doi: 10.2029/gc20220319

白博文,平建华,赵继昌,杨振威,宁艺武,熊超凡. 2022. 河南淮阳县地热流体化学特征及其成因分析[J]. 中国地质, 49(3): 956-966. Bai Bowen, Ping Jianhua, Zhao Jichang, Yang Zhenwei, Ning Yiwu, Xiong Chaofan. 2022. Chemical characteristics and cause analysis of the geothermal fluid in Huaiyang County, Henan Province[J]. Geology in China, 49(3): 956-966(in Chinese with English abstract).

河南淮阳县地热流体化学特征及其成因分析

白博文',平建华2,赵继昌3,杨振威',宁艺武',熊超凡'

(1.郑州大学水利科学与工程学院,河南郑州 450001;2.郑州大学地球科学与技术学院,河南郑州 450001;3.中国地质环境监测院,北京 100000)

提要:【研究目的】淮阳地热属于典型的中低温沉降盆地型地热,研究淮阳县地热资源的质与量,有助于其合理开发利用及科学管理。【研究方法】本文综合利用地球化学、环境同位素,对淮阳县地温场及地热流体化学特征和成因进行分析研究。【研究结果】结果表明,深部热储地温场受基底构造与断裂影响较明显,构造单元分界处和多条断裂交汇处,地温梯度较高,如苏庄地温梯度 3.75℃/100 m,其他地段<3.5℃/100 m。研究区内地热流体中主要为Cl·HCO3·SO4-Na、Cl·SO4·HCO3-Na、Cl·SO4-Na型。地热流体中阳离子主要以Na*为主,阴离子呈多样化,研究区地热流体主要来源于西部伏牛山区的大气降水,且地热流体发生水-岩作用,但相对较弱。地热流体为 1952 年前入渗补给的"古水"。【结论】淮阳经济可开采热储层主要为新近系明化镇组和馆陶组,区内地热资源开发主要可用来供暖,以促进当地经济发展,助力于本地区"双碳"目标的达成。

- 关 键 词:地热流体:水化学特征;地温场;成因分析;沉降盆地型地热;地热地质调查工程;淮阳;河南
- 创 新 点:分析了淮阳地温梯度与地质构造和断裂活动的关系;结合地层特性,讨论了淮阳地热流体中不同离子的来源以及地热流体的主要来源。

中图分类号::P314 文献标志码:A 文章编号:1000-3657(2022)03-0956-11

Chemical characteristics and causes analysis of the geothermal fluid in Huaiyang County, Henan Province

BAI Bowen¹, PING Jianhua², ZHAO Jichang³, YANG Zhenwei¹, NING Yiwu¹, XIONG Chaofan¹

(1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; 2. The School of Earth Science and Technology, Zhengzhou University, Zhengzhou 450001, Henan, China; 3. China Institute of Geo–Environment Monitoring, Beijing 10000, China)

Abstract: This paper is result of geothermal geological survey engineering [Objective] Geothermal resource in Huaiyang area belongs typical medium– low temperature geothermal resource of subsidence

http://geochina.cgs.gov.cn 中国地质, 2022, 49(3)

收稿日期:2020-07-02;改回日期:2020-08-31

基金项目:万江新能源集团有限公司自主研发项目(WJYF2017-21、WJYF2017-23)及河南省中能联建地热工程有限公司自主研发项目 (ZNLJYF2018-53)联合资助。

作者简介:白博文,男,1994年生,硕士生,水文地球化学专业;E-mail: baicurry@163.com。

通讯作者:平建华,男,1976年生,教授,从事地热成因、地下水系统研究;E-mail: pingjianhua@zzu.edu.cn。

basin. Evaluation of geothermal resources in the Huaiyang area can provide insights into its exploitation and scientific management. [Methods]In this paper, we analyzed the geochemical and isotopes characteristics of geothermal fluids to explore their local geothermal field features and genesis. [Results] The results show that the deep thermal reservoirs are significantly affected by basement structure and faults characteristics. The geothermal gradient is higher (e.g., $3.75^{\circ}C/100m$ in the Suzhuang area) along the boundary of faults than the other areas (e.g., $3.5^{\circ}C/100m$). The type of the geothermal fluids are dominated by Cl·HCO₃·SO₄-Na, Cl·SO₄·HCO₃-Na and Cl·SO₄-Na. The main cation of the geothermal fluid is Na⁺ while the anions variou in types. The geothermal fluids were probably derived from the atmospheric "ancient water" of the Funiu Mountain in the western Henan province before 1952, with relatively weak rock-fluid reaction.[Conclusions]The major exploited geothermal reservoirs are placed at the Neogene Minghuazhen and Guantao Formations. The geothermal resources are mainly used for heating feeding, etc., which has greatly improved the local economy, Contribute to the realization of the "dual carbon" goal in the region.

Key words: geothermal fluid; hydrochemisty characteristics; geothermal field; cause analyzing; subsidence basin geothermal; geothermal geological survey engineering; Huaiyang; Henan Province

Highlights: The relationship between geothermal gradient and geological structure in Huaiyang is analyzed; The sources of different ions in Huaiyang geothermal fluid and the main sources of geothermal fluid are discussed.

