doi: 10.12029/gc20210618

周岱, 胡军, 杨文强, 陈奇, 王祥东, 王磊, 徐德明. 2021. 粤西新兴岩体的形成时代与成因研究: 对古特提斯洋东支关闭时间的约束[J]. 中国地质, 48(6): 1896-1923.

Zhou Dai, Hu Jun, Yang Wenqiang, Chen Qi, Wang Xiangdong, Wang Lei, Xu Deming. 2021. Formation age and petrogenesis of the Xinxing pluton in western Guangdong: Constraint on the closure of the East Paleo–Tethys Ocean[J]. Geology in China, 48(6): 1896–1923(in Chinese with English abstract).

粤西新兴岩体的形成时代与成因研究:对古特提斯洋 东支关闭时间的约束

周岱12, 胡军12, 杨文强1, 陈奇3, 王祥东12, 王磊12, 徐德明12

(1.中国地质调查局武汉地质调查中心,湖北武汉 430223;2.中国地质调查局花岗岩成岩成矿地质研究中心,湖北武汉
 430223;3.中国地质大学(武汉),湖北武汉 430074)

提要:华南板块南缘二叠纪与三叠纪之交的构造属性仍存在较大争议。对新兴岩体详细的野外调查和研究发现,新 兴岩体的侵位时间为晚三叠世(240~224 Ma)而非侏罗纪,其主要岩性为细中粒一细粒斑状黑云母二长花岗岩。地 球化学分析显示,新兴花岗岩具有高钾钙碱性、过铝质一强过铝质花岗岩特征,具轻稀土元素富集、重稀土元素相对 亏损的右倾稀土配分模式,富集大离子亲石元素(Rb、U)而亏损高场强元素(Nb、Ta、Zr、Hf、Ti)。Sr-Nd、Lu-Hf同位 素分析显示,新兴花岗岩 ε_{Nd}(t)值介于-11.5~-10.5, ε_{Int}(t)值介于-2.9~-10.3,具有壳源源区特征。本次研究表明,粤 西地区印支期构造-岩浆活动可能开始于~250 Ma,华南板块南缘海西—印支期岩浆作用自晚二叠世(大容山岩体) 一直延续到晚三叠世(新兴岩体),且晚三叠世仍存在强烈的岩浆活动。新的证据支持古特提斯洋东段分支的关闭 时间在~250 Ma,而印支板块和华南板块的陆陆碰撞拼贴一直延续到240~224 Ma。

关 键 词:印支期;古特提斯;锆石U-Pb定年;地质调查工程;云开;华南板块

中图分类号:P597; P581 文献标志码:A 文章编号:1000-3657(2021) 06-1896-28

Formation age and petrogenesis of the Xinxing pluton in western Guangdong: Constraint on the closure of the East Paleo–Tethys Ocean

ZHOU Dai^{1,2}, HU Jun^{1,2}, YANG Wenqiang¹, CHEN Qi³, WANG Xiangdong^{1,2}, WANG Lei^{1,2}, XU Deming^{1,2}

(1. China Geological Survey, Wuhan Center of Geological Survey, Wuhan 430223, China; 2. Research Center for Petrogenesis and Mineralization of Granitoid Rocks, Wuhan 430223, China; 3. School of Earth Sciences, China University of Geosciences, Wuhan 430074, China)

Abstract: The tectonic framework on the southern margin of South China Block (SCB) between Permian and Triassic Periods has

作者简介:周岱,男,1985年生,高级工程师,岩石学专业,长期从事云开地区和海南地区区域地质调查和综合研究工作; E-mail:281045030@qq.com。

收稿日期:2019-05-12;改回日期:2019-10-11

基金项目:中国地质调查局项目(DD20160035、DD20190047)资助。

long been a controversial subject. The regional geological survey and research show that the Xinxing pluton in western Guangdong was emplaced in Late Triassic (240-224 Ma) rather than Jurassic, whose main lithology is medium-fine and fine-grained porphyritic monzonitic granite. The Xinxing granite is characterized by high potassium calc-alkaline and peraluminous-strongly peraluminous series, which is enriched in LREE, Rb, U, and depleted in HREE, Nb, Ta, Zr, Hf, Ti. It exhibits relatively low $\varepsilon_{Nd}(t)$ (-11.5 - -10.5) and $\varepsilon_{\rm HI}(t)$ (-2.9 - -10.3) values, showing the crustal source affinity. Therefore it is suggested that the start of the Indosinian tectonic- magmatic event in Western Gongdong probably took place in ~250 Ma. These new geochemical and geochronological evidence have furthermore restricted the timing of tectonic activities on the southern margin of SCB between later Permian (Darongshan pluton) and later Triassic (Xinxing pluton). Hence, the closure time of East Paleo-Tethys Ocean would be about 250 Ma, and the continental-continental collision between Indo-China Block and SCB continued till 240-224 Ma.

Key words: Indosinian; Paleo-Tethys; zircon U-Pb; geological survey engineering; Yunkai Terrane; South China Block

About the first author: ZHOU Dai, male, born in 1985, senior engineer, engaged in regional geological survey and research in the Yunkai area and Hainan island; E-mail: 281045030@gq.com.

Fund support: Supported by the project of China Geological Survey (No.DD20160035 and DD20190047).

引 言 1

华南板块南缘在海西期一印支期(二叠纪至三 叠纪)经历了复杂的地壳增生和改造,发生了强烈 的构造-岩浆作用(图1)。该期岩浆岩集中分布在 海南岛、桂东一粤西地区和华南内陆的湘赣闽地 区,以花岗岩为主,伴随少量中基性岩、碱性岩。其 中,海南岛该期岩浆作用起始于270~280 Ma,并一 直延续到220 Ma。湘赣闽地区岩浆岩形成时代集 中于240~210 Ma。

桂东一粤西地区主要出露大容山一六万大山 一十万大山、那丽、那蓬等岩体,对这些岩浆岩的形 成时代和构造意义尚存在较多分歧。如大容山的 形成时代存在230~240 Ma(邓希光等, 2004: 祈昌实 等,2007)和250~260 Ma(彭松柏等,2004;凌文黎 等,2013)之争。不同研究者对这些岩浆岩所代表 的地质构造演化格局的认识可大致归纳为两种机 制:古特提斯洋关闭与华南板块一印支板块碰撞造 山过程和古太平洋一华南板块的洋陆俯冲机制。

(1)东古特提斯洋洋盆的关闭导致了华南、印 支和 Sibumasu 等众多陆块的碰撞拼合 (Metcalfe, 2013)。其中,华南板块与印支板块之间晚古生代 至早中生代分支洋盆/弧后盆地的关闭过程仍有很 多不明之处。板块汇聚方式有华南板块向印支板 块一侧俯冲(Faure et al., 2014; Wang et al., 2018)和 印支板块向华南板块之下俯冲(Lepvrier et al., 1997; Li et al., 2016)两种主要方式。很多学者支持 华南板块与印支板块陆陆碰撞开始于早—中三叠 世(Lepvrier et al., 1997; Faure et al., 2014; Wang et al., 2018);也有学者基于海南、越南北部等地的研 究认为,碰撞过程始于260 Ma(Halpin et al., 2015)、 269~263 Ma(陈新跃等, 2011)、287~278 Ma(谢才富 等,2006a),甚至石炭纪(Metcalfe, 2013)或早古生 代(Carter et al., 2001)。

(2)已有研究对古太平洋板块向华南板块俯冲 的起始时间认识不一,很多学者认为俯冲起始时间 应晚至180 Ma以后(Zhou et al., 2006; Wang et al., 2007;舒良树,2012)。然而Li and Li(2007)提出,俯 冲过程在大约265 Ma或280 Ma(Li et al., 2012)可 能已启动,并通过平板俯冲的方式影响到华南内陆 的广大地区。此外,峨眉山地幔柱的活动(约259 Ma)也可能影响到桂东一粤西地区(赵亮等,2010; 焦淑娟等,2013)。

综上可以发现,在二叠纪与三叠纪之交(260~ 240 Ma),华南板块南缘可能受到古特提斯洋俯冲 一碰撞机制转换、峨眉山地幔柱活动和古太平洋俯 冲启动等多个构造体制的影响。造成这一分歧的 原因之一是该期岩浆岩形成时代、岩石成因和构造 背景的研究对大地构造格局的限定不足。本文通 过粤西新兴岩体详细的野外调查和岩石学、地球化 学、年代学等的研究,力图为这一关键地质问题提 供新的约束。

地质背景与岩体特征 2

2.1 地质特征

新兴岩体出露于粤西新兴---恩平--带(图1,图

图 1 华南及邻区二叠纪一三叠纪构造格局与主要岩浆岩分布图(据 Faure et al., 2016 修改) Fig.1 Structural framework and igneous rocks of South China and its adjacent areas in the Permian-Triassic period (modified from Faure et al., 2016)

2),总体上受NE向的新兴一阳春断裂和恩平断裂 控制,为一条宽20~40 km,长达120 km的NE向大 岩基,出露面积超过3632 km²(图2a)。其西北侧见 出露较小的湾边岩体(亦称湾边圩岩体、幌岗山岩体)。广东地矿局(1963)[●]将新兴岩体划分为中侏 罗世花岗岩侵入体;而广东地质调查院(2004)[®]认

为其是侏罗纪一白垩纪的复式岩体,侏罗纪为新兴 岩体的主体,笔架山等单元为白垩纪侵入体。

本次工作区域为新兴岩体西北部约500 km²的 部分,基本囊括了其主要的侵入岩单元(图2)。调 查发现[®],新兴岩体主体为晚三叠世花岗岩,这些花 岗岩侵入寒武纪、泥盆纪沉积岩中,侵入接触界面 多弯曲、倾向围岩(图3a、b)。围岩显著受热接触变 质作用影响,广泛形成角岩化砂岩或角岩等,角岩 化带宽度100~2000 m。根据岩石学特征、相互侵入 关系,可将新兴花岗岩划分为两期:第一期($\eta\gamma T_{3}^{1}$) 和第二期($\eta\gamma T_{3}^{2}$)。二者接触界面附近见第二期花 岗岩侵入第一期(图3c),以及细粒边、相互包裹等 现象。

2.2 岩石学特征

新兴花岗岩第一期(ŋyT₃¹)为新兴岩体和湾边 岩体的主体(图2),其中:(1)粗中粒—细中粒巨斑 状—斑状黑云母二长花岗岩(ŋyT₃^{1a},中心相)集中分 布在新兴岩体中部的里洞—梧洞—双悦和湾边岩 体南部的云山—幌岗—云齐—带。岩石呈似斑状 结构,块状构造。斑晶主要为自形板柱状的钾长石 及少量斜长石和石英,含量25%~50%,长轴15~80 mm,大者可达100 mm以上,斑晶未变形而常见定 向排列,形成流动构造(图4a、b,图5a)。梧洞一带 见多斑花岗岩团包(图4c),整体呈椭球状,大小为 20 cm×40 cm~40 cm×60 cm,由50%~80%的长石斑 晶组成,斑晶粒径大小为30~60 mm,二者界线截 然,推测为岩浆房早期结晶或局部成分不均一的产 物。(2)细中粒少斑状—斑状黑云母二长花岗岩 (ηγT₃^{1b},过渡相)分布面积最大,斑晶含量减少至 10%~25%,长轴10~40 mm(图5b),局部见斑晶定向 排列;(3)细中粒(含斑)黑云母二长花岗岩(ηγT₃^{1c}, 边缘相),少量分布于新兴岩体西侧的大江一料坑 一坳仔一带,偶见钾长石斑晶。第一期花岗岩不同 侵入相之间呈渐变过渡关系。

1899

新兴花岗岩第二期(ηγT₃²)主要呈东西向的不 规则带状分布于新兴岩体中部的笔架山—杨家宅 —肇庆田一带和湾边岩体北部的云齐—西园一带, 大致相当于以往所述的"笔架山侵入单元"(图2), 其中:(1)细粒少斑状—斑状黑云母二长花岗岩 (ηγT₃^{2a},中心相),斑晶以自形板状的钾长石为主,含 量 5%~10%,长轴 5~15 mm,常见斑晶定向排列,形 成流动构造,基质粒径 0.5~2 mm(图4d,图 5c)。(2) 细粒(含斑)黑云母二长花岗岩(ηγT₃^{2b},边缘相),斑 晶减少至 0~5%(图4e、图5d),局部出现少量白云母 (图5e)。不同岩相呈渐变过渡关系,局部见钾长石 斑晶发育环带结构(图4f、g)。

新兴花岗岩中包含各种类型包体(图6),其中 以暗色微粒包体(MME)和壳源包体最为常见,包体 分布尤以新兴太平南部的肇庆田一松根一带最为 集中。肇庆田见椭球状、残块状基性包体(图6a), 大小为5 cm×8 cm~15 cm×30 cm。其北侧不远的松 根一带见大量不同类型的壳源包体(图6c、d),岩性 以花岗片麻岩、变质长石石英砂岩、富云包体为主, 多呈混圆状,大小3~40 cm,可能为花岗岩源区岩石 或捕获自围岩。里洞田排见大量电气石花岗岩包 体产出(图5f,图6e、f),团包直径4~10 cm,团包核

图 3 新兴花岗岩与围岩接触关系(a,b)及两期花岗岩侵入接触关系(c) Fig.3 Contact relation between Xinxing granite and country rock(a,b); Intrusive contact of two phases granites(c)

图4新兴花岗岩岩石学特征

a~b一细中粒巨斑状黑云母二长花岗岩中斑晶定向排列;c一多斑斑状花岗岩团包;d一细粒斑状黑云母二长花岗岩中斑晶定向排列;e一细粒 黑云母二长花岗岩;f~g一钾长石斑晶环带结构

Fig.4 Characteristics of the Xinxing granite

a-b-Orientation arrange of phenocryst in medium-fine-grained megaporphyritic biotite monzogranite; c-Poly-phenocryst porphyritic granite inclusion; d-Orientation arrange of phenocryst in fine-grained megaporphyritic biotite monzogranite; e-Fine-grained biotite monzogranite; f-g-Zonal texture of K-feldspar

图5 新兴花岗岩镜下特征

a一细中粒巨斑状黑云母二长花岗岩(基质部分);b一粗中粒斑状黑云母二长花岗岩(基质部分);c一细粒斑状黑云母二长花岗岩;d一细粒含斑黑云母二长花岗岩;e一细粒含斑白云母二长花岗岩;f一电气石花岗岩;Kf一钾长石;Mic一微斜长石;Per一条纹长石;Pl一斜长石;Bt一黑云母;Mus一白云母;Q一石英;Tur一电气石

Fig.5 Microscopic photos of the Xingxing granite

a-Matrix of medium-fine grained megaporphyritic biotite monzogranite(groundmass); b-Coarse-medium grained porphyritic biotite monzogranite; c-Fine grained porphyritic biotite monzogranite; d-Fine grained porphyritic biotite monzogranite; e-Fine grained porphyritic mica monzogranite; f-Tourmaline granite.

Kf-k-Felspar; mic-Microcline; per-Perthite; pl-Plagioclase; bt-Biotite; mus-Muscovite; q-Quartz; tur-Tourmaline

图 6 新兴花岗岩第二期中产出的各类包体 Fig.6 Various enclaves in the Xinxing granite (the second phase)

部主要由电气石、石英和少量长石组成,边部则主 要为长石和石英,形似"白眼球"。这些包体无变 形,附近也未见断层或热液脉体,推测为岩浆演化 晚期流体活动的遗存。

3 分析测试方法

样品的全岩地球化学分析测试均在武汉地质 调查中心中南矿产资源监督检测中心完成。其中, 主量元素采用XRF法,测试过程中根据同时测定的 BHVO-1、AGV-1和G-2等标样来监测测试精度, 分析误差<2%。稀土微量元素采用ICP-MS法完 成,Sr-Nd同位素利用Triton TI完成,详细的样品消 解处理过程、分析精密度和准确度同程顺波等 (2012)。

锆石挑选委托河北省廊坊市诚信地质服务有 限公司采用浮选和电磁选方法完成。锆石制靶和 拍照在南京宏创地质勘查技术服务有限公司完成, 阴极发光拍照采用SEM场发射扫描电镜完成。

锆石U-Pb同位素定年和原位Lu-Hf同位素分析在武汉上谱分析实验室利用 COMPexPro 102 ArF 193 nm激光+Agilent 7900 ICP-MS系统完成, 锆石U-Pb定年束斑直径为32 μm,原位微区锆石 Hf同位素测试激光剥蚀所用束斑直径为44 μm。 U-Pb分馏根据锆石标样91500来校正,采用GJ-1 和 Ple标样作为内标以控制分析精度,采用 ICPMSDataCal9.9 对分析数据进行处理,利用 ComPbCorr#3-151程序完成普通铅校正,年龄计算 及谐和图绘制采用 Isoplot 4.11 完成。详细仪器条 件和数据获得详见 Zong et al. (2017)。

4 测试分析结果(表1~5)

4.1 形成时代

新兴岩体长期被认为是燕山期侵入体,前人开展的1:25万阳春幅区调(广东地质调查局,2004)认为新兴岩体为侏罗纪一白垩纪复式岩体,不同样品获得的全岩 K-Ar 年龄为:150 Ma、147.7 Ma、116 Ma、125 Ma、128.7 Ma、129.7 Ma、144.3 Ma,全岩 Rb-Sr 年龄为155.1 Ma。本次通过详细的同位素定年获得了新兴岩体为晚三叠世一晚侏罗世复式岩体的新认识。新兴花岗岩第一期和第二期的锆石U-Pb 年龄范围分别为 231~240 Ma 和 224~226 Ma。该结果与二者野外岩石特征与产出关系一致,并且是不同采样点的多次测试结果,真实可信。4.1.1 锆石特征

8件花岗岩样品中分选出的锆石颗粒均为柱状 自形晶(图7),锆石颗粒长轴为80~300 μm,长宽比 1:1~3:1,CL图像上可见锆石发育核幔边结构,其中 核部锆石发光特征、环带特征各异,属捕获锆石、继 承锆石;幔部则发育清晰的岩浆结晶环带,为岩浆 结晶锆石;部分锆石发育高Th、U含量的黑色边部, 可能为晚期热液活动的记录。1件基性包体样品 (D6467-3)中分选出的锆石颗粒为短柱状,锆石颗

2021年

			表1新3	兴花岗岩主量元	記素(%)和稀土	、微量元素(10-	-6)分析结果		
	Table 1	Analysis 1	results of n	najor elements	(%), rare earth	and trace elen	nents (10 ⁻⁶) of t	he Xinxing gra	nite
样号	17HT05	17LD11	17LD12	D3405-1	D3406-1	D7063-1	D7063-2	D7063-3	D3426-1H
	起片座舟	百斑骨龙	百斑骨龙	细中粒巨斑黑	细中粒巨斑黑	弱片麻状粗中	弱片麻状粗中	弱片麻状粗中	粗中粒巨斑
岩性			已知机化	云母二长花岗	云母二长花岗	粒巨斑黑云母	粒巨斑黑云母	粒巨斑黑云母	状黑云母二
	化冈岩	冈岩	冈岩	岩	岩	二长花岗岩	二长花岗岩	二长花岗岩	长花岗岩
SiO ₂	72.16	67.95	69.23	69.81	68.29	71.06	70.80	73.41	68.20
Al_2O_3	14.74	14.79	14.13	16.20	15.11	13.84	13.94	12.84	14.54
Fe ₂ O ₃	0.59	0.33	0.42	0.92	1.97	1.59	0.71	1.40	1.91
FeO	1.19	3.61	3.52	0.60	1.12	2.03	2.71	1.92	2.58
CaO	0.69	2.25	2.51	0.16	1.50	1.09	1.90	1.05	1.46
MgO	0.29	1.31	1.39	0.24	0.63	0.74	1.09	0.69	1.48
K ₂ O	4.80	5.65	4.24	8.80	7.32	5.66	4.52	5.08	4.80
Na ₂ O	2.17	2.57	2.64	1.62	2.42	2.83	2.72	2.57	1 54
TiO	0.13	0.47	0.49	0.12	0.32	0.32	0.42	0.29	0.58
P ₂ O ₂	0.10	0.15	0.16	0.02	0.10	0.12	0.16	0.10	0.22
MnO	0.03	0.15	0.10	0.02	0.06	0.09	0.05	0.06	0.06
LOI	2.91	0.25	0.48	1.25	0.79	0.09	0.46	0.00	2.08
Total	00 70	99.40	0.40	99.76	99.64	99.60	90.40	99.62	99.45
Cu	7 78	1/2	65	13.5	0.20	20.5	12.0	23.0	21.2
Dh	95 0	65 /	57.4	120	9.29	20.5	12.9	25.9	21.2 19.7
ru Zn	19.6	72.2	76.2	129	90 29 1	42.7	40.0	55.5 46 1	40.7
Zn Cr	10.0	13.3	/0.5	40.1	36.1	45.7	40.5	40.1	52 4
UI Ni	21.0	52.0	32	0.90	21.1	23.5	34.0	51.5	32.4
INI C	3.39	14.8	10.2	2.57	0.00	9.23	12	8.7	13.2
	1.89	/.96	9.67	1.5	3.51	3.03	4.99	3.45	/.91
Kb	2/3	239	215	456	412	432	368	376	347
W	181	1.9	2.94	1.29	3.56	1.48	1.72	1.49	0.98
Mo	0.76	2.34	2.98	1.31	1.96	2.59	1.34	1.17	2.32
As	8.64	2.88	1.63	2.21	2.4	4.1	6.29	5.39	3.25
Bı	4.39	0.7	1.22	0.71	0.48	2.5	1.21	2	0.28
Hg	0.022	0.019	0.022	0.0053	0.0052	0.0064	0.052	0.02	0.0053
Sr	72.3	198	190	14.3	72.6	66.9	69.4	54.5	103
Ba	234	1040	687	439	1060	646	528	379	1050
V	3.6	43.2	49.2	19.1	45.5	25	48.8	27.1	59.3
Sc	4.14	8.16	9.7	1.2	4.33	4.06	6.27	4.07	7.28
Nb	16.7	17.5	20.8	4.72	13.4	25.1	18.6	15.7	15.3
Та	3.2	1.57	2.12	0.38	0.97	3.76	2.06	1.94	1.23
Zr	147	167	190	66.7	149	133	163	140	215
Hf	7.36	5.63	6.45	2.29	4.56	4.63	4.95	4.35	5.06
Ga	17.2	26.7	23.8	15.4	15.7	17.2	17.1	14.9	17.1
Sn	8.4	13	11	4.54	9.52	24.1	11.1	11.6	8.34
Au	0.94	1.04	1.08	0.21	1.91	48.1	5.42	1.58	0.84
Ag	0.067	0.111	0.18	0.13	0.15	0.11	0.05	0.049	0.12
U	45.3	6.34	6.76	1.38	3.8	13.2	7.64	16.8	5.98
Th	56.3	32	40.6	3.56	22.2	21.2	43.8	28.1	37.9
La	30.1	49.9	64	53	78.1	55.7	82.4	89.2	82.4
Ce	86.3	105	138	76.5	152	133	186	165	188
Pr	7.64	10.4	13.8	10.8	15.2	12	16.7	18.3	17.5
Nd	29.9	38.2	51	42.8	59.5	49	67.9	76.3	74
Sm	7.04	7.23	9.48	7.79	11	11.1	12.5	15.8	13.2
Eu	0.84	1.44	1.35	0.86	1.51	0.98	1.25	1.6	1.78
Gd	5.78	6.33	7.68	6.46	8.89	8.96	10	13.8	10.4
Tb	0.93	0.93	1.1	0.96	1.28	1.64	1.42	2.3	1.42
Dv	5.18	5.17	6.07	5.11	6.58	9.97	7.42	13.1	7.3
Ho	0.95	1.01	1.16	0.97	1.21	1.87	1.33	2.41	1.35
Er	2.64	2.58	3.09	2.49	3.06	5.35	3.39	5.98	3.68
Tm	0.44	0.39	0.47	0.34	0.42	0.96	0.48	0.8	0.56
Yh	3.05	2 5	3.07	2	2.51	6.76	3.05	4.72	3.76
Lu	0.44	0.33	0.41	0.26	0.32	0.9	0.37	0.59	0.48
Y	22.9	23.8	28.3	26.4	34.6	61.8	36.8	60.8	37.2

第48卷第6期

1903

								续表1
样号	17HT01	17HT02	17HT03	17HT08	17LD13	17LD15	PM10-2-2	PM10-2-4
니나	弱片麻	弱片麻状	弱片麻状	黑云	斑状细粒	中细粒	细粒	细粒
石性	状花岗岩	花岗岩	花岗岩	二长花岗岩	花岗岩	花岗岩	二长花岗岩	二长花岗岩
SiO ₂	73.06	72.02	73.94	72.19	75.27	73.31	75.84	72.42
Al_2O_3	12.66	13.80	12.64	13.68	11.82	14.00	13.34	13.24
Fe_2O_3	0.12	0.05	0.38	0.22	0.44	0.49	0.25	0.22
FeO	3.68	2.64	2.77	2.66	1.94	1.68	1.23	2.32
CaO	1.50	1.22	1.44	0.79	0.77	0.24	0.16	1.14
MgO	0.70	0.49	0.66	0.66	0.34	0.27	0.18	0.34
K_2O	4.41	6.27	3.93	5.14	6.50	5.73	4.80	4.82
Na_2O	2.83	2.59	3.02	2.34	1.86	2.48	3.14	3.24
TiO ₂	0.28	0.21	0.27	0.25	0.22	0.14	0.11	0.22
P_2O_5	0.10	0.09	0.10	0.08	0.08	0.13	0.04	0.12
MnO	0.08	0.07	0.06	0.06	0.05	0.04	0.02	0.07
LOI	0.08	0.17	0.40	1.54	0.35	1.23	0.69	1.50
Total	99.49	99.62	99.60	99.60	99.64	99.74	99.80	99.66
Cu	25.4	17.8	11	57.6	76.4	95.6	80	54.2
Pb	65.7	78	61.2	76.7	69.2	71.4	57.7	68.4
Zn	59.1	38.2	51.1	50.7	32	63	34.6	54.6
Cr	37.5	26.6	35.2	30.2	13.2	7.63	15	12.2
Ni	10.1	7.09	8.78	8.94	6.64	3.92	3.6	5.72
Co	4.62	3.83	3.79	4.13	3.02	1.67	1.06	2.9
Rb	367	378	259	375	275	459	499	528
W	2.28	1.27	1.53	3.32	2.22	10.1	5.41	3.2
Mo	2.91	2	1.41	1.36	1.9	1.79	1	0.91
As D	189	5.22	/.56	3.95	1.27	2.54	4.5/	11.8
Bl	2.08	1.52	1.38	3.75	0.55	3.3 0.025	1.88	0.54
пg Sr	106	0.025	100	102	107	0.025	61	0.026
Do	268	420	170	241	650	240	166	70.2
Da V	19.9	429	18.9	21.4	15.1	4.03	1 98	12.4
Sc	6.92	5 22	6.46	5.97	3.8	2 59	2 72	5 33
Nh	27.7	16.4	26	21.7	11.7	2.57	29	27.6
Та	4 16	1 88	3.02	3 54	0.98	3 53	4 98	6
Zr	137	102	123	125	86.8	83.6	69.3	108
Hf	5 48	3.96	4 99	5 36	3 35	3 67	4 39	4 57
Ga	19.6	19.3	18.4	19.2	16.8	18.9	15.7	20.6
Sn	22.8	12.3	21.7	20.3	8.94	23.6	33.7	23
Au	1.01	0.98	1.11	1.06	1.2	1.11	1.04	1.04
Ag	0.075	0.064	0.054	0.06	0.081	0.146	0.134	0.079
U	25.2	49.4	29.5	23.1	7.38	19.9	15.6	22.6
Th	45.7	34.4	48.1	53.4	20.3	29.1	33.2	35.2
La	57.2	42.7	55.8	66	54.9	32.4	28.3	42.5
Ce	130	95.3	126	140	70.9	55.8	51.2	97.8
Pr	13.2	9.91	13.1	15.1	11.4	7.43	6.61	10.2
Nd	48.1	36	47.2	55.1	41.8	26.5	26.3	37.6
Sm	9.87	7.56	9.81	11.6	7.74	6.46	6.88	8.06
Eu	0.8	0.82	0.68	1.19	1.04	0.53	0.54	0.61
Gd	8.21	6.36	8.04	10.8	6.58	5.04	6.47	6.56
Tb	1.36	1.07	1.32	1.97	1.05	0.87	1.29	1.12
Dy	8.02	6.57	7.82	12.5	5.98	4.55	8.8	6.74
Но	1.6	1.34	1.55	2.43	1.14	0.75	1.85	1.35
Er	4.4	3.7	4.31	6.77	2.86	1.92	5.51	3.84
Tm	0.77	0.6	0.73	1.15	0.4	0.31	1	0.66
Yb	5.01	3.72	4.67	7.91	2.29	2.1	7.2	4.63
Lu	0.69	0.49	0.63	1.06	0.3	0.29	1.02	0.62
Y	40.2	33	39.5	62.3	30.1	18.3	51.1	35.4

