doi: 10.12029/gc20200309001

程先钰,张天福,苗培森,程银行,李建国,奥琮,肖荣阁.2023.鄂尔多斯盆地西南缘洛河组下段含铀砂岩锆石U-Pb年代学:对岩石圈伸展作用的启示[J].中国地质,50(3):853-871.

Cheng Xianyu, Zhang Tianfu, Miao Peisen, Cheng Yinhang, Li Jianguo, Ao Cong, Xiao Rongge. 2023. Detrital zircon U–Pb geochronology of uranium-bearing sandstone in the lower member of Luohe Formation in the southwest margin of the Ordos Basin: Implications for the lithospheric extension[J]. Geology in China, 50(3): 853–871(in Chinese with English abstract).

鄂尔多斯盆地西南缘洛河组下段含铀砂岩 锆石U-Pb年代学:对岩石圈伸展作用的启示

程先钰1,2,张天福1,2,苗培森1,2,程银行1,2,李建国1,2,奥琮1,2,肖荣阁3

(1.中国地质调查局天津地质调查中心,天津 300170;2.中国地质调查局铀矿地质重点实验室,天津 300170;3.中国地质大学,北京 100083)

提要:【研究目的】近年来,砂岩型铀矿的研究成为地质学者讨论的热点,对赋铀地层的研究尤为重要。【研究方法】文章以鄂尔多斯盆地西南缘镇原地区为例,通过对下白垩统洛河组下段含铀砂岩碎屑锆石的LA-ICP-MS U-Pb测年分析,探讨含铀砂岩的物质来源及其构造意义。【研究结果】结果表明,下白垩统洛河组下段赋铀砂体碎屑锆石 U-Pb 年龄主要分布在166~370 Ma(n=49)、388~472 Ma(n=14)、1744~2150 Ma(n=14)、2241~2740 Ma(n=14)、615~1623 Ma(n=9)这5个年龄区间,相应的峰值年龄为272 Ma、427 Ma、1899 Ma和2493 Ma,而615~1623 Ma无法确定峰值年龄。【结论】锆石U-Pb年龄谱对比分析表明,研究区下白垩统洛河组下段含铀砂体总体上具有来自北祁连造山带东段、北秦岭造山带、兴蒙造山带、贺兰山、华北板块基底及阿拉善地块6个物源区,其中北秦岭造山带、北祁连造山带东段为主要物源区。碎屑锆石年龄显示,奥陶纪鄂尔多斯盆地西南缘形成被动陆缘,志留纪—泥盆纪转化为碰撞造山带,石炭纪—二叠纪由造山带转化为沉积盆地,侏罗纪—白垩纪形成稳定沉积地层为铀矿贮存提供有利空间。

关 键 词:含铀砂岩;下白垩统;洛河组;碎屑锆石U-Pb;镇原;鄂尔多斯盆地;矿产勘查工程

创 新 点:通过研究发现,研究区洛河组下段含铀砂岩的物源具有复杂性、多缘性,其中北祁连造山带东段、北秦 岭造山带为主要物源区。

中图分类号:P534.53;P597.3;P619.14 文献标志码:A 文章编号:1000-3657(2023)03-0853-19

Detrital zircon U–Pb geochronology of uranium–bearing sandstone in the lower member of Luohe Formation in the southwest margin of the Ordos Basin: Implications for the lithospheric extension

CHENG Xianyu^{1,2}, ZHANG Tianfu^{1,2}, MIAO Peisen^{1,2}, CHENG Yinhang^{1,2}, LI Jianguo^{1,2}, AO Cong^{1,2}, XIAO Rongge³

(1. Tianjin Center, China Geological Survey, Tianjin 300170, China; 2. Key Laboratory of Uranium Geology, China Geological Survey, Tianjin 300170, China; 3. China University of Geosciences, Beijing 100083, China)

作者简介:程先钰,男,1991年生,工程师,主要从事地质矿产调查与研究工作;E-mail:chengxianyu_601@163.com。

收稿日期:2020-03-09;改回日期:2020-10-12

基金项目:国家重点研发计划(2018YFC0604203,2018YFC0604206)、中国地质调查局地质调查项目(DD20190813)、国家重点基础研究发展计划(2015CB453000)、国际地球科学计划(IGCP675)联合资助。

Abstract: This paper is the result of mineral exploration engineering.

[Objective] In recent years, the study of sandstone-type uranium deposits has become a hotspot among geologists, especially the study of uranium-bearing strata. **[Methods]** Based on LA-ICP-MS U-Pb dating of detrital zircons from the lower part of the Lower Cretaceous Luohe Formation uranium-bearing sandstones in Zhenyuan area, southwestern Ordos Basin, the provenance and tectonic significance of uranium-bearing sandstones are discussed. **[Results]**The results show that the detrital zircon U-Pb ages of the lower member of the Lower Cretaceous Luohe Formation are mainly distributed in five age intervals: 166–370 Ma (*n*=49), 388–472 Ma (*n*=14), 1744–2150 Ma (*n*=14), 2241–2740 Ma (*n*=14) and 615–1623 Ma (*n*=9), besides 615–1623 Ma whose peak age can not be determined, and the corresponding peak ages are 272 Ma, 427 Ma, 1899 Ma and 2493 Ma, respectively. **[Conclusions]** Comparative analysis of detrital zircon U-Pb age spectra shows that the lower member of Lower Cretaceous Luohe Formation in the study area has six source areas, including the eastern part of the North Qilian orogenic belt, the Helan Mountain, the basement of the North China Plate and the Alxa Block, among which the eastern part of the North Qinling orogenic belt and the North Qilian orogenic belt are the main source areas. The detrital zircon ages show that the southwest margin of Ordos Basin formed a passive continental margin in Ordovician, the Silurian-Devonian transformed into a collisional orogenic belt, the Carboniferous-Permian transformed from an orogenic belt into a sedimentary basin, and the Jurassic-Cretaceous formed stable sedimentary strata to provide favorable space for uranium ore storage.

Key words: Uranium-bearing sandstone; Lower Cretaceous; Luohe formation; detrital zircon U-Pb; Zhenyuan; Ordos Basin; mineral exploration engineering

Highlights: The present study reveals that the source of uranium-bearing sandstones in the lower member of the Luohe Formation in the study area is complex and multi-marginal, with the eastern part of the North Qilian orogenic belt and the North Qinling orogenic belt as the main provenance.

About the first author: CHENG Xianyu, male, born in 1991, engineer, mainly engaged in geological and mineral investigation and research; E-mail: chengxianyu_601@163.com.

Fund support: Supported by National Key Research and Development Program (No.2018YFC0604203, No.2018YFC0604206), the project of China Geological Survey (No.DD20190813), National Key Basic Research and Development Program (No.2015CB453000) and International Earth Science Program (No.IGCP675).

1 引 言

鄂尔多斯盆地西南部地区位于秦岭、祁连造山 带结合部位,地理位置十分特殊,其不仅是古亚洲 构造域和特提斯构造域交汇的重要区域,而且是 "中亚造山带"东、西衔接处(罗顺社等,2017),其中 生代的构造属性、原盆沉积范围、沉积物源等地质 问题,一直是地质和能源工作者关注的热点(白云 来等,2006;赵文智等,2006;赵俊峰等,2008;张珂 等,2009;李子颖等,2022)。砂岩型铀矿作为新型 能源矿产,近年来受到广大地质学者的关注。前人 研究表明,鄂尔多斯东北部及准东地区主要的储铀 层位于中生代侏罗纪碎屑岩中(焦养泉等,2005;王 敏芳等,2006;张金带等,2010;金若时等,2014;何 中波等,2018;冯晓曦等,2019;金若时和腾雪明, 2022),金若时等(2014)与金若时和腾雪明(2022) 认为侏罗纪时期的砂体利于U^{et}的还原、储集。而本 次研究的鄂尔多斯盆地西南缘铀矿贮存在下白垩 统洛河组下段砂体中,同样具有铀元素储集成矿的 有利条件(赵华雷等,2022)。笔者认为对鄂尔多斯 盆地西南缘洛河组的物源及与周缘地体关系的研 究具有重要意义。

研究表明,造山带和沉积盆地具有空间上互相 依存、动力互换和物质互补的密切关系,均属大陆 构造上的基本单元。造山带为盆地提供物源,而盆 地中的碎屑沉积物不仅是盆地沉积、构造演化的重 要标志,也是漫长地质历史中造山带、沉积盆地及 周围环境相互作用的直接证据(陈世悦,2000)。碎 屑锆石研究作为反映沉积物源的有效手段之一,通 过碎屑锆石的成因及U-Pb年龄频率峰值能够示踪 沉积物源区,揭示区域构造演化,为区域盆山演化 研究提供证据(闫义等,2003)。

本文采用锆石 LA-ICP-MS U-Pb 测年分析技术,对鄂尔多斯盆地西南缘镇原地区下白垩统洛河组下段赋铀砂体碎屑锆石进行研究,结合前人对鄂尔多斯盆地西南缘大量的研究成果,分析锆石年龄分布特

征,建立鄂尔多斯盆地西南缘锆石年龄结构;对比周 缘地质体,界定洛河组的沉积源区;试图恢复鄂尔多 斯盆地西南缘古生代一中生代造山、沉积作用过程。

2 区域地质背景

鄂尔多斯盆地的地理范畴包括秦岭以北、阴山 以南、吕梁山以西和贺兰山以东的广大地区。镇原 地区位于鄂尔多斯盆地西南缘, 渭北隆起西段、伊 陕斜坡和天环坳陷南部, 处于北祁连造山带、秦岭 一大别造山带与华北板块交互作用的地区; 其西部 以平凉为界, 东至庆阳为界; 南部以泾川为界, 北部 与环县相接(图1)。

鄂尔多斯盆地经历了早、中侏罗世内陆坳陷沉积 之后,白垩纪盆地逐渐消亡。侏罗纪末期至早白垩世

Fig1. Regional tectonic unit of Ordos Basin (a, after Yang Hua et al., 2013), geotectonic location in the southwest margin of Ordos Basin (b, after Liu Chiyang et al., 2006)