About the first author: BAI Bowen, male, born in 1994, master candidate, engaged in hydrogeochemical;E-mail: baicurry@163.com.

About the corresponding author: PING Jianhua, male, born in 1976, professor, engaged in geothermal genesis and groundwater system; E-mail: pingjianhua@zzu.edu.cn.

Fund support: Supported by the independent R & D project of Wanjiang New Energy Group Co., Ltd. (No. wjyf2017-21, No. wjyf2017-23) and the independent R & D project of Henan Zhongneng LianJian Geothermal Engineering Co., Ltd. (No. znljyf2018-53).

1 引 言

地热属于可再生清洁能源,中国是世界上地热资源储量较大的国家之一,尤其是中低温地热资源,开发潜力巨大(蔺文静,2013;李攻科,2014)。河南省地热资源以中低温沉积盆地型为主(王心义,2010)。河南地热资源研究,多以区域普查、勘探为主,近年来,随着国家对可再生能源支持力度逐渐加大,地热资源开发利用的地区也逐渐增多(王继华,2009;马冰等,2021)。

前人主要针对淮阳县地处的周口凹陷和通许 隆起进行了研究,河南省地质调查院曾对周口凹陷 进行地热资源勘查与评价,对其地热地质条件和热 储特征有整体认识与了解(黄光寿,2020)。有关通 许隆起研究主要集中在地质和构造演化方面(赵东 力,2010)。淮阳新生界地热流体资源量约为 4.937×10¹¹ m³,可开采量为 8.458×10⁶ m³/a。截止 2019年,区内已凿建千米左右地热井约 76眼,开采 量约为 1.14×10⁶ m³/a,占可开采量的 13.5%。开采 热储层主要为新近系明化镇组和馆陶组,区内地热 资源开发主要用于洗浴、供暖、生活和养殖等(卢予 北,2010;阳结华,2010)。 淮阳县属于典型的中低温沉积盆地型地热资源,其地温场和地热流体成因研究相对较少,本文 通过勘探资料,应用水文地球化学方法,对淮阳县 的地热流体化学特征和成因进行分析研究,对同类 地区地热资源的合理开发与利用提供科学依据。

2 研究区概况

淮阳县位于河南省东南部周口市中部,地理位置为33°20'N~34°00N,东经114°38'E~115°04'E,总面积1406.6 km²,地处黄河冲积平原南缘,属华北平原的一部分,为黄淮海平原区。气候属暖温带季风气候,气候温和。境内地表水和地下水资源均较丰富。

淮阳县主要位于周口凹陷北部东端, 鹿邑次凹 陷的西北端, 少部分位于通许隆起(王继华, 2014)。受构造单元影响, 区域断裂构发育, 断裂发 育的主要方向 NE、近 EW(图1a)。区内主要断裂为 杨湖口—任集断裂, 从西延伸至区内。其余断裂均 为隐伏断裂(图1b)。

淮阳县地层自下而上发育了寒武系一奥陶系、 石炭系一二叠系、中下三叠统、古近系、新近系及第 四系,缺失上三叠统及侏罗系一白垩系,其中石炭 系一二叠系和中下三叠统发育较全(王宗礼,

图 1 淮阳地质构造图 a一研究区构造图(据王继华,2014修改); b—断裂分布及取样位置图(据河南省断裂图,2012修改) Fig.1 Geological structure map in the Huaiyang

a-Structures of study area (modified from Wang Jihua, 2014); b-Fracture distribution and sampling point (modified from Henan Fracture Map,

2012)

2005)。新近系及第四系厚1000~1800 m,东部地区 古近系最厚,可达6000~7000 m,西部地区薄,一般 在1000 m左右。其中新生界,由老到新为新近系廖 庄组、馆陶组、明化镇组、第四系平原组。其中廖庄 组由棕色泥岩与杂色砾岩,夹浅灰色细砂岩和含砾 砂岩组成;馆陶组和明化镇组上部为浅棕黄、棕色 红色粘土与杂色砾石不等厚互层;中部为浅棕红 色、浅灰黄色泥岩和中砂岩互层;下部为棕红色泥 岩和杂色砾岩互层;平原组由浅棕、浅灰黄色黏土、 中砂岩、杂色砾石互层组成(余和中,2005)。

淮阳县主要热储为新近系明化镇组和馆陶组 热储层,主要由新生代沉积物组成,岩性主要为砂 岩,其中新近系明化镇顶板埋深 220~240 m,底板埋 深 920~1030 m,其中堆积厚度巨大的砂岩及粉质黏 土层,构成稳定的含水空间。第四系结构致密且厚 度较大,起到良好的隔热保温作用,而且提供良好 的地热赋存条件(图2,图3)。

3 方法与数据

3.1 温度

淮阳县地热资源丰富,目前主要开采新近系明 化镇组和馆陶组热储层地热水,在本次一共调查了 76眼地热井,井深 820~1350 m,且开采井多集中在 城区中心地带,对其可测温井利用激光测温仪对井 口出水温度进行测量(表1)。