1	9	0	4

质

样号	DM10 26 2								
	FIVI10-20-2	PM11-39-1H	PM11-51-1H	D2285-2	D2285-3	D6417-1	D6420-1	D4678-1H	17HT06
岩性	电气石	中细粒二长	粗中粒斑状黑云	糜棱岩化	糜棱岩化	细粒斑状	中粒斑状	中细粒少斑黑云	黑云二长
	花岗岩	花岗岩	母二长花岗岩	花岗岩	花岗岩	花岗岩	花岗岩	母二长花岗岩	花岗岩
SiO_2	64.12	73.68	71.58	67.23	66.99	74.04	68.95	72.74	73.50
Al_2O_3	18.11	14.59	14.03	14.76	15.31	12.03	14.15	14.26	13.31
Fe_2O_3	0.81	0.48	0.98	1.70	1.65	0.62	1.19	2.54	0.30
FeO	1.40	0.92	2.04	2.86	2.69	2.73	2.88	0.60	2.42
CaO	1.04	0.32	0.83	1.33	1.47	1.59	2.01	0.21	0.46
MgO	0.24	0.23	0.91	1.75	1.63	0.85	1.31	0.40	0.57
K_2O	6.63	5.39	5.20	4.70	4.66	4.82	5.78	6.14	5.47
Na ₂ O	5.44	2.95	1.71	1.54	1.82	2.29	2.43	1.18	2.63
TiO ₂	0.32	0.17	0.35	0.63	0.64	0.33	0.46	0.30	0.20
P_2O_5	0.09	0.10	0.17	0.21	0.22	0.11	0.15	0.12	0.08
MnO	0.05	0.02	0.05	0.07	0.06	0.05	0.06	0.07	0.06
LOI	1.50	0.97	1.77	2.56	2.22	0.04	0.06	1.25	0.65
Total	99.74	99.81	99.62	99.33	99.36	99.50	99.43	99.80	99.64
Cu	108	8.69	11.9	15.9	16.8	10.6	12.1	13.7	51
Pb	105	59.6	78.4	46.5	51.4	60.9	60	48.8	70.5
Zn	51.1	30.2	55.4	59.2	56.3	39.2	45.4	37.6	37.7
Cr	16.1	13.7	31.4	41.9	49.3	31.3	38.5	33.6	29
Ni	5.03	2.58	9.76	17.6	17.1	9.37	13.2	6.6	8.13
Со	2.55	1.08	5.01	7.78	7.36	4.4	6.35	2.94	3.06
Rb	373	277	181	259	263	244	344	456	483
W	2.12	5.32	2.06	1.27	1.22	0.63	2.2	3.56	5.48
Мо	0.33	0.46	0.83	1.2	0.91	0.69	1.74	0.98	0.79
As	8.87	5.26	4.02	2.9	2.7	4.13	3.92	8.84	3.27
Bi	1.53	1.94	2.42	0.33	0.35	0.54	0.79	0.71	5.35
Hg	0.028	0.048	0.028	0.0064	0.0055	0.0052	0.0049	0.0046	0.019
Sr	65.6	52.8	163	96.3	127	54.3	87.8	9.16	86.6
Ba	332	289	772	1380	1430	309	835	115	389
V	16.2	12	37.5	77.1	75.6	30.4	56.4	26.6	13.1
Sc	6.48	4.4	8.92	8.87	8.12	5.73	7.39	1.69	4.4
Nb	43.7	24.7	19.8	13.2	15.2	14.4	14.2	18.6	22.7
Та	9.48	4.1	2.85	0.68	1.13	1.63	1.47	1.93	4.87
Zr	128	114	184	132	152	160	170	130	100
Hf	6.15	3.59	5.39	3.51	3.91	4.88	4.9	4.14	4.43
Ga	22.9	21	24	17.1	18.1	14	15.9	19	19.2
Sn	45.4	23.7	9.95	6.33	7.52	9.3	8.47	17.9	27
Au	1.08	13	1.88	0.31	0.56	1.08	1.06	0.26	0.96
Ag	0.53	0.097	0.099	0.055	0.072	0.049	0.15	0.23	0.112
U	33.9	8 41	14.1	2.82	3 79	9.95	9.36	2.64	20.7
Th	32	28	50	27.8	36.7	43	57.9	7.67	42.2
La	50.8	25.3	59.6	44.4	74.1	80.5	76.1	49.3	46
Ce	118	53	138	80	156	177	170	115	97.6
Pr	12.9	5.63	13.1	10.5	17.8	15.8	15.8	11.7	10.2
Nd	51.6	21.8	50.7	44 7	74.2	63.3	62.7	50.6	37.6
Sm	14.5	4 66	9.13	8 12	12.9	11.8	11.2	11	8 26
Fu	1 37	0.49	1.05	1 30	1 01	1 00	1.54	1 15	0.20
Gd	13.2	3.98	7.53	6.02	1.91	9.48	9.06	9.18	7.16
Th	2 57	0.62	0.94	0.87	14	1 37	1.28	1 55	1 24
Dv	17.2	3 46	4 66	1 51	7 13	7 00	6.97	8.7	7.92
Бу Но	3 50	0.62	0.85	-1.JI 0.9	1.15	1.09	1 25	0.7	1.54
Fr	10.3	1.64	2 11	2.1	3 15	3.6	3 75	1.50	1.50
Tm	10.5	0.26	2.44 0.41	2.1 0.3	0.13	0.54	0.58	4.2	+.+ 0.75
Vb	12.70	1.78	2 08	1 00	0.40 2.68	3.62	3.78	1 16	5.08
10 10	14.1	0.24	2.70	0.26	0.34	0.49	0.51	4.40	0.7
ьu v	05.2	0.24	20.7	18.6	20.74	0.40	30.0	0.30	0.7 A1 A

					枨	2 新兴花	∬ 当 Sr−N	Nd 同位素数	据					
					Table 2 S	r-Nd isot	topic data	of the Xinxi	ng granite					
样号	17HT05	17LD11	17LD12	17HT01	17HT02	17HT	03 17H	T04 17H	T08 17	LD13	17LD14	17LD15	PM10-2-2	PM10-2-4
東	弱片麻状	巨斑状	巨斑状	弱片麻状	弱片麻状	弱片麻	< 状 弱片	麻状 黑云	二长 斑	伏细粒	斑状细粒	中细粒	細粒二	細粒二长
П	花岗岩	花岗岩	花岗岩	花岗岩	花岗岩	花岗:	岩 花序	衬岩 花序	尚岩 花	尚指	花岗岩	花岗岩	长花岗岩	花岗岩
$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$	0.7582	0.7385	0.7364	0.75802	0.75493	0.753(05 0.74	1367 0.76	5116 0.2	74432	0.74845	0.81007	0.79989	0.78861
2σ	0.00005	0.00002	0.00001	0.00006	0.00003	0.000	03 0.00	0.00 0.00	0.0 0.0	00002	0.00004	0.00003	0.00003	0.00004
$^{143}Nd/^{144}Nd$	0.512014	0.511934	0.511929	0.511961	0.511974	0.5119	71 0.51	1966 0.51	1976 0.5	11974	0.511959	0.51199	0.511992	0.511958
2σ	0.000005	0.000002	0.000002	0.000002	0.000003	0.0000	0.000	0002 0.00	0002 0.0	100004	0.000002	0.00006	0.000003	0.000004
$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	10.979	3.503	3.283	10.066	9.472	7.52	7 6.5	01 10.	693 7	7.463	9.494	27.713	23.881	20.206
$M^{147}SM/^{144}Nd$	0.1423	0.1144	0.1124	0.1240	0.1269	0.125	i6 0.1i	579 0.1.	273 0.	.1119	0.1117	0.1474	0.1581	0.1296
$t_{\rm DM}/{ m Ga}$	2.41	1.86	1.83	2.01	2.06	2.03	3.1	90 2.	06	1.76	1.77	2.65	3.15	2.15
t2DM/Ga	1.62	1.67	1.67	1.65	1.64	1.64	1 1.	74 1.	64	1.61	1.63	1.66	1.69	1.67
$\mathcal{E}^{\mathrm{Nd}}(t)$	-10.58	-11.32	-11.36	-11.08	-10.91	-10.9	3 -12	.27 -10	- 88.	10.47	-10.75	-11.20	-11.43	-11.21
$\mathcal{E}_{\mathrm{Sr}}(t)$	256	324	304	296	280	344	2	39 3.	12	223	187	216	201	219
Isr	0.722285	0.727041	0.725660	0.725089	0.723945	0.7284	127 0.72	1094 0.72	6181 0.7	19907	0.717392	0.719412	0.718364	0.719629
样号	PM10-26-2	PM11-39-1	PM11-51-	1 17H	1T06	17HT07	PM10-20-1	PM10-23-1	PM10-31-2	17BJ	60,	17BJ10	PM11-50-1	PM11-47-1
市	电气石花岗岩	中 细 粒 二 衣 花 岗 岩	粗中粒斑状! 母二长花岗	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○<td>11 影</td><td>黒 云二 大 花 茵 岩</td><td>花岗岩</td><td>电气石花岗岩</td><td>中细粒花岗ネ</td><td>^当 花 花</td><td>出</td><td>E状细粒 花岗岩</td><td>弱片麻状细粒少 斑黑云母二长花 岗岩</td><td>细粒含电气石 二长花岗岩</td>	11 影	黒 云二 大 花 茵 岩	花岗岩	电气石花岗岩	中细粒花岗ネ	^当 花 花	出	E状细粒 花岗岩	弱片麻状细粒少 斑黑云母二长花 岗岩	细粒含电气石 二长花岗岩
⁸⁷ Sr/ ⁸⁶ Sr	0.76979	0.8108	0.74055	0.7	77	0.76127	1.202	0.76108	0.76753	0.791	43 (.79783	0.77962	0.77804
2σ	0.00003	0.00007	0.00002	0.00)005	0.00006	0.00004	0.00004	0.00004	0.00)04 (.00005	0.00002	0.00005
$h^{143}Nd^{144}Nd$	0.512011	0.511969	0.511941	0.51	1993 ().511965	0.512069	0.511983	0.512027	0.511	977 0	.511982	0.511974	0.51195
2σ	0.000002	0.000003	0.00002	0.00	0002 0	.000004	0.000006	0.000003	0.000003	0.000	003 0	.000004	0.000003	0.000002
$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	16.551	15.332	3.223	16.	246	10.943	154.768	11.210	12.270	17.7	83	21.643	9.427	6.232
$^{147}SM^{144}Nd$	0.1699	0.1292	0.1089	0.1	328	0.1265	0.1951	0.1310	0.1598	0.14	49	0.1452	0.1299	0.1196
t _{DM} /Ga	3.92	2.12	1.75	2.	17	2.06	8.63	2.14	3.16	2.5	8	2.58	2.13	1.94
t2DM/Ga	1.69	1.65	1.65	1.	63	1.65	1.66	1.64	1.64	1.6	7	1.67	1.65	1.66
$\mathcal{E}_{\mathrm{Nd}}(t)$	-11.42	-11.07	-11.02	-10	1,71	-11.07	-11.06	-10.77	-10.80	-11	38	-11.29	-11.00	-11.16
$\varepsilon_{\mathrm{Sr}}(t)$	129	801	366	2	62	302	-434	264	304	41.	2	324	633	759
Isr	0.713288	0.760645	0.730006	0.72	3854 0	0.725473	0.673649	0.722810	0.725642	0.733	257 0	.727029	0.748779	0.757653

http://geochina.cgs.gov.cn 中国地质, 2021, 48(6)

第48卷第6期

周岱等:粤西新兴岩体的形成时代与成因研究:对古特提斯洋东支关闭时间的约束

1905

表3 新兴花岗岩中基性岩包体主量元素(%)和稀土、微量元素(10~)分析结果

Table 3 Analysis results of major elements (%) and rare earth and trace elements (10⁻⁶) of basic enclaves from the Xinxing

									gr	anite												
采样地	岩	¦性	SiC)2	Al ₂ O	3 Fe	$_2O_3$	FeO	С	aO	MgO	K	2O	Na ₂	0	TiO ₂	P	$_{2}O_{5}$	MnO	LC	I	Total
肇庆田	基性	包体	53.4	8	15.01	1.	06	9.56	3.	16	8.24	2.4	40	0.1	6	0.74	0.	09	0.19	4.5	29	8.62
肇庆田	基性	包体	53.7	71	13.95	1.	53	9.86	1.	93	9.18	1.9	92	0.0	5	0.77	0.	10	0.21	5.4	4 9	8.64
肇庆田	基性	包体	50.9	96	14.66	1.	58	8.72	6.	38	8.63	2.4	46	0.2	9	0.70	0.	09	0.19	4.1	2 9	8.78
采样地	Cu	Pb	Zn	Cr	Ni	Со	Rb	W	Mo	As	Bi	H	g	Sr	Ва	V	Sc	Nb	Та	Zr	Hf	Ga
肇庆田	14.9	13.6	113	495	114	42.6	224	0.75	0.21	9.03	0.21	0.00)56	115	500	219	44.2	3.75	0.27	57	1.39	17
肇庆田	6.6	48.3	136	576	130	47.2	152	0.94	0.13	2.58	0.18	0.00)36	91.4	403	196	43.6	3.06	0.18	32.6	1.06	21.3
肇庆田	12.8	51.6	100	523	124	42.6	238	0.53	0.2	3.63	0.2	0.00)45	172	436	251	37	3.11	0.2	26.8	0.88	13.6
采样地	Sn	Au	Ag	5	U	Th	La	Ce	Pr	Nd	SM	Eu	Gd	Tł)	Dy	Но	Er	Tm	Yb	Lu	Y
肇庆田	2.53	0.23	0.03	3 0	.97	2.68	13.3	31.8	3.17	14.7	3.61	0.98	3.39	9 0.0	63	.73	0.75	2.04	0.32	2.13	0.28	23.6
肇庆田	2.78	0.19	0.00	84 0	.37	0.9	10.6	27.6	2.83	14	3.51	1.02	3.4	7 0.6	5 4	.37	0.91	2.51	0.39	2.56	0.34	24.6
肇庆田	3.88	0.44	0.09	4 (.34	1.05	8.28	20.6	2.33	11.7	2.98	0.94	2.84	4 0.5	2 3	.46	0.72	1.96	0.3	2.04	0.28	19.1
	采肇肇肇、举策庆庆法田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	采样地 岩档 肇庆田 基档 肇庆田 基档 肇庆田 基档 肇庆田 14.9 肇庆田 14.9 肇庆田 12.8 梁柱地 Sn 肇庆田 2.53 肇庆田 2.78 肇庆田 3.88	采样地 岩性 肇庆田 基性 肇庆田 基性 肇庆田 基性 夏庆田 基性 ● 4 ● 14.9 13.6 肇庆田 12.8 ● 51.6 采样地 Sn ▲ 2.53 ● 2.78 ● 2.78 ● 3.88	采样地 岩性 Site 肇庆田 基性包体 53.4 肇庆田 基性包体 50.9 肇庆田 基性包体 50.9 聚样地 Cu Pb Zn 肇庆田 14.9 13.6 113 肇庆田 12.8 51.6 100 采样地 Sn Au Ag 肇庆田 2.53 0.23 0.03 肇庆田 2.78 0.19 0.00 肇庆田 3.88 0.44 0.09	采样地 岩性 SiO2 肇庆田 基性包体 53.48 肇庆田 基性包体 53.71 肇庆田 基性包体 50.96 聚样地 Cu Pb Zn ア 13.6 113 495 肇庆田 16.6 48.3 136 576 肇庆田 12.8 51.6 100 523 采样地 Sn Au Ag 肇庆田 2.73 0.23 0.033 0 肇庆田 3.88 0.44 0.094 0	采样地 岩性 SiO ₂ Al ₂ O 肇庆田 基性包体 53.48 15.01 肇庆田 基性包体 53.71 13.95 肇庆田 基性包体 50.96 14.66 聚样地 Cu Pb Zn Cr Ni 肇庆田 14.9 13.6 113 495 114 肇庆田 6.6 48.3 136 576 130 肇庆田 12.8 51.6 100 523 124 采样地 Sn Au Ag U 肇庆田 2.73 0.23 0.033 0.97 2 肇庆田 2.78 0.19 0.0084 0.37 肇庆田 3.88 0.44 0.094 0.34	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe 肇庆田 基性包体 53.48 15.01 1. 肇庆田 基性包体 53.71 13.95 1. 肇庆田 基性包体 50.96 14.66 1. 聚样地 Cu Pb Zn Cr Ni Co 肇庆田 14.9 13.6 113 495 114 42.6 肇庆田 12.8 51.6 100 523 124 42.6 肇庆田 12.8 51.6 100 523 124 42.6 繁庆田 2.53 0.23 0.033 0.97 2.68 肇庆田 2.78 0.19 0.0084 0.37 0.9 肇庆田 3.88 0.44 0.094 0.34 1.05	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ 肇庆田 基性包体 53.48 15.01 1.06 肇庆田 基性包体 53.71 13.95 1.53 肇庆田 基性包体 50.96 14.66 1.58 聚样地 Cu Pb Zn Cr Ni Co Rb 繁庆田 14.9 13.6 113 495 114 42.6 224 肇庆田 6.6 48.3 136 576 130 47.2 152 肇庆田 12.8 51.6 100 523 124 42.6 238 采样地 Sn Au Ag U Th La 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 肇庆田 2.78 0.19 0.0084 0.37 0.9 10.6 肇庆田 3.88 0.44 0.094 0.34 1.05 8.28	采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO 肇庆田 基性包体 53.48 15.01 1.06 9.56 肇庆田 基性包体 53.71 13.95 1.53 9.86 肇庆田 基性包体 50.96 14.66 1.58 8.72 采样地 Cu Pb Zn Cr Ni Co Rb W 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 肇庆田 6.6 48.3 136 576 130 47.2 152 0.94 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 采样地 Sn Au Ag U Th La Ce 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8 肇庆田 2.78 0.19 0.0084 0.37 0.9 10.6 27.6 肇庆田 3.88 0.44 0.094 0.34 1.05 8.28 20.6 </td <td>采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO C 肇庆田 基性包体 53.48 15.01 1.06 9.56 3. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6. 采样地 Cu Pb Zn Cr Ni Co Rb W Mo 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 肇庆田 6.6 48.3 136 576 130 47.2 152 0.94 0.13 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.21 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 聚 XH Na Ag U Th La Ce Pr 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8</td> <td>采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO CaO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 采样地 Cu Pb Zn Cr Ni Co Rb W Mo As 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 采样地 Sn Au Ag U Th La Ce Pr Nd 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8 3.17 14.7 肇庆田 2.78 0.19 0.0084 0.37 0.9 10.6 27.6 2.83 14 肇庆田</td> <td>采样地 岩性 SiO2 Al2O3 Fe2O3 Fe0 CaO MgO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 聚样地 Sn Au <</td> <td>采样地 岩性 SiO2 Al2O3 Fe2O3 Fe0 CaO MgO K 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2. 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi H 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.00 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.00 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.00 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8</td> <td>采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO CaO MgO K₂O 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0036 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3</td> <td>采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.1 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.0 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.27 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 172 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 172</td> <td>采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO CaO MgO K₂O Na₂O 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.20 0.0045 172 436 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63</td> <td>gramme 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 擎庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 擎庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 肇庆田 14.9 13.6 113 495 114 2.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 肇庆田 12.8 51.6 100 523 124<</td> <td>采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P. 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0. 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 44.2 肇庆田 16.6 48.3 136 576 130 47.2 152 0.94 0.13 2.58 0.18 0.0036 91.4 403 196</td> <td>granne 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 肇庆田 14.9 13.6 170 42.6 238 0.53 0.21 9.03 0.21 0.0045</td> <td>granne 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 0.18 肇庆田 14.9 13.6 176 130</td> <td>采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO LO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 4.53 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 5.4 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 4.12 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta Zr 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 0.18 32.6 肇庆田 14.9</td> <td>采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO CaO MgO K₂O Na₂O TiO₂ P₂O₅ MnO LOI TO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 4.52 9 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 5.44 9 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 4.12 9 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta Zr Hf 肇庆田 14.9 13.6 113 495 114 42.6 24 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.0</td>	采样地 岩性 SiO₂ Al₂O₃ Fe₂O₃ FeO C 肇庆田 基性包体 53.48 15.01 1.06 9.56 3. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6. 采样地 Cu Pb Zn Cr Ni Co Rb W Mo 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 肇庆田 6.6 48.3 136 576 130 47.2 152 0.94 0.13 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.21 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 聚 XH Na Ag U Th La Ce Pr 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO CaO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 采样地 Cu Pb Zn Cr Ni Co Rb W Mo As 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 采样地 Sn Au Ag U Th La Ce Pr Nd 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8 3.17 14.7 肇庆田 2.78 0.19 0.0084 0.37 0.9 10.6 27.6 2.83 14 肇庆田	采样地 岩性 SiO2 Al2O3 Fe2O3 Fe0 CaO MgO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 聚样地 Sn Au <	采样地 岩性 SiO2 Al2O3 Fe2O3 Fe0 CaO MgO K 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2. 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi H 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.00 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.00 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.00 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3 31.8	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO CaO MgO K ₂ O 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0036 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 肇庆田 2.53 0.23 0.033 0.97 2.68 13.3	采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.1 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.0 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.27 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 172 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.2 0.0045 172	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO CaO MgO K ₂ O Na ₂ O 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63 0.20 0.0045 172 436 肇庆田 12.8 51.6 100 523 124 42.6 238 0.53 0.2 3.63	gramme 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 擎庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 擎庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 肇庆田 14.9 13.6 113 495 114 2.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 肇庆田 12.8 51.6 100 523 124<	采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P. 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0. 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0. 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0. 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 44.2 肇庆田 16.6 48.3 136 576 130 47.2 152 0.94 0.13 2.58 0.18 0.0036 91.4 403 196	granne 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 肇庆田 14.9 13.6 170 42.6 238 0.53 0.21 9.03 0.21 0.0045	granne 采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 0.18 肇庆田 14.9 13.6 176 130	采样地 岩性 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO LO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 4.53 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 5.4 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 4.12 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta Zr 肇庆田 14.9 13.6 113 495 114 42.6 224 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.06 0.18 32.6 肇庆田 14.9	采样地 岩性 SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO CaO MgO K ₂ O Na ₂ O TiO ₂ P ₂ O ₅ MnO LOI TO 肇庆田 基性包体 53.48 15.01 1.06 9.56 3.16 8.24 2.40 0.16 0.74 0.09 0.19 4.52 9 肇庆田 基性包体 53.71 13.95 1.53 9.86 1.93 9.18 1.92 0.05 0.77 0.10 0.21 5.44 9 肇庆田 基性包体 50.96 14.66 1.58 8.72 6.38 8.63 2.46 0.29 0.70 0.09 0.19 4.12 9 聚样地 Cu Pb Zn Cr Ni Co Rb W Mo As Bi Hg Sr Ba V Sc Nb Ta Zr Hf 肇庆田 14.9 13.6 113 495 114 42.6 24 0.75 0.21 9.03 0.21 0.0056 115 500 219 43.6 3.0

粒长轴100~200 μm,长宽比集中在1:1,具宽板状、 补丁状CL特征,与典型中基性岩浆中生长的锆石 类似,这一样品中部分锆石具核边结构,核部为暗 色,边部为宽板状环带特征,核部与边部界线截然 (图7g)。

4.1.2 U-Pb 同位素年龄

新兴花岗岩锆石U-Pb定年结果见图8及表4, 归纳表述如下。

(1)图8小圈代表花岗岩中岩浆锆石(幔部)的 数据结果,依次来看,3件巨斑状花岗岩(ηγT₃^{1a})多数 岩浆锆石加权平均年龄为(240±1) Ma、(233±2) Ma、 (231±2) Ma(图8a~c),2件中细粒斑状花岗岩 (ηγT₃^{1b})多数岩浆锆石加权平均年龄为(237±4) Ma、 (236±4) Ma(图8d~e),1件细粒斑状花岗岩(ηγT₃^{2a}) 多数岩浆锆石加权平均年龄为(224±2) Ma(图8f),1 件细粒斑状花岗岩中的基性包体多数岩浆锆石加 权平均年龄为(240±1) Ma(图8g),1件细粒(含斑) 花岗岩(ηγT₃^{2b})多数岩浆锆石加权平均年龄为(226± 3) Ma(图8h)。这些年龄结果可以代表新兴花岗岩 不同侵入单元的岩浆结晶时间。

