.120505	0.000910	3387	109	2654	85	1865	111	65
ND-b34-70	36.33	1 10	0.06/101	0.001300	1 080862	0.02/373	0.122263	0.022717	748	10)	744	12	744	0	99
ND b34 72	23.85	0.78	0.068810	0.001570	1.000002	0.024575	0.122205	0.001472	804	42	775	14	730	8	0/
ND b24 72	20.45	0.78	0.008810	0.001379	1.145557	0.029309	0.120239	0.001341	1780	21	1740	14	1725	10	08
ND-034-73	29.45	0.94	0.106/07	0.001878	4.397880	0.012860	0.300723	0.003702	1709	26	741	7	721	6	90
ND-034-74	40.25	0.78	0.004923	0.000774	1.075570	0.013809	0.119997	0.001003	704	20	702	10	702	6	90
ND-034-73	40.55	0.78	0.003377	0.001203	1.103007	0.022303	0.130775	0.001075	761	22	795	10	792 800	10	99
ND-034-70	41.17	0.01	0.004370	0.001055	1.1/949/	0.024133	0.132173	0.001834	/01	33	791	11	600	10	90
ND-034-//	237.70	0.07	0.070967	0.000/43	1.115007	0.012903	0.113905	0.000961	907	-11	701	0	695	0	91
ND-034-78	52.02	1.00	0.069920	0.000882	1.080083	0.014979	0.112151	0.001287	928	20	744	/	085		91
ND-034-79	53.92	1.00	0.065981	0.001268	1.094365	0.021266	0.120223	0.001064	806	45	/51	10	732	6	97
ND-034-80	168.92	1.68	0.0/051/	0.001310	1.191530	0.021310	0.122502	0.001005	943	38	797	10	745	6	93
ND-034-81	106.05	0.07	0.065310	0.000906	1.083/11	0.016038	0.120460	0.001289	/83	30	/45	8	/33	/	98
ND-b34-82	42.55	0.97	0.068498	0.001503	1.251521	0.031972	0.132598	0.0021/2	883	44	824	14	803	12	97
ND-b34-83	15.43	0.87	0.065380	0.001878	1.084869	0.030/21	0.121549	0.001903	787	66	746	15	739	11	99
ND-b34-84	42.91	0.83	0.064344	0.00119/	1.0//412	0.021633	0.121409	0.00113/	/54	34	/42	11	/39	/	99
ND-b34-85	28.12	0.79	0.064839	0.001304	1.182227	0.030196	0.132532	0.002438	/69	42	792	14	802	14	98
ND-b34-86	48.89	0.71	0.066090	0.000981	1.110878	0.018862	0.121946	0.001322	809	25	759	9	742	8	97
ND-b34-87	13.39	1.53	0.065940	0.002465	1.096879	0.041550	0.120763	0.001416	806	79	752	20	735	8	97
ND-b34-88	104.83	5 0.73	0.064232	0.000776	1.002171	0.013638	0.113147	0.001018	750	26	705	7	691	6	98
ND-b34-89	57.25	0.89	0.066595	0.001172	1.188641	0.023275	0.129463	0.001247	833	37	795	11	785	7	98
ND-b34-90	13.96	0.54	0.063498	0.001532	1.058209	0.027823	0.121248	0.001976	724	52	733	14	738	11	99
ND-b34-91	39.42	1.00	0.064733	0.001332	1.072050	0.022714	0.120329	0.001194	765	44	740	11	732	7	99
ND-b34-92	174.31	0.65	0.064724	0.000693	1.076006	0.013911	0.120526	0.000988	765	22	742	7	734	6	98
ND-b34-93	59.38	1.12	0.063509	0.001006	1.063997	0.018819	0.121522	0.001137	724	33	736	9	739	7	99
ND-b34-94	78.50	1.21	0.065053	0.000985	1.075957	0.018001	0.120158	0.001284	776	33	742	9	731	7	98
ND-b34-95	70.85	1.45	0.065442	0.000915	1.099071	0.018515	0.121751	0.001266	789	29	753	9	741	7	98
ND-b34-96	51.51	0.93	0.064251	0.001126	1.165132	0.025636	0.131709	0.001918	750	32	784	12	798	11	98
ND-b34-97	51.72	0.49	0.261381	0.039774	5.342105	0.693094	0.173485	0.010127	3255	242	1876	111	1031	56	41
ND-b34-98	70.48	0.55	0.064531	0.000897	1.080012	0.017623	0.121412	0.001318	759	29	744	9	739	8	99
ND-b34-99	27.64	0.99	0.068271	0.001828	1.132307	0.031141	0.120236	0.001095	876	56	769	15	732	6	95
ND-b34-100	79.88	1.57	0.063449	0.000954	1.058941	0.019311	0.121056	0.001551	724	27	733	10	737	9	99