3.2 水化学

2019年5月,在淮阳县开展野外水样采集与测 试工作。采样前,使用蒸馏水反复清洗500m聚乙 烯采样瓶,取样时排除水样品中气泡,并使用保鲜 膜进行密封处理。本次采集水化学样品共22个(表 2),分散于整个淮阳县。现场测试用YSI旗下水质 监测产品EXO测定地热水的电导率等21项数据, 仪器精度为0.1~0.2 mg/L,室内水化学分析在河南 省地质矿产勘查开发局第一地质环境调查完成,检

测方法为DZ/T0064——93地下水检测方法规范。 3.3 同位素

采集同位素样品 10个(表2),同位素分析包括 D、¹⁸O和T。水样中氢氧稳定同位素在中国地质科 学院水文地质环境地质研究所测试,主要检测仪器 为同位素分析仪、超低本底液体闪烁谱仪,型号为 L2130i、Quantulus1220,其中δ¹⁸O和δD测试方法是 波长扫描—光腔衰荡光谱法,测试精度δ¹⁸O±0.1‰, δD±1.0‰(张敏,2010)。

4 讨论与分析

4.1 地温场分布特征

根据淮阳县县城内地热井、供水井井口的出水 温度和恒温带资料计算地温梯度(G),公式如下:

$$G = \frac{T - T_0}{h - h_0} \times 100$$

式中:G—地温梯度;T—井口出水温度;T₀—恒 温带温度(14.6℃);h—钻孔取水段埋深(m);h₀—恒 温带埋深(22 m)。 根据周口凹陷(周口段)地热资源勘查报告,确 定淮阳县恒温带深度为22m,恒温带温度为 14.6℃,并计算出淮阳地温梯度(图4)。由于热水在 井内流动过程中温度有一定损失,导致计算出地温 梯度比实际偏低(张艳龙,2018)

一般来说,热流值或地热梯度高于区域正常值 (背景值)的地区,即可以看作是地热异常区,中国规 定地温梯度超过3.5℃/100 m的地区成为地热异常 区(徐世光,2009)。从图4可知淮阳县地温梯度介 于2.25~3.75℃/100 m,其中苏庄地温梯度为最高, 可达到3.75℃/100 m,目3和HY58和郭庄附近地 温梯度次之,为3.5℃/100 m,地温梯度最小值出现 在HY7附近。结合图1b,苏庄地温梯度异常原因是 由于其位于构造单元分界处,且构造单元处形成了 方向不同、规模不等的相互交叉断裂,断裂的相互 切割形成了有利于热运移的空间及通道,于是造成 深部热流上溢在苏庄一带基底热流向上部沉积层 传导(汪啸,2018),导致其形成高温区。HY7附近 热流向苏庄附近移动导致其形成低温区。

图 3 淮阳县东西向地热地质剖面图 Fig.3 Vertical geothermal geological section of Huaiyang County

表1 井温数据 Table 1 Well temperature data

井号	经度	纬度	深度/m	温度/℃	井号	经度	纬度	深度/m	温度/℃
H3	114.88	33.7561	1200	56	H43	115.0149	33.7398	1030	50.4
H4	114.8835	33.7618	1250	45.7	H45	115.0125	33.7792	1100	47.8
H5	114.8816	33.7664	1210	58	H47	114.872	33.7305	1200	46.7
H7	114.8555	33.8803	1120	41	H48	114.8844	33.7313	1360	49.1
H8	114.792	33.7976	1060	45.3	H49	114.8698	33.7125	1000	46
H9	114.7807	33.8296	1000	41	H51	114.9159	33.7279	1000	49.9
H11	114.724	33.7347	1300	58	H52	114.9137	33.7269	900	45.3
H12	114.7255	33.7327	1100	48	H53	114.8584	33.7161	900	43.5
H13	114.7677	33.7234	1220	59	H56	114.8877	33.7497	1200	42.7
H14	114.7903	33.7397	1200	41	H57	114.8846	33.7578	1000	42
H15	114.8501	33.7227	1200	43.5	H58	114.8884	33.7756	1350	62
H17	114.8516	33.7291	1200	46	H60	114.8873	33.7583	1200	54
H18	114.8541	33.7181	1200	42.1	H61	114.8907	33.7502	1200	46
H24	114.8564	33.5389	1200	47	H62	114.8734	33.8024	1000	46.9
H26	114.9031	33.4562	1200	56	H63	114.9178	33.8442	1200	52.1
H28	114.9494	33.4579	1100	41.6	H64	114.9601	33.8277	1000	45.6
H29	115.002	33.4233	1050	43	H65	114.9588	33.8286	860	43
H32	115.0378	33.501	1100	50.9	H66	115.0209	33.8298	1600	51.4
H34	115.0285	33.503	1100	40.2	H68	115.0217	33.8318	1360	46.4
H36	114.9438	33.5279	1000	47	H70	115.059	33.8936	820	43
H39	115.0328	33.517	1100	51.1	H73	115.0411	33.9107	1000	48.9
H40	115.0093	33.5625	1100	47.1	H75	115.0413	33.9067	1100	50.1
H41	114.9929	33.604	1000	43.3	H76	115.0428	33.9056	1200	52.9

http://geochina.cgs.gov.cn 中国地质, 2022, 49(3)