1-Research area; 2-Fault; 3-Strike slip fault; 4-First level construction zone line; 5-Secondary construction zone line; 6-Place name

受燕山运动的影响,盆地发生第三次坳陷。盆地内部 构造相对简单,主要分为陕北斜坡(Ⅰ)、伊盟隆起 (Ⅱ)、天环坳陷(Ⅲ)三部分。天环坳陷为西陡东缓以 镇原—环县—盐池—鄂托克旗为轴的不对称向斜结 构的沉积坳陷区。这种区域构造特征,决定了白垩纪 地层向西厚度增大、层位齐全的分布状况。

鄂尔多斯盆地白垩系自下而上划分为洛河组、环 河华池组、罗汉洞组和泾川组(郝诒纯等,1986)。洛 河组主要为一套风成沙漠相、河流湖泊相以及冲(洪) 积物、泥石流和风化残积物沉积组合,主要岩石类型 包括灰绿色中砂岩、细砂岩、青灰色粉砂质泥岩、泥岩 和含砾砂岩以及砾岩,其中以砂岩为主。研究区第四 系大面积覆盖,白垩系呈网脉状剥露于第四系冲洪积 物之上,洛河组与泾川组呈不整合接触,与上覆环河 华池组呈整合接触(图2),古生代地层出露较少,主 要出露于研究区西部。研究区西南部发育 NE 向逆

图2研究区地质简图及采样井位

1—第四系风积砂;2—第四系冲洪积物;3—新近系干河沟组;4—新近系红柳河沟组;5—下白垩统泾川组;6—下白垩统洛河组;7—侏罗系延 安组;8—上三叠统崆峒山组;9—中侏罗统三道沟组;10—中下奥陶统马家沟组;11—寒武系张夏组;12—震旦系;13—逆断层;14—正断层; 15—走滑断层;16—石油钻孔;17—潜在铀矿化孔;18—铀矿工业钻孔;19—剖面线

Fig.2 Geologic map of the study area with well locations of samples

1-Aeolian sand of Quaternary; 2-Alluvial diluvium of Quaternary; 3-Ganhegou Formation of Neogene; 4-Hongliuhegou Formation of Neogene;
 5-Jingchuan Formation of Early Cretaceous; 6-Luohe Formation of Early Cretaceous; 7-Yan'an Formation of Jurassic; 8-Kongtongshan
 Formation of Upper Triassic; 9-Sandaogou Formation of Middle Jurassic; 10-Majiagou Formation of Middle lower Ordovician; 11-Zhangxia
 Formation of Cambrian; 12-Sinian system;13-Reverse fault;14-Normal fault;15-Strike slip fault;16-Oil drilling; 17-Potential uranium
 mineralization borehole; 18-Uranium industry drilling; 19-Section line

冲推覆构造,且地势较高,地下流体易向NE向流动。

洛河组上段主要为沙漠相风成沉积为主,主要 岩性为棕红一黄褐色中细砂岩,岩心见高角度板 状、楔状交错层理,分选较好,磨圆次棱角状等沉积 特征。洛河组中、下段主要为河流相沉积,中段为 曲流河相沉积,下段为辫状河相沉积。洛河组中段 岩性主要为浅砖红色、灰色、灰白色细砂岩与薄层 中砂岩互层夹粉砂质泥岩,具交错层理,磨圆分选 较差,根据岩性柱状图(图3)可知,洛河组上段砂体 具有正旋回沉积特征,具有曲流河二元结构。洛河 组下段岩性主要为黄褐色、灰绿色、灰色中砂岩与 细砂岩互层,粒度较粗,槽状交错层理为主,偶见块 状和水平层理,分选磨圆较差,具砂包泥正旋回沉 积特征,灰绿色中砂岩流通性较好。

3 样品特征与分析方法

3.1 采样位置与样品特征

本次工作主要集中于鄂尔多斯西南缘镇原地区,选取铀矿孔(BUZK02)(图2)洛河组下段含矿层位砂岩样品(ZK02-1055)进行碎屑锆石U-Pb测年(图3),岩性为灰绿色中砂岩,分选中等呈次棱角状,具有辫状河河道沉积特征。

3.2 分析方法

锆石分选由河北省廊坊诚信地质服务有限公司完成。首先进行粉碎分选,分选出的锆石在双目镜下挑选,选择透明度较高、晶形较完好且内部无裂隙具有代表性的锆石进行制靶,锆石阴极发光图像、制靶工作由北京锆年领航科技有限公司完成。通过反射光、透射光及阴极发光图像综合分析,选择环带清晰以及晶型好、浑圆状的锆石样品进行测试。锆石LA-ICP-MS测试在天津地质调查中心实验室完成,利用激光剥蚀等离子体质谱仪(LA-ICP-MS)进行锆石U-Pb同位素测试。

激光剥蚀系统为New Wave UP213,ICP-MS为 布鲁克M90。激光剥蚀过程中采用氦气作载气、氩 气为补偿气以调节灵敏度,二者在进入ICP之前通 过一个Y型接头混合。每个时间分辨分析数据包 括20~30 s的空白信号和50 s的样品信号。对分析 数据的离线处理(包括对样品和空白信号的选择、 仪器灵敏度漂移校正、元素含量及U-Th-Pb同位 素比值和年龄计算)采用软件ICPMSDataCal完成 (Liu et al., 2010)。锆石样品的U-Pb 年龄谐和图绘 制和年龄权重平均计算均采用Isoplot/Ex_ver3 完成 (Ludwig, 2003)。本次测试剥蚀直径根据实际情况 选择25 µm。

4 分析结果

本次测试BUZK02 井含铀砂岩层位获得104颗碎屑锆石,谐和度>90%的一共有100颗,利用 Isoplot软件处理这些谐和度较高的数据,并绘制锆石U-Pb谐和图及年龄分布直方图(图4)。

4.1 锆石形貌学特征

锆石阴极发光(CL)图像(图5)显示,锆石粒径 一般在60~100 um,个别可达150 um,晶形完整锆石 较碎片状锆石略多,磨圆度从无磨圆到较好磨圆均 有。根据锆石颗粒复杂多样的内部结构,可将其分 为四类:第一类具清晰震荡环带,自形程度较好,表 明其原始成因类型为典型岩浆锆石(如5、28等),部 分错石具有残留的核部,为继承核或捕获核(如13、 16、43等),仍为岩浆成因锆石,约占40%;第二类为 边部具或窄或宽的浅色增生边,为继承性变质错 石,是后期变质作用的产物,年龄值较大(如47、53、 60、83等),约占20%;第三类占总数35%左右,无分 带结构或具弱分带结构,或呈溶蚀结构,内部结构 复杂不清,成因不明(如1、10、32、52、75等);第四类 为颜色较深,无分带结构且内部浑浊不清,可能来 自古老基底(如33、63、77等),约占10%;复杂多样 的锆石形态,反映了不同成因的锆石类型,同时也 反映了物源的复杂性。

4.2 锆石年龄特征

镇原地区 BUZK02-1055 的碎屑锆石 Pb、Th、U 含量和Th/U比值及锆石 U-Pb年龄见表1,锆石的 Th 含量为2×10⁻⁶~1037×10⁻⁶,U含量为9×10⁻⁶~966× 10⁻⁶,Th/U比值为0.05~1.66,平均为0.6。一般情况 下,Th/U>0.4表现为岩浆成因,Th/U<0.1表现为变 质成因(Belousova et al., 2002; Crofu et al., 2003)。 本次研究镇原地区 BUZK02-1055碎屑锆石 Th/U比 值表明其主体为岩浆成因,部分锆石后期可能受变质 事件改造的影响,少部分锆石表现为变质成因。根据 锆石年龄谐和图和直方图(图4)可知,样品中锆石年 龄分为166~370 Ma、388~472 Ma两个主峰年龄区间 和1744~2150 Ma、2241~2740 Ma两个次峰年龄区

2023年

1—灰黑色泥岩;2—灰黑色粉砂质泥岩;3—砖红色粉砂岩;4—肉红色粉细砂岩;5—灰白色细砂岩;6—肉红色细砂岩;7—灰绿色细砂岩;8— 黄褐色细砂岩;9—红色中砂岩;10—黄褐色中砂岩;11—黄色中砂岩;12—灰白色粗砂岩;13—灰绿色粗砂岩;14—肉红色含砾砂岩;15—肉红 色含砂砾岩;16—灰黑色砾岩;17—煤层;18—自然电位;19—自然伽马;20—采样位置

Fig.3 Comprehensive column of Luohe Formation in Zhenyuan area in southwestern Ordos Basin 1–Grey black mudstone; 2–Grey black silty mudstone; 3–Brick red siltstone; 4–Flesh red siltstone; 5–Grey white fine sandstone; 6–Flesh red fine sandstone; 7–Grey green fine sandstone; 8–Yellowish brown fine sandstone; 9–Red medium sandstone; 10–Yellowish brown medium sandstone; 11–Yellow medium sandstone; 12–Gray white coarse sandstone; 13–Grey green coarse sandstone; 14–Flesh red gravelly sandstone; 15–Flesh red sandy conglomerate; 16–Grey black conglomerate; 17–Coal seam; 18–Spontaneous potential; 19–Natural gamma ray; 20–Sampling location

图4 (a) BUZK02-1055碎屑锆石U-Pb年龄谐和图;(b)锆石年龄谱 Fig.4 (a) U-Pb concordia diagrams of detrital zircons of BUZK02-1055;(b) Zircon age spectrum

间,相应的峰值年龄为272 Ma、427 Ma、1899 Ma和2493 Ma,另外还有9颗中新元古代的错石。样品存在一颗95 Ma的锆石,推断其为混入较晚期的碎屑,不具代表性,此处不做重点研究。