															续表1
占旦	Dh	232 Th /2381	r		同位	素比值				表	面年龄/	Ma			
从与	PO	III/ C	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	泊州/灵/70
ND-b34-101	65.31	0.98	0.063052	0.00145	0.968722	0.019672	0.112206	0.001511	709	53	688	10	686	9	99
ND-b34-102	59.91	0.91	0.063245	0.000958	1.048541	0.018188	0.120178	0.001292	717	33	728	9	732	7	99
ND-b34-103	36.86	1.21	0.064796	0.001469	1.081594	0.026807	0.120812	0.001224	769	47	744	13	735	7	98
ND-b34-104	32.37	0.83	0.068271	0.001537	1.142447	0.02393	0.121994	0.001423	876	47	774	11	742	8	95
ND-b34-105	62.75	0.81	0.062902	0.001178	1.049519	0.020365	0.12091	0.001215	706	40	729	10	736	7	99
ND-b34-106	83.18	0.69	0.065376	0.000825	1.087724	0.016975	0.120532	0.001341	787	26	747	8	734	8	98
ND-b34-107	50.39	0.88	0.063856	0.001082	1.06983	0.020709	0.121444	0.001465	737	35	739	10	739	8	99
ND-034-108	35.05	2.16	0.063/43	0.001392	1.0598/	0.022/24	0.120814	0.00148/	/33	20	750	11	735	9	99
ND-034-109	/8.0	0.90	0.060311	0.000921	1.110898	0.019109	0.120927	0.001448	833	28	/39 727	9	/30	8 7	96
ND-b34-110	26.06	1.32	0.004229	0.001043	1.007338	0.019798	0.120309	0.001293	750	52	784	14	795	11	99
ND-b34-112	136 31	0.65	0.11534	0.001246	5 275441	0.020004	0.330741	0.00150	1887	20	1865	13	1842	17	98
ND-b34-113	40.78	0.83	0.065272	0.001374	1.091933	0.023642	0.121339	0.001269	783	44	749	11	738	7	98
ND-b34-114	28.18	0.82	0.063103	0.001517	1.145684	0.025852	0.132061	0.001511	722	50	775	12	800	9	96
ND-b34-115	30.63	1.39	0.064357	0.001468	1.078411	0.026044	0.121597	0.001415	754	247	743	13	740	8	99
ND-b34-116	21.65	0.57	0.066757	0.001458	1.118684	0.027054	0.121255	0.001306	831	46	762	13	738	8	96
ND-b34-117	129	0.51	0.064937	0.000742	1.079472	0.014341	0.120593	0.001127	772	24	743	7	734	6	98
ND-b34-118	42.29	0.89	0.065669	0.001254	1.093512	0.024583	0.121029	0.001773	796	40	750	12	736	10	98
ND-b34-119	27.49	1.05	0.0669	0.001683	1.118389	0.032119	0.121369	0.001997	835	53	762	15	738	11	96
ND-b34-120	31.72	0.92	0.066617	0.001411	1.227198	0.030249	0.133394	0.001505	826	48	813	14	807	9	99
ND-b5-1	24.01	0.88	0.067337	0.001726	1.232566	0.033573	0.132959	0.001602	850	54	816	15	805	9	98
ND-b5-2	45.16	0.84	0.064758	0.001004	1.176739	0.020624	0.131674	0.001262	766	27	790	10	797	7	99
ND-b5-3	83.03	0.99	0.065684	0.000807	1.180924	0.015339	0.130463	0.001126	798	26	792	7	791	6	99
ND-b5-4	36.99	0.97	0.064199	0.001238	1.229559	0.023587	0.139229	0.001466	750	42	814	11	840	8	96
ND-65-5	6/.94	0.96	0.066915	0.000952	1.216904	0.019801	0.131891	0.001494	835	30	808	9	799	9	98
ND-05-0	12.23	0.58	0.000809	0.001012	1.2050	0.01/94	0.130/13	0.001051	835 709	-108	803	87	792	6 5	98
ND 5 8	02.04 11.87	0.99	0.003/0/	0.000893	1.184033	0.01385	0.130444	0.000933	798 850	29	795 818	11	790 805	2 8	99
ND-b5-9	37 72	0.95	0.007301	0.004072	1.230720	0.024179	0.131641	0.001328	1159	102	900	32	797	8	87
ND-b5-10	108.3	1.28	0.06683	0.001029	1 217683	0.021132	0 13169	0.0011424	831	-168	809	10	798	7	98
ND-b5-11	23.84	1.02	0.06883	0.001631	1.227444	0.033615	0.12869	0.001825	894	49	813	15	780	10	95
ND-b5-12	40.17	1.69	0.068472	0.001337	1.239293	0.025438	0.130982	0.001489	883	41	819	12	793	8	96
ND-b5-13	58.88	0.68	0.065629	0.001195	1.207884	0.027271	0.13292	0.001861	794	32	804	13	805	11	99
ND-b5-14	16.94	0.95	0.066807	0.001811	1.206313	0.035389	0.130637	0.001917	831	56	804	16	792	11	98
ND-b5-15	69.77	0.55	0.066147	0.000951	1.217491	0.023151	0.133456	0.002237	811	27	809	11	808	13	99
ND-b5-16	63.23	1.13	0.067081	0.001152	1.200244	0.021908	0.129631	0.001892	840	35	801	10	786	11	98
ND-b5-17	61.2	1.04	0.066465	0.001024	1.201757	0.019681	0.130769	0.001141	820	33	801	9	792	7	98
ND-b5-18	45.75	0.81	0.066586	0.001186	1.20651	0.025199	0.131533	0.002218	833	37	804	12	797	13	99
ND-b5-19	42.23	1.08	0.06453	0.001163	1.171546	0.02227	0.131482	0.001382	759	39	787	10	796	8	98
ND-b5-20	73.59	1.09	0.07326	0.001163	1.333031	0.028698	0.131119	0.00156	1020	33	860	12	794	9	92
ND-b5-21	19.83	0.82	0.065945	0.001986	1.190713	0.039432	0.130501	0.002285	806	64	796	18	791	13	99
ND-b5-22	53	1.22	0.06661	0.001033	1.100259	0.01968	0.11946	0.00115/	826	31	/53	10	121	/	96
ND-05-23	88.80	1.81	0.064909	0.001	1.075297	0.016224	0.120/54	0.0013/9	765	32 21	743	8	/35	87	98
ND-03-24	11.07	0.5	0.004008	0.000901	0.21574	0.019001	0.120579	0.001283	200	50	741 270	9	733 777	2	98
ND-05-25	51.27	1.19	0.052142	0.001372	1 152001	0.008393	0.043933	0.000488	730	39	279	11	277 791	3 7	99
ND-b5-20	250.41	1.17	0.001026	0.000838	2 508028	0.024003	0.199704	0.001225	1447	18	1274	16	1174	23	91
ND-b5-28	86.26	1.32	0.066003	0.000863	1 209658	0.018155	0.132924	0.001195	806	23	805	8	805	8	99
ND-b5-29	53.03	0.85	0.06574	0.00098	1.197366	0.023721	0.131776	0.001641	798	31	799	11	798	9	99
ND-b5-30	87.69	0.9	0.064573	0.000845	1.079621	0.018082	0.121184	0.001445	761	28	743	9	737	8	99
ND-b5-31	32.83	0.87	0.06484	0.001199	1.173015	0.028543	0.13082	0.002008	769	39	788	13	793	11	99
ND-b5-32	56.67	0.9	0.069153	0.001331	1.280537	0.036945	0.133083	0.002032	903	39	837	16	805	12	96
ND-b5-33	45.42	0.95	0.065339	0.001056	1.085325	0.020174	0.120495	0.001463	787	35	746	10	733	8	98
ND-b5-34	19.27	0.73	0.067281	0.001711	1.134447	0.033036	0.12211	0.001919	856	52	770	16	743	11	96
ND-b5-35	44.65	0.87	0.066649	0.001112	1.118786	0.020213	0.121785	0.001305	828	35	762	10	741	8	97
ND-b5-36	62.44	1.12	0.066155	0.000936	1.115395	0.017625	0.122651	0.001677	813	30	761	8	746	10	98
ND-b5-37	48.29	0.86	0.063682	0.001059	1.150056	0.023014	0.130907	0.001608	731	35	777	11	793	9	97
ND-b5-38	53.24	0.77	0.163599	0.010545	3.308015	0.236759	0.146459	0.008092	2494	109	1483	56	881	46	49
ND-b5-39	/3.44	0.83	0.128684	0.003518	2.51734	0.081723	0.141469	0.001707	2080	48	1277	24	853	10	60
ND-b5-40	45.78	0.92	0.065873	0.001481	1.112386	0.033373	0.121418	0.001792	1200	48	/59	16	/39	10	97