(2)5件花岗岩样品(PM11-39-1、D2286-1、 D2268-1、D2264-5、D5784-1)中包含大量的420~ 460 Ma的锆石(图8d~f,h~i),其中D5784-1样品中 几乎全部为该期锆石(图8i)(仅1个测点为241 Ma)。新兴花岗岩围岩以泥盆纪和寒武纪砂岩为 主,其中泥盆纪砂岩中的锆石以较为自形(近源搬 运)的岩浆锆石为主,碎屑锆石年龄以440 Ma左右 主(数据略),因而推测新兴花岗岩中420~460 Ma的 锆石是岩浆房阶段或花岗岩就位过程中同化泥盆 纪砂岩继承而来的。

(3)3件花岗岩(D7063-1、D3406-1、PM11-39-1)和1件包体(D6467-3)中出现一组250~252 Ma的 锆石(图8a、b、d、g)。基性包体样品D6467-3中的该 期锆石以典型的继承核产出,其他花岗岩中该期锆 石则多数为单独矿物。结合Th/U比值、CL和REE 特征判断其为岩浆成因锆石,可能来源于源区继承 或围岩捕获(图7),推测是早期岩浆活动的记录。

(4)3件巨斑状花岗岩获得了214~219 Ma的锆石边部年龄(图8a~c,以灰圈表示),可能是岩浆作用晚期热液活动对前期锆石的改造。

结合新兴岩体和湾边岩体的详细野外调查和 测年结果认为,新兴—湾边岩体并非前人认为的志 留纪—侏罗纪—白垩纪花岗岩岩体,而是主体为晚 三叠世花岗岩侵入体(231~240 Ma 和 224~226 Ma)、含少量晚侏罗世碱长花岗岩(160~162 Ma,未 发表数据)的复式岩体。此外,4件样品中记录的 250~252 Ma的锆石表明,新兴、恩平地区的印支期 岩浆作用开始于早三叠世,这一地区可能存在隐伏 的早三叠世侵入体。

4.2 地球化学特征

4.2.1 花岗岩地球化学特征(表1)

新兴晚三叠世两期花岗岩形成时间相近、空间 上密切共生,岩性以黑云母二长花岗岩为主,二者 也具有相似的地球化学组成。

第一期花岗岩(ηγT₃¹)主要岩石类型为花岗岩 类,部分样品落入花岗闪长岩和石英二长岩区域 (图 9a),该期花岗岩 SiO₂变化较大,为64%~76%。 所有样品均富碱富钾(Na₂O+K₂O= 6.24%~12.07%, 第48卷第6期

Partial bet in the sector in the se						表4	新兴花岗	岗岩锆石	īU−Pb วี	ミ年测试	式数据						
<table-container> math math <</table-container>					Т	able 4	Zircon U	J -Pb da	ta of the	Xinxin	ig granite						
Number Number Iso "pp6/"p6 I	分析点号	Th/10 ⁻⁶	U/10-6	Th/U			同位素	影比值					同位素年龄	∛/Ma			谐和
D7063-1-01 187 897 0.12 0.029 0.0009 0.273 0.0033 0.0033 2.24 4.44 2.48 2.42 2.17 95% D7065-1-01 2.35 16.30 0.12 0.059 0.0014 0.292 0.001 0.024 0.0032 0.0004 41.5 5.6 2.61 6.4 2.42 3.9 95% D7063-1-05 2.353 16.30 0.014 0.023 0.0010 0.0381 0.0004 186 5.6 2.16 6.4 2.42 2.8 95% D7063-1-04 1730 1412 0.80 0.052 0.010 0.238 0.010 0.0381 0.0004 187 7.8 38 1.02 2.12 2.48 1.02 2.12 2.48 1.02 2.12 2.48 2.12 2.48 2.12 2.44 1.02 2.12 2.44 1.02 2.12 2.44 2.12 2.12 2.44 D7063-1-10 153 1.02 0.050					²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	度
D7D63-1-01 118 8978 0.010 0.278 0.003 0.034 0.003 3.24 4.4 4.24 2.9 1.7 96% D7063-1-03 381 0.001 0.0250 0.0009 0.0260 0.0042 0.0033 20004 417 5.6 2.16 6.4 2.27 98% D7063-1-04 1785 4747 0.8 0.0014 0.2383 0.0004 407 5.6 2.16 6.4 2.07 98% D7063-1-06 1310 1412 0.80 0.0014 0.0278 0.0004 306 8.33 2.46 8.08 2.07 7.6 98% D7063-1-06 181 197 0.82 0.011 0.0238 0.0004 322 4.44 2.18 8.08 2.7 97% D7063-1-10 1501 1676 0.12 0.511 0.010 0.283 0.004 322 4.44 2.48 8.08 2.5 98% D7063-1-18 11	D7063-1																
D7D63-1-02 25.8 21.80 0.12 0.051 0.0014 0.2320 0.0038 2.0003 3.41 8.99 27.7 2.60 95% D7063-1-04 1785 4471 0.32 0.0014 0.0382 0.0004 107 55.6 261 6.4 242 2.3 95% D7063-1-04 1785 4747 0.32 0.0049 0.0381 0.0004 198 54.6 238 5.0 247 2.5 95% D7063-1-08 881 117 0.82 0.051 0.019 0.262 0.009 0.0373 0.0004 128 7.4 2.8 2.5 95% D7063-1-10 531 1.6 1.58 0.051 0.0010 0.2803 0.0014 120 0.0373 0.0004 321 2.4 1.8 2.4 2.9 95% D7063-1-13 150 153 151 0.02 0.0520 0.024 0.0371 0.0053 <th0.037< th=""> <th0.005< th=""> 2.4<td>D7063-1-01</td><td>1187</td><td>8979</td><td>0.13</td><td>0.0529</td><td>0.0010</td><td>0.2773</td><td>0.0053</td><td>0.0378</td><td>0.0003</td><td>324</td><td>44.4</td><td>248</td><td>4.2</td><td>239</td><td>1.7</td><td>96%</td></th0.005<></th0.037<>	D7063-1-01	1187	8979	0.13	0.0529	0.0010	0.2773	0.0053	0.0378	0.0003	324	44.4	248	4.2	239	1.7	96%
D7063-1-03 81 4003 0.0 0.014 0.232 0.004 0.005 0.015 0.016 0.038 0.0004 178 6.4 242 2.3 92% D7063-1-05 2535 1526 0.10 0.001 0.2600 0.0038 0.0004 188 5.46 238 5.1 2.1 7.8 97% D7063-1-05 119 0.50 0.011 0.243 0.080 0.0378 0.0004 256 8.24 2.8 8.0 2.3 2.5 98% D7063-1-08 119 0.50 0.051 0.010 0.242 0.083 0.0004 232 2.44 2.8 8.0 2.3 2.5 94% D7063-1-12 126 1.81 0.0024 0.276 0.012 0.331 0.0004 323 4.44 2.1 8.4 2.8 8% D7063-1-12 126 1.81 0.053 0.0024 0.034 0.0003 367 389 2.23	D7063-1-02	2568	21860	0.12	0.0529	0.0009	0.2508	0.0044	0.0342	0.0003	324	38.9	227	3.6	217	2.0	95%
D7063-1-04 1785 4747 0.38 0.049 0.0012 0.2603 0.0002 0.0383 0.0004 165 6.39 235 5.0 241 2.7 9% D7063-1-06 1130 1412 0.80 0.051 0.0109 0.273 0.0100 0.037 0.0004 368 2.46 2.88 6.0 2.9 9.7 97% D7063-1-01 1503 1.765 0.12 0.051 0.0010 0.283 0.0004 300 2.68 8.24 2.88 8.0 2.37 9% D7063-1-10 1503 1.765 0.12 0.031 0.0010 0.2803 0.0004 3.0004 3.89 2.21 4.4 1.7 4.16 2.7 9% D7063-1-13 1.53 1.71 0.60 0.357 0.000 0.361 0.0004 3.89 2.23 4.4 1.8 1.26 2.44 2.8 9% D7063-1-13 1.53 1.54 0.14 0.501<	D7063-1-03	831	4003	0.21	0.0551	0.0014	0.2932	0.0081	0.0382	0.0004	417	55.6	261	6.4	242	2.3	92%
D7061-10 S55 16.20 0.10 0.052 0.001 0.238 0.0031 0.0041 198 54.6 238 5.1 241 2.7 98% D7063-1-07 8 1490 0.59 0.019 0.233 0.009 0.033 0.0041 37 7.6 238 7.2 242 2.5 98% D7063-1-07 8 1197 0.82 0.011 0.037 0.0004 372 92.6 2.51 8.8 2.8 2.5 98% D7063-1-10 513 10.2 0.052 0.0042 0.264 0.0010 0.037 0.0004 327 4.44 2.5 1.4 9.4 2.4 4.4 2.5 9.4 D7063-1-13 801 2.53 0.31 0.020 0.254 0.0012 0.331 0.0004 2.32 4.4 4.5 4.4 2.5 4.8 2.2 9.6 D7063-1-14 140 0.53 0.051 0.021 0.254	D7063-1-04	1785	4747	0.38	0.0494	0.0012	0.2600	0.0062	0.0383	0.0005	165	63.9	235	5.0	242	3.3	96%
D7063-1-06 113 1412 0.80 0.59 0.0498 0.019 0.273 0.010 0.378 0.0041 306 8.3.3 246 8.0 2.7 2%7 D7063-1-08 1197 0.82 0.0511 0.010 0.2623 0.0009 0.375 0.0004 25.8 2.42 2.88 7.2 2.42 2.8 5 9% D7063-1-10 153 1.765 0.12 0.031 0.000 0.263 0.0004 2.084 2.44 2.51 8.8 2.8 9% D7063-1-12 126 1.817 0.60 0.537 0.000 2.634 0.0004 0.334 0.0003 3.8 9.23 3.4 2.8 9% D7063-1-14 120 5.14 0.23 0.501 0.0004 0.034 0.0004 1.3 5.74 2.02 4.5 2.4 9% D7063-1-16 144 5.50 0.21 0.501 0.010 0.248 0.0004 1.3 <td>D7063-1-05</td> <td>2535</td> <td>16263</td> <td>0.16</td> <td>0.0501</td> <td>0.0011</td> <td>0.2638</td> <td>0.0063</td> <td>0.0381</td> <td>0.0004</td> <td>198</td> <td>54.6</td> <td>238</td> <td>5.1</td> <td>241</td> <td>2.7</td> <td>98%</td>	D7063-1-05	2535	16263	0.16	0.0501	0.0011	0.2638	0.0063	0.0381	0.0004	198	54.6	238	5.1	241	2.7	98%
D7063-1-07 886 1496 0.59 0.0498 0.0019 0.2638 0.0084 0.004 187 79.6 238 7.2 242 2.5 98% D7063-1-09 1270 806 1.58 0.0541 0.0021 0.200 0.0375 0.0004 372 92.6 231 8.8 238 2.5 94% D7063-1-01 1503 1.72 0.12 0.031 0.0000 0.280 0.004 0.037 0.0001 322 4.44 251 8.4 2.8 95% D7063-1-12 1206 1514 0.23 0.010 0.256 0.040 0.0376 0.0004 143 57.4 230 5.0 238 2.6 95% 95% 0.001 1.254 0.005 0.0381 0.0004 141 57.4 230 5.0 238 2.6 95% 236 24 4.5 241 4.5 24 4.5 241 95% 0.001 0.251 0.0369<	D7063-1-06	1130	1412	0.80	0.0525	0.0019	0.2739	0.0100	0.0378	0.0004	306	83.3	246	8.0	239	2.7	97%
D7063-1-08 981 1197 0.82 0.0511 0.0019 0.262 0.0037 0.0004 322 62.4 238 8.0 237 2.5 99% D7063-1-10 1503 12765 0.12 0.0531 0.0010 0.2805 0.011 0.0371 0.0004 332 44.4 251 8.7 248 98% D7063-1-12 2563 513 102 0.0537 0.0001 0.2563 0.0342 0.0041 133 74.2 250 2.4 2.8 98% D7063-1-13 810 2563 0.31 0.049 0.021 0.294 0.0051 0.0395 0.004 121 52.8 2.4 2.6 2.4 2.5 2.4 95% D7063-1-15 1144 550 0.21 0.091 0.014 0.039 0.0004 2.55 5.7 2.56 6.0 2.51 2.4 95% D7063-1-15 1145 585 0.21 0.513 0.011	D7063-1-07	886	1496	0.59	0.0498	0.0017	0.2638	0.0089	0.0383	0.0004	187	79.6	238	7.2	242	2.5	98%
D7063-1-0 1271 806 1.58 0.0541 0.0020 0.2803 0.0101 0.0377 0.0004 372 92.6 2.51 8.8 238 2.5 94% D7063-1-10 1503 1.02 0.0521 0.0120 0.0126 0.0344 0.0004 322 444 2.61 4.7 2.41 2.6 98% D7063-1-12 266 2181 0.31 0.489 0.0010 0.2563 0.044 0.0344 0.003 7.67 3.80 2.32 3.4 2.4 98% D7063-1-16 141 5.00 0.311 0.0249 0.0264 0.0356 0.0404 1.43 5.74 2.45 2.45 2.41 2.6 99% D7063-1-1 1206 2.65 0.61 0.0101 0.2745 0.0397 0.0005 4.28 5.74 2.6 6.0 2.51 2.8 2.92% D7063-1-19 160 3948 0.011 0.274 0.059 0.397	D7063-1-08	981	1197	0.82	0.0511	0.0019	0.2642	0.0099	0.0375	0.0004	256	82.4	238	8.0	237	2.5	99%
D7063-1-10 1503 12765 0.12 0.031 0.0010 0.2803 0.0060 0.381 0.0005 287 99.1 248 1.00 243 2.8 98% D7063-1-11 523 513 1.02 0.0320 0.0021 0.2543 0.0042 0.381 0.0004 237 230 23.4 218 1.7 94% D7063-1-13 810 0.53 0.019 0.0101 0.2544 0.0051 0.0014 239 42.6 242 4.5 241 2.6 96% D7063-1-13 814 1200 5141 0.32 0.001 0.0014 0.0058 0.0381 0.0004 211 5.8 246 4.6 250 2.8 92% D7063-1-17 1060 344 0.27 0.0511 0.0011 0.2744 0.0380 0.0003 254 4.81 2.41 2.4 98% D7063-1-18 116 585 0.027 0.6131 0.0011	D7063-1-09	1271	806	1.58	0.0541	0.0022	0.2805	0.0111	0.0377	0.0004	372	92.6	251	8.8	238	2.5	94%
D7063-1-11 523 513 1.02 0.020 0.024 0.216 0.0126 0.0344 0.0003 287 99.1 248 1.00 243 2.8 98% D7063-1-12 1266 21817 0.06 0.0370 0.0001 0.2563 0.010 0.2564 0.0016 0.016 0.016 0.016 0.0016	D7063-1-10	1503	12765	0.12	0.0531	0.0010	0.2803	0.0060	0.0381	0.0004	332	44.4	251	4.7	241	2.2	95%
D7063-1-12 1266 2181 0.06 0.0337 0.0009 0.256 0.0042 0.0040 0.004 1.41 57.4 2.30 5.0 2.38 2.2 9% D7063-1-14 1200 5141 0.33 0.049 0.0010 0.298 0.0016 0.375 0.0004 210 42.6 242 4.5 241 2.6 9% D7063-1-16 144 550 0.21 0.0010 0.2745 0.0385 0.0004 211 52.8 246 4.6 250 2.7 9% D7063-1-16 1105 580 0.51 0.010 0.2745 0.0387 0.0004 215 5.6.7 256 6.0 2.1 2.4 9% D7063-1-12 1040 3948 0.27 0.513 0.011 0.258 0.035 0.004 1.3 4.5.4 2.3 4.5 2.4 2.4 2.9 9% D7063-1-12 1109 579 0.20 0.513	D7063-1-11	523	513	1.02	0.0520	0.0024	0.2761	0.0126	0.0384	0.0005	287	99.1	248	10.0	243	2.8	98%
D7063-1-13 801 253 0.31 0.0489 0.0012 0.254 0.0036 0.0376 0.004 133 57.4 230 5.0 238 2.2 96% D7063-1-15 845 981 0.86 0.057 0.021 0.298 0.012 0.395 0.0005 426 242 4.5 241 2.6 98% D7063-1-16 114 550 0.21 0.010 0.274 0.037 0.0005 428 7.4 2.70 5.9 251 2.4 97% D7063-1-18 1158 0.51 0.522 0.014 0.286 0.076 0.397 0.0004 255 6.57 256 6.0 2.51 2.4 97% D7063-1-18 1600 348 0.27 0.0101 0.280 0.005 0.380 0.0003 254 48.1 2.43 4.5 2.42 2.43 98% D7063-1-18 1199 550 0.20 0.513 0.010	D7063-1-12	1266	21817	0.06	0.0537	0.0009	0.2563	0.0042	0.0344	0.0003	367	38.9	232	3.4	218	1.7	94%
D7063-1-14 1200 5141 0.23 0.059 0.001 0.2694 0.005 0.031 0.004 239 42.6 242 4.5 241 2.6 9% D7063-1-15 845 981 0.86 0.054 0.001 0.2745 0.088 0.0397 0.000 211 52.8 246 4.6 250 2.7 98% D7063-1-17 1206 2625 0.46 0.0524 0.0014 0.280 0.007 0.0037 0.0004 225 6.5.7 256 6.0 251 2.4 97% D7063-1-19 0.604 9.72 0.0513 0.0011 0.2587 0.050 0.0300 0.24 45.4 2.41 2.45 2.42 2.42 97% D7063-1-19 149 4.50 0.23 0.0419 0.210 0.055 0.030 0.000 2.54 4.54 2.41 2.33 2.41 2.3 2.49 2.3 D3406-1-01 1199 550 </td <td>D7063-1-13</td> <td>801</td> <td>2563</td> <td>0.31</td> <td>0.0489</td> <td>0.0012</td> <td>0.2544</td> <td>0.0061</td> <td>0.0376</td> <td>0.0004</td> <td>143</td> <td>57.4</td> <td>230</td> <td>5.0</td> <td>238</td> <td>2.2</td> <td>96%</td>	D7063-1-13	801	2563	0.31	0.0489	0.0012	0.2544	0.0061	0.0376	0.0004	143	57.4	230	5.0	238	2.2	96%
D7063-1-15 845 981 0.86 0.0547 0.0021 0.2986 0.0112 0.0395 0.0004 211 52.8 246 4.6 250 2.7 98% D7063-1-17 1206 2625 0.46 0.0551 0.0101 0.248 0.0076 0.397 0.0005 428 57.4 270 5.9 251 2.8 92% D7063-1-19 1060 3948 0.51 0.052 0.011 0.269 0.039 0.000 254 4.8.1 243 4.7 240 2.1 98% D7063-1-29 044 4150 0.23 0.0489 0.011 0.257 0.056 0.380 0.0005 254 45.4 236 5.3 234 .2 98% D3406-104 1109 5590 0.20 0.513 0.001 0.258 0.050 0.364 0.003 125 4.4 235 4.0 233 2.4 98% D3406-1-04 1627	D7063-1-14	1200	5141	0.23	0.0509	0.0010	0.2694	0.0056	0.0381	0.0004	239	42.6	242	4.5	241	2.6	99%
D7063-1-16 1144 5506 0.21 0.0501 0.010 0.2745 0.0058 0.0397 0.0004 211 52.8 246 4.6 250 2.7 98% D7063-1-17 1206 2625 0.46 0.052 0.011 0.286 0.007 0.037 0.0004 248 5.7 256 6.0 251 2.4 97% D7063-1-19 1060 3948 0.27 0.0513 0.011 0.270 0.058 0.038 0.0004 254 48.1 243 4.7 240 2.1 98% D7063-1-19 1060 344 0.23 0.048 0.001 0.2587 0.056 0.0382 0.004 143 4.5 2.3 4.5 242 2.9 98% D3406-102 1185 5863 0.20 0.051 0.258 0.056 0.0362 0.004 125 4.4 235 4.0 230 2.9 98% D3406-102 1027	D7063-1-15	845	981	0.86	0.0547	0.0021	0.2986	0.0112	0.0395	0.0005	467	82.4	265	8.8	250	2.8	93%
Drob3-1-17 1206 2625 0.46 0.0554 0.014 0.3040 0.0076 0.0397 0.0004 295 65.7 256 6.0 251 2.4 97% Dr063-1-18 811 1585 0.51 0.052 0.011 0.2704 0.0059 0.030 2.54 4.81 2.43 4.7 2.40 2.1 98% Dr063-1-20 944 150 0.23 0.0489 0.011 0.2587 0.055 0.0380 0.000 2.54 4.81 2.44 4.5 2.42 2.2 96% Dr3406-10 1109 5590 0.20 0.0513 0.011 0.2598 0.050 0.005 2.54 4.5.4 2.36 5.3 2.34 3.2 98% D3406-1-02 1185 5.63 0.20 0.051 0.0050 0.0012 0.258 0.0051 0.0003 1.95 2.50 2.33 5.1 2.30 9.8 D3406-1-05 0.647 1.64 <	D7063-1-16	1144	5506	0.21	0.0501	0.0010	0.2745	0.0058	0.0395	0.0004	211	52.8	246	4.6	250	2.7	98%
D7063-1-18 811 1585 0.51 0.0522 0.0014 0.2869 0.0076 0.0397 0.0001 254 48.1 243 4.7 240 2.1 98% D7063-1-20 944 4150 0.23 0.0489 0.0011 0.2587 0.056 0.0382 0.0001 413 45.4 234 4.5 242 2.2 96% D3406-10 1109 5590 0.20 0.0513 0.0011 0.2587 0.056 0.036 0.005 254 45.4 236 5.3 234 3.2 98% D3406-102 1185 5863 0.20 0.0517 0.010 0.258 0.005 0.030 195 25.0 233 5.1 237 2.0 98% D3406-104 2644 1213 0.16 0.051 0.0009 0.267 0.005 0.0004 254 40.7 235 4.2 238 8.5 234 27 98% D3406-106 695	D7063-1-17	1206	2625	0.46	0.0554	0.0014	0.3040	0.0076	0.0397	0.0005	428	57.4	270	5.9	251	2.8	92%
Dro63-1-19 1060 3948 0.27 0.0513 0.0011 0.2704 0.0059 0.0380 0.0001 143 4.51 243 4.7 240 2.1 98% Dr063-1-20 944 4150 0.23 0.0489 0.0011 0.2587 0.0056 0.0382 0.0001 143 4.54 234 4.5 242 2.2 96% D3406-1-01 1109 5590 0.20 0.0513 0.0011 0.2598 0.0050 0.005 2.54 4.54 2.36 5.3 2.34 3.2 98% D3406-1-03 927 2437 0.38 0.0500 0.012 0.2584 0.005 0.0031 195 2.50 2.33 5.1 2.37 2.30 2.49 98% D3406-1-04 2064 1271 0.16 0.0513 0.0009 0.2677 0.0150 0.0301 1.051 0.0004 1.051 4.07 2.33 4.2 2.33 2.4 2.37 95%	D7063-1-18	811	1585	0.51	0.0522	0.0014	0.2869	0.0076	0.0397	0.0004	295	65.7	256	6.0	251	2.4	97%
D7063-1-20 944 4150 0.23 0.0489 0.0011 0.2587 0.0056 0.382 0.0004 143 45.4 234 4.5 242 2.2 96% D3406-101 1109 5590 0.20 0.0513 0.0011 0.2620 0.0055 0.0364 0.0003 272 44.4 235 4.0 230 2.0 98% D3406-103 927 2437 0.38 0.0500 0.012 0.2584 0.0053 0.001 254 44.4 235 4.0 230 2.3 9.4 98% D3406-104 2064 1271 0.16 0.0513 0.0009 0.267 0.0052 0.0367 0.0004 155 7.50 248 7.6 252 3.0 98% D3406-106 695 708 0.98 0.0411 0.2761 0.0105 0.0006 1317 92.8 35 16.3 251 3.0 D3406-107 506 755 0.70	D7063-1-19	1060	3948	0.27	0.0513	0.0011	0.2704	0.0059	0.0380	0.0003	254	48.1	243	4.7	240	2.1	98%
Data Data <th< td=""><td>D7063-1-20</td><td>944</td><td>4150</td><td>0.23</td><td>0.0489</td><td>0.0011</td><td>0.2587</td><td>0.0056</td><td>0.0382</td><td>0.0004</td><td>143</td><td>45.4</td><td>234</td><td>4.5</td><td>242</td><td>2.2</td><td>96%</td></th<>	D7063-1-20	944	4150	0.23	0.0489	0.0011	0.2587	0.0056	0.0382	0.0004	143	45.4	234	4.5	242	2.2	96%
D3406-1-01 1109 5590 0.20 0.0513 0.0011 0.2620 0.0065 0.0369 0.005 254 45.4 236 5.3 234 3.2 98% D3406-1-02 1185 5863 0.20 0.0517 0.010 0.2598 0.0050 0.0031 272 44.4 235 4.0 230 2.0 98% D3406-1-02 1027 2437 0.38 0.0500 0.0012 0.2584 0.0052 0.0367 0.0004 254 40.7 235 4.2 233 2.4 98% D3406-1-05 1027 1394 0.74 0.0500 0.0017 0.2761 0.0096 0.3399 0.0005 195 7.50 248 7.6 252 3.0 98% D3406-1-06 695 708 0.98 0.0481 0.0020 0.2477 0.0360 0.0006 1317 92.8 355 16.3 251 3.7 55% D3406-1-09 498 <td< td=""><td>D3406-1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	D3406-1																
D3406-1-02 1185 5863 0.20 0.0517 0.0010 0.2598 0.0050 0.0364 0.0003 272 44.4 235 4.0 230 2.0 98% D3406-1-03 927 2437 0.38 0.0500 0.0012 0.2584 0.0063 0.0013 195 25.0 233 5.1 237 2.0 98% D3406-1-05 1027 1394 0.74 0.050 0.017 0.2761 0.005 0.0367 0.0004 254 40.7 235 4.2 233 2.4 98% D3406-1-06 695 708 0.98 0.0481 0.0020 0.2457 0.015 0.0370 0.004 106 -94.4 223 8.5 234 2.7 95% D3406-1-07 560 795 0.70 0.0850 0.0039 0.4749 0.0370 0.0004 1317 92.8 395 16.3 21 3.7 55% D3406-1-09 498 770 </td <td>D3406-1-01</td> <td>1109</td> <td>5590</td> <td>0.20</td> <td>0.0513</td> <td>0.0011</td> <td>0.2620</td> <td>0.0065</td> <td>0.0369</td> <td>0.0005</td> <td>254</td> <td>45.4</td> <td>236</td> <td>5.3</td> <td>234</td> <td>3.2</td> <td>98%</td>	D3406-1-01	1109	5590	0.20	0.0513	0.0011	0.2620	0.0065	0.0369	0.0005	254	45.4	236	5.3	234	3.2	98%
D3406-1-03 927 2437 0.38 0.0500 0.012 0.2584 0.0063 0.003 195 25.0 233 5.1 237 2.0 98% D3406-1-04 2064 12713 0.16 0.0513 0.0009 0.2607 0.0052 0.0367 0.0004 254 40.7 235 4.2 233 2.4 98% D3406-1-05 1027 1394 0.74 0.0500 0.0017 0.2761 0.0096 0.0399 0.0005 195 75.0 248 7.6 252 3.0 98% D3406-1-06 695 708 0.98 0.0481 0.0020 0.2477 0.0150 0.0370 0.0006 1317 92.8 395 16.3 251 3.7 55% D3406-1-08 293 17329 0.13 0.0536 0.0227 0.015 0.0340 0.005 300 96.3 241 9.2 237 3.1 98% D3406-1-10 710 6	D3406-1-02	1185	5863	0.20	0.0517	0.0010	0.2598	0.0050	0.0364	0.0003	272	44.4	235	4.0	230	2.0	98%
D3406-1-04 2064 12713 0.16 0.0513 0.0009 0.2607 0.0052 0.0367 0.0004 254 40.7 235 4.2 233 2.4 98% D3406-1-05 1027 1394 0.74 0.0500 0.0017 0.2761 0.0096 0.0399 0.0005 195 75.0 248 7.6 252 3.0 98% D3406-1-06 695 708 0.98 0.0481 0.0020 0.2457 0.0105 0.0306 1016 -94.4 223 8.5 234 2.7 95% D3406-1-07 560 795 0.70 0.0850 0.0039 0.4749 0.0237 0.0306 1317 92.8 395 16.3 251 3.7 55% D3406-1-09 498 770 0.65 0.0522 0.022 0.2679 0.115 0.0374 0.0005 300 96.3 241 9.2 237 3.1 98% D3406-1-10 710	D3406-1-03	927	2437	0.38	0.0500	0.0012	0.2584	0.0063	0.0374	0.0003	195	25.0	233	5.1	237	2.0	98%
D3406-1-05 1027 1394 0.74 0.0500 0.0017 0.2761 0.0096 0.0399 0.0005 195 75.0 248 7.6 252 3.0 98% D3406-1-06 695 708 0.98 0.0481 0.0020 0.2457 0.0105 0.0370 0.0004 106 -94.4 223 8.5 234 2.7 95% D3406-1-07 560 795 0.70 0.0850 0.0039 0.4749 0.0370 0.0004 1317 92.8 395 16.3 251 3.7 55% D3406-1-00 498 770 0.65 0.0522 0.0022 0.2679 0.0115 0.0370 0.005 300 96.3 241 9.2 237 3.1 98% D3406-1-10 710 683 1.04 0.0535 0.0024 0.2972 0.0133 0.0404 0.0055 350 106.5 264 10.4 255 2.9 96% D3406-1-10 <t< td=""><td>D3406-1-04</td><td>2064</td><td>12713</td><td>0.16</td><td>0.0513</td><td>0.0009</td><td>0.2607</td><td>0.0052</td><td>0.0367</td><td>0.0004</td><td>254</td><td>40.7</td><td>235</td><td>4.2</td><td>233</td><td>2.4</td><td>98%</td></t<>	D3406-1-04	2064	12713	0.16	0.0513	0.0009	0.2607	0.0052	0.0367	0.0004	254	40.7	235	4.2	233	2.4	98%
D3406-1-066957080.980.04810.00200.24570.01050.03700.0004106-94.42238.52342.795%D3406-1-075607950.700.08500.00390.47490.02370.03960.0006131792.839516.32513.755%D3406-1-082293173290.130.05360.00080.25150.00400.03400.000435433.32283.32152.294%D3406-1-094987700.650.05220.00220.26790.01150.03740.000530096.32419.22373.198%D3406-1-107106831.040.05350.00240.29720.01330.04040.0005350106.526410.42552.996%D3406-1-115776030.960.04860.00230.24840.01130.03720.00051281132259.22363.395%D3406-1-1357512570.780.04920.00150.24850.00750.03660.000416772.22256.12322.497%D3406-1-14183563220.290.05050.00090.24990.04550.00352.000322042.62193.72191.799%D3406-1-169477041.350.06420.00240.2801 <td< td=""><td>D3406-1-05</td><td>1027</td><td>1394</td><td>0.74</td><td>0.0500</td><td>0.0017</td><td>0.2761</td><td>0.0096</td><td>0.0399</td><td>0.0005</td><td>195</td><td>75.0</td><td>248</td><td>7.6</td><td>252</td><td>3.0</td><td>98%</td></td<>	D3406-1-05	1027	1394	0.74	0.0500	0.0017	0.2761	0.0096	0.0399	0.0005	195	75.0	248	7.6	252	3.0	98%
D3406-1-075607950.700.08500.00390.47490.02370.03960.0006131792.839516.32513.755%D3406-1-082293173290.130.05360.00080.25150.00400.03400.000435433.32283.32152.294%D3406-1-094987700.650.05220.00220.26790.01150.03740.000530096.32419.22373.198%D3406-1-107106831.040.05350.00240.29720.01330.04040.0005350106.526410.42552.996%D3406-1-115776030.960.04860.00230.24840.01130.03720.00051281132259.22363.395%D3406-1-12271289640.300.05170.0090.28220.00500.03950.000327245.42524.02502.098%D3406-1-1397512570.780.04920.0150.24850.0050.30660.000416772.22256.12322.497%D3406-1-14183563220.290.05050.00990.24990.03450.03450.000322042.62193.72191.799%D3406-1-169477041.350.06420.0240.28010.	D3406-1-06	695	708	0.98	0.0481	0.0020	0.2457	0.0105	0.0370	0.0004	106	-94.4	223	8.5	234	2.7	95%
D3406-1-082293173290.130.05360.00080.25150.00400.03400.000435433.32283.32152.294%D3406-1-094987700.650.05220.00220.26790.01150.03740.000530096.32419.22373.198%D3406-1-107106831.040.05350.00240.29720.01330.04040.0005350106.526410.42552.996%D3406-1-115776030.960.04860.00230.24840.01130.03720.00051281132259.22363.395%D3406-1-1397512570.780.04920.00150.24850.00750.03660.000416772.22256.12322.497%D3406-1-14183563220.290.05050.00090.24090.00450.03450.000322042.62193.72191.799%D3406-1-169477041.350.06420.0240.28110.0990.3180.000434531.52303.72192.37%D3406-1-169477041.350.06420.00240.28110.00990.3180.000434531.52303.72192.37%D3406-1-169477041.350.05310.00080.25480.0046 </td <td>D3406-1-07</td> <td>560</td> <td>795</td> <td>0.70</td> <td>0.0850</td> <td>0.0039</td> <td>0.4749</td> <td>0.0237</td> <td>0.0396</td> <td>0.0006</td> <td>1317</td> <td>92.8</td> <td>395</td> <td>16.3</td> <td>251</td> <td>3.7</td> <td>55%</td>	D3406-1-07	560	795	0.70	0.0850	0.0039	0.4749	0.0237	0.0396	0.0006	1317	92.8	395	16.3	251	3.7	55%
D3406-1-09 498 770 0.65 0.0522 0.0022 0.2679 0.0115 0.0374 0.0005 300 96.3 241 9.2 237 3.1 98% D3406-1-10 710 683 1.04 0.0535 0.0024 0.2972 0.0133 0.0404 0.0005 350 106.5 264 10.4 255 2.9 96% D3406-1-11 577 603 0.96 0.0486 0.0023 0.2484 0.0113 0.0372 0.0005 128 113 225 9.2 236 3.3 95% D3406-1-12 2712 8964 0.30 0.0517 0.0009 0.2822 0.0050 0.0395 0.0003 272 45.4 252 4.0 250 2.0 98% D3406-1-13 975 1257 0.78 0.0492 0.0015 0.2485 0.0075 0.0366 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0345	D3406-1-08	2293	17329	0.13	0.0536	0.0008	0.2515	0.0040	0.0340	0.0004	354	33.3	228	3.3	215	2.2	94%
D3406-1-10 710 683 1.04 0.0535 0.0024 0.2972 0.0133 0.0404 0.0005 350 106.5 264 10.4 255 2.9 96% D3406-1-11 577 603 0.96 0.0486 0.0023 0.2484 0.0113 0.0372 0.0005 128 113 225 9.2 236 3.3 95% D3406-1-12 2712 8964 0.30 0.0517 0.0009 0.2822 0.0050 0.0395 0.0003 272 45.4 252 4.0 250 2.0 98% D3406-1-13 975 1257 0.78 0.0492 0.0015 0.2485 0.0075 0.0366 0.0004 167 72.2 225 6.1 232 2.4 97% D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0455 0.0363 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-15 1343 4977 0.27 0.0503 0.0010 0.2527 0.0054	D3406-1-09	498	770	0.65	0.0522	0.0022	0.2679	0.0115	0.0374	0.0005	300	96.3	241	9.2	237	3.1	98%
D3406-1-11 577 603 0.96 0.0486 0.0023 0.2484 0.0113 0.0372 0.0005 128 113 225 9.2 236 3.3 95% D3406-1-12 2712 8964 0.30 0.0517 0.0009 0.2822 0.0050 0.0395 0.0003 272 45.4 252 4.0 250 2.0 98% D3406-1-13 975 1257 0.78 0.0492 0.0015 0.2485 0.0075 0.0366 0.0004 167 72.2 225 6.1 232 2.4 97% D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0045 0.0345 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-15 1343 4977 0.27 0.0503 0.0010 0.2527 0.0054 0.0363 0.0004 209 46.3 229 4.4 230 2.6 99% D3406-1-16 947 704 1.35 0.0642 0.0244 0.2801 0.0099	D3406-1-10	710	683	1.04	0.0535	0.0024	0.2972	0.0133	0.0404	0.0005	350	106.5	264	10.4	255	2.9	96%
D3406-1-12 2712 8964 0.30 0.0517 0.0009 0.2822 0.0050 0.0395 0.0003 272 45.4 252 4.0 250 2.0 98% D3406-1-13 975 1257 0.78 0.0492 0.0015 0.2485 0.0075 0.0366 0.0004 167 72.2 225 6.1 232 2.4 97% D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0045 0.0345 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-16 947 704 1.35 0.0642 0.024 0.2821 0.0099 0.318 0.0004 209 46.3 229 4.4 230 2.6 99% D3406-1-16 947 704 1.35 0.0642 0.024 0.2801 0.0099 0.0318 0.0004 746 50.0 251 7.9 202 2.3 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046	D3406-1-11	577	603	0.96	0.0486	0.0023	0.2484	0.0113	0.0372	0.0005	128	113	225	9.2	236	3.3	95%
D3406-1-13 975 1257 0.78 0.0492 0.0015 0.2485 0.0075 0.0366 0.0004 167 72.2 225 6.1 232 2.4 97% D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0045 0.0365 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-15 1343 4977 0.27 0.0503 0.0010 0.2527 0.0054 0.0363 0.0004 209 46.3 229 4.4 230 2.6 99% D3406-1-16 947 704 1.35 0.0642 0.0024 0.2801 0.0099 0.0318 0.0004 746 50.0 251 7.9 202 2.3 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046 0.0346 0.0004 345 31.5 230 3.7 219 2.3 95% D3406-1-18 1649 5033 0.33 0.0527 0.0009 0.2686 0.0054 <td>D3406-1-12</td> <td>2712</td> <td>8964</td> <td>0.30</td> <td>0.0517</td> <td>0.0009</td> <td>0.2822</td> <td>0.0050</td> <td>0.0395</td> <td>0.0003</td> <td>2.72</td> <td>45.4</td> <td>2.52</td> <td>4.0</td> <td>250</td> <td>2.0</td> <td>98%</td>	D3406-1-12	2712	8964	0.30	0.0517	0.0009	0.2822	0.0050	0.0395	0.0003	2.72	45.4	2.52	4.0	250	2.0	98%
D3406-1-14 1835 6322 0.29 0.0505 0.0009 0.2409 0.0045 0.0345 0.0003 220 42.6 219 3.7 219 1.7 99% D3406-1-15 1343 4977 0.27 0.0503 0.0010 0.2527 0.0054 0.0363 0.0004 209 46.3 229 4.4 230 2.6 99% D3406-1-16 947 704 1.35 0.0642 0.0024 0.2801 0.0099 0.0318 0.0004 746 50.0 251 7.9 202 2.3 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046 0.0346 0.0004 345 31.5 230 3.7 219 2.3 95% D3406-1-18 1649 5033 0.33 0.0527 0.0009 0.2686 0.0054 0.0368 0.0003 322 40.7 242 4.3 233 2.0 96% D3406-1-19 1918 14704 0.13 0.0508 0.0008 0.2454 0.0045 </td <td>D3406-1-13</td> <td>975</td> <td>1257</td> <td>0.78</td> <td>0.0492</td> <td>0.0015</td> <td>0.2485</td> <td>0.0075</td> <td>0.0366</td> <td>0.0004</td> <td>167</td> <td>72.2</td> <td>225</td> <td>6.1</td> <td>232</td> <td>2.4</td> <td>97%</td>	D3406-1-13	975	1257	0.78	0.0492	0.0015	0.2485	0.0075	0.0366	0.0004	167	72.2	225	6.1	232	2.4	97%
D3406-1-15 1343 4977 0.27 0.0503 0.0010 0.2527 0.0054 0.0363 0.0004 209 46.3 229 4.4 230 2.6 99% D3406-1-16 947 704 1.35 0.0642 0.0024 0.2801 0.0099 0.0318 0.0004 746 50.0 251 7.9 202 2.3 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046 0.0346 0.0004 345 31.5 230 3.7 219 2.3 95% D3406-1-18 1649 5033 0.33 0.0527 0.0009 0.2686 0.0054 0.0368 0.0003 322 40.7 242 4.3 233 2.0 96% D3406-1-19 1918 14704 0.13 0.0508 0.2454 0.0045 0.0349 0.0003 322 71.3 223 3.7 221 2.1 99%	D3406-1-14	1835	6322	0.29	0.0505	0.0009	0.2409	0.0045	0.0345	0.0003	220	42.6	219	3.7	219	17	99%
D3406-1-16 947 704 1.35 0.0642 0.0024 0.2801 0.0099 0.0318 0.0004 746 50.0 251 7.9 202 2.3 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046 0.0346 0.0004 345 31.5 230 3.7 219 2.3 95% D3406-1-18 1649 5033 0.33 0.0527 0.0009 0.2686 0.0054 0.0368 0.0003 322 40.7 242 4.3 233 2.0 96% D3406-1-19 1918 14704 0.13 0.0508 0.0088 0.2454 0.0349 0.0003 232 71.3 223 3.7 221 2.1 99%	D3406-1-15	1343	4977	0.27	0.0503	0.0010	0.2527	0.0054	0.0363	0.0004	209	46.3	219	44	230	2.6	99%
D3406-1-17 2409 28587 0.08 0.0521 0.0001 0.0016 0.0004 740 50.0 251 7.5 202 2.5 78% D3406-1-17 2409 28587 0.08 0.0531 0.0008 0.2548 0.0046 0.0346 0.0004 345 31.5 230 3.7 219 2.3 95% D3406-1-18 1649 5033 0.33 0.0527 0.0009 0.2686 0.0054 0.0368 0.0003 322 40.7 242 4.3 233 2.0 96% D3406-1-19 1918 14704 0.13 0.0508 0.0008 0.2454 0.0045 0.0349 0.0003 232 71.3 223 3.7 221 2.1 99%	D3406-1-16	947	704	1 35	0.0642	0.0024	0.2801	0 00004	0.0318	0.0004	746	50.0	251	79	202	23	78%
D3406-1-19 1918 14704 0.13 0.0508 0.0008 0.2545 0.0045 0.0340 0.0004 545 5115 256 517 219 213 95% D3406-1-19 1918 14704 0.13 0.0508 0.0008 0.2454 0.0045 0.0349 0.0003 322 40.7 242 4.3 233 2.0 96%	D3406-1-17	2409	28587	0.08	0.0531	0.00024	0.2548	0.0046	0.0346	0.0004	345	31.5	230	37	202	2.3	95%
D3406-1-19 1918 14704 0.13 0.0508 0.0008 0.2454 0.0045 0.0349 0.0003 232 71.3 223 3.7 221 2.1 99%	D3406-1-19	16/10	5033	0.33	0.0527	0.0000	0.2540	0.005/	0.0368	0.0004	322	40.7	230	<u> </u>	217	2.5	96%
= 0.0001 i i 1010 i 1010 i 0.0000 0.0000 0.277 0.0073 0.0073 232 11.3 223 3.1 221 2.1 97/0	D3406_1_10	1918	14704	0.13	0.0508	0.0009	0.2000	0.00/5	0.03/0	0.0003	222	71 3	272	37	233	2.0	99%
D3406-1-20 784 699 1 12 0 0490 0 0022 0 2443 0 0105 0 0363 0 0004 146 108 222 8 5 230 2 5 96%	D3406-1-20	784	699	1 12	0.0490	0.0022	0 2443	0.0105	0.0363	0.0004	146	108	223	85	230	2.5	96%