5 讨 论

5.1 物源分析

鄂尔多斯盆地西南缘处于多个块体结合区域, 沉积-构造演化与邻区造山带的构造运动密切相 关。研究区相邻的北祁连造山带、北秦岭造山带、 阿拉善地块古陆以及华北克拉通北缘都有可能为 研究区提供物源。

166~370 Ma:峰值年龄为272 Ma,该区间锆石 颗粒49颗,占总数的49%,Th/U比值为0.19~1.66, 表现为岩浆成因锆石,部分后期经历变质事件改 造,对应中侏罗世一晚泥盆世的岩浆-构造热事件。由于该年龄区间的锆石数量较多,以作为本次研究的重点。西伯利亚板块南缘和华北板块北缘的索伦缝合带的最终闭合时间可能在230~310 Ma(陈斌等,2001);兴蒙造山带平泉地区存在大量250~330 Ma年龄的锆石(马收先等,2011);陈岳龙等(2012)也对兴蒙造山带中的碎屑岩、变质岩、变岩浆岩等进行了锆石 U-Pb测年,结果显示250~350 Ma形成的锆石普遍存在(图6f);位于狼山岩体内部发育多个海西期花岗岩体(彭润民等,2007),陈登超等(2010)测其K-Ar年龄为267~302 Ma;东升庙岩体中二长花岗岩体年龄为(259.4±3.3)Ma(吴亚飞等,2013);霍各乞岩体中的辉长-闪长岩年龄为(273.9±1.2) Ma(皮桥辉等,2010);邹雷等(2019)获得东阿拉善波罗斯坦庙杂岩U-Pb年龄为

图 5 镇原地区 BUZK02井洛河组下段含铀砂岩典型碎屑锆石阴极发光照片(年龄单位:Ma) Fig.5 CL images of detrital zircons from uranium-bearing sandstone from the lower part of Luohe Formation of BUZK02 in

Zhenyuan area (age unit: Ma)

批

质

图 6 鄂尔多斯盆地西南缘下白垩统碎屑锆石 U-Pb 年龄谱 与周缘构造单元结晶岩体晚古生代以前岩体对比图 Fig.6 Comparison of U-Pb ages spectra of detrital zircons of the Lower Cretaceous sandstones in the southwestern Ordos Basin and the pre-Late Paleozoic crystallization rocks of the adjacent potential sources

242~284 Ma(表2);这些年龄与该组峰值年龄相似, 推断索伦缝合带闭合过程中,兴蒙造山带中大量火 山岩浆产物随着造山运动而剥蚀搬运,向研究区提 供物源。一直以来,二叠纪花岗岩在秦岭造山带中 的记载较少,研究发现西秦岭江里沟花岗岩存在 (264.0±1.4)Ma的加权平均年龄(孙小攀等,2013), 属中二叠世晚期,证明了在中二叠世晚期存在地壳 增厚背景下的构造岩浆活动事件。秦岭造山带在石 炭纪末一二叠纪进入碰撞阶段,北秦岭构造带有较 大幅度的隆升,其北侧相邻地区演变为沉积盆地(陈 世悦,2000)。碰撞造山引发的一系列岩浆事件与本 组锆石年龄具有较好的对应性。综上所述,该时期 鄂尔多斯盆地西南缘物源主要来自兴蒙造山带,不 排除北秦岭造山带提供物源的可能。

223~250 Ma的锆石可能来自秦岭造山带内广 泛发育的印支期岩浆热事件(秦江峰等,2010;骆必 继等,2013),西秦岭糜署岭花岗岩年龄为237 Ma (李永军等,2004),草关地区花岗岩年龄为205 Ma (李永军等,2004),西秦岭江里沟复式岩体年龄为 (229.1±1.8)Ma(路东宇等,2017),夏河地区岩体年 龄为238 Ma(金惟浚等,2005),秦岭造山带黑沟峡 火山岩Sm-Nd等时线年龄为242 Ma,Rb-Sr等时线 年龄为221 Ma,认为其火山岩遭受碰撞-变质时间 为221~242 Ma(李曙光等,1996)。

388~472 Ma:峰值年龄为427 Ma,该区间锆石 颗粒14颗,占总数的14%,该组锆石年龄较为集中, Th/U比值为0.30~1.07,表现出典型岩浆锆石成因, 锆石具清晰的韵律环带结构,对应中奥陶世—晚志 留世早古生代构造岩浆热事件。早古生代是秦岭和 祁连造山带最主要的洋陆转化阶段(夏林圻等, 1996,2001;张国伟等,2001),鄂尔多斯西缘米钵山 组的物源来自北祁连造山带(黄喜峰等,2009),表明 北祁连造山带向阿拉善地块和华北板块俯冲碰撞提 供物源(张进等,2012;程先铥等,2019)。北秦岭罗 汉寺岩群辉长岩脉成岩年龄为(475±4)Ma(刘军锋 等,2007),秦岭、祁连山造山带结合部位广泛出露呈 近东西向产出的有川草铺花岗岩体(434±10)Ma (Zhang et al., 2006)、阎家店闪长岩体(440.2±0.92) Ma(裴先治等, 2007)、(441±10)Ma(Zhang et al.,

表1 鄂尔多斯盆地西南缘镇原地区洛河组下段 BUZK02-1055碎屑锆石 LA-ICP-MS U-Pb 年龄测试结果 Table1 Detrital zircon LA-ICP-MS U-Pb dating results of the lower part of Luohe Formation of BUZK02-1055 in Zhenyuan area in southwestern Ordos Basin

投口口	,	含量/1()-6	TL/II			同位素	比值					表面年龄/N	Ла		
件面亏	Pb	Th	U	In/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	$^{207}Pb/^{206}Pb$	1σ	207Pb/235U	1σ	206Pb/238U	1σ
A1055.1	2	34	43	0.78	0.0527	0.0031	0.3468	0.0207	0.0477	0.0005	315	136	302	18	301	3
A1055.2	8	90	183	0.49	0.0527	0.0013	0.3249	0.0085	0.0447	0.0005	315	58	286	8	282	3
A1055.3	107	197	296	0.66	0.1140	0.0016	5.0721	0.0806	0.3227	0.0034	1864	26	1831	29	1803	19
A1055.4	322	463	600	0.77	0.1626	0.0023	10.2575	0.1662	0.4576	0.0050	2483	24	2458	40	2429	26
A1055.5	23	444	485	0.92	0.0530	0.0034	0.2957	0.0189	0.0405	0.0004	328	146	263	17	256	3
A1055.6	12	117	161	0.72	0.0567	0.0010	0.5284	0.0104	0.0676	0.0007	478	41	431	8	422	4
A1055.7	19	178	248	0.72	0.0561	0.0011	0.5447	0.0116	0.0704	0.0007	458	45	442	9	438	5
A1055.8	32	142	178	0.80	0.0721	0.0011	1.6161	0.0271	0.1626	0.0017	989	31	976	16	971	10
A1055.9	21	48	48	1.02	0.1269	0.0018	6.2505	0.1005	0.3572	0.0037	2056	26	2012	32	1969	20
A1055.10	6	104	138	0.75	0.0529	0.0014	0.2873	0.0078	0.0394	0.0004	323	61	256	7	249	3
A1055.11	4	54	87	0.63	0.0515	0.0010	0.2958	0.0059	0.0417	0.0004	262	44	263	5	263	3
A1055.12	130	324	325	1.00	0.1186	0.0020	5.3296	0.0966	0.3259	0.0034	1936	29	1874	34	1818	19
A1055.13	1	10	19	0.50	0.0553	0.0011	0.5173	0.0113	0.0679	0.0007	423	46	423	9	423	5
A1055.14	16	144	194	0.74	0.0569	0.0009	0.5681	0.0098	0.0724	0.0007	487	35	457	8	451	5
A1055.15	4	37	97	0.38	0.0522	0.0008	0.2815	0.0047	0.0391	0.0004	294	35	252	4	247	3
A1055.16	3	43	62	0.70	0.0534	0.0026	0.3199	0.0160	0.0434	0.0005	347	112	282	14	274	3
A1055.17	12	236	271	0.87	0.0528	0.0023	0.2566	0.0095	0.0353	0.0006	318	101	232	9	223	4
A1055.18	10	65	133	0.49	0.0565	0.0009	0.5738	0.0101	0.0737	0.0007	470	37	460	8	458	5
A1055.19	4	52	93	0.56	0.0517	0.0019	0.2853	0.0107	0.0400	0.0004	273	83	255	10	253	3
A1055.20	36	83	185	0.45	0.2073	0.0047	3.9428	0.1023	0.1379	0.0021	2885	37	1623	42	833	13
A1055.21	4	39	75	0.52	0.0529	0.0044	0.3487	0.0289	0.0478	0.0006	324	187	304	25	301	4
A1055.22	25	499	547	0.91	0.0527	0.0020	0.2875	0.0112	0.0396	0.0004	315	87	257	10	250	3
A1055.23	20	235	451	0.52	0.0522	0.0012	0.3025	0.0072	0.0420	0.0004	296	51	268	6	265	3
A1055.24	18	45	68	0.66	0.0992	0.0014	3.2165	0.0515	0.2351	0.0025	1610	27	1461	23	1361	14
A1055.25	19	324	362	0.89	0.0522	0.0023	0.3331	0.0150	0.0462	0.0005	296	101	292	13	291	3
A1055.26	34	134	726	0.19	0.0539	0.0009	0.3646	0.0067	0.0490	0.0005	368	39	316	6	309	3
A1055.27	5	25	33	0.77	0.0654	0.0011	1.1282	0.0201	0.1252	0.0013	786	35	767	14	760	8
A1055.28	4	26	57	0.46	0.0566	0.0013	0.5264	0.0130	0.0675	0.0007	474	51	429	11	421	4
A1055.29	37	1037	689	1.50	0.0532	0.0014	0.3021	0.0078	0.0412	0.0004	339	58	268	7	260	3
A1055.30	5	53	96	0.56	0.0532	0.0014	0.3568	0.0097	0.0487	0.0005	337	58	310	8	306	3
A1055.31	8	55	115	0.48	0.0555	0.0011	0.5304	0.0110	0.0693	0.0007	434	42	432	9	432	5
A1055.32	12	226	231	0.98	0.0519	0.0044	0.3094	0.0264	0.0433	0.0005	279	194	274	23	273	3
A1055.33	79	78	133	0.58	0.1893	0.0027	13.1883	0.2123	0.5053	0.0054	2736	23	2693	43	2636	28
A1055.34	10	133	264	0.50	0.0516	0.0008	0.2610	0.0044	0.0367	0.0004	269	36	236	4	232	2
A1055.35	74	131	197	0.66	0.1155	0.0017	5.2634	0.0851	0.3306	0.0034	1887	26	1863	30	1841	19
A1055.36	7	82	145	0.57	0.0531	0.0018	0.3105	0.0110	0.0424	0.0004	334	78	275	10	268	3
A1055.37	70	95	133	0.72	0.1659	0.0023	10.2427	0.1592	0.4477	0.0045	2517	24	2457	38	2385	24
A1055.38	13	169	296	0.57	0.0517	0.0017	0.3017	0.0105	0.0423	0.0004	274	77	268	9	267	3
A1055.39	22	243	288	0.84	0.0564	0.0012	0.5264	0.0130	0.0676	0.0007	470	48	429	11	422	4
A1055.40	6	69	139	0.50	0.0532	0.0012	0.3159	0.0076	0.0431	0.0004	337	53	279	7	272	3
A1055.41	10	13	28	0.48	0.1119	0.0016	5.0582	0.0804	0.3278	0.0034	1831	26	1829	29	1827	19
A1055.42	231	355	483	0.73	0.1588	0.0022	8.9015	0.1375	0.4067	0.0040	2442	24	2328	36	2200	22
A1055.43	11	65	178	0.37	0.0544	0.0009	0.4656	0.0081	0.0621	0.0007	388	36	388	7	388	4
A1055.44	14	106	328	0.32	0.0529	0.0012	0.3228	0.0076	0.0442	0.0005	327	51	284	7	279	3
A1055.45	182	70	602	0.12	0.1167	0.0017	4.8564	0.0935	0.3019	0.0040	1906	26	1795	35	1701	23
A1055.46	23	467	357	1.31	0.0528	0.0011	0.3705	0.0081	0.0509	0.0005	321	46	320	7	320	3
A1055.47	248	158	966	0.16	0.1166	0.0017	4.0622	0.1052	0.2528	0.0058	1904	25	1647	43	1453	34
A1055.48	6	106	129	0.82	0.0517	0.0096	0.3118	0.0533	0.0437	0.0006	274	427	276	47	276	4
A1055.49	127	197	536	0.37	0.1712	0.0024	4.8102	0.1181	0.2037	0.0042	2570	24	1787	44	1195	25
A1055.50	10	50	76	0.67	0.0646	0.0018	1.1044	0.0325	0.1240	0.0013	761	60	755	22	754	8