第48卷 第2期	赵芝等:赣南南华纪变质沉凝灰岩的碎屑锆石 U-Pb 年代学及其对裂谷盆地形成时间的限定	573
----------	---	-----

															续表1
占是	Dh	²³² Th/ ²³⁸ I I			同位素	长住				表	面年龄	/Ma			送和 亩 /0/。
尽う	10	111/ 0	²⁰⁷ Pb/ ²⁰⁶ Pb 1	σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	J 1σ	206Pb/238U	J 1σ	旧小叶)文//0
ND-b5-41	82.2	1.23	0.063346 0.000	0874	1.070091	0.018611	0.122388	0.001449	720	25	739	9	744	8	99
ND-b5-42	75.24	1.03	0.069663 0.00	1406	1.166527	0.030718	0.120997	0.00148	918	43	785	14	736	9	93
ND-b5-43	44.3	0.87	0.062837 0.00	1148	1.062639	0.020203	0.122729	0.001259	702	39	735	10	746	7	98
ND-b5-44	64.11	1.37	0.063812 0.000	0883	1.068854	0.016565	0.121447	0.001192	744	30	738	8	739	7	99
ND-b5-45	70.32	1.29	0.06651 0.00	1147	1.208248	0.020215	0.131968	0.001234	833	35	804	9	799	7	99
ND-b5-46	62.97	0.63	0.065154 0.00	085	1.10026	0.019772	0.122212	0.001458	789	27	753	10	743	8	98
ND-b5-47	73.62	0.83	0.066257 0.00	1001	1.192446	0.019374	0.130388	0.001036	815	36	797	9	790	6	99
ND-b5-48	32.95	0.95	0.063899 0.00	1307	0.960783	0.020159	0.109021	0.000965	739	47	684	10	667	6	97
ND-b5-49	97.38	1.12	0.064967 0.000	0789	1.092077	0.01577	0.121732	0.001061	772	26	750	8	741	6	98
ND-b5-50	91.48	1.05	0.065538 0.000	0812	1.101809	0.015697	0.121748	0.000995	791	26	754	8	741	6	98
ND-b5-51	53.48	0.77	0.064664 0.000	0935	1.168208	0.021481	0.130864	0.001644	765	31	786	10	793	9	99
ND-b5-52	35.68	1.57	0.065908 0.00	1109	1.098387	0.020168	0.120927	0.001297	803	35	753	10	736	7	97
ND-b5-53	52.29	0.9	0.067252 0.000	0959	1.122176	0.020211	0.120789	0.001321	856	30	764	10	735	8	96
ND-b5-54	46.39	1.22	0.075411 0.002	2708	1.265347	0.049245	0.121043	0.001129	1080	72	830	22	737	6	88
ND-b5-55	72.84	0.79	0.068058 0.00	1126	1.143821	0.023738	0.121819	0.001574	870	35	774	11	741	9	95
ND-b5-56	36.92	0.85	0.065636 0.00	1162	1.093703	0.02253	0.120693	0.001463	794	32	750	11	735	8	97
ND-b5-57	29.35	0.7	0.063482 0.00	1367	1.058227	0.022522	0.121083	0.001214	724	44	733	11	737	7	99
ND-b5-58	88.04	0.99	0.064243 0.000	0818	1.0763	0.016659	0.121357	0.001171	750	26	742	8	738	7	99
ND-b5-59	18.06	0.91	0.065811 0.002	2663	1.004772	0.03678	0.111235	0.001419	1200	81	706	19	680	8	96
ND-b5-60	41.38	1.07	0.065814 0.00	1167	1.103922	0.023781	0.121529	0.001606	1200	38	755	11	739	9	97
ND-b5-61	43.4	1.08	0.064926 0.00	1098	1.07351	0.020054	0.120243	0.001551	772	31	740	10	732	9	98
ND-b5-62	71.99	0.88	0.066186 0.00	1062	1.107249	0.022402	0.120988	0.001324	813	33	757	11	736	8	97
ND-b5-63	39.49	1.15	0.066775 0.00	1221	1.111251	0.023491	0.120402	0.001146	831	43	759	11	733	7	96
ND-b5-64	47.09	0.65	0.063992 0.000	0907	1.055812	0.017289	0.11959	0.001207	743	31	732	9	728	7	99
ND-b5-65	76.93	0.9	0.063614 0.000	0974	1.063472	0.019705	0.120984	0.001168	728	33	736	10	736	7	99
ND-b5-66	38.05	0.57	0.064541 0.00	1255	1.063094	0.019668	0.119612	0.000995	761	42	735	10	728	6	99
ND-b5-67	61.2	0.67	0.069657 0.00	1271	1.161459	0.024207	0.120718	0.001016	918	38	783	11	735	6	93
ND-b5-68	102.93	2.26	0.064411 0.00	078	0.996534	0.012518	0.11219	0.000743	755	30	702	6	685	4	97
ND-b5-69	80.86	0.79	0.065301 0.000	0873	1.081623	0.016908	0.120188	0.001291	783	23	744	8	732	7	98
ND-b5-70	10.55	0.87	0.069854 0.002	2711	1.162927	0.040922	0.121958	0.001944	924	84	783	19	742	11	94
ND-b5-71	81.58	1.13	0.065064 0.000	0977	1.086256	0.019955	0.121011	0.001363	776	31	747	10	736	8	98
ND-b5-72	39.49	1.2	0.070495 0.00	201	1.176625	0.043426	0.120196	0.001563	943	64	790	20	732	9	92
ND-b5-73	44.95	0.97	0.063077 0.00	1029	1.052417	0.020665	0.120827	0.00143	711	35	730	10	735	8	99