															4	卖表4
分析点号	Th/10 ⁻⁶	U/10-6	Th/U			同位素	影比值				ī	司位素年龄	Ma			谐和
	110 10	0/10	114.0	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	度
D3426-1																
D3426-1-01	976	1245	0.78	0.0535	0.0020	0.2748	0.0099	0.0372	0.0004	350	85.2	247	7.9	236	2.7	95%
D3426-1-02	1405	5205	0.27	0.0575	0.0015	0.2917	0.0106	0.0363	0.0006	509	55.6	260	8.3	230	4.0	87%
D3426-1-03	821	1174	0.70	0.0522	0.0017	0.2608	0.0085	0.0361	0.0003	295	75.9	235	6.9	229	2.1	97%
D3426-1-04	1102	8377	0.13	0.0529	0.0013	0.2428	0.0053	0.0331	0.0003	324	21.3	221	4.4	210	2.1	95%
D3426-1-05	851	2991	0.28	0.0501	0.0014	0.2595	0.0070	0.0373	0.0004	211	32.4	234	5.6	236	2.2	99%
D3426-1-06	596	1398	0.43	0.0512	0.0016	0.2604	0.0081	0.0367	0.0004	250	72.2	235	6.5	232	2.5	98%
D3426-1-07	820	607	1.35	0.0529	0.0022	0.2642	0.0108	0.0362	0.0005	324	92.6	238	8.7	230	3.1	96%
D3426-1-08	1163	6717	0.17	0.0544	0.0012	0.2572	0.0050	0.0342	0.0003	387	48.1	232	4.0	216	1.7	92%
D3426-1-09	887	700	1.27	0.0557	0.0022	0.2785	0.0105	0.0364	0.0004	439	87.0	249	8.3	231	2.7	92%
D3426-1-10	646	2786	0.23	0.0539	0.0014	0.2690	0.0070	0.0360	0.0003	365	63.9	242	5.6	228	1.9	94%
D3426-1-11	763	2119	0.36	0.0547	0.0018	0.3037	0.0107	0.0401	0.0005	398	76.8	269	8.3	253	3.2	93%
D3426-1-12	719	550	1.31	0.0498	0.0023	0.2435	0.0100	0.0358	0.0004	187	112	221	8.1	227	2.6	97%
D3426-1-13	719	585	1.23	0.0527	0.0024	0.2581	0.0117	0.0359	0.0005	317	106	233	9.5	227	3.0	97%
D3426-1-14	1138	11666	0.10	0.0529	0.0009	0.2669	0.0048	0.0365	0.0003	324	37.0	240	3.8	231	2.0	95%
D3426-1-15	692	5818	0.12	0.0515	0.0010	0.2645	0.0057	0.0372	0.0004	265	42.6	238	4.6	235	2.7	98%
D3426-1-16	729	602	1.21	0.0499	0.0022	0.2466	0.0102	0.0363	0.0004	187	102	224	8.3	230	2.7	97%
D3426-1-17	889	2083	0.43	0.0516	0.0013	0.2616	0.0067	0.0367	0.0004	333	59.3	236	5.4	232	2.2	98%
D3426-1-18	1047	4760	0.22	0.0546	0.0013	0.2542	0.0062	0.0337	0.0003	394	58.3	230	5.0	213	1.7	92%
D3426-1-19	915	871	1.05	0.0539	0.0021	0.2701	0.0109	0.0363	0.0005	365	87.0	243	8.7	230	3.1	94%
D3426-1-20	1221	3381	0.36	0.0517	0.0014	0.2673	0.0070	0.0374	0.0005	272	61.1	240	5.6	237	2.8	98%
PM11-39-1																
PM11-39-1-01	1049	1839	0.57	0.0481	0.0017	0.2453	0.0086	0.0369	0.0004	102	83.3	223	7.0	234	2.5	95%
PM11-39-1-02	1848	11400	0.16	0.0501	0.0010	0.2584	0.0060	0.0372	0.0005	211	50.9	233	4.8	236	3.1	99%
PM11-39-1-03	802	848	0.95	0.0504	0.0027	0.2512	0.0128	0.0365	0.0005	213	126	228	10.4	231	3.3	98%
PM11-39-1-04	761	645	1.18	0.0537	0.0029	0.2772	0.0141	0.0380	0.0006	367	120	248	11.2	241	3.5	96%
PM11-39-1-05	239	2508	0.10	0.0536	0.0015	0.5168	0.0143	0.0699	0.0008	367	58.3	423	9.6	436	4.6	97%
PM11-39-1-06	675	1808	0.37	0.0565	0.0019	0.5322	0.0185	0.0682	0.0008	472	74.1	433	12.2	425	4.9	98%
PM11-39-1-07	192	1376	0.14	0.0560	0.0017	0.5319	0.0161	0.0687	0.0008	454	66.7	433	10.6	429	5.1	98%
PM11-39-1-08	1324	8009	0.17	0.0508	0.0012	0.2656	0.0065	0.0378	0.0003	232	55.5	239	5.2	239	2.2	99%
PM11-39-1-09	830	1056	0.79	0.0500	0.0025	0.2788	0.0140	0.0407	0.0007	195	117	250	11.1	257	4.2	97%
PM11-39-1-10	471	2148	0.22	0.0568	0.0017	0.5476	0.0166	0.0696	0.0008	483	66.7	443	10.9	434	4.7	97%
PM11-39-1-11	289	660	0.44	0.0536	0.0024	0.5037	0.0215	0.0683	0.0009	354	100	414	14.5	426	5.3	97%
PM11-39-1-12	143	986	0.14	0.0522	0.0017	0.4960	0.0152	0.0690	0.0008	300	74.1	409	10.3	430	5.1	94%
PM11-39-1-13	560	2248	0.25	0.0562	0.0017	0.5538	0.0178	0.0714	0.0012	461	66.7	448	11.6	445	7.4	99%
PM11-39-1-14	1700	4660	0.36	0.0504	0.0014	0.2772	0.0078	0.0397	0.0004	213	63.0	248	6.2	251	2.6	98%
PM11-39-1-15	855	4058	0.21	0.0475	0.0014	0.2453	0.0077	0.0373	0.0004	76.0	-128.7	223	6.2	236	2.6	94%
PM11-39-1-16	795	11245	0.07	0.0480	0.0012	0.2445	0.0066	0.0368	0.0004	98.2	65.7	222	5.4	233	2.5	95%
PM11-39-1-17	708	1438	0.49	0.0468	0.0020	0.2460	0.0111	0.0383	0.0006	35.3	164.8	223	9.1	242	3.5	91%
PM11-39-1-18	5441	24995	0.22	0.0502	0.0011	0.2437	0.0063	0.0350	0.0006	211	50.0	221	5.2	222	3.5	99%
PM11-39-1-19	842	1641	0.51	0.0534	0.0021	0.2908	0.0117	0.0394	0.0005	346	88.9	259	9.2	249	3.1	96%
PM11-39-1-20	1192	5253	0.23	0.0498	0.0013	0.2623	0.0064	0.0381	0.0004	183	59.3	236	5.2	241	2.2	98%