	续	表1														
廿口旦	Ĩ	含量/1	0-6	Th/II			同位素	比值					表面年龄	/Ma		
作前写	Pb	Th	U	I n/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ
A1055.51	20	110	288	0.38	0.0561	0.0008	0.5392	0.0088	0.0697	0.0007	455	33	438	7	435	5
A1055.52	3	36	96	0.37	0.0518	0.0009	0.1863	0.0035	0.0261	0.0003	277	39	174	3	166	2
A1055.53	75	139	356	0.39	0.0917	0.0013	2.5230	0.0420	0.1994	0.0022	1462	27	1279	21	1172	13
A1055.54	7	74	158	0.47	0.0525	0.0015	0.2949	0.0090	0.0407	0.0004	307	67	262	8	257	3
A1055.55	180	167	369	0.45	0.1526	0.0022	9.2759	0.1513	0.4408	0.0048	2376	24	2366	39	2354	26
A1055.56	6	75	119	0.63	0.0526	0.0014	0.3121	0.0086	0.0430	0.0005	312	59	276	8	272	3
A1055.57	1	7	9	0.73	0.0673	0.0011	1.2497	0.0226	0.1347	0.0015	847	34	823	15	814	9
A1055 58	28	28	62	0.45	0 1408	0.0020	8 0122	0 1334	0.4127	0.0045	2237	25	2232	37	2227	25
A 1055 59	16	157	394	0.40	0.0522	0.0010	0.2784	0.0058	0.0387	0.0004	294	45	249	5	245	3
A 1055 60	50	47	121	0.39	0.1366	0.0019	7 2465	0.1124	0.3848	0.0039	2184	25	212	33	2099	21
A 1055 61	4	41	00	0.32	0.0518	0.0010	0.3052	0.0062	0.0427	0.00055	270	13	2142	6	200	3
A 1055 62	122	197	224	0.42	0.1661	0.0010	10.0020	0.1725	0.4760	0.0000	2510	24	270	40	2510	26
A1055.62	212	256	204	0.60	0.1645	0.0024	10.9030	0.1735	0.4700	0.0049	2502	24	2315	20	2310	20
A1055.05	215	201	290	0.05	0.1045	0.0025	10.4466	0.1039	0.4007	0.0048	2303	24	2475	39	420	23
A1055.64	00	391	808	0.48	0.0507	0.0016	0.3497	0.01//	0.0703	0.0007	480	03	445	14	438	2
A1055.65	20	288	424	0.68	0.0517	0.0010	0.2930	0.0061	0.0411	0.0005	272	45	261	5	260	3
A1055.66	11	159	275	0.58	0.0529	0.0019	0.2587	0.0096	0.0355	0.0004	323	83	234	9	225	2
A1055.67	51	15	299	0.05	0.0883	0.0012	2.1903	0.0386	0.1799	0.0024	1389	27	1178	21	1067	14
A1055.68	33	482	692	0.70	0.0530	0.0029	0.3153	0.0174	0.0431	0.0005	330	125	278	15	272	3
A1055.69	5	63	119	0.53	0.0526	0.0014	0.3131	0.0086	0.0432	0.0004	312	60	277	8	272	3
A1055.70	4	34	83	0.41	0.0529	0.0010	0.3023	0.0062	0.0414	0.0004	326	43	268	6	262	3
A1055.71	4	72	75	0.96	0.0516	0.0009	0.2933	0.0054	0.0412	0.0004	270	39	261	5	260	3
A1055.72	19	152	393	0.39	0.0530	0.0033	0.3405	0.0216	0.0466	0.0005	330	141	298	19	293	3
A1055.73	4	52	78	0.66	0.0530	0.0012	0.3611	0.0086	0.0494	0.0005	329	52	313	7	311	3
A1055.74	4	95	79	1.20	0.0527	0.0012	0.3256	0.0075	0.0448	0.0005	316	50	286	7	283	3
A1055.75	9	44	145	0.30	0.0549	0.0009	0.4793	0.0085	0.0633	0.0006	410	37	398	7	396	4
A1055.76	86	142	240	0.59	0.1105	0.0016	4.9002	0.0775	0.3217	0.0033	1807	26	1802	29	1798	18
A1055.77	106	180	190	0.95	0.1606	0.0023	10.0495	0.1544	0.4537	0.0045	2462	24	2439	37	2412	24
A1055.78	26	532	438	1.22	0.0535	0.0008	0.3508	0.0060	0.0476	0.0005	349	36	305	5	300	3
A1055.79	4	77	85	0.91	0.0519	0.0010	0.3064	0.0061	0.0428	0.0005	281	43	271	5	270	3
A1055.80	9	88	186	0.47	0.0529	0.0009	0.3293	0.0063	0.0451	0.0005	327	39	289	6	284	3
A1055.81	59	49	168	0.29	0.1148	0.0017	5.3499	0.0849	0.3381	0.0035	1876	26	1877	30	1877	19
A1055.82	5	46	96	0.48	0.0534	0.0022	0.3275	0.0135	0.0445	0.0005	346	92	288	12	281	3
A1055.83	30	49	100	0.49	0.1689	0.0024	5.8079	0.1244	0.2495	0.0043	2546	24	1948	42	1436	24
A1055.84	15	2	47	0.04	0.1200	0.0017	5.4568	0.0874	0.3299	0.0036	1956	25	1894	30	1838	20
A1055.85	1	24	23	1.03	0.0525	0.0010	0.2935	0.0058	0.0405	0.0005	307	43	261	5	256	3
A1055.86	107	113	413	0.27	0.1607	0.0023	5.1064	0.0907	0.2305	0.0030	2463	24	1837	33	1337	18
A1055.87	8	153	498	0.31	0.0569	0.0009	0.1160	0.0020	0.0148	0.0002	488	34	111	2	95	1
A1055.88	75	63	142	0.45	0.1692	0.0024	10.9201	0.1713	0.4681	0.0047	2550	24	2516	39	2475	25
A1055.89	14	239	263	0.91	0.0523	0.0010	0.3115	0.0062	0.0432	0.0005	300	43	275	6	273	3
A1055.90	8	152	164	0.93	0.0522	0.0013	0.3016	0.0077	0.0419	0.0004	296	55	268	7	264	3
A1055.91	7	190	115	1.66	0.0529	0.0026	0.3174	0.0161	0.0435	0.0005	325	111	280	14	274	3
A1055.92	168	259	501	0.52	0.1093	0.0019	4.5714	0.0836	0.3034	0.0031	1788	31	1744	32	1708	18
A1055.93	13	140	280	0.50	0.0528	0.0009	0.3114	0.0058	0.0428	0.0004	319	40	275	5	270	3
A1055.94	98	543	830	0.65	0.0607	0.0013	0.8613	0.0189	0.1029	0.0011	629	45	631	14	631	7
A1055.95	35	72	103	0.70	0.1151	0.0016	4,6373	0.0728	0.2923	0.0030	1881	26	1756	28	1653	17
A1055.96	1	15	14	1.07	0.0556	0.0045	0.4920	0.0397	0.0642	0.0007	435	180	406	33	401	5
A1055.97	3	45	78	0.58	0.0528	0.0028	0.2639	0.0146	0.0363	0.0006	318	120	238	13	230	4
A1055.98	8	104	180	0.58	0.0514	0.0009	0.3004	0.0058	0.0424	0.0004	257	42	267	5	268	3
A 1055 99	143	63	476	0.13	0 1162	0.0017	4 7868	0.0766	0.2987	0.0032	1899	26	1783	29	1685	18
A 1055 100	8	46	124	0.38	0.0548	0.0008	0 4887	0.0082	0.0646	0.00052	406	34	404	29 7	403	4
111022.100	0		144	0.50	0.0040	0.0000	0.7002	0.0002	0.0040	0.0007		J-1		/	-03	-