ND-b5-74	69.82	0.68	0.064853 0.000	0795	1.069658	0.015969	0.119553	0.001227	769	26	739	8	728	7	98
ND-b5-75	57.69	0.83	0.063441 0.000	0984	1.069026	0.018902	0.122208	0.001362	724	33	738	9	743	8	99
ND-b5-76	246.52	0.69	0.206128 0.00	1676	15.259719	0.158516	0.536737	0.004984	2876	13	2832	10	2770	21	97
ND-b5-77	8.85	1.89	0.066555 0.002	2139	1.103666	0.033464	0.121719	0.002074	833	72	755	16	740	12	98
ND-b5-78	20.26	3.22	0.064257 0.00	1906	1.066303	0.030355	0.12119	0.001694	750	63	737	15	737	10	99
ND-b5-79	138.82	2 1.48	0.065475 0.000	0751	1.096137	0.013712	0.121155	0.000775	791	24	751	7	737	4	98
ND-b5-80	29	0.88	0.067491 0.00	1621	1.126266	0.029702	0.12171	0.002541	854	-149	766	14	740	15	96
ND-b5-81	28.14	0.77	0.065246 0.00	1642	1.103506	0.033342	0.122082	0.001577	783	54	755	16	743	9	98
ND-b5-82	74.72	1.08	0.074145 0.00	1991	1.38273	0.053755	0.132724	0.001849	1056	54	882	23	803	11	90
ND-b5-83	48.26	0.92	0.067612 0.00	1398	1.256529	0.03747	0.133778	0.002034	857	43	826	17	809	12	97
ND-b5-84	59.87	1.03	0.122394 0.004	4877	2.370521	0.109576	0.136648	0.002086	1992	70	1234	33	826	12	60
ND-b5-85	31.81	1.08	0.0659 0.00	1665	1.100373	0.029871	0.120857	0.001261	803	53	754	14	735	7	97
ND-b5-86	85.04	0.83	0.06606 0.00	1011	1.215319	0.02469	0.132844	0.001278	809	31	808	11	804	7	99
ND-b5-87	54.93	0.96	0.075588 0.00	134	1.501565	0.026608	0.144178	0.00168	1084	35	931	11	868	9	93
ND-b5-88	56.09	0.88	0.065864 0.00	1178	1.20655	0.020454	0.132947	0.001096	1200	37	804	9	805	6	99
ND-b5-89	29.21	1.71	0.070194 0.002	2242	1.131452	0.040728	0.116631	0.002262	1000	60	768	19	711	13	92
ND-b5-90	103.71	1.34	0.064051 0.000	0828	1.071119	0.020461	0.121018	0.001761	743	28	739	10	736	10	99
ND-b5-91	39.56	0.91	0.0653 0.00	1209	1.089403	0.021234	0.121124	0.001366	783	44	748	10	737	8	98
ND-b5-92	34.54	0.68	0.065615 0.00	109	1.195066	0.022278	0.131821	0.001185	794	34	798	10	798	7	99
ND-b5-93	64.47	1.01	0.06471 0.00	1025	0.980799	0.023181	0.109697	0.002057	765	33	694	12	671	12	96
ND-b5-94	52.67	1.01	0.064728 0.000	0846	1.077425	0.016198	0.12055	0.001172	765	28	742	8	734	7	98
ND-b5-95	38.48	1.03	0.067856 0.00	1089	1.125652	0.020631	0.119935	0.000919	865	33	766	10	730	5	95
ND-b5-96	65.2	1.06	0.063335 0.000	0951	1.157115	0.019467	0.132246	0.001156	720	31	781	9	801	7	97
ND-b5-97	10.05	1.29	0.062885 0.00	1775	1.046157	0.028514	0.121269	0.001612	706	61	727	14	738	9	98
ND-b5-98	36.74	0.93	0.067692 0.00	1606	1.140041	0.029585	0.121749	0.001245	859	50	773	14	741	7	95
ND-b5-99	57.15	1.13	0.064814 0.000	0983	1.086165	0.019702	0.121277	0.001383	769	28	747	10	738	8	98
ND-b5-100	55.79	0.65	0.063434 0.000	0997	1.073153	0.019434	0.122549	0.001427	724	33	740	10	745	8	99
ND-b5-101	48.1	1.1	0.065597 0.00	1177	1.067039	0.020466	0.117918	0.001435	794	38	737	10	719	8	97
ND-b5-102	53.34	0.86	0.349969 0.02	3581	9.89423	1.03161	0.192895	0.008368	3707	70	2425	96	1137	45	27
ND-b5-103	29.16	1	0.126932 0.009	9641	2.335255	0.178813	0.134556	0.002501	2057	134	1223	54	814	14	59
ND-b5-104	23.03	0.58	0.10736 0.01	009	0.714953	0.06317	0.049327	0.00103	1755	173	548	37	310	6	44
ND-b5-105	55.13	1.12	0.084516 0.002	2775	1.523825	0.047435	0.131287	0.001193	1306	65	940	19	795	7	83
ND-b5-106	56.08	1.08	0.066279 0.00	1053	1.207119	0.021312	0.131903	0.00106	817	32	804	10	799	6	99
ND-b5-107	19.88	1.01	0.062331 0.00	1397	1.127738	0.030645	0.130908	0.00178	687	47	767	15	793	10	96
ND-b5-108	34.33	0.96	0.06593 0.00	1216	1.202824	0.023243	0.132357	0.001177	806	39	802	11	801	7	99