表2 地热流体水化学分析结果

Table 2 Water chemical analysis results of hydrothermal fluids													
桃目	北早	号 水化学类型	PH	离子含量/(mg/L)						同位素含量			
地/云	开写			Na^+	Ca^{2+}	Mg^{2+}	\mathbf{K}^+	Cl ⁻	HCO_3^-	SO_4^{2-}	$\delta D / \%$	$\delta^{18}\mathrm{O}/\%$	T/(T.U)
	H1	Na-Cl-SO ₄	8	1096.7	33.39	5.47	12.98	1124.3	330.97	494.74			
	H7	Na-Cl-HCO ₃ -SO ₄	8.11	525.1	10.51	3.23	3.35	316.5	466.38	355.3	-78	-10.6	
	H8	Na-Cl-SO ₄ -HCO ₃	8.11	611.39	11.34	3.89	3.16	455.43	419.63	366.7			
	H16	Na-HCO ₃ -SO ₄	8.39	343.38	4.08	1.78	1.65	90.57	581.15	187.66	-78	-10.7	
	H28	Na-HCO ₃ -Cl-SO ₄	8.34	459.41	4.47	1.32	1.88	276.05	504.03	219.35			
N <i>m</i>	H35	Na-HCO ₃ -SO ₄	8.39	350.68	3.46	1.13	1.62	36.51	703.8	170.15			
	H42	Na-Cl-HCO ₃ -SO ₄	8.2	618.25	10.31	2.52	2.94	532.78	415.97	315			
	H43	Na-Cl-HCO ₃ -SO ₄	8.31	523.59	8.5	2.58	2.63	324.01	457.89	343.02			
	H52	Na-Cl-HCO ₃ -SO ₄	8.39	533.18	8.7	2.83	3.2	339.08	474.31	327.19			
	H64	Na-Cl-SO ₄ -HCO ₃	8.19	584.23	11.42	3.5	4.06	361.63	454.23	411.26	-78	-10.5	<1.0
	H67	Na-Cl-SO ₄ -HCO ₃	7.94	666.3	22.86	5.02	7.29	512	397.18	538.98	-79	-10.6	
	H70	Na-SO ₄ -HCO ₃ -Cl	8.13	538.87	14.94	3.46	6.24	213.76	459.11	517.24			
	H51										-79	-10.6	
	H5	Na-Cl-SO ₄	7.77	1025.5	37.02	8.2	9.67	1172.6	332.8	496.98			
Ng	H11	Na-Cl-SO ₄	8.17	721.35	15.51	5.38	4.13	698.19	379.54	395.91	-78	-10.5	
	H13	Na-Cl-HCO ₃ -SO ₄	8.14	572.57	9.7	2.89	3.13	437.17	460.95	331.01			
	H24	Na-HCO ₃ -SO ₄	8.37	368.52	3.68	0.96	1.71	65.16	653.4	213.7	-79	-10.7	
	H47	Na-Cl-SO ₄ -HCO ₃	8.2	630.21	13.11	3.51	3.7	554.26	382.6	381.13			
	H54	Na-Cl-SO ₄ -HCO ₃	8.1	677.99	12.72	3.82	4.04	530.97	406.88	384.44			
	H56	Na-Cl-SO ₄ -HCO ₃	8.12	629.07	13.84	4.49	4.33	496.97	414.14	427.34			
	H58	Na-Cl-SO ₄	7.96	1064	39.29	8.1	11.82	1190.5	326.09	539.11	-78	-10.2	
	H60	Na-Cl-SO ₄ -HCO ₃	8.28	557.63	9.34	3.23	2.83	393.14	457.28	360.98	-79	-10.7	<1.0
	H61	Na-Cl-SO ₄ -HCO ₃	8.2	590.39	12.13	3.94	3.36	465.46	419.63	388.12	-79	-10.6	
	搜集1										-74	-10.5	
	搜集2										-71	-10.2	

4.2 地热流体化学特征

从Piper 三线图(图5)可以看出,淮阳地热流体 水化学类型在菱形图中分布比较集中,地热流体水 中阳离子主要以Na⁺为主,阴离子呈多样化,主要水 化学类型为Cl·HCO₃·SO₄-Na、Cl·SO₄·HCO₃-Na、 Cl·SO₄-Na型。结合取样点位置图,淮阳县自北部 向南部阴离子主要Cl⁻逐渐变成HCO₃⁻,水化学类型 由Cl·HCO₃·SO₄-Na向HCO₃·SO₄-Na转变。在其 南部地区,HCO₃⁻含量增大,其中H35可达703.8 mg/ L,Cl⁻含量比北部明显降低(王瑞久,1983)。

从表2可知,淮阳县地热流体阳离子以Na⁺为主, 其次为Ca²⁺、Mg²⁺、K⁺。阴离子以Cl⁻、SO4²⁻、HCO3⁻为 主,pH值平均约为8.2,为弱碱水。Na⁺主要来于储层 中砂岩中长石的水解。鹿邑凹陷石炭系一二叠系以 煤系地层为主(余和中,2005),而煤系地层含有很多 黄铁矿,随着断裂中的热水上移,因此,淮阳地热流体 中的SO4²⁻主要可能源于硫化物矿物(如黄铁矿)在高 温、高压条件下,被氧化、溶解(李学礼等,2010;张人 权等,2011)。当pH值为5~8时,碳主要以HCO3⁻型 式出现,淮阳地区地热流体pH值平均约为8.2,HCO3⁻ 可能来源于馆陶组和明化镇组砂岩中长石的水解和 含CO₂的降水。尽管地层中Cl⁻含量不高,但是氯盐 溶解度较大,Cl⁻不容易被地层所吸附而大量存在于 地下水溶液中(王卫星,2013)。