2006);祁连山东段的陇山岩群内发育较多早古生 代辉绿岩墙,成岩年龄为440.9 Ma,变质年龄为 413 Ma;祁连造山带靖远地区清凹山石英闪长岩 K-Ar 年龄为402~445 Ma(王金荣,2006);李猛等 (2015)在对北祁连造山带肃南地区阴沟群粗砂岩 碎屑锆石进行 LA-ICP-MS U-Pb 年龄测定时,分 别获得最小谐和年龄(425±2)Ma和(425±5)Ma;北 秦岭造山带同样经历了该期岩浆热事件(图6b),北 秦岭西段和北祁连东端均发育 391~450 Ma 俯冲碰 撞型花岗岩(徐学义等,2008b),孟祥舒等(2017)获 得秦一祁结合部糜楞岩化闪长岩 U-Pb 年龄为 (418±3.2)Ma(表2)。据此笔者推断鄂尔多斯盆地 西南缘早古生代的物源主要来自北祁连造山带和 北秦岭造山带。

1744~2150 Ma:峰值年龄为1899 Ma,该区间错 石颗粒14颗,占总数的14%,Th/U比值为0.04~ 1.02,主体表现为岩浆成因锆石,部分为变质成因锆 石。研究认为华北板块发生有1900~2300 Ma的陆 内造山,记录了华北克拉通裂谷形成到闭合的演化 过程(翟明国,2004),表明了华北板块在中元古代 可能为周边地区提供物源。华北克拉通西北缘孔 兹岩系大量发育该期岩体(陈岳龙等, 2012),其同 碰撞期的花岗岩锆石 U-Pb 年龄为 (1958±34) Ma (李正辉等, 2013; Dan et al., 2014), 千里山孔兹岩系 年龄集中在 2000~2300 Ma (Yin et al., 2009)。阿拉 善地块同样发育古元古代构造热事件(图6e)(耿元 生等,2007;周喜文和耿元生,2010),李俊建等 (2004)获得巴彦乌拉片麻状花岗闪长岩U-Pb年龄 为2080 Ma,古元古代岩体是阿拉善地块重要的基 底(张进等,2012),北祁连造山带陇县白家沟花岗 岩存在(1846±32)Ma的加权平均年龄(尤佳等, 2014)(表2);杨甫等(2015)总结北祁连造山带古元 古代晚期存在1982 Ma的峰值年龄等(图 6c);徐欢 (2019)获得华北板块西南缘陇县钾长花岗岩U-Pb 年龄为(2018±16)Ma。综上所述,阿拉善地块、华北 板块和北祁连造山带均有可能为鄂尔多斯盆地西 南缘提供古元古代碎屑物源。

2241~2740 Ma:峰值年龄为2493 Ma,该区间锆 石颗粒14颗,占总数的14%,Th/U比值为0.27~ 0.95,表现为岩浆成因锆石,后期经历变质事件,锆 石颜色较深,内部结构浑浊不清,且锆石磨圆度较

好,体现了古老锆石多期变质,多次搬运的特征。 华北地块内部2500 Ma时期的构造热事件较为发育 (林少泽等,2019;李立兴等,2022),沈其韩等 (2005)在华北板块内部发现了古元古代2500~2550 Ma的峰值年龄;张维杰等(2000)在固阳获得英云 闪长岩锆石 U-Pb 年龄为(2440±35)Ma; 陶继雄和 胡凤翔(2002)在固阳西红山乡获得石英闪长岩单 颗粒锆石 U-Pb 年龄为 2575~2676 Ma, 祁连地区同 样存在1900 Ma、2350 Ma、2500 Ma的构造岩浆峰 值年龄(何艳红等,2005)(表2),宫江华等(2012)获 得了阿拉善地块北大山岩体(2496±11)Ma的谐和 年龄,张进等(2012)获得了阿拉善地块内部古元古 代2329 Ma的峰值年龄(图6e),且存在与本次碎屑 锆石中最老年龄相似的锆石年龄(耿元生等, 2006)。综上所述,华北板块基底结晶岩系、北祁连 造山带和阿拉善地块的岩浆热事件与本次研究的 古元古代一新太古代的年龄具有较好的对应性,推 测新太古代华北板块老基底、祁连造山带以及阿拉 善地块古老基底为中生代鄂尔多斯盆地西南缘提 供物源。

本次研究存在9颗615~1623 Ma的锆石颗粒, 与格林威尔造山运动具有较好的对应性。新元古 代岩浆热事件在鄂尔多斯西南缘周缘地区均有发 生(周喜文和耿元生,2010)。

素岭、祁连造山带结合部位的新元古代岩体较 多,如木其滩岩组斜长角闪岩(762.5±4.6)Ma(张志 国等,2011)、祁连山东段兴隆山群火山岩723~824 Ma(徐学义等,2008a)、西秦岭新阳花岗质片麻岩 (935.5±3.1)Ma(刘会彬等,2006)(表2)。杨甫等 (2015)(图6b、c)提出北秦岭、北祁连造山带均发育 中元古代锆石,此外有报道称贺兰山地区同样可以 为研究区提供中一新元古代锆石(图6d)(董春艳 等,2012)。由于锆石颗粒较少,且较为分散,推测 物源区主要为秦祁造山带,同时不排除贺兰山地区 向研究区提供物源的可能。

5.2 盆山演化过程

本次研究的鄂尔多斯盆地西南缘洛河组碎屑 锆石年龄与周缘地区发生的构造运动事件有着较 好的对应性,不同的年龄区间对应着不同的地质事 件。笔者认为研究区晚三叠世一晚泥盆世沉积物 主要来源于兴蒙造山带以及北秦岭造山带印支期

表2 鄂尔多斯盆地西南缘周缘代表性地质体新太古代—古生代年龄统计

 Table 2 Statistics of ages for Neoproterozoic to Paleozoic of representative geological bodies in the adjacent areas of southwestern Ordos Basin

事件	地质体	年龄/Ma	测试方法	资料来源		
	华北板块西红山乡获得石英闪长岩	2575~2676	LA-ICP-MS	陶继雄等,2002		
新太古代末—古元	华北板块固阳英云闪长岩	2440±35	LA-ICP-MS	张维杰等,2000		
古代初期	北祁连东段陇山杂岩长英质片麻岩	1900,2350,2500	LA-ICP-MS	何艳红等,2005		
	阿拉善地块叠布斯格岩群	1926	LA-ICP-MS	耿元生等,2010		
	阿拉善地块哈拉陶勒盖角闪斜长片麻岩	2700	SHRIMP	耿元生等,2006		
	阿拉善地块北大山岩浆岩	2496±11	LA-ICP-MS	宫江华等,2012		
	华北板块西北缘花岗岩	1958±34	LA-ICP-MS	李正辉等,2013		
	华北板块西北缘千里山孔兹岩系	2000~2300	LA-ICP-MS	Yin et al., 2009		
古元古代中一晚期	阿拉善地块巴彦乌拉片麻状花岗闪长岩	2080	LA-ICP-MS	李俊建,2004		
	阿拉善地块东缘	1900~1950	LA-ICP-MS	耿元生等,2010		
	北祁连造山带白家沟花岗岩	1846±32	LA-ICP-MS	尤佳等,2014		
	华北板块西南缘陇县钾长花岗岩	2018±16	LA-ICP-MS	徐欢,2019		
	秦一祁造山带结合部位木其滩岩组斜长角闪岩	762.5±4.6	LA-ICP-MS	张志国等,2011		
中一新元古代	祁连山东段兴隆山群火山岩	723~824	LA-ICP-MS	徐学义等, 2008a		
	西秦岭新阳花岗质片麻岩	935.5±3.1	LA-ICP-MS	刘会彬等,2006		
	秦-祁造山带结合部位陇山岩群	929	LA-ICP-MS	徐可心等,2018		
	北秦岭罗汉寺岩群辉长岩脉	475±4	LA-ICP-MS	刘军锋等,2007		
	秦、祁造山带结合部位川草铺花岗岩	434±10	LA-ICP-MS	Zhang et al., 2006		
	秦、祁造山带结合部位阎家店闪长岩	440.2±0.92	LA-ICP-MS	裴先治等,2007		
	秦、祁造山带结合部位阎家店闪长岩	441±10	LA-ICP-MS	Zhang et al., 2006		
加里东期	祁连山东段陇山岩群辉绿岩墙	440.9	LA-ICP-MS	徐学义等,2008b		
	祁连东段清凹山石英闪长岩	402~445	K–Ar	王金荣等,2006		
	北祁连造山带阴沟群粗砂岩	425±2	LA-ICP-MS	李猛等,2015		
	北秦岭西段与北祁连东段花岗岩	391~450	LA-ICP-MS	徐学义等,2008a		
	北秦岭早古生代岩浆岩	420~450	LA-ICP-MS	张成立等,2013		
	秦-祁结合部糜楞岩化闪长岩	418±3.2	LA-ICP-MS	孟祥舒等,2017		
	兴蒙造山带平泉地区砂岩	250~330	LA-ICP-MS	马收先等,2011		
	兴蒙造山带碎屑岩、变质岩、变岩浆岩	250~350	LA-ICP-MS	陈岳龙等,2012		
	兴蒙造山带狼山岩体	267~302	K–Ar	陈登超等,2010		
海西期	兴蒙造山带东升庙二长花岗岩体	259.4±3.3	LA-ICP-MS	吴亚飞等,2013		
	阿拉善地块东北缘霍各乞辉长-闪长岩	273.9±1.2	LA-ICP-MS	皮桥辉等,2010		
	西秦岭江里沟花岗岩	264.0±1.4	LA-ICP-MS	孙小攀等,2013		
	东阿拉善波罗斯坦庙杂岩	242~284	LA-ICP-MS	邹雷等,2019		
	北秦岭花岗岩	256±4	LA-ICP-MS	李侃等,2015		
	秦岭造山带黑沟峡火山岩	221,242	Rb-Sr,Sm-Nd	李曙光等,1996		
	西秦岭糜署岭花岗岩	237	LA-ICP-MS	李永军等,2004		
印支期	草关地区花岗岩	205	LA-ICP-MS	李永军等,2004		
	夏河地区岩体	238	LA-ICP-MS	金惟浚等,2005		
	西秦岭厂坝花岗闪长岩	209~215	LA-ICP-MS	魏然等,2017		
	西秦岭江里沟复式岩体	229.1±1.8	LA-ICP-MS	路东宇等,2017		