第48卷第6期

周岱等:粤西新兴岩体的形成时代与成因研究:对古特提斯洋东支关闭时间的约束

1909

																续表4
分析占县	Th/10 ⁻⁶	11/10 ⁻⁶	Th/∐-			同位素	比值				[司位素年龄	∛/Ma			- 谐和度
刀 // 点 勺	111/10	0/10	111/0	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	旧川又
D2286-1																
D2286-1-01	532	517	1.03	0.0525	0.0030	0.3199	0.0185	0.0442	0.0010	309	131	282	14.2	279	6.1	98%
D2286-1-02	184	1264	0.15	0.0581	0.0017	0.5659	0.0177	0.0703	0.0008	600	60.2	455	11.5	438	5.0	96%
D2286-1-03	276	998	0.28	0.0615	0.0021	0.7618	0.0306	0.0893	0.0019	657	72.2	575	17.6	551	11.1	95%
D2286-1-04	251	702	0.36	0.0580	0.0024	0.5651	0.0237	0.0704	0.0010	532	88.9	455	15.4	439	6.2	96%
D2286-1-05	733	601	1.22	0.0504	0.0038	0.2550	0.0176	0.0374	0.0006	213	178	231	14.3	237	4.0	97%
D2286-1-06	417	415	1.01	0.0518	0.0034	0.3108	0.0184	0.0441	0.0009	276	150	275	14.3	278	5.5	98%
D2286-1-07	555	496	1.12	0.0518	0.0027	0.3166	0.0180	0.0442	0.0012	276	120	279	13.9	279	7.7	99%
D2286-1-08	23.2	1124	0.02	0.0540	0.0019	0.5295	0.0189	0.0708	0.0007	372	75.0	432	12.5	441	4.5	97%
D2286-1-09	347	493	0.70	0.0586	0.0025	0.5743	0.0252	0.0705	0.0009	554	92.6	461	16.3	439	5.4	95%
D2286-1-10	212	1267	0.17	0.0564	0.0017	0.5555	0.0171	0.0711	0.0008	478	32.4	449	11.2	442	5.0	98%
D2286-1-11	903	1100	0.82	0.0509	0.0024	0.2682	0.0135	0.0379	0.0005	239	107	241	10.8	240	2.9	99%
D2286-1-12	257	558	0.46	0.0527	0.0024	0.5288	0.0241	0.0726	0.0010	322	106	431	16.0	452	5.9	95%
D2286-1-13	211	376	0.56	0.0551	0.0029	0.5385	0.0259	0.0716	0.0012	417	119	437	17.1	446	6.9	98%
D2286-1-14	153	1207	0.13	0.0530	0.0020	0.4165	0.0149	0.0566	0.0005	332	85.2	354	10.7	355	3.3	99%
D2286-1-15	238	1361	0.17	0.0568	0.0020	0.5478	0.0189	0.0698	0.0010	483	50.0	444	12.4	435	5.8	98%
D2286-1-16	232	676	0.34	0.0534	0.0024	0.5367	0.0241	0.0723	0.0010	346	102	436	15.9	450	6.1	96%
D2286-1-17	607	1058	0.57	0.0574	0.0021	0.5619	0.0203	0.0702	0.0008	506	75.0	453	13.2	437	4.9	96%
D2286-1-18	586	1705	0.34	0.0525	0.0020	0.2665	0.0106	0.0364	0.0005	306	87.0	240	8.5	231	2.9	96%
D2286-1-19	257	948	0.27	0.0550	0.0020	0.5295	0.0195	0.0689	0.0009	413	86.1	431	13.0	430	5.4	99%
D2286-1-20	266	531	0.50	0.0531	0.0028	0.5131	0.0256	0.0702	0.0012	345	121	421	17.2	438	7.0	96%
D2268-1																
D2268-1-01	312	560	0.56	0.0572	0.0027	0.5089	0.0230	0.0646	0.0009	502	102	418	15.5	403	5.7	96%
D2268-1-02	2351	3835	0.61	0.0522	0.0016	0.2616	0.0082	0.0361	0.0005	300	70.4	236	6.6	229	2.9	96%
D2268-1-03	294	524	0.56	0.0521	0.0024	0.4865	0.0228	0.0671	0.0008	300	103	403	15.6	419	5.0	96%
D2268-1-04	2072	14154	0.15	0.0556	0.0013	0.2715	0.0067	0.0349	0.0004	439	51.8	244	5.3	221	2.3	90%
D2268-1-05	321	903	0.36	0.0607	0.0023	0.5458	0.0196	0.0648	0.0009	628	81.5	442	12.9	405	5.4	91%
D2268-1-06	866	601	1.44	0.0558	0.0039	0.2670	0.0175	0.0349	0.0006	443	157	240	14.0	221	4.0	91%
D2268-1-07	938	5509	0.17	0.0519	0.0015	0.2565	0.0072	0.0355	0.0004	280	66.7	232	5.9	225	2.2	96%
D2268-1-08	593	1979	0.30	0.0562	0.0018	0.5097	0.0168	0.0654	0.0008	461	72.2	418	11.3	409	4.7	97%
D2268-1-09	327	516	0.63	0.0581	0.0031	0.5461	0.0276	0.0690	0.0011	600	118.5	442	18.1	430	6.5	97%
D2268-1-10	988	3275	0.30	0.0513	0.0018	0.2545	0.0095	0.0359	0.0005	254	79.6	230	7.7	227	3.3	98%
D2268-1-11	1429	4319	0.33	0.0486	0.0020	0.2380	0.0098	0.0357	0.0006	127.9	96.3	217	8.1	226	3.5	95%
D2268-1-12	2142	1303	1.64	0.0640	0.0034	0.2102	0.0105	0.0244	0.0005	743	112	194	8.8	155	2.9	77%
D2268-1-13	898	1054	0.85	0.0475	0.0026	0.2324	0.0132	0.0356	0.0005	76.0	135	212	10.9	226	3.4	93%
D2268-1-14	1430	17418	0.08	0.0483	0.0014	0.2342	0.0073	0.0352	0.0005	122.3	73.1	214	6.0	223	2.9	95%
D2268-1-15	568	469	1.21	0.0541	0.0044	0.2548	0.0192	0.0352	0.0007	376	179	230	15.6	223	4.4	96%
D2268-1-16	840	762	1.10	0.0530	0.0032	0.2562	0.0135	0.0358	0.0006	328	135	232	10.9	227	3.6	97%
D2268-1-17	1286	1096	1.17	0.0530	0.0025	0.2541	0.0124	0.0349	0.0005	328	107	230	10.1	221	3.3	96%
D2268-1-18	975	947	1.03	0.0529	0.0027	0.2617	0.0134	0.0359	0.0005	328	113.9	236	10.8	227	3.3	96%
D2268-1-19	1187	2056	0.58	0.0544	0.0022	0.2616	0.0104	0.0349	0.0004	387	90.7	236	8.4	221	2.4	93%
D2268-1-20	901	860	1.05	0.0525	0.0033	0.2565	0.0160	0.0356	0.0006	306	144	232	12.9	226	4.0	97%

<table-container> here bes bes<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>约</th><th>卖表4</th></table-container>																约	卖表4
Marka Marka <th< td=""><td>分析占号</td><td>Th/10⁻⁶</td><td>U/10-6</td><td>Th/II-</td><td></td><td></td><td>同位素</td><td>比值</td><td></td><td></td><td></td><td>同</td><td> 位素年龄</td><td>/Ma</td><td></td><td></td><td>谐和</td></th<>	分析占号	Th/10 ⁻⁶	U/10-6	Th/II-			同位素	比值				同	位素年龄	/Ma			谐和
De467-3-0 Jo Jo	J1/17/201	111/10	0/10	111/0	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	$^{207}Pb/^{206}Pb$	1σ	207Pb/235U	1σ	206Pb/238U	1σ	度
Dedef-3-0 Sint Noise	D6467-3																
Dedef-3-bit Size	D6467-3-01	504	1185	0.43	0.0509	0.0021	0.2638	0.0106	0.0375	0.0005	235	94.4	238	8.5	237	3.0	99%
Dedef-3-03 38 118 0.32 0.0502 0.0018 0.2009 0.0004 211 8.3.3 237 7.4 240 2.6 98% Dedef-3-06 343 110 0.30 0.0508 0.0013 0.2762 0.0081 0.0013 232 5.7. 248 5.4 249 98% Dedef-3-06 343 110 0.30 0.0519 0.0016 0.2727 0.0028 0.000 232 5.3 247 5.9 6.8 241 9.9 Dedef-3-04 319 0.35 0.0016 0.2726 0.0128 0.0014 245 4.8 2430 0.014 245 4.8 2430 0.014 245 4.8 240 0.014 245 0.83 0.018 0.0014 281 1.40 245 1.8 243 0.16 240 245 248 240 24 24 24 24 24 24 24 24 24 24 24 </td <td>D6467-3-02</td> <td>1177</td> <td>3276</td> <td>0.36</td> <td>0.0492</td> <td>0.0013</td> <td>0.2572</td> <td>0.0066</td> <td>0.0378</td> <td>0.0005</td> <td>167</td> <td>59.3</td> <td>232</td> <td>5.3</td> <td>239</td> <td>2.8</td> <td>97%</td>	D6467-3-02	1177	3276	0.36	0.0492	0.0013	0.2572	0.0066	0.0378	0.0005	167	59.3	232	5.3	239	2.8	97%
Dedef-3-40 94 246 0.39 0.0001 0.272 0.0005 0.0001 232 574 248 5.4 249 5.1 975 Dedef-3-46 333 110 0.30 0.0015 0.001 0.027 0.0030 0.0001 328 7.4 248 5.8 241 5.8 241 9% Dedef-3-40 331 110 0.30 0.001 1.854 0.037 0.001 1.828 0.013 0.010 1.828 0.037 0.001 1.828 0.037 0.001 288 1.40 1.65 1.81 2.5 7.8 243 7.6 2.83 2.7 7.8 2.42 7.3 2.41 2.9 9% Dedef-3-10 315 0.50 0.050 0.031 0.030 0.000 2.83 7.8 2.42 7.8 2.49 2.4 9% Dedef-3-16 31 1.40 2.0 0.000 0.010 0.280 0.0000 2.010 <td>D6467-3-03</td> <td>382</td> <td>1188</td> <td>0.32</td> <td>0.0502</td> <td>0.0018</td> <td>0.2630</td> <td>0.0091</td> <td>0.0380</td> <td>0.0004</td> <td>211</td> <td>83.3</td> <td>237</td> <td>7.4</td> <td>240</td> <td>2.6</td> <td>98%</td>	D6467-3-03	382	1188	0.32	0.0502	0.0018	0.2630	0.0091	0.0380	0.0004	211	83.3	237	7.4	240	2.6	98%
Dedef-3-e S7 151 0.57 0.0091 0.2600 0.0081 0.0004 280 68.5 299 6.5 299 6.5 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 6.55 298 140 1050 1051 0.55 0770 0.001 1028 4.14 1055 1.53 181 0.50 0.011 0.2693 0.0019 0.031 0.000 287 7.68 243 7.8 240 7.8 241 7.4 288 7.9 856 De467-3-11 313 0.12 0.021 0.021 0.021 0.031 0.001 280 0.000 270 7.11 241 7.1 248 7.9 856 De467-3-11 314 0.40 0.050 0.051 0.280 0.001 0.010 0.	D6467-3-04	949	2446	0.39	0.0508	0.0013	0.2762	0.0068	0.0394	0.0003	232	57.4	248	5.4	249	2.1	99%
De4der3-abc 433 1044 0.34 0.016 0.212 0.0084 0.037 0.003 243 7.4 245 6.8 241 2.7 98% De4der3-abc 31 819 0.53 0.073 0.0014 0.258 0.0034 108 10.81 10.81 10.81 10.81 0.810 0.812 0.101 10.81 0.810 0.010 1.82 0.810 0.001 1.82 0.810 0.001 2.83 1.00 2.87 7.8 2.43 7.6 2.8 2.0 2.8 1.00 2.42 7.3 2.41 2.7 98% De467-3-14 315 0.30 0.050 0.0102 0.280 0.000 0.000 2.00 7.7 7.4 2.42 7.4 2.5 98% De467-3-16 105 1.44 0.30 0.050 0.028 0.080 0.000 2.0 7.0 2.42 2.4 98% De4647-3-16 1.55 1.64	D6467-3-05	857	1511	0.57	0.0509	0.0015	0.2660	0.0081	0.0378	0.0004	239	68.5	239	6.5	239	2.4	99%
De467-3-0 Yet 0.44 0.47 0.021 0.007 0.007 0.001 124 194 153 181 99 986 De4673-40 31 971 0.36 0.073 0.0016 1.284 0.0010 128 7.6 243 7.6 243 7.6 2.7 986 De4673-40 125 0.37 0.052 0.0018 0.0276 0.038 0.0004 287 7.13 242 7.3 241 2.7 986 De4673-13 93 252 0.370 0.0012 0.012 0.012 0.012 0.013 0.017 0.004 256 6.0 1.6 8.8 2.8 986 De467-3-16 134 14 0.25 0.002 0.280 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 <	D6467-3-06	433	1104	0.39	0.0519	0.0016	0.2727	0.0085	0.0380	0.0004	283	70.4	245	6.8	241	2.7	98%
De467-3-08 431 819 0.53 0.0715 0.0016 1.848 0.043 0.012 0.012 0.012 276 284 246 984 De467-3-10 531 171 0.033 0.0014 0.023 0.0014 0.226 0.031 0.0014 281 104 245 9.8 240 7.4 242 7.4 242 7.4 242 7.4 242 7.4 243 7.4 De467-3-13 7.4 1.40 0.40 0.001	D6467-3-07	959	2044	0.47	0.0529	0.0014	0.2756	0.0074	0.0377	0.0003	324	59.3	247	5.9	238	2.1	96%
De6de7-3-00 S1 971 0.36 0.0320 0.0289 0.0397 0.0004 287 7.6.8 243 7.6 213 0.269 0.021 0.0024 0.279 0.0014 0.289 0.0014 0.289 0.0014 0.289 0.0014 0.289 0.0004 281 1.01 242 9.8 2.40 2.5 9% De6de7-3-13 282 1.57 0.050 0.0018 0.2801 0.0093 0.0016 0.280 0.0004 280 0.71 1.01 2.41 2.7 9% De6de7-3-11 33 251 0.37 0.012 0.0005 0.000 2.80 0.0006 6.67 2.11 0.10 2.41 3.7 8% De6de7-3-11 314 0.44 0.30 0.0010 0.280 0.0010 0.0005 2.61 1.01 2.21 2.4 9% De6de7-3-11 81 1.05 0.35 0.050 0.012 0.280 0.031 0.030	D6467-3-08	431	819	0.53	0.0735	0.0016	1.8548	0.0430	0.1826	0.0018	1028	44.4	1065	15.3	1081	9.9	98%
De467-3-10 215 639 0.34 0.0323 0.0212 0.023 0.0004 226 1.10 245 9.8 240 2.5 97% De467-3-11 531 1566 0.55 0.500 0.018 0.2693 0.0016 0.004 256 7.1.3 242 7.4 234 2.7 98% De467-3-13 312 0.57 0.55 0.050 0.0010 0.269 0.0004 256 6.7 2.5 1.6 2.1 2.8 98% De467-3-16 10 1.46 0.42 0.0600 0.005 0.081 0.0005 2.8 1.01 2.4 2.4 9.4 De467-3.14 1.11 0.14 0.030 0.030 0.0000 0.030 0.0005 2.8 1.01 2.4 2.8 9.4 De467-3.14 3.10 0.015 0.028 0.0081 0.000 2.3 0.5 0.3 9.4 2.5 0.4 2.5 9.4	D6467-3-09	351	971	0.36	0.0520	0.0018	0.2698	0.0095	0.0377	0.0004	287	76.8	243	7.6	238	2.7	98%
De467-3-1 531 1356 0.353 0.0017 0.2693 0.0091 0.0381 0.0004 283 7.1.3 242 7.4 283 7.7.8 242 7.4 283 7.7.8 242 7.4 283 7.7.8 242 7.4 238 7.7.8 242 7.4 238 7.7.8 242 7.4 238 7.7.8 242 7.4 238 7.7.8 242 7.4 238 7.7.8 242 7.4 238 7.7.8 240 7.3.8 241 7.3 241 2.3 243 243	D6467-3-10	215	639	0.34	0.0523	0.0024	0.2726	0.0123	0.0379	0.0004	298	140	245	9.8	240	2.5	97%
De467-3-12 822 1507 0.55 0.052 0.0518 0.0093 0.0074 283 7.78 242 7.4 238 2.7 98% De467-3-13 333 251 0.37 0.052 0.0307 0.0064 256 66.7 251 6.8 21 2.8 99% De467-3-16 144 0.42 0.0460 0.005 0.287 0.005 2.98 0.112 2.088 0.0005 7.9 7.41 2.44 7.4 2.84 7.8 2.91% De467-3-16 135 444 0.40 0.050 0.021 0.289 0.012 0.081 0.002 2.38 1.010 2.33 7.5 2.41 7.0 2.42 2.4 98% De467-3-18 149 1.90 0.058 0.001 0.027 0.005 0.001 2.7 6.30 0.017 2.01 0.006 2.01 2.01 0.01 0.020 0.014 0.001 0.018 0.001	D6467-3-11	531	1356	0.39	0.0513	0.0017	0.2693	0.0091	0.0381	0.0004	257	71.3	242	7.3	241	2.7	99%
De467-3-13 933 2521 0.37 0.0512 0.0015 0.280 0.0086 0.0397 0.0040 256 66.7 251 6.8 251 2.8 99% De467-3-14 144 0.42 0.046 0.0015 0.257 0.0812 0.0000 609 9.07 7.1 0.01 0.01 3.9 9% De4673-16 135 444 0.30 0.050 0.001 0.250 0.001 0.052 0.001 2.059 0.013 0.032 0.001 2.25 9% De467-3-16 690 1.024 0.050 0.0015 0.260 0.0015 0.030 0.030 0.003 2.15 6.11 242 5.8 2.42 2.4 9% De467-3-11 103 2.02 0.050 0.015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.037 0.003 1.28 7.04 2.0 6.2 9.9	D6467-3-12	822	1507	0.55	0.0520	0.0018	0.2693	0.0093	0.0376	0.0004	283	77.8	242	7.4	238	2.7	98%
De467-3-14 134 541 0.25 0.0025 0.0138 0.0129 0.0380 0.0005 279 74.1 234 7.1 254 3.2 91% De467-3-16 135 444 0.30 0.0024 0.278 0.013 0.0005 20.81 0.001 255 1.0 241 2.4 94% De467-3-16 135 441 0.30 0.0016 0.674 0.0038 0.0004 2.33 1.01 2.42 2.4 94% De467-3-14 120 1055 0.40 0.0016 0.674 0.0038 0.0004 2.33 7.5 2.41 7.0 2.42 2.4 94% De467-3-12 155 545 0.20 0.0015 0.217 0.008 0.0378 0.0001 2.55 2.49 5.4 2.10 2.9 94% De467-3-23 173 1144 0.50 0.015 0.015 0.016 0.378 0.0001 1.54 7.8 2.5 <td>D6467-3-13</td> <td>933</td> <td>2521</td> <td>0.37</td> <td>0.0512</td> <td>0.0015</td> <td>0.2801</td> <td>0.0086</td> <td>0.0397</td> <td>0.0004</td> <td>256</td> <td>66.7</td> <td>251</td> <td>6.8</td> <td>251</td> <td>2.8</td> <td>99%</td>	D6467-3-13	933	2521	0.37	0.0512	0.0015	0.2801	0.0086	0.0397	0.0004	256	66.7	251	6.8	251	2.8	99%
De467-3-15 610 144 0.42 0.046 0.0015 0.2587 0.0087 0.0402 0.0053 20.001 250 1.1 234 7.1 254 3.2 91% De467-3-16 135 444 0.30 0.050 0.001 0.260 0.073 0.032 0.004 255 6.1. 242 5.8 242 2.4 99% De467-3-18 421 105 0.38 0.005 0.004 0.267 0.035 0.004 2.33 7.50 241 7.0 242 2.5 De467-3-21 155 545 0.28 0.0015 0.280 0.013 0.035 0.0004 2.17 5.5 249 5.4 2.51 2.60 0.955 De467-3-21 109 202 0.55 0.505 0.0015 0.260 0.038 0.0001 1.28 7.0 2.55 2.49 5.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	D6467-3-14	134	541	0.25	0.0602	0.0025	0.3138	0.0129	0.0380	0.0006	609	90.7	277	10.0	241	3.7	85%
De6467-3-16 135 444 0.30 0.030 0.024 0.278 0.032 0.0381 0.000 235 61.1 242 5.8 242 2.4 99% De6467-3-18 421 1095 0.38 0.0016 0.267 0.0081 0.0082 0.004 233 75.9 241 7.0 242 2.5 99% De6467-3-17 803 50 0.56 0.0015 0.2820 0.081 0.035 0.0004 272 6.13 252 6.4 249 98% De6467-3-10 103 2020 0.55 0.050 0.0210 0.2777 0.008 0.037 0.003 121 55.5 249 5.4 2.0 99% De6467-3-12 757 143 0.35 0.011 0.270 0.088 0.037 10.01 210 7.5 243 6.5 243 2.5 9% De6467-3-23 757 143 0.53 0.014 0.272 <	D6467-3-15	610	1446	0.42	0.0466	0.0015	0.2587	0.0087	0.0402	0.0005	27.9	74.1	234	7.1	254	3.2	91%
De647-3-17 690 2029 0.34 0.0509 0.0013 0.2690 0.0032 0.0040 233 61.1 242 5.8 242 2.4 9996 De6467-3-18 421 1095 0.38 0.0506 0.016 0.2820 0.0081 0.0395 0.0004 223 75.9 241 7.0 242 2.5 9996 De6467-3-10 155 545 0.28 0.0120 0.2820 0.008 0.003 210 55.5 249 5.4 251 2.0 9966 De6467-3-23 73 1144 0.50 0.0512 0.2777 0.068 0.0382 0.000 128 7.04 230 6.1 239 2.0 9666 De6467-3-24 754 1436 0.33 0.0016 0.2709 0.088 0.0382 0.001 128 7.6 1.4 2.0 2.42 2.4 9996 De6467-3-26 787 136 0.37 0.0483 0.010<	D6467-3-16	135	444	0.30	0.0530	0.0024	0.2789	0.0132	0.0381	0.0005	328	104	250	10.5	241	3.3	96%
De6467-3-18 421 109 0.38 0.050 0.016 0.264 0.008 0.030 2.33 75.9 241 7.0 242 2.5 9% De6467-3-19 839 155 545 0.28 0.055 0.002 0.283 0.013 0.0375 0.0005 456 10.3.7 255 249 5.4 251 2.0 9% De6467-3-22 79 155 0.035 0.005 0.015 0.260 0.0378 0.0004 250 72.2 243 6.8 242 2.4 9% De6467-3-25 17 143 0.50 0.015 0.2600 0.038 0.0004 154 76.8 255 6.5 243 2.5 9% De6467-3-27 187 685 0.27 0.029 0.026 0.038 0.0004 122 72.215 2.7 6.1 249 2.5 9% De6467-3-27 396 165 0.27 0.010 0.279 </td <td>D6467-3-17</td> <td>690</td> <td>2029</td> <td>0.34</td> <td>0.0509</td> <td>0.0013</td> <td>0.2690</td> <td>0.0073</td> <td>0.0382</td> <td>0.0004</td> <td>235</td> <td>61.1</td> <td>242</td> <td>5.8</td> <td>242</td> <td>2.4</td> <td>99%</td>	D6467-3-17	690	2029	0.34	0.0509	0.0013	0.2690	0.0073	0.0382	0.0004	235	61.1	242	5.8	242	2.4	99%
De6467-3-19 839 1506 0.56 0.0517 0.0015 0.2820 0.0081 0.0375 0.0000 272 63.9 252 6.4 249 24.9 98% D6467-3-20 155 545 0.28 0.055 0.0012 0.2777 0.006 0.0397 0.0003 217 55.5 249 5.4 251 2.0 9% D6467-3-22 77 1.18 0.046 0.011 0.015 0.254 0.008 0.038 0.000 128 70.4 230 6.1 239 2.0 9% D6467-3-23 73 114 0.50 0.011 0.016 0.038 0.0004 128 70.4 2.0 6.5 2.4 2.4 9% D6467-3-27 187 685 0.37 0.0014 0.271 0.0376 0.0004 122 72.215 2.37 6.6 2.4 2.5 9% D6467-3-28 79 630 0.39 0.050	D6467-3-18	421	1095	0.38	0.0506	0.0016	0.2674	0.0087	0.0382	0.0004	233	75.9	241	7.0	242	2.5	99%
De6467-3-20 155 545 0.28 0.026 0.288 0.0130 0.0375 0.0003 217 55.5 249 5.4 21.5 2.0 9% D6467-3-22 279 1527 0.18 0.0486 0.015 0.2541 0.0076 0.0378 0.0003 128 7.0.4 230 6.1 239 2.0 9% D6467-3-22 279 157 0.18 0.0480 0.015 0.2600 0.088 0.004 250 7.2.2 243 6.8 242 2.4 9% D6467-3-26 187 6.85 0.27 0.023 0.2786 0.016 0.0382 0.0003 122 7.21 2.37 6.1 242 2.4 2.9 D6467-3-26 625 185 0.37 0.048 0.076 0.0382 0.0001 266 63.0 244 6.0 242 2.5 9% D6467-3-29 39 6.3 0.39 0.507 0.011 <t< td=""><td>D6467-3-19</td><td>839</td><td>1506</td><td>0.56</td><td>0.0517</td><td>0.0015</td><td>0.2820</td><td>0.0081</td><td>0.0395</td><td>0.0004</td><td>272</td><td>63.9</td><td>252</td><td>6.4</td><td>249</td><td>2.4</td><td>98%</td></t<>	D6467-3-19	839	1506	0.56	0.0517	0.0015	0.2820	0.0081	0.0395	0.0004	272	63.9	252	6.4	249	2.4	98%
De6467-3-21 1093 2002 0.55 0.0505 0.012 0.2777 0.0068 0.0378 0.0003 217 55.5 249 5.4 251 2.0 9% D6467-3-22 279 1527 0.18 0.0486 0.0015 0.2541 0.0076 0.0378 0.0003 128 70.4 230 6.1 239 2.0 9% D6467-3-23 573 1144 0.50 0.0512 0.0016 0.2709 0.088 0.0383 0.004 154 76.8 235 6.5 243 2.5 9% D6467-3-26 187 6.85 0.27 0.023 0.2632 0.0076 0.0332 0.001 122 72.215 2.7 6.1 249 2.5 9% D6467-3-27 396 165 0.25 0.011 0.271 0.076 0.032 0.004 266 63.0 244 6.0 242 2.5 9% D6467-3-27 396 1.39	D6467-3-20	155	545	0.28	0.0558	0.0026	0.2883	0.0130	0.0375	0.0005	456	103.7	257	10.3	237	3.0	91%
De6467-3-22 279 1527 0.18 0.048 0.015 0.254 0.007 0.0378 0.0003 128 70.4 230 6.1 239 2.0 96% D6467-3-23 573 1144 0.50 0.0512 0.0016 0.2709 0.0085 0.338 0.0041 154 76.8 235 6.5 243 2.5 96% D6467-3-26 187 685 0.27 0.0529 0.023 0.2786 0.016 0.332 0.0003 122 72.15 237 6.1 249 2.0 95% D6467-3-26 625 1685 0.37 0.0483 0.015 0.262 0.007 0.332 0.0001 226 6.3.0 244 6.0 242 2.5 98% D6467-3-29 423 1061 0.40 0.050 0.011 0.276 0.037 0.004 213 86.1 237 7.2 239 2.6 98% D6467-3-20 149	D6467-3-21	1093	2002	0.55	0.0505	0.0012	0.2777	0.0068	0.0397	0.0003	217	55.5	249	5.4	251	2.0	99%
De6467-3-23 573 1144 0.50 0.0512 0.0016 0.2709 0.0085 0.0382 0.0004 154 72.2 243 6.8 242 2.4 99% D6467-3-24 754 1436 0.53 0.0491 0.015 0.2600 0.0808 0.0383 0.0001 154 76.8 235 6.5 243 2.5 96% D6467-3-26 625 1685 0.37 0.0483 0.015 0.2632 0.0076 0.0382 0.0003 122 72.215 237 6.1 249 2.0 95% D6467-3-26 1564 0.39 0.052 0.018 0.2593 0.087 0.004 216 63.0 244 6.0 242 2.5 98% D6467-3-29 423 1061 0.40 0.0504 0.018 0.2628 0.004 213 86.1 237 7.2 239 2.6 98% D264-5-01 20 4189 0.25 0.011	D6467-3-22	279	1527	0.18	0.0486	0.0015	0.2541	0.0076	0.0378	0.0003	128	70.4	230	6.1	239	2.0	96%
D6467-3-24 754 1436 0.53 0.0491 0.0015 0.2600 0.0080 0.0383 0.0041 154 76.8 235 6.5 243 2.5 96% D6467-3-26 625 1685 0.37 0.0483 0.015 0.232 0.007 0.0324 0.0003 122 72.215 237 6.1 249 2.0 95% D6467-3-27 396 1564 0.25 0.018 0.2593 0.007 0.004 265 63.0 244 6.0 242 2.5 98% D6467-3-28 379 963 0.39 0.0507 0.018 0.2529 0.0378 0.004 213 86.1 237 7.2 239 2.6 98% D264-7-3-29 423 1661 0.40 0.0507 0.011 0.2769 0.0378 0.004 213 86.1 237 7.2 239 2.6 98% D264-5-01 20 818 0.27 0.558	D6467-3-23	573	1144	0.50	0.0512	0.0016	0.2709	0.0085	0.0382	0.0004	250	72.2	243	6.8	242	2.4	99%
D6467-3-25 187 685 0.27 0.0529 0.0023 0.2786 0.016 0.0382 0.005 324 94 250 9.2 242 3.2 96% D6467-3-26 625 1685 0.37 0.0483 0.0015 0.2632 0.0076 0.0382 0.0001 122 72.215 237 6.1 249 2.0 95% D6467-3-27 396 1564 0.25 0.018 0.2593 0.087 0.004 265 63.0 244 6.0 242 2.5 98% D6467-3-28 379 963 0.39 0.0507 0.018 0.2528 0.0378 0.004 213 86.1 237 7.2 239 2.6 98% D264-5-31 169 439 0.507 0.011 0.2769 0.061 0.0374 0.004 248 6.1 237 7.2 239 2.6 98% D264-5-01 20 818 0.27 0.558	D6467-3-24	754	1436	0.53	0.0491	0.0015	0.2600	0.0080	0.0383	0.0004	154	76.8	235	6.5	243	2.5	96%
De6467-3-26 625 1685 0.37 0.0483 0.0015 0.2632 0.0076 0.0334 0.0003 122 72.215 237 6.1 249 2.0 95% D6467-3-27 396 1564 0.25 0.0515 0.0014 0.2721 0.0076 0.0382 0.0004 265 63.0 244 6.0 242 2.5 98% D6467-3-29 423 1061 0.40 0.0504 0.0018 0.2628 0.009 0.0378 0.0004 213 86.1 237 7.2 239 2.6 98% D6467-3-20 4395 0.39 0.0507 0.0011 0.2769 0.061 0.0394 0.0004 228 50.0 248 4.9 249 2.5 99% D264-5 237 818 0.27 0.0558 0.0215 0.151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-01 229 818	D6467-3-25	187	685	0.27	0.0529	0.0023	0.2786	0.0116	0.0382	0.0005	324	94	250	9.2	242	3.2	96%
De6467-3-27 396 1564 0.25 0.0014 0.2721 0.0076 0.0382 0.0004 265 63.0 244 6.0 242 2.5 98% D6467-3-28 379 963 0.39 0.0502 0.0018 0.2593 0.0087 0.0014 206 85.2 234 7.0 238 2.7 98% D6467-3-29 423 1061 0.40 0.0504 0.011 0.2769 0.001 0.0378 0.0004 213 86.1 237 7.2 239 2.6 98% D6467-3-30 1697 4395 0.39 0.0507 0.0011 0.2769 0.061 0.0394 0.004 228 50.0 248 4.9 249 2.5 99% D2264-5 249 135 0.18 0.050 0.0016 0.5225 0.151 0.0673 0.0017 454 65.7 427 10.1 420 4.3 98% D2264-5-04 403 700	D6467-3-26	625	1685	0.37	0.0483	0.0015	0.2632	0.0076	0.0394	0.0003	122	72.215	237	6.1	249	2.0	95%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D6467-3-27	396	1564	0.25	0.0515	0.0014	0.2721	0.0076	0.0382	0.0004	265	63.0	244	6.0	242	2.5	98%
D6467-3-29 423 1061 0.40 0.0504 0.0018 0.2628 0.0090 0.0378 0.0004 213 86.1 237 7.2 239 2.6 98% D6467-3-30 1697 4395 0.39 0.0507 0.0011 0.2769 0.0061 0.0394 0.0004 228 50.0 248 4.9 249 2.5 99% D2264-5-01 220 818 0.27 0.0558 0.0025 0.5301 0.0232 0.0693 0.0010 443 100.0 432 15.4 432 6.3 99% D2264-5-02 249 1395 0.18 0.0560 0.0016 0.5225 0.0151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-04 403 770 0.52 0.0506 0.0027 0.3738 0.021 0.0703 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.052 0.0027 0.3732 0.0211	D6467-3-28	379	963	0.39	0.0502	0.0018	0.2593	0.0087	0.0377	0.0004	206	85.2	234	7.0	238	2.7	98%
D6467-3-30 1697 4395 0.39 0.0507 0.0011 0.2769 0.0061 0.0394 0.0004 228 50.0 248 4.9 249 2.5 99% D2264-5-01 220 818 0.27 0.0558 0.0025 0.5301 0.0232 0.0693 0.0010 443 100.0 432 15.4 432 6.3 99% D2264-5-02 249 1395 0.18 0.0500 0.0016 0.5225 0.0151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-03 223 1189 0.19 0.0556 0.0020 0.5407 0.0192 0.0704 0.0088 439 75.0 439 12.7 439 4.7 99% D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.021 <td>D6467-3-29</td> <td>423</td> <td>1061</td> <td>0.40</td> <td>0.0504</td> <td>0.0018</td> <td>0.2628</td> <td>0.0090</td> <td>0.0378</td> <td>0.0004</td> <td>213</td> <td>86.1</td> <td>237</td> <td>7.2</td> <td>239</td> <td>2.6</td> <td>98%</td>	D6467-3-29	423	1061	0.40	0.0504	0.0018	0.2628	0.0090	0.0378	0.0004	213	86.1	237	7.2	239	2.6	98%
D2264-5-01 220 818 0.27 0.0558 0.0025 0.5301 0.0232 0.0693 0.0010 443 100.0 432 15.4 432 6.3 99% D2264-5-02 249 1395 0.18 0.0560 0.0016 0.5225 0.0151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-03 223 1189 0.19 0.0556 0.0020 0.5407 0.0192 0.0704 0.0008 439 75.0 439 12.7 439 4.7 99% D2264-5-03 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.652 0.0037 0.3372 0.0201	D6467-3-30	1697	4395	0.39	0.0507	0.0011	0.2769	0.0061	0.0394	0.0004	228	50.0	248	4.9	249	2.5	99%
D2264-5-01 220 818 0.27 0.0558 0.0025 0.5301 0.0232 0.0693 0.0010 443 100.0 432 15.4 432 6.3 99% D2264-5-02 249 1395 0.18 0.0560 0.0016 0.5225 0.0151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-03 223 1189 0.19 0.0556 0.0027 0.3738 0.024 0.0539 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0521 0.0027 0.3372 0.201	D2264-5																
D2264-5-02 249 1395 0.18 0.0560 0.0016 0.5225 0.0151 0.0673 0.0007 454 65.7 427 10.1 420 4.3 98% D2264-5-03 223 1189 0.19 0.0556 0.0020 0.5407 0.0192 0.0704 0.0008 439 75.0 439 12.7 439 4.7 99% D2264-5-04 403 770 0.52 0.0506 0.0027 0.3738 0.0204 0.0539 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0652 0.0037 0.3372 0.0201	D2264-5-01	220	818	0.27	0.0558	0.0025	0.5301	0.0232	0.0693	0.0010	443	100.0	432	15.4	432	6.3	99%
D2264-5-03 223 1189 0.19 0.0556 0.0020 0.5407 0.0192 0.0704 0.0008 439 75.0 439 12.7 439 4.7 99% D2264-5-04 403 770 0.52 0.0506 0.0027 0.3738 0.0204 0.0539 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0652 0.0037 0.3372 0.0201 0.0370 0.0006 783 120 295 15.3 234 3.6 76% D2264-5-08 305 460 0.66 0.0521 0.0022 0.528 0.0201	D2264-5-02	249	1395	0.18	0.0560	0.0016	0.5225	0.0151	0.0673	0.0007	454	65.7	427	10.1	420	4.3	98%
D2264-5-04 403 770 0.52 0.0506 0.0027 0.3738 0.0204 0.0539 0.0013 233 122 322 15.1 338 7.8 95% D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0652 0.0037 0.3372 0.0201 0.0370 0.0006 783 120 295 15.3 234 3.6 76% D2264-5-08 305 460 0.66 0.0521 0.0029 0.4868 0.0268 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0542 0.0021 0.5208 0.0201	D2264-5-03	223	1189	0.19	0.0556	0.0020	0 5407	0.0192	0 0704	0.0008	439	75.0	439	12.7	439	47	99%
D2264-5-05 129 960 0.13 0.0540 0.0022 0.5226 0.0211 0.0703 0.0010 369 94.4 427 14.1 438 6.1 97% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0652 0.0037 0.3372 0.0201 0.0370 0.0006 783 120 295 15.3 234 3.6 76% D2264-5-08 305 460 0.66 0.0521 0.0029 0.4868 0.0268 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0524 0.0021 0.5208 0.0201 0.0694 0.0009 389 82.4 426 13.4 433 5.4 98% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208	D2264-5-04	403	770	0.52	0.0506	0.0027	0.3738	0.0204	0.0539	0.0013	233	122	322	15.1	338	7.8	95%
D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-06 1109 3127 0.35 0.0525 0.0016 0.5279 0.0166 0.0722 0.0008 309 68.5 430 11.0 450 4.9 95% D2264-5-07 893 875 1.02 0.0652 0.0037 0.3372 0.0201 0.0370 0.0006 783 120 295 15.3 234 3.6 76% D2264-5-08 305 460 0.66 0.0521 0.0029 0.4868 0.0268 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0542 0.0021 0.5208 0.0201 0.0694 0.0009 389 82.4 426 13.4 433 5.4 98% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208	D2264-5-05	129	960	0.13	0.0540	0.0022	0.5226	0.0211	0.0703	0.0010	369	94.4	427	14.1	438	6.1	97%
D2264-5-07 893 875 1.02 0.0652 0.0016 0.0327 0.0370 0.0006 783 120 295 15.3 234 3.6 76% D2264-5-08 305 460 0.66 0.0521 0.0029 0.4868 0.0268 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0542 0.0021 0.5208 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0542 0.0021 0.5208 0.0201 0.0694 0.0009 389 82.4 426 13.4 433 5.4 98% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208 0.0709 0.0012 346 90.7 427 13.9 441 7.1 96% D2264-5-11 979 857 1.14 0.0509 0.0027 0.2481 0.0120 0.0357 0.0006	D2264-5-06	1109	3127	0.15	0.0525	0.0016	0.5279	0.0166	0.0722	0.0008	309	68.5	430	11.0	450	49	95%
D2264-5-08 305 460 0.66 0.0521 0.0029 0.4868 0.0268 0.0676 0.0011 287 128 403 18.3 422 6.6 95% D2264-5-09 150 733 0.20 0.0542 0.0021 0.5208 0.0201 0.0694 0.0009 389 82.4 426 13.4 433 5.4 98% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208 0.0709 0.0012 346 90.7 427 13.9 441 7.1 96% D2264-5-11 979 857 1.14 0.0509 0.0027 0.2481 0.0120 0.0357 0.0006 235 131 225 9.8 226 3.5 99% D2264-5-12 1214 1028 1.18 0.0524 0.0024 0.2615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257	D2264-5-07	893	875	1.02	0.0652	0.0037	0.3372	0.0201	0.0370	0.0006	783	120	295	15.3	234	3.6	76%
D2264-5-10 269 1221 0.22 0.0542 0.0021 0.5208 0.0201 0.0694 0.0009 389 82.4 426 13.4 433 5.4 98% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208 0.0709 0.0012 346 90.7 427 13.9 441 7.1 96% D2264-5-11 979 857 1.14 0.0509 0.0027 0.2481 0.0120 0.0357 0.0006 235 131 225 9.8 226 3.5 99% D2264-5-12 1214 1028 1.18 0.0524 0.0024 0.2615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257 0.0704 0.0010 600 103.7 452 16.7 438 6.2 96%	D2264-5-08	305	460	0.66	0.0521	0.0029	0.4868	0.0268	0.0676	0.0011	2.87	128	403	183	422	6.6	95%
D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208 0.0709 0.0012 346 90.7 427 13.9 441 7.1 96% D2264-5-10 269 1221 0.22 0.0534 0.0022 0.5235 0.0208 0.0709 0.0012 346 90.7 427 13.9 441 7.1 96% D2264-5-11 979 857 1.14 0.0509 0.0027 0.2481 0.0120 0.0357 0.0006 235 131 225 9.8 226 3.5 99% D2264-5-12 1214 1028 1.18 0.0524 0.0024 0.2615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257 0.0704 0.0010 600 103.7 452 16.7 438 6.2 96%	D2264_5_09	150	733	0.20	0.0542	0.0021	0 5208	0.0201	0.0694	0.0000	389	82.4	426	13.4	433	5.4	98%
D2264-5-11 979 857 1.14 0.0509 0.0220 0.0250 0.0360 0.0012 940 9017 427 15.5 441 7.1 9070 D2264-5-11 979 857 1.14 0.0509 0.0027 0.2481 0.0120 0.0357 0.0006 235 131 225 9.8 226 3.5 99% D2264-5-12 1214 1028 1.18 0.0524 0.024 0.2615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257 0.0704 0.0010 600 103.7 452 16.7 438 6.2 96%	D2264-5-10	269	1221	0.22	0.0534	0.0022	0.5235	0.0208	0.0709	0.0012	346	90.7	427	13.9	441	71	96%
D2264-5-12 1214 1028 1.18 0.0524 0.2615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-12 1214 1028 1.18 0.0524 0.02615 0.0127 0.0360 0.0005 302 107 236 10.2 228 3.3 96% D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257 0.0704 0.0010 600 103.7 452 16.7 438 6.2 96%	D2264-5-10	979	857	1 1/	0.0500	0.0027	0.2481	0.0120	0.0357	0.00012	235	131	225	9.8	226	35	99%
D2264-5-12 1211 1020 1110 0.0524 0.0024 0.0015 0.0127 0.0500 0.0005 502 107 250 10.2 228 5.5 90/0 D2264-5-13 375 498 0.75 0.0581 0.0028 0.5612 0.0257 0.0704 0.0010 600 103.7 452 16.7 438 6.2 96%	D2264-5-11	1214	1028	1 1 8	0.0524	0.0024	0.2615	0.0127	0.0360	0.0005	302	107	225	10.2	220	33	96%
	D2264-5-13	375	498	0.75	0.0581	0.0024	0.5612	0.0257	0.0704	0.0010	600	103 7	452	16.7	438	62	96%