4.3 地热流体成因与来源

4.3.1 地热流体化学分析

通过分析地热流体阳离子Ca²⁺相对于海水的富 集和Na⁺相对于海水亏损关系来反映流体-岩石相 互作用,Davisson通过研究发现Ca²⁺和Na⁺离子有近 似斜率为1的很好线性相关特征,这种线性关系定 义为盆地流体线(BFL)并由此提出了利用Ca_{excess}-Na_{deficit}图反映流体-岩石相互作用的方法(Davisson, 1996;曹海防,2006;赵贤正,2017)。计算方法为:

$$Ca_{escess} = \left[Ca_{meas} - (Ca/Cl)_{sw} \times Cl_{meas}\right] \times 2/40.08$$
$$Na_{deficit} = \left[\left(Na/Cl\right)_{sw} \times Cl_{meas} - Na_{meas}\right]/22.9$$

式中: Ca_{excess} 表示 Ca^{2+} 相对海水富集的毫克当量浓度,meq/L; Na_{deficit} 表示 Na^{+} 相对海水亏损的毫克当量浓度,meq/L; $(Ca/Cl)_{\text{sw}}$ 、 $(Na/Cl)_{\text{sw}}$ 表示海水中相应离子的浓度比;下标"sw"和"meas"分别表示现今海水及水化学样品中离子的质量浓度(mg/L)。

由表3和图6可知。取样点都位于BFL曲线左

图4 淮阳县地温梯度等值线图 Fig.4 Geothermal gradient contour of Huaiyang County

上方, Ca_{excess} 含量在-0.05~0.67 meq/L, $Na_{deficit}$ 含量 在-21~-12 meq/L。结合离子毫克当量比图(图7), Na⁺与Cl⁻和Na⁺与(Cl⁻+HCO₃⁻+SO₄²⁻)的毫克当量比 值相关系数较高,分别为 R^2 =0.97(图7a)和 R^2 =0.99 (图7b),说明绝大部分Na⁺与Cl⁻、HCO₃⁻和SO₄²⁻来 源相同,其中大部分Na⁺与Cl⁻相关(路畅,2018)。 由于Na⁺相对过剩,说明有外来的Na⁺,结合Na⁺与 HCO₃⁻和SO₄²⁻相关系数分别是 R^2 =0.7(图7c), R^2 = 0.59(图7d),因此外来Na⁺与HCO₃⁻和SO₄²⁻相关。 地热水中富含HCO₃⁻和SO₄²⁻,即含水层中有 NaHCO₃和Na₂SO₄的成分,推测地区深部可能存在 含碱、盐和芒硝。说明热水化学成分受地层中盐碱 矿的影响,即发生水-岩相互作用,但相对较弱。

根据离子比值中变质系数(yNa/yCl)平均值为 3.36,脱硫系数(ySO4*100/yCl)平均值为96.99,H35 样品钠氯系数最高达到14.81,脱硫系数高达 351.29,表明其地层水中渗入水的影响越强,渗入水 活动越强烈,保存条件差,地层封闭条件差(张保 健,2011;李修成,2016)。受大气降水影响与很少 深部地热水共同影响,说明地下热水排泄过程中接 受降水影响强烈。由Na-K-Mg平衡图(图8)可看 出,水样点都位于Mg²⁺的处,更表明研究区水-岩作 用相对较低,未达到平衡状态,溶解作用仍在进行 (Giggenbach,1988;孙红丽,2015)。

4.3.2 同位素分析 (1)补给来源

质

根据氘氧同位素资料,结合中国大气降水线 (*δ*D=7.7*δ*¹⁸O+7.5)和全球大气降水线(*δ*D=8*δ*¹⁸O+ 7.1)。由图9可见*δ*D与*δ*¹⁸O的值与全球大气降水线 接近,说明地热流体主要来源于大气降水。但氧存 在一定漂移,说明发生水-岩作用,但水-岩作用相 对较弱,其中58号氧漂移幅度最大。根据井温数据 可知58号井温为62℃,为所测井最高温度井温,温 度是氧漂移幅度的主要因素,一般温度越高,氧漂 移幅度越大(李学礼等,2010)。

(2)补给高程

大气降水的δD与δ¹⁸O具有高程效应,据此确定 地热流体补给区的补给高程。计算公式如下:

 $H = (\delta_{\rm G} - \delta_{\rm P})/K + h$

式中:h—样品高程(m); δ_{G} —样品的 $\delta^{18}O$ 值 (‰); δ_{P} —大气降水 $\delta^{18}O$ 值(‰);K—大气降水的 $\delta^{18}O$ 高程梯度(‰/100m);H—补给高程(m)。

根据周口凹陷(周口段)地热资源勘查报告(王 继华,2014),确定其中降水 δD 值为-9.2‰,大气降 水的δ¹⁸O高程梯度为-0.32‰/100 m,通过计算可得 研究区补给高程为349~497 m,和西部山区高度相 一致,进一步说研究区地热水补给源为西部伏牛山 区的大气降水(吕小凡,2017)。