图7 盆山演化过程模式简图(据陈世悦,2000;王银川,2013;罗顺社等,2017) Fig.7 The model of basin mountain evolution(after Chen Shiyue., 2000; Wang Yinchuan., 2013; Luo Shunshe et al., 2017)

俯冲碰撞的岩浆活动;中奥陶世一晚泥盆世的沉积 物主要受秦一祁造山带加里东期的俯冲造山运动 控制;中一新元古代沉积物可能来自秦祁造山带和 贺兰山地区;古元古代晚期的物源来自阿拉善地 块、北祁连造山带和华北板块变质褶皱基底;新太 古代的碎屑物源则来自华北板块老基底、祁连造山 带以及阿拉善地块古老基底。

结合本次研究认为,研究区碎屑锆石在古牛代 一中生代年龄区间为166~472 Ma,碎屑锆石颗粒一 共63颗,占总数的63%,反映了周临地区在古生代 存在较活跃的构造岩浆活动并为研究区提供主要 的物质来源。据记载,震旦纪—寒武纪时期鄂尔多 斯盆地西南部与秦一祁诰山带间发育洋盆,奥陶纪 秦一祁造山带由南西向北东俯冲碰撞(王银川, 2013),岩浆弧及弧前盆地随之形成,早古牛代晚期 一晚古生代早期,洋盆逐渐消亡,弧前盆地随之消 亡,并开始碰撞造山(陈世悦,2000)。秦一祁造山 带与华北板块西南缘在晚古生代中期发生碰撞,此 时秦-祁地区洋陆转化逐渐完成,至二叠纪,秦-祁 造山带全面接触碰撞,其北侧鄂尔多斯西南部地区 由于走滑拉伸作用,演变为山间断陷盆地,标志着 一次盆山转换的完成(罗顺社等,2017;陈世悦, 2000)(图7)。鄂尔多斯盆地受古亚洲洋闭合的影 响,由石炭纪海陆交互环境转变为陆表海环境,盆 地西南缘受到秦一祁造山带印支期的碰撞影响,共 同进入了陆内稳定环境(任军锋,2004)。

6 结 论

(1)鄂尔多斯盆地西南缘镇原地区早白垩世洛河组下段含铀砂岩的碎屑锆石年龄分为166~370

Ma、388~472 Ma两个主峰年龄区间和 1744~2150 Ma、2241~2740 Ma次峰年龄区间以及数据较少且较为离散的中一新元古代年龄 615~1623 Ma。

(2)通过与周缘造山带构造岩浆事件及地层锆 石对比研究发现,研究区洛河组下段含铀砂岩的物 源较为复杂,分别来自北秦岭造山带、北祁连造山 带东段、阿拉善地块、兴蒙造山带、贺兰山孔兹岩系 和华北板块基底6个物源区,其中北祁连造山带东 段、北秦岭造山带为主要物源区。

(3)本次研究发现洛河组下段含铀砂岩古生代 年龄数据较多且较集中,标志着奥陶纪秦一祁造山带 由西南向北东俯冲;志留纪一早泥盆世洋盆逐渐消 亡,中一晚泥盆世秦一祁造山带与鄂尔多斯盆地西南 缘共同形成陆-陆碰撞造山带;石炭纪一二叠纪造山 带逐渐演变为沉积盆地;经印支期秦一祁造山事件 后,鄂尔多斯盆地西南缘沉积环境逐渐稳定。

致谢:感谢中国地质调查局铀矿地质重点实验 室给予的大力支持,感谢两位匿名审稿人对文章提 出的建设性修改意见。

References

- Bai Yunlai, Wang Xinmin, Liu Huaqing, Li Tianshun. 2006. Determination of the borderline of the western Ordos Basin and its geodynamics Background[J]. Acta Geologica Sinica, 80(6): 792– 813(in Chinese with English abstract).
- Belousova E A, Griffin W L, O' Reilly S Y, Fisher N J. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions and Mineralogy and Petrology, 143: 60–622.
- Chen Bin, Zhao Guochun, Simon W. 2001. Subduction and Collision– related granitoids from southern Sonidzuoqi, Inner Mongolia: Isotopic ages and tectonic implications[J]. Geological Review, 47 (4): 361–367(in Chinese with English abstract).

质

- Chen Dengchao, Zhao Xinming, Deng Jian. 2010. Redefinition of Upper Triassic strata on the northern margin of Alxa block: Constraints from Laser ICP–MS detrital zircon U–Pb ages[J]. Acta Petrologica et Mineralogica, 29(3): 258–270 (in Chinese with English abstract).
- Chen Shiyue. 2000. The basin- range coupling in southern North China block during the Late Palaeozoic to Triassic[J]. Sedimentary Geology and Tethyan Geology, 20(3): 37-43(in Chinese with English abstract).
- Chen Yuelong, Li Dapeng, Wang Zhong, Liu Jinbao, Liu Changzheng. 2012. History of formation and evolution on the crust around the Ordos Basin: Evidences from U– Pb dating and Hf isotopic composition of zircons[J]. Earth Science Frontiers, 19(3): 149–166 (in Chinese with English abstract).
- Cheng Xianyu, Li Yike, Dong Manhua, Cao Kan. 2019. Age and geological significance of ore-bearing strata of Tebai gold deposit in Alxa Right Banner Area[J]. Journal of Jilin University(Earth Science Edition), 49(6): 1565–1577 (in Chinese with English abstract).
- Crofu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53: 469– 495.
- Dan W, Li X H, Wang Q, Wang X C, Liu Y, Wyman D A. 2014. Paleoproterozoic S- type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break- off[J]. Precambrian Research, 254: 59-72.
- Dong Chunyan, Wan Yusheng, Xu Zhongyuan, Liu Dunyi, Yang Zhensheng, Ma Mingzhu, Xie Hangqiang. 2012. Late Neoarchean magamatism identified in Daqingshan, Inner Mongolia:SHRIMP zircon U-Pb dating[J]. Science in China (Series D), 42(12): 1851– 1862 (in Chinese with English abstract).
- Feng Xiaoxi, Teng Xueming, He Youyu. 2019. Preliminary discussions on the metallogenesis of the Dongshenguranium orefields in the Ordos basin[J]. Geological Survey and Research, 42(2): 96–108(in Chinese with English abstract).
- Geng Yuansheng, Wang Xinshen, Shen Qihan, Wu Chunming. 2006. Redefinition of the Alxa Group- complex (Precambrian metamorphic basement) in the Alxa area, Inner Mongolia[J]. Geology in China, 33(1): 138-145 (in Chinese with English abstract).
- Geng Yuansheng, Wang Xinshen, Shen Qihan, Wu Chunming. 2007. Chronology of the Precambrian metamorphic series in the Alxa area,Inner Mongolia[J]. Geology in China, 34(2): 251–261(in Chinese with English abstract).
- Gong Jianghua, Zhang Jianxin, Yu Shengyao, Li Huaikun, Hou Kejun. 2012. 2.5 Ga TTG rocks in the western Alxa Block and their

implications[J]. Science Bulletin, 57(28/29): 2715-2728(in Chinese).

- Hao Yichun, Su Deying, Li Yougui. 1986. Cretaceous in China[M]. Beijing: Geological Publishing House (in Chinese).
- He Yanhong, Sun Yong, Chen Liang, Li Haiping, Yuan Honglin, Liu Xiaoming. 2005. Zircon U– Pb chronology of Longshan comples by LA– ICP– MS and its geological significance[J]. Acta Petrologica Sinica, 21(1): 125–134(in Chinese with English abstract).
- He Zhongbo, HuangZhixin, Guo Qiang, Zhang Jianjun, Xin Xiu. 2013. Jurassic sandstone type in Karamay area, Junggar basin, Xinjiang: Discussion on prospecting direction of uranium deposit[J]. Acta Mineralogica Sinica, (supp.): 212–213(in Chinese with English abstract).
- Huang Xifeng, Qian Zhangzhi, Lu Dongxia, Wu Wenkui, Wang Cheng, Lu Yanjun. 2009. Element geochemistry and depositional setting of Ordovician Miboshan Formation in Central– Southern Helan Mountain[J]. Acta Geoscientica Sinica, 30(1): 65–71(in Chinese with English abstract).
- Jiao Yangquan, Chen Anping, Wang Minfang, Wu Liqun, Yuan Haitao, Yang Qin, Zhang Chengze, Xu Zhicheng. 2005. Genetic analysis of the bottom sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive base of spatial orientation of sandstone– type uranium deposit[J]. Acta Sedimentologica Sinica, 23(3): 271–279 (in Chinese with English abstract).
- Jin Ruoshi, Teng Xueming. 2022. Large scale sandstone-type uranium mineralization in northern China[J]. North China Geology, 45(1): 43-57(in Chinese with English abstract).
- Jin Ruoshi, Huang Pengtao, Miao Peisen, Feng Xianxi, Tang Chao, Li Guangyao. 2014. Metallogenic conditions and propecting targeting of the Jurassic sand type uranium deposits on the eastern margin of Junggar Basin[J]. Geological Bulletin of China, 33(2/3): 359–369 (in Chinese with English abstract).
- Jin Weijun, Zhang Qi, He Dengfa, Jia Xiuqin. 2005. SHRIMP dating of adakites in western Qinling and their implications[J]. Acta Petrologica Sinica, 21(3): 959–966(in Chinese with English abstract).
- Li Junjian, Luo Hui, Zhou Hongying, Sang Haiqing, Tan Zhian, Wang Shouguang, Sun Zhengping. 2004. Metallogenic epoch of Zhulazaga gold deposit in Alxa area, Inner Mongolia Autonomous Region[J]. Geochimica, 33(6): 663–669(in Chinese with English abstract).
- Li Kan, Guo Anlin, Gao Chunyun, Li Xinghui. 2015. A tentative discussion on the source area of the Late Triassic Liuyehe basin in North Qinling Mountains and its relationship with the Ordos basin: Evidence from LA-ICP-MS U-Pb dating of detrital zircons[J]. Geological Bulletin of China, 34(8): 1426-1437(in Chinese with English abstract).