图 5 江西省宁都地区变质沉凝灰岩中碎屑锆石阴极发光图像及年龄 Fig. 5 Detrital zircon cathodoluminescence images and U-Pb ages of the meta-tuffites in Ningdu County of Jiangxi Province

源区较近。赣南周潭群分布于弋阳、余江及金溪等 地(图1),为一套高绿片岩相一低角闪岩相变质岩, 主要由灰黑色斜长片麻岩、斜长变粒岩夹绿泥石阳 起石片岩、斜长角闪岩组成,原岩为一套海相富铝 质泥砂质建造(吴新华等,2001),厚度大于1200 m, 未见底。王孝磊等(2013)对其进行了碎屑锆石 U-Pb 定年,3件样品最年轻的年龄峰值分别为843 Ma、830 Ma 和809 Ma,且有大量1800~1500 Ma 和

图 6 江西省宁都地区变质沉凝灰岩中的碎屑锆石 U-Pb 年龄谐和图(a, c)及相对频率图(b, d) Fig. 6 Detrital zircon U-Pb concordia diagram (a, c) and relative frequency plot (b, d) of the meta-tuffites in Ningdu County of Jiangxi Province

2500~2300 Ma的老锆石。本文样品中缺失 843 Ma 和830 Ma的峰值年龄,暗示赣南浅变质岩系和周潭 群的物质源区存在较大差异。研究显示,赣东北一 皖南一浙西北一带普遍存在 810~780 Ma 和 748~ 727 Ma的火山岩。如,赣东北青白口纪晚期一南华 纪自下而上由桃源组(上墅组)、罗村组和听门组组 成(张恒等,2015a)(图7)。其中,桃源组为陆相凝 灰岩、流纹岩、玄武岩、火山碎屑岩及火山角砾岩, 流纹岩的锆石 U-Pb 年龄为 803 Ma(王剑等, 2013)。罗村组以砾岩、泥岩及粉砂质泥岩为主。 听门组以砾岩、杂砂岩夹粉砂岩、粉砂质泥岩、页岩 为主。皖南地区同期火山-沉积岩由历口群和休宁 组组成,沉积厚度约1600 m(图7)(邓奇等,2019)。 历口群下部邓家组由石英砂岩、粉砂岩和板岩组 成,上部铺岭组为火山岩,其中流纹岩和凝灰岩的 锆石年龄介于765~751 Ma(Wang et al., 2012)。浙西

地区同期火山-沉积岩由虹赤村组/上墅组(二者为 同期异相)和休宁组组成(图7)(邓奇等,2019),沉 积厚度超过4300 m。虹赤村组以岩屑砂岩为主夹 少量火山岩,火山岩的锆石 U-Pb 年龄为 797 Ma (Li et al., 2003)。上墅组为双峰式火山岩组合,锆 石 U-Pb 年龄在 802~773 Ma(Li et al., 2008; Zheng et al., 2008; Wang et al., 2012)。休宁组主要为凝灰 质砂岩、凝灰质粉砂岩、凝灰岩及凝灰质、硅质泥岩 相互交替,底部为紫红色砾岩和砂砾岩,其中凝灰 岩的锆石 U-Pb 年龄为 785 Ma 和 727 Ma(邓奇等, 2019)。江南造山带中800~790 Ma和760~750 Ma 的岩浆活动存在明显差别,早期基性岩主要为岩石 圈地幔来源,晚期为岩石圈地幔和软流圈地幔双重 来源,代表两期不同构造背景下的岩浆事件(邓奇 等,2016)。由此推测,本文变质沉凝灰岩样品中 810~780 Ma的锆石来自赣东北一皖南一浙北一带

		裂陷	百海盆		裂陷海盆			
	715Ma	赣西南	赣南	赣东北(广丰)	皖南	浙西北	赣西−赣北	
	/15Ma		737Ma	听门组	休宁组	727Ma V休宁组	硐门组 马涧 ≤753Ma _桥组	
		* 上施组	✓上施组 756Ma 774Ma	罗村组	~锁修纸~~75HMa ~ 765Ma (+-	V PIC J 211	✓ 落可岽组 ≤769Ma	
		✓ 库里组	v 库里组		邓家组 宁	14 773 Ma 起赤村组 宁		
l	800Ma	神山组	神山组	₩ 源 组 (上 型 组) 2 303 Má	组	组 802Ma		
		v 1	2 3]4 [[]]5 ~~	6 7			

图7江西及其周边青白口纪一南华纪地层对比

1一海相火山-碎屑沉积;2一海相沉积;3一陆相火山岩;4一沉积岩;5一地层缺失;6一角度不整合;7一平行不整合

Fig.7 Stratigraphic correlation of Qingbaikou System with Nanhua system in Jiangxi and its adjacent regions

1-Volcano-clastic marine sediments; 2-Marine sediments; 3-Terrestrial volcanic rocks; 4-Sedimentary rock; 5-Stratigraphic break; 6-Angular unconformity; 7-Parallel unconformity

同期火山岩-沉积岩,748~727 Ma的锆石主要来自同期的火山灰。

5.3 赣南青白口纪晚期一南华纪沉积盆地的性质

赣南青白口纪一南华纪(810~727 Ma)出露一 套巨厚的海相火山-碎屑沉积建造,其中神山组以 黑色炭质或含炭千枚岩、含炭粉砂质千枚岩或板岩 为主,夹少许千枚岩和变余细砂岩,新余地区厚度 大于1050m,未见底,其上被库里组平行不整合覆 盖。库里组以千枚岩、凝灰质千枚岩和千枚状沉凝 灰岩为主,新余地区厚2425 m,永丰地区主要为浅 灰白色变沉凝灰岩夹多层中酸性熔岩,偶夹炭质绢 云千枚岩,厚1186m,被上施组整合覆盖。上施组 为一套变质凝灰质砂岩、变质沉凝灰岩及凝灰质板 岩互层,区域上岩性较稳定,宜春地区厚983m,宁 都地区厚544m,整合于库里组之上。宜春--永丰 一带下伏于古家组,宁都一带下伏于沙坝黄组(刘 亚光,1997)。神山组黑色岩系及含黄铁矿构造与 饥饿盆地的主要沉积相似,这种黑色岩系在湘桂次 级裂谷盆地中广泛分布(王剑等,2001),库里组和 上施组为海相火山岩相组合,可能是盆地堆积、充 填的产物。江南造山带发育的800~750 Ma的岩浆 岩形成于陆内裂谷盆地(徐先兵等,2015;邓奇等, 2016)。从沉积序列和岩浆特征推测赣南青白口纪 一南华纪火山-碎屑沉积形成于次级裂谷盆地。从 赣南至赣北,南华纪沉积物由单向物源为主,即同 期火山喷发物为主,改变为双向物源,即古老的陆 源物质和早期—同期的火山物源(王孝磊等,2013; Wang et al., 2013; 陈小勇等, 2015), 反映了南华纪 海、陆古地理单元差异的特征。区域上湘桂次级裂 谷盆地于沉积时限在819~814Ma(周汉文等,2002; Wang et al., 2003), 赣东北江南次级裂谷盆地于 803 Ma开始沉积(王剑等, 2013), 浙北次级裂谷盆 地约807 Ma开启(王剑, 2000)。680 Ma之后, 华南 进入稳定的陆缘滨海—浅海斜坡相沉积环境(舒良 树, 2012)。