第48卷第6期

															绫	表4
	T (1.0.6	*****				同位素	比值				F	同位素年齢	≷/Ma			谐和
分析点亏	1 h/10 °	U/10°	Th/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	度
D2264-5-14	630	1499	0.42	0.0570	0.0018	0.5471	0.0174	0.0695	0.0009	500	70.4	443	11.4	433	5.3	97%
D2264-5-15	133	464	0.29	0.0547	0.0028	0.5084	0.0246	0.0682	0.0011	467	121.3	417	16.6	425	6.4	98%
D2264-5-16	1069	936	1.14	0.0511	0.0028	0.2507	0.0141	0.0355	0.0005	256	123	227	11.5	225	3.3	99%
D2264-5-17	826	938	0.88	0.0546	0.0033	0.2663	0.0155	0.0355	0.0005	398	135	240	12.4	225	3.1	93%
D2264-5-18	425	486	0.87	0.0533	0.0031	0.5056	0.0287	0.0688	0.0012	343	131	416	19.3	429	7.5	96%
D2264-5-19	62.6	906	0.07	0.0535	0.0021	0.5126	0.0202	0.0695	0.0009	350	88.9	420	13.6	433	5.4	96%
D2264-5-20	259	456	0.57	0.0546	0.0029	0.5280	0.0288	0.0696	0.0012	398	116.7	430	19.2	434	7.1	99%
D5784-1																
D5784-1-01	911	991	0.92	0.0605	0.0021	0.5866	0.0193	0.0702	0.0009	620	74.1	469	12.4	437	5.3	93%
D5784-1-02	382	883	0.43	0.0605	0.0020	0.5984	0.0200	0.0717	0.0011	620	76.8	476	12.7	446	6.7	93%
D5784-1-03	489	2798	0.17	0.0555	0.0012	0.5436	0.0114	0.0707	0.0007	432	46.3	441	7.5	440	4.0	99%
D5784-1-04	493	1153	0.43	0.0565	0.0015	0.5554	0.0138	0.0712	0.0006	472	57.4	449	9.0	443	3.7	98%
D5784-1-05	379	464	0.82	0.0560	0.0023	0.5510	0.0222	0.0715	0.0009	454	88.0	446	14.5	445	5.3	99%
D5784-1-06	302	1173	0.26	0.0576	0.0015	0.5746	0.0150	0.0721	0.0007	517	57.4	461	9.7	449	4.0	97%
D5784-1-07	1705	2146	0.79	0.0559	0.0011	0.5444	0.0106	0.0705	0.0005	450	13.9	441	6.9	439	2.9	99%
D5784-1-08	439	2006	0.22	0.0526	0.0013	0.2772	0.0074	0.0380	0.0004	322	57.4	248	5.9	241	2.4	96%
D5784-1-09	221	530	0.42	0.0580	0.0020	0.5766	0.0202	0.0720	0.0008	528	80.5	462	13.0	448	4.7	96%
D5784-1-10	208	633	0.33	0.0596	0.0021	0.5722	0.0202	0.0700	0.0008	591	77.8	459	13.1	436	5.0	94%
D5784-1-11	267	1503	0.18	0.0584	0.0015	0.5690	0.0145	0.0707	0.0006	546	55.5	457	9.4	440	3.7	96%
D5784-1-12	223	1014	0.22	0.0578	0.0015	0.5644	0.0149	0.0707	0.0007	524	55.5	454	9.6	441	4.1	96%
D5784-1-13	262	1742	0.15	0.0617	0.0014	0.6228	0.0155	0.0729	0.0007	665	52.8	492	9.7	454	4.4	92%
D5784-1-14	366	659	0.55	0.0541	0.0018	0.5387	0.0197	0.0722	0.0010	372	81	438	13.0	450	5.8	97%
D5784-1-15	227	862	0.26	0.0574	0.0017	0.5616	0.0167	0.0711	0.0007	506	64.8	453	10.8	443	4.5	97%
D5784-1-16	262	2518	0.10	0.0547	0.0012	0.5352	0.0119	0.0709	0.0007	398	52.8	435	7.9	441	4.4	98%
D5784-1-17	307	2157	0.14	0.0571	0.0011	0.5660	0.0114	0.0716	0.0006	494	44.4	455	7.4	446	3.7	97%
D5784-1-18	122	730	0.17	0.0573	0.0017	0.5769	0.0172	0.0727	0.0008	502	63.0	462	11.1	453	4.6	97%
D5784-1-19	241	2139	0.11	0.0546	0.0011	0.5466	0.0112	0.0722	0.0006	394	44.4	443	7.4	450	3.7	98%
D5784-1-20	742	1269	0.59	0.0941	0.0067	0.9768	0.0903	0.0685	0.0013	1511	133	692	46.4	427	8.0	52%

K₂O/Na₂O=1.2~5.4),表现为高钾钙碱性岩石特征 (图 9b)。全部样品 A/CNK 均大于 1.0(1.0~1.6), Al₂O₃=11.82%~18.11%,为弱过铝质—强过铝质花岗 岩(图 10)。

第二期花岗岩(ŋ/T₃²)主要岩石类型为花岗岩 类,仅1件样品落入花岗闪长岩区域(图9a),该期花 岗岩SiO₂变化较小,为69%~74%。所有样品均富碱 富钾(Na₂O+K₂O= 6.17%~8.53%,K₂O/Na₂O=1.8~ 2.6),表现为高钾钙碱性岩石特征(图9b)。全部样 品 A/CNK 均大于 1.0(1.1~1.5),Al₂O₃=12.69%~ 16.91%,为弱过铝质一强过铝质花岗岩(图10)。部 分样品 K₂O/Na₂O 比值高达 11~24,A/CNK 为 2.1~ 2.4,相应烧失量明显偏大(2.9%~4.4%),可能受到 后期蚀变或风化作用影响。

两期花岗岩稀土元素总量为139×10⁻⁶~471× 10⁻⁶和116×10⁻⁶~365×10⁻⁶。在球粒陨石标准化稀土 元素配分图解上(图11a、b),均显示了轻稀土元素 富集、重稀土元素相对亏损的右倾配分模式,(La/ Yb)[№]比值分别为2.82~22.32和3.01~25.10,中等Eu 负异常(分别为0.23~0.64、0.26~0.43)。在原始地幔 标准化微量元素蛛网图上(图11c、d),两期花岗岩 均具有富集大离子亲石元素(Rb、U)和LREE富集, 而亏损高场强元素(Nb、Ta、Zr、Hf、Ti)的特点。

4.2.2 基性包体地球化学特征(表3)

在岩石分类判别图解中,基性包体样品属于亚 碱性岩石系列,成分为玄武质-安山质(图12)。其

图7 新兴花岗岩锆石 CL 特征及 U-Pb、Lu-Hf结果 小圈为U-Pb测点(32 µm),大圈为Lu-Hf测点(44 µm),数字为²⁶⁶Pb/²³⁸U表面年龄和 ɛ_{нt}(*t*)值 Fig.7 Photomicrographs of representative zircons analyzed for U-Pb ages and Lu-Hf isotopes Small circles(32 µm) and Large circles(44 µm) respectively indicate the LA-ICP-MS analytical spots for U-Pb isotopes and Lu-Hf isotopes. The numbers are ²⁰⁶Pb/²³⁸U apparent ages and ɛ_{нt}(*t*) values

具有右倾的稀土配分型式,无显著Eu异常(图13a); 微量元素表现为较为平坦的配分型式,具有"Nb-Ta 槽"和Zr-Hf-Ti负异常(图13b)。

4.2.3 花岗岩与基性包体同位素地球化学特征(表2, 表5)

25件花岗岩样品的Sr-Nd同位素分析显示(图 14),两期花岗岩均具有高的Isr值和低的ENd(t)值,Isr 变化范围较大(分别为0.71565~0.73001和0.72702~ 0.75765),而ENd(t)极为集中(分别为-11.5~-10.5 和-11.4~-11.0),相应的Nd同位素两阶段模式年 龄T2DM也集中在1.61~1.68 Ga和1.65~1.67 Ga。所 有样品几乎完全落在华南地壳范围,也与大容山过 铝质花岗岩Sr-Nd同位素组成类似。

7件花岗岩和1件基性包体的锆石原位Lu-Hf

同位素分析显示,晚三叠世两期花岗岩具有类似的 Lu-Hf同位素组成(图15)。花岗岩中220~240 Ma 的锆石 ε_{Nd}(*t*) 值分别集中在-2.9~-10.3 和-4.5~ -7.7,两阶段 Hf模式年龄分别为1.45~1.93 Ga 和 1.54~1.75 Ga;花岗岩中~250 Ma的锆石 ε_{Nd}(*t*) 值为 -9.6~-3.9,两阶段 Hf模式年龄为1.53~1.89 Ga;基 性包体中~240 Ma和~250 Ma锆石的Lu-Hf同位素 无明显区别, ε_{Nd}(*t*) 值为-2.6~1.0,两阶段 Hf模式年 龄为0.86~0.98 Ga(图15c,d)。

5 讨 论

5.1 华南板块南缘海西一印支期岩浆岩形成时代

华南板块南缘海西期一印支期岩浆岩主要出 露于海南岛和桂东一粤西地区。其中,海南岛海西

图 8 新兴花岗岩锆石 U-Pb 定年谐和图(a~i顺序与图 7 对应) Fig.8 U-Pb concordia plots of the Xinxing granite

期一印支期主要出露二长花岗岩、花岗闪长岩、碱 性A型花岗岩和少量辉长岩等,形成时代为280~ 220 Ma(云平等,2005;谢才富等,2005,2006a, 2006b;唐立梅等,2010,2013;陈新跃等,2014;何慧 莹等,2016a)。

第48卷第6期

桂东一粤西地区该期岩浆岩主要包括大容山、 那丽、那蓬、新兴等岩体。大容山一十万大山地区 出露的过铝质花岗岩、火山岩和麻粒岩长期受到关 注,其形成时代长期存在230~240 Ma(邓希光等, 2004;祈昌实等,2007)和250~260 Ma(彭松柏等, 2004;凌文黎等,2013)的分歧。大容山南部的那丽 花岗岩岩体被认为形成于262~265 Ma(贾小辉等, 2012;Li et al., 2016)。大容山东北端的岑溪安平地 区出露少量248~250 Ma的辉长岩侵入体(赵国英 等,2016;Xu et al., 2018)。云开地块北侧出露的那 蓬混合花岗岩被认为是典型的"改造型花岗岩"(杨 树峰,1982;彭少梅等,1996),同位素年龄为205~245 Ma⁹⁰(Peng et al.,2006;柯贤忠等,2018)。本次针对新兴至朗底一带出露的新兴、湾边岩体的系统工作,将前人长期以来对其"侏罗纪一白垩纪复式岩体(燕山期)"的认识修改为晚三叠世一晚侏罗世(印支期一燕山期),主体形成时代为240~224 Ma,同时发现了大量的250 Ma左右的继承锆石。

1913

以上这些侵入岩总体上呈 NE—NEE 向展布, 显著受到博白—岑溪断裂带、吴川—四会断裂带、 罗定—广宁断裂带、阳春—新兴断裂与恩平断裂等 NE—NEE 向构造带的控制(图1),这些断裂带/韧性 剪切带热年代学记录的印支期活动时间为248~195 Ma(Wang et al., 2007; Zhang and Cai., 2009)。岩浆 岩与构造变形显然是同一次碰撞造山过程的记录。

结合目前获得的地质证据与年代学数据推断, 桂东一粤西地区海西期一印支期岩浆作用可能开 中

始于260~250 Ma(大容山—那丽花岗岩、安平辉长 岩和新兴岩体中继承锆石记录),并一直延续到 240~220 Ma(新兴花岗岩、那蓬混合花岗岩)。

5.2 新兴花岗岩岩石成因

新兴花岗岩主要为高钾钙碱性系列的二长花岗 岩,在SiO₂-P₂O₅图解上(图16),随着SiO₂的增加,早 晚两期二长花岗岩均具有较为稳定的P₂O₅含量,显 示了S型花岗岩演化趋势。在Ca/(Mg+Fe)-Al/ (Mg+Fe)图上(图17),所有样品主要集中在变质泥 岩和变质杂砂岩范围,表明源区物质主要为泥质、杂 砂质岩石,可以认为它们主要是地壳沉积物部分熔 融形成的花岗岩。全岩Sr-Nd同位素与锆石Lu-Hf 同位素组成同样表明,新兴晚三叠世花岗岩源自古 老的壳源物质熔融。总体上看来,新兴—湾边晚三