- Li Lixing, Li Houmin, Fu Jianfei, Ma Yubo, Yao Yuzeng, Luan Jinpeng. 2022. A new type of Nb–Ta mineralization discovered in the Neoarchean Anshan– type iron deposit of the northern North China Craton[J]. Geology in China, 49(4): 1353–1354(in Chinese with English abstract).
- Li Meng, Wang Chao, Li Rongshe, Peng Yan. 2015. Age and provenance of the Yingou Group in Sunan area of North Qilian Mountain: Evidence from detrital zircon U-Pb dating[J]. Geology in China, 42(3): 601-615(in Chinese with English abstract).
- Li Shuguang, Sun Weidong, Zhang Guowei, Chen Jiayi, Yang Yongcheng. 1996. Chronology and geochemistry of the Heigouxia metamorphic volcanic rocks in the Mianlue tectonic belt of the Southern Qinling Mountains—Evidence for the Paleozoic ocean basin and its closure age[J]. Science in China (Series D), (3): 223–230 (in Chinese).
- Li Yongjun, Li Zhucang, Ding Sanping, Liu Zhiwu, Li Minxian, Li Jinbao. 2004. Petrology fetures and magma mingling marks of the Wenquan granite from western Qinling[J]. Journal of Earth Sciences and Environment, 26(3): 7–12(in Chinese with English abstract).
- Li Zheng Hui, Liu Xiaoming, Dong YunPeng, Xiao Zhibin. 2013. Geochemistry and zircon U-Pb age of the Paleoproterozoic syncollisional granites in Helanshan region and its geological significance[J]. Acta Petrologica Sinica, 29(7): 2405-2415(in Chinese with English abstract).
- Li Ziying, Liu Wusheng, Li Weitao, Li Xide, Qin Mingkuan, Cai Yuqi, Zhang Yunlong, He Sheng, Wu Qubo, Qiu Linfei, Liu Chiheng, Zhu Pengfei, Ji Hongwei, Guo Jian. 2022. Exudative metallogeny of the Hadatu sandstone-type uranium deposit in the Erlian Basin, Inner Mongolia[J]. Geology in China, 49(4): 1009– 1047(in Chinese with English abstract).
- Lin Shaoze, Wang Fei, Xie Chenglong, Xiang Biwei, Zhao Tian, Zhu Guang. 2019. Early Cretaceous structural evolution and formation model of the Kalaqin metamorphic core complex in the northern margin of the North China Craton[J]. Geotectonica et Metallogenia, 43(1): 1–16(in Chinese with English abstract).
- Liu Chiyang, Zhan Hongge, Gui Xiaojun, Yue Leping, Zhao Junfeng, Wang Jianqiang. 2006. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 80(5): 617–638 (in Chinese with English abstract).
- Liu Huibin, Pei Xianzhi, Ding Sanping, Li Zuochen, Sun Renqi. 2006. Zircon LA- ICP- MS U- Pb dating of Neoproterozoic granitic gneiss in Yuanlong area, Tianshui City, Western Qinling and its geological significance[J]. Geological Bulletin of China, 25(11): 1315-1320 (in Chinese with English abstract).
- Liu Junfeng, Sun Yong, Zhang Hong. 2007. Zircon age of Luohansi

group in the Northern Qinling and their geological significance[J]. Journal of Northwest University(Natural Science Edition), 37(6): 907–911(in Chinese with English abstract).

- Liu S W, Zhao G C, Wilde S A, Shu G M, Sun M, Li Q G, Tian W, Zhang J. 2006. Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: Constraints on the tectonothermal evolution of the Trans–North China Orogen[J]. Precambrian Research, 148 (3/4): 205–224.
- Liu Y S, Gao S, Hu Z C, et al. 2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U- Pb dating, Hf Isotopes and trace elements in zircons of Mantle Xenoliths[J]. Journal of Petrology, 51(1/2): 537– 571.
- Lu Dongyu, Ye Huishou, Cao Jing, Qi Lianzhong, Wang Peng, Chao Weiwei.2017. LA- ICP- MS zircon U- P b ages, Hf isotopic compositions, geochemistry characteristics and its geological significance of Jiangligou composite granite, West Qingling Orogen[J]. Acta Petrologica Sinica, 33(3): 942-962(in Chinese with English abstract).
- Ludwig K R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, California, Berkeley, 39.
- Luo Biji.2013.Petrogenesis and Geodynamic Processes of the Indosinian Magmatism in the West Qinling Orogenic Belt, Central China[D]. Wuhan: China University of Geosciences (in Chinese with English abstract).
- Luo Shunshe, Pan Zhiyuan, Lü Qiqi, He Weiling, Wen Shuo. 2017. The Upper Paleozoic detrital zircon U– Pb geochronology and its tectonic significance in southwestern Ordos Basin [J]. Geology in China, 44(3): 556–574(in Chinese with English abstract).
- Ma Shouxian, Meng Qingren, Qu Yongqiang. 2011. A study of detrital zircons of Late Carboniferous- Middle Triassic strata in the northern margin of North China block and its geologicalim plication[J]. Geological Bulletin of China, 30(10): 1485-1500(in Chinese with English abstract).
- Meng Xiangshu, He Yanhong, Chen Liang, Wu Lei. 2017. The discovery of the Early Paleozoic adakitic rocks in the conjunction of the Qinling and Qilian orogenic belts and its implications on the orogenic processes[J]. Acta Geologica Sinica, 91(12): 2676–2696 (in Chinese with English abstract).
- Pei Xianzhi, Sun Renqi, Ding Sanping, Liu Huibin, Li Zuochen, Liu Zhanqing, Meng Yong. 2007. La–ICP–MS zircon U–Pb dating of the Yanjiadian diorite in the eastern Qilian Mountains and its geological significance[J]. Geology in China, 34(1): 8–16(in Chinese with English abstract).
- Peng Runmin, Zhai Yusheng, Han Xuefeng, Wang Zhigang, Wang Jianping, Shen Gunli, Chen Xifeng. 2007. Mineralization response

质

to the structural evolution in the Langshan orogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 23(3): 679–688(in Chinese with English abstract).

- Pi Qiaohui, Liu Changzheng, Chen Yue, Long Li Yongquan, Li Dapeng. 2010. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 29(3): 437–451(in Chinese with English abstract).
- Ren Junfeng. 2004. Paleozic Tectonic Transformation of the North Qinling Belt in Shanxi Province[D]. Xi'an: Northwest University, 1–69 (in Chinese with English abstract).
- Shen Qihan, Geng Yuansheng, Song Biao, Wan Yusheng. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze Blocks, and Qinling–Dabie Orogenic Belt[J]. Acta Geologica Sinica, 79(5): 616– 627(in Chinese with English abstract).
- Sun Xiaopan, Xu Xueyi, Chen Junlu, Cao Ting, Li Ting, Li Xiaobing, Li Xiaoying. 2013. Geochemical characteristics and chronology of the Jiangligou granitic pluton in West Qinling and their geological significance[J]. Acta Geologica Sinica, 87(3): 330–342(in Chinese with English abstract).
- Tao Jixiong, Hu Fengxiang. 2002. The formation of the garnetbearing migmatitic granite in Zhuozishan area, Inner Mongolia, China[J]. Progress in Precambrian Research, 25(1): 59-64 (in Chinese with English abstract).
- Wang Jinrong. 2005. Early Paleozoic Tectonomagmatism and Mineralization in the Eastern Part of the North Qilian Orogenic Belt[D]. Gansu: Lanzhou University(in Chinese with English abstract).
- Wang Minfang, Jiao Yangquan, Yang Qin, Wu Liqun, Zhang Chengze, Yuan Haitao, Xu Zhicheng. 2006. Relationship between uranium anomaly and depositional system of Yan'an Formation, north–east Margin of Ordos Basin[J]. Geoscience, 20(2): 307–314(in Chinese with English abstract).
- Wang Yinchuan. 2013. Geological Characteristics and Tectonic Significance of Caledonian Collision-post Collision Type Granite at the Conjunction of Qinling and Qilian[D]. Xi'an: Chang'an University, 1–86 (in Chinese with English abstrtact)
- Wei Ran, Wang Yitian, Hu Qiaoqing, Huang Shikang, Yuan Qunhu, Bai Quanliang, Hu Wenrong, Zhang Xiangjun, Cai Tuo. 2017. Zircon U– Pb ages and Hf isotope compositions of Changba and Huangzhuguan plutons in West Qinling, and their geological significance[J]. Mineral Deposits, 36(6): 1367–1386(in Chinese with English abstract).
- Wu Yafei, Zeng Jiannian, Cao Jianjin, Wu Zhengquan, Chen Jinhua, Zhou shuda, Lu Shunfu, Li Xiaofen. 2013. Zircon U–Pb ages and Hf isotopes of Hercynian intrusion in Dongshengmiao, Inner

Mongolia[J]. Geological Science and Technology Information, 32 (6): 22–30 (in Chinese with English abstract).