6 结 论

(1)碎屑锆石 LA-ICP-MS U-Pb 测年结果表明,江西省宁都某离子吸附型稀土矿床中的2件变质沉凝灰岩样品具有相似的锆石年龄组成,主要分布在810~780 Ma、748~727 Ma和691~667 Ma三个年龄区间,峰值年龄分别为798 Ma(*n*=55)、737 Ma(*n*=127)和680 Ma(*n*=6),其次含有少量2.85~1.08 Ga的古老锆石。最年轻的一组碎屑锆石可能为同期火山灰携带的岩浆锆石,可代表沉凝灰岩的形成时代,即南华纪,地层应归属于上施组,而非库里组。

(2)赣南青白口纪晚期至南华纪巨厚的海相火山--沉积建造可能代表了华南古大陆解体之后的裂谷盆地沉积,宁都某地变质沉凝灰岩的碎屑锆石年龄约束了赣南次级裂谷盆地的沉积时限,即798~680 Ma。

致谢:感谢两位匿名审稿专家对本文提出的宝 贵意见,提高了文章质量。感谢中国地质科学院矿 产资源研究所白鸽研究员对第一作者在赣南稀土 成矿理论研究中的指导。他是白云鄂博稀土-铌-铁矿及南方离子吸附型稀土矿研究的先锋,也是白 云鄂博铌矿的发现者之一,为我国稀土事业做出了 杰出贡献。不幸的是,白鸽研究员于2020年1月26 日驾鹤西去,笔者谨以此文缅怀先生!

注释

●福建省冶金工业局. 1972. 1:20万宁化幅区域矿产调查报告限].

2南方工业学校.1997.1:5万长胜幅地质图及说明说[R].

References

- Chen Xiaoyong, Chen Guohua, Shu Limin, Yao Jinlong, Shu Liangshu. 2015. A study of the collision timing of Yangtze and Cathaysia blocks in the eastern Jiangnan orogenic belt, South China[J]. Xinjiang Geology, 33(4): 520–528(in Chinese with English abstract).
- Deng Qi, Wang Jian, Wang Zhengjiang, Cui Xiaozhuang, Shi Meifeng, Du Qiuding, Ma Long, Liao Shiyong, Ren Guangming. 2016. Middle Neoproterozoic magmatic activities and their constraints (830–750 Ma) on tectonic evolution of the Jiangnan orogen [J]. Geotectonica et Metallogenia, 40(4): 753–771(in Chinese with English abstract).
- Deng Qi, Wang Jian, Wang Zhengjiang, Yang Fei, Cui Xiaozhuang, Wang Jian, Ren Guangming, Zhou Xiaohua, Xiong Xiaohui, Cai Juanjuan. 2019. Depositional age of the Xiuning formation in the Jiande area, northwestern Zhejiang Province: Constraints from U– Pb zircon tuff geochronology[J]. Acta Geologica Sinica, 93(2): 414–427 (in Chinese with English abstract).
- Dong Shuwen, XueHuaimin, Xiang Xinkui, Ma Licheng. 2010. The discovery of Neoproterozoic pillow lava in spilite-ceratophyre of Lushan area, northern Jiangxi Province, and its geological significance [J]. Geology in China, 37(4): 1021–1033(in Chinese with English abstract).
- Gao Linzhi, Ding Xiaozhong, Cao Qian, Zhang Chuanheng. 2010. New geological time scale of Late Precambrian in China and geochronology [J]. Geology in China, 37(4): 1014–1020(in Chinese with English abstract).
- Gao Linzhi, Ding Xiaozhong, Liu Yanxue, Zhang Chuanheng, Zhang Heng, Huang Zhizhong, Xu Xingmiao, Zhou Zongyao. 2014a. SHRIMP zircon U-Pb dating of Neoproterozoic Chencai complex in Jiangshan-Shaoxing fault zone and its implications [J]. Geological Bulletin of China, 35(5): 641–648(in Chinese with English abstract).
- Gao Linzhi, Huang Zhizhong, Ding Xiaozhong, Liu Yanxue, Pang Jianfeng, Zhang Chuanheng. 2012b. Zircon SHRIMP U-Pb dating of Xiushui and Majianqiao Formations in northwestern Jiangxi Province [J]. Geological Bulletin of China, 31(7): 1086-1093(in Chinese with English abstract).
- Gao Linzhi, Huang Zhizhong, Ding Xiaozhong, Liu Yanxue, Zhang Chuanheng, Wang Ziqiang, Pang Jianfeng, Han Kunying. 2012a. The geochronological relationship between the Shaojiwa Formation and the Xingzi complex group in Northwestern Jiangxi

and the constraints on zircon SHRIMP U–Pb age[J]. Acta Geoscientica Sinica, 33(3): 295–304(in Chinese with English abstract).

- Gao Linzhi, Liu Yanxue, Ding Xiaozhong, Song Zhirui, Huang Zhizhong, Zhang Chuanheng, Zhang Heng, Shi Zhigang. 2013. Geochronographic dating of the Tieshajie formation in the Jiangshan–Shaoxing fault zone and its implications [J]. Geological Bulletin of China, 32(7): 996–1005(in Chinese with English abstract).
- Gao Linzhi, Yang Minggui, Ding Xiaozhong, Liu Yanxue, Liu Xun, Ling Lianhai, Zhang Chuanheng. 2008. SHRIMP U– Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen Groups in South China——Constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt [J]. Geological Bulletin of China, 27 (10): 1744–1751(in Chinese with English abstract).
- Guan Junpeng, He Bin, Li Dewei. 2010. SIMS U– Pb dating of the detrital zircons from the Xingzi Group in Lushan area and its geological significance [J]. Geotectonica et Metallogenia, 34(3): 402–407(in Chinese with English abstract).
- Guo Naxin. 2015. Genesis Relationship Between Two Types of Mineralization in Yinkeng ore field, Southern Jiangxi Province, Nanling Region [D]. Beijing: Chinese Academy of Geological Sciences, 1–162 (in Chinese with English abstract).
- Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U–Pb zircon dating using laser ablation– multi ionconting – ICP– MS [J]. Mineral Deposits, 28(4): 481–492 (in Chinese with English abstract).
- Li Longming, Lin Shoufa, Xing Guangfu, Donald W Davis, William J Davis, Xiao Wenjiao, Yin Changqing. 2013. Geochemistry and tectonic implications of Late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, South China [J]. Precambrian Research, 230: 179– 192.
- Li Wuxian, Li Xianhua, Li Zhengxiang. 2010. Ca. 850 Ma bimodal volcanic rocks in northeastern Jiangxi Province, South China: Initial extension during the breakup of Rodinia[J]. American Journal of Science, 310, 951–980.
- Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia [J]. Lithos, 102: 341–357.
- Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn- rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia [J]. Precambrian Research, 122: 85–109.
- Li Zhengxiang, Wartho Jo–Anne, Occhipinti Sandra, Zhang Chuanlin, Li Xianhua, Wang Jian, Bao Chaomin. 2007. Early history of the eastern Sibao orogen (South China) during the assembly of Rodinia: New mica ⁴⁰Ar/³⁹Ar dating and SHRIMP U– Pb detrital zircon provenance constraints [J]. Precambrian Research, 159 (1/ 2): 79–94.