叠世花岗岩具有过铝质一强过铝质以及高 Isr、低 ε_{Na}(t)和负 ε_{Na}(t)的地球化学组成,与华南地壳沉积物 类似,其应形成于大规模的地壳物质重熔过程。

细粒斑状花岗岩中基性包体的地球化学特征 总体上与E-MORB相似,为富集岩石圈地幔部分 熔融的产物,与岑溪安平一带出露的辉长岩具有相 似的源区组成。值得注意的是,花岗岩和基性包体 中约 250 Ma的锆石Lu-Hf同位素组成与 220~240 Ma锆石相似(图 15b、d),结合约 250 Ma锆石均为岩 浆成因等证据推测区域上可能存在隐伏的早三叠 世岩浆岩,其与地表出露的晚三叠世花岗岩具有一 致的源区物质组成。另外,花岗岩中420~450 Ma的 继承/捕获锆石具有异常高的 ɛska(t)值(-4.4~7.0)(图 15a),可能与Nd-Hf同位素解耦有关,也可能表明 云开及周边地区志留纪花岗岩源区(中下地壳)包 含了相当比例的基性岩,或岩浆作用过程中存在新 生地壳物质的加入(亏损地幔的熔融)。

5.3 对区域构造演化的约束

壳源物质熔融形成的花岗岩,其微量元素通常 反映的是源区物质的构造环境,因此,对花岗岩构 造环境的判别需要更多结合区域地质资料。从区 域上看,华南板块南缘海西—印支期经历了强烈的 构造-岩浆作用过程,岩浆作用方面的研究以大容 山地区和海南岛最受关注。Chen et al.(2011)基于 大容山—六万大山花岗岩、麻粒岩中细致的锆石、 独居石定年研究提出,约260 Ma的年龄结果可能记 录了峨眉山地幔柱活动对大容山地区的影响,而约 230 Ma才是华南与印支板块后碰撞阶段地壳减压

图 11 新兴花岗岩球粒陨石标准化稀土元素配分模式图解(a,b)和原始地幔标准化微量元素蛛网图解(c,d) Fig.11 Chondrite-normalized REE patterns(a,b) and primitive-mantle normalized multi-elemental spider diagrams(c,d) of the Xinxing granite

熔融形成大量过铝质花岗岩的时间。旧州麻粒岩的研究也表明,大容山一十万大山花岗岩及高温麻粒岩包体的形成可能受到了峨眉山地幔柱的热影响(赵亮等,2010,2011;焦淑娟等,2013)。很多学者将大容山花岗岩与华南一印支板块俯冲-碰撞过程联系起来,认为其形成于后碰撞环境(Zhao et al.,

2012; 王磊等, 2016) 或俯冲带的大陆弧环境(覃小锋等, 2013); 也有学者认为大容山地区在晚二叠世已开始受到古太平洋俯冲机制的影响(Jiao et al., 2015)。琼北的邦溪一晨星地区出露了一套与N-MORB类似的变基性岩, Sm-Nd、Ar-Ar 定年结果为333~328 Ma, 被认为是东古特提斯洋的残片, 记

图 12 细粒斑状花岗岩中基性包体岩石分类图解 Fig.12 Classification diagrams of intermediate-basic enclaves from fine-grained porphyritic granites

图 13 细粒斑状花岗岩中基性包体球粒陨石标准化稀土元素配分模式图解(a)和原始地幔标准化微量元素蛛网图解(b) Fig.13 Chondrite-normalized REE pattern (a) and primitive-mantle normalized multi-elemental spider diagram(b) of intermediate-basic enclaves from fine-grained porphyritic granite

图 14 新兴花岗岩 *I*_{sr}-ε_{Nd}(*t*)图解(图例同图 9) Fig.14 *I*_{sr}-ε_{Nd}(*t*) diagram of the Xinxing granite(same legend as Fig.9)

录了印支与华南板块的碰撞拼贴位置(李献华等, 2000;Xu et al., 2007;何慧莹等,2016b)。琼中大面 积的二叠纪一三叠纪花岗岩和少量碱性岩、辉长岩 (谢才富等,2005,2006a,2006b;陈新跃等,2011, 2014;温淑女等,2013;何慧莹等,2016a;Shen et al., 2018)可能是与之配套的弧岩浆岩。Li et al.(2006) 认为五指山267~262 Ma的钙碱性花岗岩形成于大 陆弧环境,谢才富等(2006a)和陈新跃等(2011)则认 为它们具有后碰撞/同碰撞花岗岩的特征,并提出华 南与印支板块的碰撞拼贴可能始于287~278 Ma或 269~263 Ma。

新兴晚三叠世花岗岩的新发现表明,华南板块 南缘海西一印支期岩浆活动自晚二叠世(大容山岩 体)一直延续到晚三叠世(新兴岩体)。除海南岛三 叠纪花岗岩之外,印支期仍存在相当大规模的岩浆 活动(新兴岩基),而并非以往认为的仅存在强烈的 构造变形(韧性剪切、走滑、推覆)、较强的区域变质 作用(麻粒岩相-角闪岩相)和局限的岩浆侵位。

大容山花岗岩主要为强过铝质花岗岩,岑溪安 平辉长岩-辉绿岩表现为高钾钙碱性和富集地幔源 区特征,那蓬花岗岩则具有受剪切带控制的原地熔 融特征,区域上未见典型与洋陆俯冲相关的I型花 岗岩、弧火山岩、拉斑系列基性岩或蛇绿混杂岩等, 因而可认为这些岩浆岩的形成均远离俯冲带,古特 提斯洋东段洋盆缝合线应位于哀牢山—Song Ma— SongChay—(海南邦溪—晨星)—线(Faure et al., 2016),而华南板块南缘(桂东—粤西)属于被动陆 缘—侧,在洋盆关闭后才受到造山过程影响。

大容山花岗岩(260~250 Ma)、安平辉长岩 (250~252 Ma)以及新兴花岗岩中大量约250 Ma的 继承锆石表明,桂东一粤西地区的海西一印支期岩 浆作用开始于260~250 Ma,可能为华南板块与印支 一海南板块陆陆碰撞的开始时间,而新兴花岗岩岩 基的研究表明这一过程持续到了240~224 Ma。古 特提斯洋的分支洋盆在260~250 Ma的关闭导致了 印支板块与华南板块的碰撞拼合,其后华南板块南 缘在陆陆碰撞—区域伸展体制控制下,地壳物质熔 融形成的中酸性岩浆侵位,导致了新兴—湾边岩 体、海南岛中—晚三叠世侵入岩的形成。

6 结 论

(1)新兴花岗岩形成时间为240~224 Ma,新兴

图 15 新兴花岗岩第一期($\eta\gamma T_3^1$, a, b)和第二期($\eta\gamma T_3^2$, c, d)锆石 Hf 同位素组成 Fig.15 Lu-Hf isotopic composition of zircons from first(a,b) and second phase(c,d) of the Xinxing granite

岩基的主体为晚三叠世花岗岩,而非以往长期认为的侏罗纪。大量约250 Ma继承锆石表明,粤西印支期岩浆作用可能开始于早三叠世。

(2)新兴花岗岩主要为(斑状)黑云母二长花岗

岩,表现为高钾钙碱性、过铝质一强过铝质花岗岩 特征,并显示高 Isr、低 ε_{Nd}(t)和负的 ε_{Nd}(t)的同位素组 成,其源自古老壳源物质的部分熔融。

(3)新兴晚三叠世花岗岩可能形成于古特提斯

2021年

表5	新兴花岗岩锆石	Lu–Hf	同位素组成
----	---------	-------	-------

中

Table 5 Zircon Lu-Hf isotopic composition of the Xinxing granite

分析点号	Age/Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	$^{176}\text{Hf}/^{177}\text{Hf}_{i}$	$e_{\rm Hf}(0)$	$e_{\rm Hf}(t)$	T _{DM} /Ma	$T_{\rm DM}^{\rm C}/{\rm Ma}$	$f_{Lu/Hf}$
D7063-1													
D7063-1-01	239	0.048007	0.000943	0.001437	0.000024	0.282510	0.000032	0.282503	-9.3	-4.3	1063	1541	-0.96
D7063-1-02	217	0.101122	0.001309	0.003432	0.000046	0.282667	0.000041	0.282653	-3.7	0.6	887	1218	-0.90
D7063-1-03	242	0.034527	0.000204	0.001059	0.000004	0.282415	0.000032	0.282410	-12.6	-7.5	1186	1748	-0.97
D7063-1-04	242	0.035464	0.000236	0.000982	0.000008	0.282400	0.000027	0.282395	-13.2	-8.0	1205	1781	-0.97
D7063-1-05	241	0.060183	0.000838	0.001783	0.000019	0 282522	0.000036	0 282514	-8.8	-3.8	1055	1515	-0.95
D7063-1-06	239	0.019876	0.000082	0.000595	0.000002	0.282367	0.000022	0.282364	-14.3	-9.2	1239	1854	-0.98
D7063-1-07	242	0.015951	0.000061	0.000469	0.000002	0.282354	0.000023	0.282352	-14.8	-9.5	1252	1878	-0.99
D7063-1-08	237	0.017353	0.000048	0.000516	0.000001	0.282374	0.000034	0.282372	-14.1	-9.0	1226	1838	-0.98
D7063-1-09	238	0.028421	0.000169	0.000871	0.000003	0 282497	0.000044	0.282493	-9.7	-4.6	1066	1565	-0.97
D7063-1-10	241	0.064297	0.000487	0.001928	0.000009	0.282551	0.000033	0.282542	-7.8	-2.9	1018	1453	-0.94
D7063-1-11	243	0.018272	0.000150	0.000527	0.000003	0.282333	0.000033	0.282331	-15.5	-10.3	1282	1925	-0.98
D7063-1-12	218	0.078237	0.000416	0.002430	0.000013	0 282574	0.000028	0 282564	-7.0	-2.6	999	1418	-0.93
D7063-1-13	238	0.021207	0.000083	0.000655	0.000006	0.282367	0.000024	0.282364	-14.3	-9.2	1240	1855	-0.98
D7063-1-14	241	0.039610	0.000191	0.001217	0.000004	0.282415	0.000022	0.282410	-12.6	-7.5	1190	1749	-0.96
D7063-1-15	250	0.017119	0.000057	0.0001217	0.000001	0.282348	0.000030	0.282346	-15.0	-9.6	1261	1888	-0.98
D7063-1-16	250	0.044521	0.001286	0.001290	0.000031	0.282489	0.000031	0.282483	-10.0	-4.7	1088	1579	-0.96
D7063-1-17	250	0.022382	0.000251	0.0001200	0.0000031	0.282388	0.000023	0.282385	-13.6	-8.2	1210	1798	-0.98
D7063-1-18	251	0.022302	0.000124	0.000750	0.000000	0.282384	0.000025	0.282380	-13.7	-8.4	1210	1810	-0.98
D7063-1-19	240	0.033295	0.000379	0.000983	0.0000016	0.282423	0.000022	0.282418	-12.4	-7.2	1173	1731	-0.97
D7063-1-20	240	0.027579	0.000159	0.000905	0.0000002	0.282380	0.000022	0.282376	-13.9	-8.7	1228	1825	-0.98
D3406-1	212	0.027077	0.000129	0.000012	0.000002	0.202500	0.000027	0.202570	15.7	0.7	1220	1025	0.70
D3406-1-03	237	0 022529	0 000240	0.000733	0 000007	0 282406	0.000031	0 282403	-13.0	-79	1188	1769	-0.98
D3406-1-01	234	0.022920	0.000541	0.000719	0.000017	0.282441	0.000028	0.282438	-11 7	-67	1139	1691	-0.98
D3406-1-02	230	0.032769	0.000110	0.001056	0.0000017	0.282430	0.000020	0.282426	-12.1	-7.2	1164	1721	-0.97
D3406-1-06	234	0.014152	0.000070	0.000461	0.000002	0.282371	0.000032	0.282369	-14.2	-9.1	1228	1845	-0.99
D3406-1-05	252	0.042216	0.000636	0.001313	0.000023	0.282472	0.000028	0.282465	-10.6	-5.3	1114	1617	-0.96
D3406-1-07	251	0.021031	0.000266	0.000658	0.000008	0.282404	0.000024	0.282401	-13.0	-7.6	1189	1764	-0.98
D3406-1-09	237	0.015596	0.0000200	0.000487	0.000002	0.282398	0.000024	0.282396	-13.2	-8.1	1192	1784	-0.99
D3406-1-10	255	0.020947	0.000039	0.000628	0.000003	0.282429	0.000037	0.282426	-12.1	-6.6	1153	1704	-0.98
D3406-1-11	236	0.019062	0.000179	0.000563	0.000002	0.282371	0.000033	0.282369	-14.2	-9.1	1231	1846	-0.98
D3406-1-15	230	0.036549	0.000307	0.001096	0.000013	0.282464	0.000023	0.282459	-10.9	-6.0	1118	1646	-0.97
D3406-1-18	233	0.033845	0.000292	0.001015	0.000005	0.282467	0.000029	0.282463	-10.8	-5.8	1111	1636	-0.97
D3406-1-20	230	0.018095	0.000163	0.000559	0.000005	0.282355	0.000027	0.282353	-14.7	-9.8	1253	1885	-0.98
D3426-1													
D3426-1-01	236	0.016885	0.000160	0.000578	0.000004	0.282440	0.000031	0.282437	-11.8	-6.7	1137	1692	-0.98
D3426-1-02	230	0.034433	0.000352	0.001139	0.000008	0.282458	0.000028	0.282453	-11.1	-6.2	1128	1660	-0.97
D3426-1-03	229	0.015006	0.000109	0.000490	0.000001	0.282365	0.000032	0.282363	-14.4	-9.4	1237	1862	-0.99
D3426-1-04	210	0.034747	0.000181	0.001188	0.000006	0.282471	0.000029	0.282466	-10.6	-6.2	1111	1643	-0.96
D3426-1-05	236	0.032507	0.000261	0.001067	0.000006	0.282422	0.000030	0.282417	-12.4	-7.4	1177	1737	-0.97
D3426-1-06	232	0.014372	0.000104	0.000486	0.000002	0.282364	0.000025	0.282362	-14.4	-9.4	1239	1864	-0.99
D3426-1-07	230	0.020581	0.000206	0.000670	0.000005	0.282468	0.000028	0.282465	-10.8	-5.8	1100	1633	-0.98
D3426-1-08	216	0.036398	0.000315	0.001201	0.000005	0.282468	0.000026	0.282463	-10.7	-6.2	1115	1645	-0.96
D3426-1-09	231	0.018085	0.000189	0.000591	0.000006	0.282474	0.000040	0.282471	-10.6	-5.6	1090	1619	-0.98
D3426-1-10	228	0.015667	0.000591	0.000540	0.000016	0.282224	0.000046	0.282222	-19.4	-14.4	1433	2178	-0.98
D3426-1-11	253	0.035712	0.000810	0.001223	0.000035	0.282511	0.000037	0.282505	-9.2	-3.9	1056	1528	-0.96
D3426-1-12	227	0.016279	0.000259	0.000531	0.000006	0.282465	0.000030	0.282463	-10.9	-6.0	1100	1640	-0.98
D3426-1-13	227	0.016221	0.000202	0.000521	0.000005	0.282391	0.000028	0.282389	-13.5	-8.6	1202	1806	-0.98
D3426-1-14	231	0.045803	0.000727	0.001531	0.000020	0.282522	0.000030	0.282515	-8.8	-4.0	1049	1519	-0.95
D3426-1-15	235	0.029762	0.000125	0.001011	0.000009	0.282454	0.000028	0.282450	-11.2	-6.2	1129	1663	-0.97
D3426-1-16	230	0.018936	0.000058	0.000615	0.000004	0.282471	0.000029	0.282468	-10.7	-5.7	1095	1626	-0.98
D3426-1-17	232	0.029944	0.000133	0.000958	0.000009	0.282404	0.000023	0.282400	-13.0	-8.1	1197	1777	-0.97
D3426-1-18	213	0.036309	0.000213	0.001310	0.000007	0.282460	0.000035	0.282455	-11.0	-6.5	1130	1667	-0.96
D3426-1-19	230	0.026912	0.000755	0.000877	0.000021	0.282505	0.000033	0.282501	-9.5	-4.6	1055	1553	-0.97
D3426-1-20	237	0.033049	0.000126	0.001082	0.000008	0.282430	0.000034	0.282425	-12.1	-7.1	1166	1719	-0.97

第48卷第6期

1919

												4	卖表5
分析点号	Age/Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	${}^{176}{\rm Hf}/{}^{177}{\rm Hf}_i$	$e_{Hf}(0)$	$e_{\rm Hf}(t)$	<i>T</i> _{DM} /Ma	$T_{\rm DM}^{\rm C}/{\rm Ma}$	$f_{ m Lu/Hf}$
PM11-39-1	224	0.010211	0.000144	0.000551	0.00000	0.2022(4	0.000022	0.000000	144	0.4	1240	1971	0.00
PM11-39-1-01 PM11-39-1-02	234 236	0.018311	0.000144	0.000551	0.000002	0.282304	0.000022	0.282362	-14.4 -9.2	-9.4 -4 3	1240	1542	-0.98
PM11-39-1-03	231	0.019591	0.000062	0.000595	0.0000000	0.282359	0.000022	0.282356	-14.6	-9.6	1249	1876	-0.98
PM11-39-1-04	241	0.023895	0.000093	0.000709	0.000003	0.282479	0.000026	0.282476	-10.4	-5.2	1086	1602	-0.98
PM11-39-1-05	436	0.064588	0.000167	0.002037	0.000001	0.282593	0.000025	0.282576	-6.3	2.7	961	1251	-0.94
PM11-39-1-06	425	0.040744	0.000398	0.001272	0.000012	0.282494	0.000031	0.282483	-9.8	-0.9	1081	1466	-0.96
PM11-39-1-07	429	0.086425	0.000518	0.002631	0.000013	0.282677	0.000032	0.282656	-3.4	5.3	853	1077	-0.92
PM11-39-1-08	239	0.044278	0.000166	0.001304	0.000004	0.282478	0.000024	0.282473	-10.4	-5.3	1104	1610	-0.96
PM11-39-1-09	257	0.025857	0.000710	0.000743	0.000017	0.282386	0.000027	0.282382	-13.7	-8.1	1217	1801	-0.98
PM11-39-1-10	434	0.070392	0.000670	0.002037	0.000016	0.282602	0.000034	0.282585	-6.0	2.9	947	1232	-0.94
PM11-39-1-11 PM11-20-1-12	426	0.045211	0.000191	0.001355	0.000005	0.282549	0.000024	0.282538	-/.9	1.1	1005	1342	-0.96
PM11-39-1-13 PM11-20-1-12	430	0.049409	0.000584	0.001497	0.000018	0.282518	0.000029	0.282506	-9.0	0.0	1054	1413	-0.95
PM11-39-1-12 PM11-39-1-14	251	0.001148	0.000703	0.001827	0.000023	0.282391	0.000034	0.282373	-0.4	2.0 -5.2	1104	1247	-0.94
PM11-39-1-15	236	0.036601	0.000231	0.001143	0.000004	0.282473	0.000028	0.282407	-12.1	-7.0	1163	1715	-0.97
PM11-39-1-16	233	0.058611	0.000136	0.001778	0.000002	0.282524	0.000021	0.282516	-8.8	-3.9	1053	1516	-0.95
PM11-39-1-17	242	0.029962	0.000519	0.000861	0.000014	0.282406	0.000029	0.282402	-12.9	-7.8	1192	1766	-0.97
PM11-39-1-18	222	0.087235	0.000798	0.002508	0.000022	0.282670	0.000031	0.282659	-3.6	0.9	860	1201	-0.92
PM11-39-1-19	249	0.026660	0.000149	0.000754	0.000004	0.282397	0.000023	0.282393	-13.3	-7.9	1202	1782	-0.98
PM11-39-1-20	241	0.031117	0.000045	0.000890	0.000002	0.282404	0.000024	0.282400	-13.0	-7.9	1197	1773	-0.97
D2286-1													
D2286-1-01	279	0.016252	0.000122	0.000498	0.000001	0.282457	0.000027	0.282454	-11.2	-5.1	1111	1626	-0.98
D2286-1-02	438	0.068828	0.000464	0.002123	0.000007	0.282621	0.000027	0.282603	-5.3	3.7	922	1188	-0.94
D2286-1-03	551	0.020602	0.000654	0.000611	0.000016	0.282398	0.000025	0.282392	-13.2	-1.3	1196	1592	-0.98
D2286-1-04	439	0.021819	0.000147	0.000720	0.000005	0.282388	0.000026	0.282382	-13.6	-4.2	1213	1686	-0.98
D2286-1-05	237	0.022448	0.000028	0.000691	0.000001	0.282493	0.000023	0.282490	-9.9	-4.8	1066	15/3	-0.98
D2286-1-06	278	0.024/61	0.000192	0.000/64	0.000003	0.282397	0.000026	0.282393	-13.3	-7.3	1202	1/64	-0.98
D2280-1-07	279	0.02/380	0.000364	0.000802	0.000008	0.282527	0.000034	0.282525	-8./	-2.1	1021	14/1	-0.98
D2286-1-08	/30	0.021461	0.001823	0.000044	0.000039	0.282413	0.000039	0.282408	-12.7	-0.2	1069	1020	-0.96
D2286-1-09	439	0.043030	0.000338	0.001431	0.000014	0.282500	0.000028	0.282494	-9.4	-0.2	1069	1434	-0.90
D2286-1-11	240	0.020207	0.000250	0.000621	0.000002	0.282390	0.000024	0.282387	-13.5	-8.4	1207	1801	-0.98
D2286-1-12	452	0.041038	0.000182	0.001295	0.000006	0.282484	0.000029	0.282473	-10.2	-0.6	1096	1473	-0.96
D2286-1-13	446	0.039738	0.000205	0.001302	0.000005	0.282418	0.000030	0.282407	-12.5	-3.1	1189	1625	-0.96
D2286-1-14	355	0.046738	0.000164	0.001441	0.000010	0.282558	0.000027	0.282548	-7.6	-0.1	995	1366	-0.96
D2286-1-15	435	0.050780	0.000557	0.001625	0.000015	0.282547	0.000031	0.282534	-8.0	1.1	1016	1348	-0.95
D2286-1-16	450	0.051958	0.000451	0.001616	0.000006	0.282572	0.000019	0.282559	-7.1	2.4	979	1281	-0.95
D2286-1-17	437	0.084615	0.000592	0.002749	0.000010	0.282721	0.000036	0.282698	-1.8	7.0	790	975	-0.92
D2286-1-18	231	0.017217	0.000210	0.000530	0.000004	0.282352	0.000023	0.282350	-14.9	-9.9	1257	1891	-0.98
D2286-1-19	430	0.043045	0.000222	0.001289	0.000005	0.282492	0.000023	0.282482	-9.9	-0.8	1084	1467	-0.96
D2280-1-20	438	0.045501	0.001314	0.001341	0.000032	0.282386	0.000045	0.282375	-13.7	-4.4	1236	1702	-0.96
D2208-1 D2268-1-01	403	0.036146	0.000241	0.001134	0.000004	0 282487	0.000020	0 282470	10.1	15	1086	1/01	0.07
D2268-1-01	229	0.037313	0.000241	0.001134	0.000004	0.282487	0.000029	0.282479	-10.1	-1.5	1080	1600	-0.97
D2268-1-02	419	0.023944	0.000320	0.000757	0.0000010	0.282403	0.000020	0.282406	-12.7	-3.7	1181	1644	-0.98
D2268-1-04	221	0.049200	0.001038	0.001547	0.000024	0.282513	0.000026	0.282507	-91	-4 5	1061	1544	-0.95
D2268-1-05	405	0.053546	0.000805	0.001779	0.000037	0.282591	0.000045	0.282578	-6.4	2.0	956	1267	-0.95
D2268-1-06	221	0.034742	0.000623	0.001040	0.000025	0.282502	0.000032	0.282498	-9.6	-4.9	1063	1566	-0.97
D2268-1-07	225	0.026822	0.000184	0.000850	0.000007	0.282422	0.000023	0.282418	-12.4	-7.6	1169	1741	-0.97
D2268-1-08	409	0.047045	0.000372	0.001412	0.000005	0.282507	0.000027	0.282496	-9.4	-0.8	1067	1449	-0.96
D2268-1-09	430	0.052190	0.001061	0.001649	0.000042	0.282475	0.000026	0.282462	-10.5	-1.5	1119	1511	-0.95
D2268-1-10	227	0.040842	0.000385	0.001255	0.000012	0.282433	0.000029	0.282428	-12.0	-7.2	1166	1718	-0.96
D2268-1-11	226	0.032902	0.000196	0.001021	0.000005	0.282431	0.000023	0.282427	-12.1	-7.2	1162	1721	-0.97
D2268-1-12	155	0.027307	0.000760	0.000886	0.000028	0.282406	0.000032	0.282404	-12.9	-9.6	1193	1818	-0.97
D2268-1-13	226	0.022962	0.000291	0.000705	0.000006	0.282349	0.000028	0.282346	-15.0	-10.1	1267	1902	-0.98
D2268-1-14	223	0.073908	0.000429	0.002382	0.000016	0.282640	0.000029	0.282630	-4.7	-0.1	901 1054	1267	-0.93
D2268 1 16	223	0.01/313	0.000104	0.00033/	0.000006	0.282498	0.000024	0.282490	-9./ 11 4	-4.9 67	1054	1508	-0.98
D2208-1-10	227	0.023139	0.000130	0.000/10	0.000000	0.282443	0.000030	0.202442	-11.0	-0./	1155	16/3	-0.98
D2268-1-17	221	0.032903	0.000499	0.001004	0.000010	0.202407	0.000032	0.202403	-123	-0.1 _7 /	1150	1731	-0.97
D2268-1-19	221	0.021738	0.000134	0.001120	0.000004	0.282423	0.000027	0.282438	-11.6	-7.0	1148	1698	-0.97
D2268-1-20	226	0.021756	0.000252	0.000677	0.00000022	0.282419	0.000024	0.282416	-12.5	-7.6	1169	1746	-0.98