(3)地热流体年龄分析

地下水的氚含量不易受到外界影响,且所有现 代循环水都受到放射性同位素氚的标记,因此,氚 是研究现代入渗起源地下水的理想示踪剂。可根 据经验法对地下水年龄进行估算,<1 TU,为1952 年前入渗补给的"古水";>2 TU,为1952年后入渗 补给的"新水",根据临近区域水文站资料可知大气 降水氚含量在11 TU左右(顾晓敏,2018;张敏, 2019),从表3可以看出,氚含量<1 TU,研究区地热 水为1952年前入渗补给的"古水"。

5 结 论

(1)淮阳县主要热储为新近系明化镇组和馆陶 组热储层,其中明化镇组顶板埋深220~240 m,底板

埋深920~1030 m,地温梯度介于2.25~3.75℃/100m, 地温场主要受到构造与断裂影响,断裂形成了良好 通道,导致苏庄成为淮阳地温梯度相对较高地区。 HY7附近热流向苏庄附近移动导致其形成低温区。

(2)研究区地热流体中主要为Cl·HCO₃·SO₄-Na、Cl·SO₄·HCO₃-Na、Cl·SO₄-Na型,自北部向南部,水化学类型由Cl·HCO₃·SO₄-Na向HCO₃·SO₄-

表3 Caexcess-Nadeficit数据										
Table 3 Caexcess Nadeficit data										
深度/m	开亏	pН	$Ca_{\text{excess}}/(\text{meq/L})$	Na _{deficit} /(meq/L)						
800~1000	016	8.39	0.11	-12.75						
800~1000	042	8.2	-0.05	-14.01						
800~1000	052	8.39	0.07	-14.99						
800~1000	064	8.19	0.19	-16.67						
800~1000	070	8.13	0.52	-18.27						
1000~1200	01	8	0.47	-20.51						
1000~1200	07	8.11	0.19	-15.18						
1000~1200	08	8.11	0.08	-15.58						
1000~1200	028	8.34	-0.07	-13.31						
1000~1200	035	8.39	0.13	-14.37						
1000~1200	043	8.31	0.08	-14.94						
1000~1200	067	7.94	0.60	-16.60						
1200~1400	05	7.77	0.60	-16.24						
1200~1400	011	8.17	0.03	-14.49						
1200~1400	013	8.14	0.02	-14.33						
1200~1400	024	8.37	0.11	-14.45						
1200~1400	047	8.2	0.07	-14.01						
1200~1400	054	8.1	0.07	-16.65						
1200~1400	056	8.12	0.16	-15.34						
1200~1400	058	7.96	0.70	-17.49						

Na转变。地热流体中阳离子主要以Na⁺为主,阴离 子呈多样化,pH值平均约为8.2。Na⁺主要来于储层 中砂岩中长石的水解;SO4²⁻主要可能源于硫化物矿 物;HCO3⁻主要来源于馆陶组和明化镇组砂岩中长 石的水解和含CO2的降水;地层中Cl⁻含量不高,但 是氯盐溶解度较大,Cl⁻不容易被地层所吸附而大量 存在于地下水溶液中。

(3)根据*Ca*excess-*Na*deficit图和离子毫克当量比图, 判断出研究区 Na⁺相对过剩,说明有外来的 Na⁺,推

图 6 深部地热流体的 Caexcess-Nadeficit 关系图 Fig.6 Caexcess-Nadeficit diagram of deep geothermal fluid

http://geochina.cgs.gov.cn 中国地质, 2022, 49(3)

图 7 离子毫克当量比图 Fig.7 The ratios of milliequivalents of ions

图 9 淮阳地热流体 δ D 与 δ^{18} O 关系图 Fig.9 δ D/‰ and δ^{18} O/‰ δ D 与 δ^{18} O of geothermal water in Huaiyang Count

测可能受到地层中盐碱矿的影响。Na-K-Mg平衡 图和离子比系数得出研究区地热流体水-岩作用相 对较低,未达到平衡状态,溶解作用仍在进行。同 位素数据指示研究区地热流体补给源为西部伏牛 山区的大气降水,补给高程为349~497 m,且地热流 体为1952前入渗补给的"古水"。