质

- Liu Bangxiu, Liu Chungeng, QiuYongquan. 2001. The Pb–Pb isotopic ages and geologic significance of gneissic granite in Hezi, Jiangxi [J]. Volcanology & Mineral Resources, 4: 264–268(in Chinese with English abstract).
- Liu Shuwen, Yang Pengtao, Wang Zongqi, Luo Ping, Wang Yongqing, Luo Guohui, Wang Wei, Guo Boran. 2013. LA-ICP-MS zircon U- Pb ages and geochemistry of Neoproterozoic low- grade metavolcanic rocks in Wuyuan-Dexing area of northeastern Jianxi Province [J]. Acta Petrologica Sinica, 29(2): 581-593(in Chinese with English abstract).
- Liu Yaguang.1997. Rock Formations in Jiangxi Province [M]. Wuhan: China University of Geosciences Press(in Chinese).
- Shu Liangshu, Faure Michel, Wang Bo, Zhou Xinmin, Song Biao. 2008. Late Palaeozoic– early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia [J]. Comptes Rendus Geoscience, 340(2): 151–165.
- Shu Liangshu, Zhou Xinmin, Deng Ping, Yu Xinqi. 2006. Principal geological features of Nanling tectonic belt, South China [J]. Geological Review, 52(2): 251–265(in Chinese with English abstract).
- Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 31(7): 1035–1053(in Chinese with English abstract).
- Wang Jian, Li Xianhua, Duan Taizhong, Liu Dunyi, Song Biao, Li Zhongxiong, Gao Yonghua. 2003. Zircon SHRIMP U– Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China [J]. Chinese Science Bulletin, 48 (16): 1663–1669.
- Wang Jian, Zhou Xiaolin, GuoXiumei, Fu Xiugen, GaoYonghua. 2013. The onset and sedimentary evolution of the Neoproterozoic basin in South China: A case study of the Jiangnan sub-basin, northeastern Jiangxi [J]. Acta Sedimentologica Sinica, 31(5): 834–844 (in Chinese with English abstract).
- Wang Jian. 2000. Neoproterozoic Rifting History of south China: Significance to Rodinia breakup [M]. Beijing: Geological Publishing House, (in Chinese).
- Wang Wei, Zhou Meifu, Yan Danping, Li Liang, John Malpas. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China [J]. Precambrian Research, 235: 1–19.
- Wang Xiaolei, Shu Liangshu, Xing Guangfu, Zhou Jincheng, Tang Ming, Shu Xujie, Qi Liang, Hu Yanhua. 2012. Post– orogenic extension in the eastern part of the Jiangnan orogen: Evidencefrom ca 800 – 760 Ma volcanic rocks[J]. Precambrian Research, 222– 223: 404–423.
- Wang Xiaolei, Yu Jinhai, Shu Xujie, Tang Chenghu, Xing Guangfu. 2013. U– Pb geochronology of detrital zircons from the parametamorphic rocks of the Zhoutan Group, central Jiangxi Province [J]. Acta Petrologica Sinica, 29(3): 801–811(in Chinese with English abstract).

- Wu Xinghua, Lou Fashen, Huang Zhizhong,Wu Minren, Luo Xiaohong, Xie Qinghui. 2001. Geochemical characteristics of Precambrian metamorphic rocks in North Wuyi Region [J]. Volcanology & Mineral Resources, 22(4): 276–283(in Chinese with English abstract).
- Xu Xianbing, Tang Shuai, Li Yuan, Zhang Zejun. 2015. Characteristics of Neoproterozoic—early Mesozoic multiphase orogenic activities of eastern Jiangnan orogeny [J]. Geology in China, 42(1): 33-50 (in Chinese with English abstract).
- Yang Minggui, Wu Fujiang, Shang Zhiru, Lu Shaojun. 2015. North Jiangxi: A geological window of South China [J]. Acta Geologica Since, 89(2): 222–233(in Chinese with English abstract).
- Zhang Heng, Li Tingdong, GaoLinzhi, Gen Shufang, Ding Xiaozhong, Liu Yanxue, Wu Hao. 2015a. Zircon SHRIMP U-Th-Pb dating of the Wengjialing formation in the eastern segment of the Jiangnan orogenic belt in northeast Jiangxi Province and its geological implications [J]. Geology in China, 42(1): 96-104(in Chinese with English abstract).
- Zhang Heng, Li Tingdong, Gao Linzhi, Geng Shufang, Ding Xiaozhong, Liu Yanxue, Kou Caihua. 2015b. Zircon SHRIMP U– Pb dating, geochemical, zircon Hf isotopic features of the Mesoproterozoic Tieshajie Formation in northeastern Jiangxi [J]. Geological Review, 61(1): 66–78 (in Chinese with English abstract).
- Zhao Zhi, Chen Zhenghui, Zou Xinyong, Wang Denghong, Chen Zhenyu. 2018. REE mineralization of epimetamorphic rocks from an Ion- adsorption type REE deposit in Southern Jiang xi Province [J]. Earth Science, 43(10):3652–3663(in Chinese with English abstract).
- Zhao Zhi, Wang Denghong, Chen Zhenghui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling Range [J]. Acta Geologica Sinica, 91(12): 2814–2827(in Chinese with English abstract).
- Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China [J]. Precambrian Research, 163: 351–383.
- Zhou Bowen, Zeng Guofeng, Xu Wentan, Feng Yongxin. 2018. The discovery of early Nanhuan K-bentonite in southern Jiangxi and its tectonic significance [J]. Journal of Geology, 42(1): 95-107(in Chinese with English abstract).
- Zhou Hanwen, Li Xianhua, Wang Hanrong, Li Jiang, Li Huimin. 2002. U- Pb zircon geochronology of basic volcanic rocks of the Yingyangguan group in Hezhou, Guangxi, and its tectonic implications [J]. Geological Review, 48 (Supp.): 22-25 (in Chinese with English abstract).