1920				中	玉	地	质					2021	年
												经	表5
分析点号	Age/Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	$^{176}Hf/^{177}Hf_{i}$	$\varepsilon_{\rm Hf}(0)$	$\varepsilon_{\scriptscriptstyle \mathrm{Hf}}(t)$	$T_{\rm DM}/{ m Ma}$	$T_{\rm DM}{}^{\rm C}/{\rm Ma}$	$f_{ m Lu/Hf}$
D6467-3													
D6467-3-01	237	0.020320	0.000056	0.000782	0.000004	0.282582	0.000029	0.282578	-6.7	-1.6	944	1373	-0.98
D6467-3-02	239	0.019399	0.000318	0.000823	0.000013	0.282606	0.000025	0.282603	-5.9	-0.7	911	1317	-0.98
D6467-3-03	240	0.019556	0.000097	0.000720	0.000002	0.282553	0.000034	0.282550	-7.7	-2.6	982	1435	-0.98
D6467-3-04	249	0.013460	0.000026	0.000561	0.000001	0.282550	0.000025	0.282547	-7.9	-2.5	983	1437	-0.98
D6467-3-05	239	0.023262	0.000110	0.000885	0.000002	0.282619	0.000024	0.282615	-5.4	-0.3	895	1291	-0.97
D6467-3-06	241	0.018651	0.000088	0.000704	0.000003	0.282585	0.000026	0.282582	-6.6	-1.4	937	1363	-0.98
D6467-3-07	238	0.018799	0.000028	0.000760	0.000002	0.282585	0.000028	0.282582	-6.6	-1.5	939	1365	-0.98
D6467-3-08	1081	0.017352	0.000120	0.000595	0.000005	0.282239	0.000032	0.282227	-18.9	4.6	1415	1621	-0.98
D6467-3-09	238	0.019868	0.000131	0.000753	0.000003	0.282594	0.000030	0.282590	-6.3	-1.2	927	1346	-0.98
D6467-3-10	240	0.016997	0.000381	0.000652	0.000015	0.282562	0.000027	0.282559	-7.4	-2.3	968	1415	-0.98
D6467-3-11	241	0.022113	0.000232	0.000833	0.000011	0.282573	0.000030	0.282569	-7.0	-1.9	958	1391	-0.97
D6467-3-12	238	0.025714	0.000321	0.000961	0.000012	0.282604	0.000025	0.282599	-6.0	-0.9	918	1326	-0.97
D6467-3-13	251	0.015369	0.000160	0.000639	0.000004	0.282562	0.000026	0.282559	-7.4	-2.0	969	1409	-0.98
D6467-3-14	241	0.012686	0.000308	0.000512	0.000016	0.282560	0.000030	0.282557	-7.5	-2.3	968	1419	-0.98
D6467-3-15	254	0.015263	0.000249	0.000603	0.000007	0.282606	0.000027	0.282603	-5.9	-0.4	906	1306	-0.98
D6467-3-16	241	0.015029	0.000073	0.000508	0.000002	0.282566	0.000019	0.282564	-7.3	-2.1	959	1404	-0.98
D6467-3-17	242	0.015855	0.000068	0.000648	0.000002	0.282593	0.000030	0.282590	-6.3	-1.1	925	1344	-0.98
D6467-3-18	242	0.019907	0.000439	0.000800	0.000019	0.282580	0.000028	0.282576	-6.8	-1.6	947	1375	-0.98
D6467-3-19	249	0.029680	0.000060	0.001093	0.000002	0.282650	0.000028	0.282645	-4.3	1.0	856	1216	-0.97
D6467-3-20	237	0.013150	0.000031	0.000441	0.000001	0.282565	0.000025	0.282563	-7.3	-2.2	959	1408	-0.99
D6467-3-21	251	0.023972	0.000163	0.000945	0.000007	0.282608	0.000026	0.282603	-5.8	-0.5	912	1309	-0.97
D6467-3-22	239	0.010433	0.000107	0.000398	0.000004	0.282569	0.000027	0.282567	-7.2	-2.0	953	1398	-0.99
D6467-3-23	242	0.025615	0.000123	0.000936	0.000006	0.282598	0.000030	0.282594	-6.1	-1.0	925	1336	-0.97
D6467-3-24	243	0.029628	0.000040	0.001054	0.000004	0.282650	0.000022	0.282645	-4.3	0.8	855	1220	-0.97
D6467-3-25	242	0.013918	0.000068	0.000450	0.000001	0.282592	0.000023	0.282590	-6.4	-1.1	922	1344	-0.99
D6467-3-26	249	0.016595	0.000063	0.000677	0.000003	0.282584	0.000024	0.282581	-6.7	-1.3	939	1361	-0.98
D6467-3-27	242	0.011541	0.000163	0.000440	0.000008	0.282553	0.000023	0.282551	-7.7	-2.5	976	1432	-0.99
D6467-3-28	238	0.020307	0.000302	0.000730	0.000009	0.282575	0.000028	0.282571	-7.0	-1.9	953	1389	-0.98
D6467-3-29	239	0.022521	0.000097	0.000813	0.000001	0.282595	0.000026	0.282591	-6.3	-1.1	927	1344	-0.98
D6467-3-30	249	0.015035	0.000076	0.000624	0.000003	0.282577	0.000023	0.282574	-6.9	-1.5	947	1375	-0.98
D2264-5													
D2264-5-07	234	0.023545	0.000050	0.000681	0.000002	0.282451	0.000024	0.282448	-11.3	-6.3	1124	1668	-0.98
D2264-5-11	226	0.024275	0.000177	0.000683	0.000003	0.282448	0.000023	0.282445	-11.5	-6.6	1128	1680	-0.98
D2264-5-12	228	0.022728	0.000175	0.000650	0.000003	0.282440	0.000027	0.282437	-11.7	-6.8	1138	1696	-0.98
D2264-5-16	225	0.021998	0.000076	0.000636	0.000002	0.282438	0.000022	0.282436	-11.8	-7.0	1140	1702	-0.98
D2264-5-17	225	0.023341	0.000512	0.000672	0.000012	0.282417	0.000030	0.282414	-12.6	-7.7	1171	1751	-0.98

洋东段(分支洋盆)关闭后的陆陆碰撞造山阶段。 该证据支持古特提斯洋东段分支的关闭时间在 260~250 Ma,印支板块和华南板块的陆陆碰撞拼贴 一直延续到240~224 Ma。

致谢:审稿人提供了宝贵的修改意见,参加野 外地质填图的还有侯学文、仇季龙、黎遗燈和叶毓 康等,在此一并表示感谢。

注释

●广东省地矿局.1963.1:20万阳春幅、开平幅区域地质矿产 调查报告[R].

●广东地质调查院.2004.1:25万阳春幅区域地质矿产调查报告[R].

●杨文强,周岱,胡军.2018.广东省1:5万朗底幅、天堂幅地质图[R].

●广西地质调查院.1995.广西1:5万归义幅区域地质调查成 果报告[R].

References

- Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonic (Indosinian orogeny) in Vietnam[J]. Geology, 29: 211–214.
- Chen C H, Hsieh P S, Lee C Y, Zhou H W. 2011. Two episodes of the Indosinian thermal event on the South China Block: Constraints from LA–ICP–MS U–Pb zircon and electron microprobe monazite ages of the Darongshan S–type granitic suite[J]. Gondwana Research, 19(4): 1008–1023.
- Chen Xinyue, Wang Yuejun, Fan Weiming, Zhang Feifei, Peng Touping, Zhang Yuzhi. 2011. Zircon LA–ICP–MS U–Pb dating of granitic gneisses from Wuzhishan area, Hainan, and geological

significances[J]. Geochimica, 40(5): 454–463(in Chinese with English abstract).

- Chen Xinyue, Wang Yuejun, Han Huiping, Zhang Yuzhi, Wen Shunü, Cao Youjin. 2014. Geochemical and geochronological characteristics of Triassic basic dikes in SW Hainan island and its tectonic implications[J]. Journal of Jilin University: Earth Science Edition, 44(3): 835–847(in Chinese with English abstract).
- Cheng Shunbo, Fu Jianming, Chen Xiqing, Ma Liyan, Lu Youyue. 2012. Zircon SHRIMP U– Pb dating and geochemical characteristics of Haiyangshan Monzogranitic Batholith, Northeast Guangxi[J]. Geology and Mineral Resources of South China, 28 (2): 132–140(in Chinese with English abstract).
- Deng Xiguang, Chen Zhigang, Li Xianhua, Liu Dunyi. 2004. SHRIMP U- Pb zircon dating of the Darongshan- Shiwandashan granitoid belt in Southeastern Guangxi, China[J]. Geological Review, 50(4): 426-432(in Chinese with English abstract).
- Faure M, Lepvrier C, Vuong N V, Tich V V, Lin W, Chen Z C. 2014. The South China Block– Indochina collision: Where, when, and how?[J]. Journal of Asian Earth Sciences, 79: 260–274.
- Faure M, Lin W, Chu Y, Lepvrier C. 2016. Triassic tectonics of the southern Margin of the South China Block[J]. Comptes Rendus Geoscience, 348: 5–14.
- Halpin J A, Tran H T, Lai C K, Meffre S, Crawford A J, Zaw K. 2015.
 U-Pb zircon geochronology and geochemistry from NE Vietnam:
 A 'ectonically disputed' territory between the Indochina and South China blocks[J]. Gondwana Research, 34: 254–273.
- He Huiying, Wang Yuejun, Liu Huichuan and Zhang Yuzhi. 2016a. Geochemical and geochronological characteristics of the Fengmu mafic rocks in Hainan and its tectonic implications[J]. Acta Scientiarum Naturalium Universitatis SunYatSeni, 55(4): 146–157 (in Chinese with English abstract).
- He Huiying, Wang Yuejun, Zhang Yuzhi, Chen Xinyue and Zhou Yongzhi. 2016b. Extremely depleted Carbonferous N- MORB metabasite at the Chenxing area (Hainan) and its geological significance[J]. Earth Science, 41(8): 1361-1375(in Chinese with English abstract).
- Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun and Zhou Dai. 2012. LA- ICP- MS zircon U- Pb age of the Nali granite in Qinzhou area of southern Guangxi and its geological significance[J]. Geological Bulletin of China, 31(1): 82- 89(in Chinese with English abstract).
- Jiao S J, Li X H, Huang H Q , Deng X G. 2015. Metasedimentary melting in the formation of charnockite: Petrological and zircon U– Pb–Hf–O isotope evidence from the Darongshan S–type granitic complex in southern China[J]. Lithos, 239: 217–233.
- Jiao Shujuan, Guo Jinghui, Peng Songbai. 2013. Petrogenesis of garnet in the Darongshan–Shiwandashan granitic suite of the South China Block and the metamorphism of the granulite enclave[J]. Acta Petrologica Sinica, 29(5): 1740– 1758(in Chinese with English abstract).
- Ke Xianzhong, Zhou Dai, Long Wenguo, Wang Jing, Xu Deming, Tian

Yang, Jin Wei. 2018. Indosinian metamorphism and anatexis in Yunkai massif: Evidences from zircon geochronology and Hf isotopes of migmatites and gneisses[J]. Earth Science, 43(7): 2249– 2275(in Chinese with English abstract).

- Lepvrier C, Maluski H, Nguyen V V, Roques D, Axente V, Rangin G. 1997. Indosinian NW-trending shear zones within the Truong Son belt(Vietnam): ⁴⁰Ar-³⁹Ar Triassic ages and Cretaceous to Cenozoic overprints[J]. Tectonophysics, 283: 105–127.
- Li Z X, Li X H. 2007. Formation of the 1300 km- wide intracontinental orogen and postorogenic Magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35: 179–182.
- Li Xianhua, Zhou Hanwen, Ding Shijiang, Li Jiyu, Zhang Renjie, Zhang Yeming, Ge Wenchun. 2000. Sm–Nd isotopic constraints on the age of the Bangxi– Chenxing ophiolite in Hainan Island: Implications for the tectonic evolution of eastern Paleo– Tethys[J]. Acta Petrologica Sinica, 16(3): 425–432(in Chinese with English abstract).
- Li X H, Li Z X, Li W X, Wang Y J. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island[J]. Journal of Geology, 114: 341–353.
- Li X H, Li Z X, He B, Li W X, Li Q L, Gao Y Y , Wang X C. 2012. The Early Permian active continental Margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 328: 195–207.
- Li Y J, Wei J H, Santosh M, Tan J, Fu L B, Zhao S Q. 2016. Geochronology and petrogenesis of Middle Permian S- type granitoid in southeastern Guangxi Province, South China: Implications for closure of the eastern Paleo- Tethys[J]. Tectonophysics, 682: 1–16.
- Ling Wenli, Zhang Yinghua, Wu Hui, Cheng M, Wang XY, Ma Q, Li Q, Du Yuansheng. 2013. New thinking of time and significance of Indosinian tectonic- magmatic events in Shiwandashan-Darongshan, Southeastern Guangxi[C]// The National Symposium on Isotopic Geochronology and Isotopic Geochemistry(Tenth), 172 (in Chinese).
- Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1–33.
- Peng B X, Wang Y J, Fan W M, Peng T P, Liang X Q. 2006. LA– ICPMS zircon U–Pb dating for three Indosinian granitic plutons from central Hunan and western Guangdong provinces and its petrogenetic implications[J]. Acta Geologica Sinica, 80(5): 660–669.
- Peng Songbai, Fu Jianming, Liu Yunhua. 2004. The discovery and significance of A-type Charnokite in Southeast Guangxi, China[J]. Science Technology and Engineering, 4(10): 832-834(in Chinese with English abstract).
- Peng Shaomei, Fu Lifen, Zhou Guoqiang. 1996. Tectonic Evolution and Shear- anatexis Model of Gneissic Granitic Rocks in Yunkai landmass[M]. Wuhan: China University of Geosciences Press(in Chinese with English abstract).

质

- Qi Changshi, Deng Xiguang, Li Wuxian, Li Xianhua, Yang Yueheng, Xie Liewen. 2007. Origin of the Darongshan– Shiwandashan S– type granitoid belt from southeastern Guangxi: Geochemical and Sr–Nd–Hf isotopic constraints[J]. Acta Petrologica Sinica, 23(2): 403–412(in Chinese with English abstract).
- Qin Xiaofeng, Wang Zongqi, Cao Jie, Feng Zuohai. 2013. Petrogenesis of early Indosinian granites from the southwestern segment of Qinfang tectonic belt, southern Guangxi: Constraints from zircon U-Pb chronology and geochemistry[J]. Journal of Jilin University (Earth Science Edition), 43(5): 1471- 1488(in Chinese with English abstract).
- Shen L W, Yu J H, O' Reilly, Griffin, Zhao X Y. 2018. Subduction– related middle Permian to early Triassic magmatism in central Hainan Island, South China[J]. Lithos, 318–219: 158–175.
- Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31 (7): 1035–1053(in Chinese with English abstract).
- Tang Limei, Chen Hanlin, Dong ChuanWan, Shen Zhongyue, Chen Xiaogan, Fu Lulu. 2010. Triassic neutral and basic rocks in Hainan Island, geochemistry and their geological significance[J]. Chinese Journal of Geology, 45(4): 1139–1155(in Chinese with English abstract).
- Tang Limei, Chen Hanlin, Dong ChuanWan, Yang Shufeng, Shen Zhongyue, Chen Xiaogan, Fu Lulu. 2013. Middle Triassic postorogenic extension on Hainan Island: Chronology and geochemistry constraints of bimodal intrusive rocks[J]. Science China: Earth Sciences, 43(3): 433-445(in Chinese with English abstract).
- Wang Lei, Long Wenguo, Zhou Dai, Xu Wangchun, Jin Xinbiao. 2016. Late Triassic zircon U– Pb ages and Sr– Nd– Hf isotopes of Darongshan granites in southeastern Guangxi and their geological implications[J]. Geological Bulletin of China, 35(8): 1291–1303(in Chinese with English abstract).
- Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007. Indosinian high-strain defor Mation for the Yunkaidashan tectonic belt, south China: Kine Matics and ⁴⁰Ar/³⁹Ar geochronological constraints[J]. Tectonics, 26(6): TC6008.
- Wang Y J, Qian X, Cawood P A, Liu H C, Feng Q L, Zhao G C, Zhang Y H, He H Y, Zhang P Z. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments[J]. Earth–Science Review, 186: 195–230.
- Wen Shunü, Liang Xinquan, Fan Weiming, Wang Yuejun, Chi Guoxiang, Liang Xirong, Zhou Yun, Jiang Ying. 2013. Zircon U– Pb ages, Hf isotopic composition of Zhizhong granitic intrusion in Ledong area of Hainan island and their tectonic implications[J]. Geotectonica et Metallogenia, 37(2): 294–307(in Chinese with English abstract).
- Xie Caifu, Zhu Jinchu, Zhao Zijie, Ding Shijiang, Fu Taian, Li Zhihong, Zhang Yeming, Xu Deming. 2005. Zircon SHRIMP U– Pb age dating of garnet– acmite syenite: Constraints on the Hercynian– Indosinian tectonic evolution of Hainan Island[J].

Geological Journal of China Universities, 11(1): 47–57(in Chinese with English abstract)

- Xie Caifu, Zhu Jinchu, Ding Shijiang, Zhang Yeming, Fu Taian and Li Zhihong. 2006a. Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications[J]. Chinese Science Bulletin, 51(20): 2507–2519(in Chinese).
- Xie Caifu, Zhu Jinchu, Ding Shijiang, Zhang Yeming, Chen Mulong, Fu Yangrong, Fu Taian, Li Zhihong. 2006b. Age and petrogenesis of the Jianfengling granite and its relationship to metallogenesis of the Baolun gold deposit, Hainan Island[J]. Acta Petrologica Sinica, 22(10): 2493–2508(in Chinese with English abstract).
- Xu D R, Xia B, Li P C, Chen G H, Ma C, Zhang Y Q. 2007. Protolith natures and U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the Late Precambrian[J]. Island Arc, 16: 575-597.
- Xu W C, Luo B J, Xu Y J, Wang L, Chen Q. 2018. Geochronology, geochemistry, and petrogenesis of late Permian to Early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh- temperature metamorphism and S- type granite generation[J]. Lithos, 308/309: 168–180.
- Yang Shufeng. 1982. The characteristic and structural control of Granitization in Luoding Area, Guangdong Province[C]// International Meeting for Granite and Mineralization, Nanjing: Phoenix Science Press, 299–314(in Chinese).
- Yun Ping, Lei Yuhong, Lü Changyan. 2005. Sr and Nd isotopic constraints on the source regions of the Triassic granitoids in central- northern Hainan Island and their significance[J]. Geotectonica et Metallogenia, 29(2): 234–241(in Chinese with English abstract).
- Zhang K J, Cai J X. 2009. NE-SW- trending Hepu- Hetai dextral shear zone in southern China: Penetration of the Yunkai Promontory of South China into Indochina[J]. Journal of Structural Geology, 31: 737–748.
- Zhao Guoying, Qin Xiaofeng, Wang Zongqi, Gong Jianghua, Yang Wen, Zhu Anhan, Shi Hao, Zhan Junyan. 2016. Geochronology, geochemistry and geological significance of gabbros from Xindi– Anping area, southeastern Guangxi[J]. Acta Petrologica et Mineralogica, 35(5): 791–803(in Chinese with English abstract).
- Zhao Liang, Guo Feng, Fan Weiming, Li Wenchao, Qin Xiaofeng, Li Hongxia. 2010. Crustal evolution of the Shiwandashan area in South China: Zircon U– Pb– Hf isotopic records from granulite enclaves in Indo–Sinian granites[J]. Chinese Science Bulletin, 55 (19): 2028–2038(in Chinese).
- Zhao Liang, Guo Feng, Fan Weiming, Li Wenchao, Qin Xiaofeng, Li Hongxia. 2011. Late Paleozoic ultrahigh- temperature metamorphism in South China: A case study of granulite enclaves in the Shiwandashan granites[J]. Acta Petrologica Sinica, 27(6): 1707–1720(in Chinese with English abstract).
- Zhao L, Guo F, Fan W M, Li C W, Qin X F, Li H X. 2012. Origin of the granulite enclaves in Indo-Sinian peraluminous granites, South

China and its implication for crustal anatexis[J]. Lithos, 150: 209-226.

- Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29: 26–33.
- Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C, Zhang Z M. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high–grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 290: 32–48.

附中文参考文献

- 陈新跃, 王岳军, 范蔚茗, 张菲菲, 彭头平, 张玉芝. 2011. 海南五指山 地区花岗片麻岩锆石 LA-ICP-MS U-Pb年代学特征及其地质 意义[J]. 地球化学, 40(5): 454-463.
- 陈新跃, 王岳军, 韩会平, 张玉芝, 温淑女, 曹有金. 2014. 琼西南三叠 纪基性岩脉年代学、地球化学特征及其构造意义[J]. 吉林大学学 报(地球科学版), 44(3): 835-847.
- 程顺波,付建明,陈希清,马丽艳,卢友月.2012. 桂东北海洋山岩体 锆石 SHRIMP U-Pb 定年和地球化学研究[J]. 华南地质与矿产, 28(2): 132-140.
- 邓希光, 陈志刚, 李献华, 刘敦一. 2004. 桂东南地区大容山一十万大 山花岗岩带 SHRIMP 锆石 U-Pb 定年[J]. 地质论评, 50(4): 426-432.
- 何慧莹, 王岳军, 刘汇川, 张玉芝. 2016a. 海南枫木地区基性岩的年 代学、地球化学及其构造意义[J]. 中山大学学报(自然科学版), 55 (4): 146-157.
- 何慧莹, 王岳军, 张玉芝, 陈新跃, 周永智. 2016b. 海南岛晨星早石炭 世高度亏损 N-MORB 型玄武岩及其地质意义[J]. 地球科学, 41 (8): 1361-1375.
- 贾小辉, 王晓地, 杨文强, 牛志军, 周岱. 2012. 广西钦州地区那丽花 岗岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质通报, 31(1): 82-89.
- 焦淑娟, 郭敬辉, 彭松柏. 2013. 华南大容山一十万大山花岗岩体中 石榴石成因以及麻粒岩包体变质作用研究[J]. 岩石学报, 29(5): 1740-1758.
- 柯贤忠,周岱,龙文国,王晶,徐德明,田洋,金巍. 2018. 云开地块印 支期变质-深熔作用:混合岩、片麻岩锆石 U-Pb 年代学和 Hf 同 位素证据[J]. 地球科学, 43(7): 2249-2275.
- 李献华,周汉文,丁式江,李寄嵎,张仁杰,张业明,葛文春.2000.海 南岛"邦溪—晨星蛇绿岩片"的时代及其构造意义——Sm-Nd同 位素制约[J]. 岩石学报,16(3):425-432.
- 凌文黎,张莹华,吴慧,程猛,王新宇,马倩,李青,杜远生.2013. 对桂 东南十万大山—大容山印支期构造岩浆事件时代和构造意义的 新思考[C]//第十届全国同位素地质年代学与同位素地球化学学 术讨论会,172.
- 彭松柏, 付建明, 刘云华. 2004. 大容山一十万大山花岗岩带中A型 紫苏花岗岩、麻粒岩包体的发现及意义[J]. 科学技术与工程, 4

(10): 832-834.

- 彭少梅, 符力奋, 周国强. 1996. 云开地块构造演化及片麻质花岗岩 质岩石的剪切深熔成因[M]. 武汉:中国地质大学出版社.
- 祁昌实,邓希光,李武显,李献华,杨岳衡,谢烈文.2007.桂东南大容山—十万大山S型花岗岩带的成因:地球化学及Sr-Nd-Hf同位 素制约[J]. 岩石学报,23(2):403-412.
- 覃小锋, 王宗起, 曹洁, 冯作海. 2013. 桂南钦防构造带西南段印支早 期花岗岩的成因:年代学和地球化学约束[J]. 吉林大学学报(地 球科学版), 43(5): 1471-1488.
- 舒良树.2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
- 唐立梅,陈汉林,董传万,沈忠悦,程晓敢,付璐露.2010.海南岛三叠 纪中基性岩的年代学、地球化学及其地质意义[J].地质科学,45 (4):1139-1155.
- 唐立梅,陈汉林,董传万,杨树锋,沈忠悦,程晓敢,付璐露.2013.海 南岛中三叠世造山后伸展作用:双峰式侵入岩的年代学及地球 化学制约[J].中国科学:地球科学,43(3):433-445.
- 王磊, 龙文国, 周岱, 徐旺春, 金鑫镖. 2016. 桂东南大容山晚二叠世 花岗岩锆石 U-Pb 年龄和 Sr-Nd-Hf 同位素特征及其地质意 义[J]. 地质通报, 35(8): 1291-1303.
- 温淑女,梁新权,范蔚茗,王岳军,池国祥,梁细荣,周云,蒋英.2013. 海南岛乐东地区志仲岩体锆石 U-Pb 年代学、Hf 同位素研究及 其构造意义[J].大地构造与成矿学, 37(2): 294-307.
- 谢才富,朱金初,赵子杰,丁式江,付太安,李志宏,张业明,徐德明. 2005. 三亚石榴霓辉石正长岩的锆石 SHRIMP U-Pb 年龄:对海 南岛海西一印支期构造演化的制约[J]. 高效地质学报, 11(1): 47-57.
- 谢才富,朱金初,丁式江,张业明,付太安,李志宏.2006a. 琼中海西 期钾玄质侵入岩的厘定及其构造意义[J]. 科学通报, 51(16): 1944-1954.
- 谢才富,朱金初,丁式江,张业明,陈沐龙,付杨荣,付太安,李志宏. 2006b.海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿 的关系[J].岩石学报,22(10):2493-2508.
- 杨树峰.1982. 广东罗定地区变质作用:花岗岩化作用的特征及构造 控制[C]//国际花岗岩地质和成矿关系讨论会文集,南京:江苏科 技出版社,299-314.
- 云平, 雷裕红, 吕嫦艳. 2005. 海南岛中北部三叠纪花岗岩源区的锶、 钕同位素制约及其意义[J]. 大地构造与成矿学, 29(2): 234-241.
- 赵国英, 覃小锋, 王宗起, 宫江华, 杨文, 朱安汉, 石浩, 詹俊彦. 2016. 桂东南新地-安平地区辉长岩的年代学、地球化学特征及其地质 意义[J]. 岩石矿物学杂志, 35(5): 791-803.
- 赵亮,郭锋,范蔚茗,李文超,覃小锋,李红霞.2010.广西十万大山地 壳演化:来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及 Hf同位素记录[J].科学通报,55(15):1489-1498.
- 赵亮, 郭锋, 范蔚茗, 李超文, 覃小锋, 李红霞. 2011. 华南晚古生代末 超高温变质作用: 以十万大山花岗岩中麻粒岩包体为例[J]. 岩石 学报, 27(6): 1707-1720.