References

- Cao Haifang, Xia Bin, Zhang Di, Xiang Caifu, Zhang Hui. 2006. Geochemistry of formation water and its controlling factors, Case studies on the Songliao Basin [J]. Natural Gas Geoscience, (4): 566–572(in Chinese with English abstract).
- Davisson M L, Criss R E, 1996 .Na– Ca– Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 60(15)2743–2752.
- Giggenbach W F. 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica Cosmochimica Acta, 52 (12): 2749–2765.
- Gu Xiaomin. 2018. Geochemical Characteristics and Evolution Mechanism of Thermal and Mineral Springs in Arxan, North Eastern China [D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
- Huang Guangshou, Guo Lili, Huang Kai. 2020. Geothermal geological characteristics of five tectonic units in the sedimentary basin of Henan Province[J]. Geology and Resources, 29(2): 172–179(in Chinese with English abstract).
- Li Gongke, Wang Weixing, Li Hong, Yang Fengtian, Wang Linhai, Fang Wanling. 2014. Temperature distribution and controlling factors of the Tangquan geothermal field in Hebei Province [J]. Geology in China,41(6): 2099–2109(in Chinese with English abstract).
- Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China [J]. Geology in China, 40(1): 312–321(in Chinese with English abstract).
- Li Xiucheng, Ma Zhiyuan, Zhang Xuelian, Guo Sen, Meng Yang, Dang Shusheng. 2016. Genetic model of the Dongda geothermal field in Guanzhong Basin, Shaanxi Province [J]. Geology in China, 43(6): 2082–2091(in Chinese with English abstract).
- Li Xueli, Sun Zhanxue, Liu Jinhui. 2010. Hydrogeochemistry[M]. 6 Edition. Beijing: Atomic Energy Press: 227–230(in Chinese with English abstract).
- Lu Chang, Li Ying, Chen Zhi, Yang Jiang. 2018. A primary study on geochemical characteristics and genesis of geothermal water in the North– Central Part of the North China Downfaulted Basin [J]. Bulletin of Mineralogy,Petrology and Geochemistry, 37(4): 663– 673(in Chinese with English abstract).
- Lü Yubei, Zhang Gubin, Chen Ying. 2010. Current situation of development and utilization of geothermal resources in Henan and the issue study[J]. Exploration Engineering(Rock and Soil Drilling

and Tunneling), 37(10): 35-39(in Chinese with English abstract) .

- Lü Xiaofan, Dou Jingfeng, Xi Hang, Xia Feixue, Lei Chongfang. 2017. Application of deuterium oxygen isotope method in groundwater research in Zhoukou City[J]. Groundwater, 39(5): 28– 30(in Chinese with English abstract).
- Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan. 2021. The development and utilizationof geothermal energy in the world[J]. Geology in China, 48(6): 1734–1747(inChinese with English abstract).
- Sun Hongli. 2015. The Bearing Features and Genetic Model for Geothermal Resources in Guanzhong Basin[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
- Wang JiHua. 2009 . Imply analysis of development and protection of geothermal resources in Henan Province [J].Groundwater,31(4): 45–47(in Chinese with English abstract).
- Wang Jihua, Li Manzhou, Chen Guangdong. 2014. Geothermal Resource Exploration Report in Zhoukou Sag (Zhoukou section)[R]. Henan Provincial Geological Environment Monitoring Institute, 21–25(in Chinese).
- Wang Ruijiu. 1983. Three- line diagram and its hydrogeological interpretation[J]. Geotechnical Investigation and Surveying, (6): 6– 11(in Chinese with English abstract).
- Wang Weixing, Li Gongke, Li Hong, Hou Jiayu, Fang Wanling, Yang Fengtian. 2013. Hydrogeochemical characteristics and origin of the geothermal fluid in Tangquan area, Hebei Province [J]. Geology in China, 40(6): 1935–1941(in Chinese with English abstract).
- Wang Xiao. 2018. Formation conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province [D]. China University of Geosciences(in Chinese with English abstract).
- Wang Xinyi, Huang Dan. 2010. Evaluation of the situation of exploitation utilization of geothermal resources in Henan Province[J]. Groundwater, 32(1): 54–55, 70(in Chinese with English abstract).
- Wang Zongli, Luo Qiang, Zhao Feng, Su Qiang, Yang Qing. 2005. Favorable Pooling conditions of Carboniferous– Permian Formation in Luyi of Southern Huabei Basin[J].Natural Gas Geoscience, (2): 194–199(in Chinese with English abstract).
- Xu Shiguang, Guo Yuansheng. 2009. Foundation of Geothermal Science[M]. Beijing: Science Press: 15–16(in Chinese).
- Yang Jiehua, Lei Dongfeng, Fan Ziyu, Sun Yueying. 2010 . Discussion on the present situation and development protection of geothermal resources in Henan Province [J].Conservation and Utilization of Mineral Resources(5): 48–51(in Chinese with English abstract).
- Yu Hezhong. 2005. Analyzing on Conditions of Oil and Gas Accumulation in the Southern– East of North China Plate [D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
- Zhang Min, Ping Jianhua, Yu Yan, Huang Xiangui, Zhu Yaqiang, Cheng Yugang. 2019. Isotope analyses of the interaction between

质

the Anyang River and groundwater [J].Hydrogeology and Engineering Geology, (6): 31-39(in Chinese with English abstract).

- Zhang Yanlong. 2018. The difference between simple temperature measurement and approximate steady- state temperature measurement in calculating the geothermal gradient[J]. Inner Mongolia Coal Economy, (7): 133-134(in Chinese with English abstract).
- Zhang Renmin, Liang Xing, Jin Menggui. 2011. Foundation of Hydrogeology(6 Edition) [M]. Beijing: Geological Publishing House, 64–65(in Chinese with English abstract).
- Zhang Baojian. 2011. Hydrogeochemical Characteristics and Formation Conditions of the Geothermal Water in Northwestern Shandong Province [D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
- Zhang Min. 2019. Charaterzing Surfater water– groundwater Interactions Using Isotopic Techniques In The Anyang River Watershed[D]. Zhengzhou University(in Chinese with English abstract).
- Zhao Dongli, Zhao Xiujun, Zhenglin, Song Hongwei, Yu Zhengsheng. 2008. Tectonic evolution and coal-searching prospect of Tongxu uplift[J].Geology and Resources,(2): 132-134,157(in Chinese with English abstract).
- Zhao Xianzheng, Li Fei, Zeng Jianhui, Jin Fengming, Zhang Wangming, Liu Jia, Zhang Jiwei. 2017. The geochemical characteristics and origin of deep geothermal water in Baxian Sag. Earth Science Frontiers, 24(3): 210–218(in Chinese with English abstract).