附中文参考文献

陈小勇,陈国华,舒立旻,姚金龙,舒良树. 2015. 江南东段华夏与扬

子陆块碰撞时间的研究[J]. 新疆地质, 33(4):520-528.

- 邓奇,王剑,汪正江,崔晓庄,施美凤,杜秋定,马龙,廖世勇,任光明. 2016. 江南造山带新元古代中期(830-750 Ma)岩浆活动及对构 造演化的制约[J]. 大地构造与成矿学,40(4):753-771.
- 邓奇, 汪正江, 杨菲, 崔晓庄, 王剑, 任光明, 周效华, 熊小辉, 蔡娟娟. 2019. 浙西北建德地区休宁组沉积时限的厘定: 来自凝灰岩锆石 U-Pb 年代学的制约[J]. 地质学报,93(2):414-427.
- 董树文, 薛怀民, 项新葵, 马立成. 2010. 赣北庐山地区新元古代细 碧-角斑岩系枕状熔岩的发现及其地质意义[J]. 中国地质,37(4): 1021-1033.
- 高林志,丁孝忠,曹茜,张传恒. 2010. 中国晚前寒武纪年表和年代地 层序列[J].中国地质,37(4):1014-1020.
- 高林志,丁孝忠,刘燕学,张传恒,张恒,黄志忠,许兴苗,周宗尧. 2014. 江山—绍兴断裂带陈蔡岩群片麻岩 SHRIMP 锆石 U-Pb 年龄及 其地质意义[J]. 地质通报,33(5):641-648.
- 高林志,黄志忠,丁孝忠,刘燕学,张传恒,王自强,庞建峰,韩坤英. 2012a. 庐山筲箕洼组与星子岩群年代地层关系及 SHRIMP 锆石 U-Pb年龄的制约[J]. 地球学报,33(3):295-304.
- 高林志, 黄志忠, 丁孝忠, 刘燕学, 庞建峰, 张传恒. 2012b. 赣西北新 元古代修水组和马涧桥组 SHRIMP 锆石 U-Pb 年龄[J]. 地质通报, 31(7):1086-1093.
- 高林志,刘燕学,丁孝忠,宋志瑞,黄志忠,张传恒,张恒,史志刚. 2013. 江山—绍兴断裂带铁沙街组流纹岩 SHRIMP 锆石 U-Pb 测年及 其意义[J]. 地质通报, 32(7): 996-1005.
- 高林志,杨明桂,丁孝忠,刘燕学,刘训,凌联海,张传恒.2008.华南 双桥山群和河上镇群凝灰岩中的锆石 SHRIMP U-Pb 年龄—— 对江南新元古代造山带演化的制约[J].地质通报,27 (10):1744-1751.
- 关俊朋,何斌,李德威.2010. 庐山地区星子群碎屑锆石 SIMS U-Pb 年龄及其地质意义[J].大地构造与成矿学,34(3):402-407.
- 郭娜欣.2015. 南岭银坑矿田两种类型矿床成因关系研究 [D]. 北京: 中国地质科学院,1-162.
- 侯可军,李延河,田有荣. 2009. LA-MC-ICPMS 锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4):481-492.
- 刘邦秀, 刘春根, 邱永泉. 2001. 江西南部鹤仔片麻状花岗岩类 Pb-Pb 同位素年龄及地质意义[J]. 火山地质与矿产,(4):264-268.
- 刘树文,杨朋涛,王宗起,罗平,王永庆,罗国辉,王伟,郭博然.2013.

赣东北婺源一德兴地区新元古代浅变质火山岩的地球化学和锆石U-Pb年龄[J]. 岩石学报,29(2): 581-593.

- 刘亚光.1997.江西省岩石地层[M].武汉:中国地质大学出版社.
- 舒良树,周新民,邓平,余心起.2006. 南岭构造带的基本地质特征[J]. 地质论评, 52 (2):251-265.
- 舒良树. 2012. 华南构造演化的基本特征[J]. 地质通报,31(7):1035-1053.
- 王剑,周小琳,郭秀梅,付修根,高永华.2013.华南新元古代盆地开 启年龄及沉积演化特征——以赣东北江南次级盆地为例[J].沉 积学报,31(5):834-844.
- 王剑. 2000. 华南新元古代裂谷盆地沉积演化——兼论与Rodinia 解体的关系[M]. 北京: 地质出版社,2000.
- 王孝磊, 于津海, 舒徐洁, 唐成虎, 邢光福. 2013. 赣中周潭群副变质 岩碎屑锆石 U-Pb 年代学[J]. 岩石学报, 29(3): 801-811.
- 吴新华,楼法生,黄志忠,吴明仁,罗小洪,谢清辉.2001.北武夷地区前寒武系变质岩地球化学特征[J].火山地质与矿产,22(4):276-283.
- 徐先兵, 汤帅, 李源, 章泽军. 2015. 江南造山带东段新元古代至早 中生代多期造山作用特征[J]. 中国地质, 42(1): 33-50.
- 杨明桂, 吴富江, 宋志瑞, 吕少俊. 2015. 赣北:华南地质之窗[J]. 地质 学报, 89(2):222-233.
- 张恒,李廷栋,高林志,耿树方,丁孝忠,刘燕学,寇彩化.2015b.赣东 北中元古界铁沙街组石英角斑岩和流纹岩锆石年龄、同位素及 地球化学特征[J].地质论评,61(1):66-78.
- 张恒,李廷栋,高林志,耿树方,丁孝忠,刘燕学,吴昊.2015a.江南造 山带东段赣东北广丰地区翁家岭组凝灰岩 SHRIMP 锆石 U-Pb 年龄及地质意义[J].中国地质,42(1):96-104.
- 赵芝,陈郑辉,邹新勇,王登红,陈振宇.2018.赣南某离子吸附型稀 土矿床浅变质岩的矿化特征[J].地球科学,43(10):3652-3663.
- 赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿 规律研究新进展[J]. 地质学报,91(12):2814-2827.
- 周博文,曾国丰,徐文坦,冯永馨.2018.赣南地区早南华世钾质斑脱 岩的发现及其大地构造意义[J].地质学刊,42(1):95-107.
- 周汉文,李献华,王汉荣,李江,李惠民.2002. 广西鹰扬关群基性火 山岩的锆石 U-Pb 年龄及其地质意义[J]. 地质论评,48 (增刊): 22-25.