附中文参考文献

- 曹海防,夏斌,张娣,向才富,张辉.2006.松辽盆地地层水化学特征 及其流体-岩石相互作用探讨[J].天然气地球科学,(4):566-572.
- 顾晓敏.2018.阿尔山泉群地球化学特征及成因演化机制研究[D]. 中国地质大学(北京).
- 黄光寿, 郭丽丽, 黄凯. 2020. 河南省沉积盆地区五大构造单元地热 地质特征[J]. 地质与资源, 29(2): 172-179.
- 李攻科, 王卫星, 李宏, 杨峰田, 王林海, 房万嶺. 2014. 河北汤泉地 热田地温场分布及其控制因素研究[J]. 中国地质, 41(6): 2099-2109.
- 蔺文静,刘志明,王婉丽,王贵玲.2013.中国地热资源及其潜力评估[J].中国地质,40(1):312-321.
- 李学礼, 孙占学, 刘金辉, 2010.水文地球化学[M].6版.北京:原子能 出版社: 227-230.
- 李修成,马致远,张雪莲,郭森,孟阳,党书生.2016.陕西省关中盆 地东大地热田成因机制分析[J].中国地质,43(6):2082-2091.

- 路畅,李营,陈志,杨江.2018.华北断陷盆地中北部地热水地球化学 特征及成因初探[J].矿物岩石地球化学通报,37(4):663-673.
- 卢予北,张古彬,陈莹. 2010.河南省地热资源开发利用现状与问题研究[J].探矿工程(岩土钻掘工程, 37(10): 35-39.
- 马冰,贾凌霄,于洋,王欢. 2021.世界地热能开发利用现状与展望[J]. 中国地质, 48(6):1734-1747.
- 吕小凡,豆敬峰,席航,夏飞雪,雷崇方.2017. 氘氧同位素法在周口 市地下水研究中的应用[J].地下水,39(5):28-30.
- 孙红丽.2015. 关中盆地地热资源赋存特征及成因模式研究[D]. 中国地质大学(北京).
- 王继华.2009.河南省地热资源开发与保护浅析[J].地下水,31(4): 45-47.
- 王继华,李满洲,陈广东.2014.周口凹陷(周口段)地热资源勘查报告[R].河南省地质环境监测院.21-25.
- 王瑞久. 1983. 三线图解及其水文地质解释[J]. 工程勘察, (6): 6-11.
- 王卫星, 李攻科, 李宏, 侯佳渝, 房万嶺, 杨峰田. 2013. 河北汤泉地 热流体水文地球化学特征及其成因[J]. 中国地质, 40(6): 1935-1941.
- 汪啸.2018.广东沿海典型深大断裂带地热水系统形成条件及水文 地球化学特征[D].中国地质大学.
- 王心义,黄丹.2010.河南省地热资源开发利用现状评价[J].地下水, 32(1):54-55,70.
- 王宗礼, 罗强, 赵锋, 苏蔷, 杨青. 2005. 南华北地区鹿邑凹陷石炭— 二叠系有利成藏条件分析[J]. 天然气地球科学, (2): 194-199.
- 徐世光,郭远生. 2009.地热学基础[M].北京:科学出版社: 15-16.
- 阳结华, 雷东锋, 樊子玉, 孙越英. 2010. 浅议河南省地热资源现状 及开发保护[J]. 矿产保护与利用(5): 48-51.
- 余和中.华北板块东南缘油气成藏条件分析[D].中国地质大学(北京), 2005.
- 赵东力,赵修军,郑琳,宋红伟,余郑生. 2008.通许隆起构造演化史 与找煤远景[J].地质与资源,(2):132-134,157.
- 张敏, 平建华, 禹言, 黄先贵, 朱亚强, 程玉刚. 2019. 同位素技术解析 安阳河与地下水相互作用[J].水文地质工程地质, (6): 31-39.
- 张艳龙.2018. 简易测温与近似稳态测温在计算地温梯度中的差 异[J].内蒙古煤炭经济, (7): 133-134.
- 张人权,梁杏,靳孟贵. 2011.水文地质学基础(6版)[M]. 北京:地质 出版社: 64-65.
- 赵贤正,李飞,曾溅辉,金凤鸣,张汪明,刘佳,张继伟.2017.霸县凹 陷深部地下热水的地球化学特征及其成因[J].地学前缘,24(03): 210-218.
- 张保健.2011.鲁西北地区地下热水的水文地球化学特征及形成条 件研究[D].中国地质大学(北京).
- 张敏. 2019.同位素技术刻画安阳河流域地表水与地下水相互作 用[D].郑州大学.