- Xia Linyi, Xia Zuchun, Ren Youxiang, Xu Xueyi, Yang Hequn. 2001. Tectonic Volcanic Magmatic Metallogenic Dynamics of the North Qilian Mountains[M]. Beijing: Geological Publishing House, 1– 403(in Chinese with English abstract).
- Xia Linyi, Xia Zuchun, Xu Xueyi. 1996. Petrogenesis of Marine Igneous Rocks in the North Qilian Mountains[M]. Beijing: Geological Publishing House, 1–403(in Chinese with English abstract).
- Xu Huan. 2019. Tectonic Magmatism of Middle–Late Paleoproterozoic in the Southwestern Ordos Block[D]. Xi'an: Northwestern University, 1–148(in Chinese with English abstract).
- Xu Kexin, He Yanhong, Chen Liang, Meng Xiangshu, Wu Lei. 2018.
 Studies on the detrital zirco n U- Pb dating of the Longshan complex in the tectonic conjunction of the Qinling-Qilian orogen: Provenance and tectonic setting[J]. Geological Science, 53(3): 1054-1074(in Chinese with English abstract).
- Xu Xueyi, He Shiping, Wang Hongliang, Zhang Erpeng, Chen Junlu, Sun Jiming. 2008b. Tectonic framework of North Qinling Mountian and North Qilian Mountain conjunction area in Early Paleozoic: A study of the evidences from strata and tectonic– magmatic events[J]. Northwestern Geology, 41(1): 1– 21(in Chinese with English abstract).
- Xu Xueyi, Wang Hongliang, Chen Junlu, He Shiping, Wu Peng, Cao Ting.2008a.Zircon U-Pb dating and petrogenesis of Xinglongshan Group basic volcanic rocks at eastern segment of Middle Qilian Mts[J]. Acta Petrologica Sinica, 24(4): 827-840(in Chinese with English abstract).
- Yan Yi, Lin Ge, Li Zian. 2003. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 27(2): 184–190(in Chinese with English abstract).
- Yang Hua, Liu Ziliang, Zhu Xiaomin, Deng Xiuqin, Zhang Zhongyi, Qi Yalin. 2013. Provenance and sedimentary system characteristics of Yanchang Formation of Upper Triassic in the southwest margin of Ordos Basin[J]. Earth Science Frontiers, 20(2): 10– 18(in Chinese with English abstract).
- Yang Pu, Chen Gang, Chen Qiang, Ding Chao, Gao Lei, Lei Panpan, Zhang Wenlong, Shi Xiaolin, Tong Mingjun. 2015. U–Pb dating of detrital zircon from Upper Ordovician Pingliang Formation in southwest margin of the Ordos Basin and provenance analysis[J]. Geological Review, 61(1): 172–182(in Chinese with English abstract).
- Yin C Q, Zhao G C, Sun M, Xia X P, Wei C J, Zhou X W, Leung W H. 2009. LA–ICP–MS U–Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the western block of the North China Craton[J]. Precambrian Research, 174(1/

- You Jia, Luo Jinhai, Cheng Jiaxiao, Wang Shidi, Xu Huan, Zhao Hui. 2014. Paleoproterozoic granite porphyry in southwestern margin of North China Craton and its geological significance[J]. Geological Journal of China Universities, 20(3): 368–377(in Chinese with English abstract).
- Zhai Mingguo. 2004. Decomposition of 2.1–1.7 Ga geological event group in North China Craton and its tectonic significance[J]. Acta Petrologica Sinica, 20(6): 1343–1356(in Chinese with English abstract).
- Zhang Chengli, Liu Liang Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in the North Qinling belt[J]. Science Bulletin, 58(23): 2323–2329 (in Chinese).
- Zhang Guowei, Yuan Xuecheng, Zhang Benren, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 1–806 (in Chinese with English abstract).
- Zhang H F, Zhang B R, Harris N, Zhang L, Chen Y L, Chen N S. 2006. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constrains on petrogenesis and tectonic affinity[J]. Journal of Asian Earth Sciences, 27: 751-764.
- Zhang Jin, Li Jinyi, Liu Jianfeng, Li Yanfeng, Qu Junfeng, Feng Qianwen. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block[J]. Acta Petrologica Sinica, 28(9): 2912–2934(in Chinese with English abstract).
- Zhang Jindai, Xu Gaozhong, Lin Jinrong, Peng Yunbiao, Wang Guo. 2010. The implication of six kinds of new sandstone-type uranium deposits to uranium resources potential in North China[J]. Geology in China, 37(5): 1434–1446(in Chinese with English abstract).
- Zhang Ke, Zhou Heping, Liu Zhonghou, Ma Zhanwu. 2009. On the Jurassic west boundary of the Ordos Basin[J]. Geological Review, 55(6): 761–773 (in Chinese with English abstract).
- Zhang Weijie, Li Long, Geng Mingshan. 2000. Petrology and dating of Neo- Archaean intrusive rocks from Guyang area, Inner Mongolia[J]. Earth Science—Journal of China University of Geosciences, 25(3): 221–226 (in Chinese with English abstract).
- Zhang Zhiguo, Chen Junlu, Xu Xueyi, Du Zhigang, Zhang Zhanwu, Wang Hongliang, Li Ping. 2011. Geochronology and geochemistry of the Neo– Proterozoic amphibolites in the Muqitan Formation: Implications for the tectonic evolution of the North Qinling Orogen[J]. Acta Petrologica Sinica, 27(3): 757–769(in Chinese with English abstract).
- Zhao Hualei, Zang Yongliang, Li Jianguo, Zhang Bo, Chen Lulu, Miao

Peisen, Liu Xiaojie. 2022. Preliminary study on the occurrence state of uranium in the Lower Cretaceous Luohe Formation of Pengyang uranium deposit, southwestern Ordos Basin[J]. North China Geology, 45(4): 22–27(in Chinese with English abstract).

- Zhao Junfeng, Liu Chiyang, Yu Lin, Wang Xiaomei. 2008. The transfer of depocenters and accumulation centers of Ordos Basin in Mesozoic and its meaning[J]. Acta Geologica Sinica, 82(4): 540– 552(in Chinese with English abstract).
- Zhao Wenzhi, Wang Xinmin, Guo Yanru, Liu Huaqing, Bai Yunlai. 2006 . Restoration and tectonic reworking of the Late Triassic basin in western Ordos Basin[J]. Petroleum Exploration and Development, 33(1): 6–13(in Chinese with English abstract).
- Zhou Xiwen, Geng Yuansheng. 2009. Metamorphic age of the khondalite series in the Helanshan region:evolution of the western block in the North China Craton[J]. Acta Petrologica Sinica, 25(8): 1843–1852(in Chinese with English abstract).
- Zou Lei, Liu Huaping, Tian Zhonghua, Ji Lei, Shi Jianrong. 2019. Late Paleozoic metamorphic complex of Precambrian metamorphic basement from Eastern Alxa Block: New evidence from zircon LA-ICP-MS U-Pb dating of Boluositanmiao Complex[J]. Earth Science, 44(4): 1406–1436(in Chinese with English abstract).

附中文参考文献

- 白云来, 王新民, 刘化清, 李天顺. 2006. 鄂尔多斯盆地西部边界的确 定及其地球动力学背景[J]. 地质学报, 80(6): 792-813.
- 陈斌, 赵国春, Simon Wilde. 2001. 内蒙古苏尼特左旗南两类花岗岩 同位素年代学及其构造意义[J]. 地质论评, 47(4): 361-367.
- 陈登超,赵省民,邓坚.2010.阿拉善地块北缘乌兰敖包上三叠统地 层的厘定——来自激光ICP-MS碎屑锆石U-Pb年龄的制约[J]. 岩石矿物学杂志,29(3):258-270.
- 陈世悦.2000.华北地块南部晚古生代—三叠纪盆山耦合关系[J].沉 积与特提斯地质,20(3):37-43.
- 陈岳龙, 李大鹏, 王忠, 刘金宝, 刘长征. 2012. 鄂尔多斯盆地周缘地 壳形成与演化历史:来自锆石 U-Pb 年龄与 Hf 同位素组成的证 据[J]. 地学前缘, 19(3):147-166.
- 程先钰,李以科,董满华,曹侃.2019. 阿拉善右旗特拜金矿赋矿地层 时代厘定及其地质意义[J]. 吉林大学学报(地球科学版), 49(6): 1565-1577.
- 董春艳, 万渝生, 徐仲元,刘敦一,杨振升,马铭株,颉颃强. 2012. 华北 克拉通大青山地区古元古代晚期孔兹岩系:锆石 SHRIMP U-Pb 定年[J]. 中国科学: 地球科学, 42(12): 1851-1862.
- 冯晓曦,滕雪明,何友宇.2019.初步探讨鄂尔多斯盆地东胜铀矿田 成矿作用研究若干问题[J].地质调查与研究,42(2):96-108.
- 耿元生, 王新社, 沈其韩, 吴春明. 2006. 内蒙古阿拉善地区前寒武纪 变质基底阿拉善群的再厘定[J]. 中国地质, 33(1): 138-145.
- 耿元生,王新社,沈其韩,吴春明.2007.内蒙古阿拉善地区前寒武纪 变质岩系形成时代的初步研究[J].中国地质,34(1):251-261.

^{2):78-95.}

- 宫江华,张建新,于胜荛,李怀坤,侯可军.2012.西阿拉善地块~2.5 Ga TTG岩石及地质意义[J].科学通报,57(28/29):2715-2728.
- 郝诒纯,苏德英,李友桂,等.1986.中国的白垩系[M].北京:地质出版 社.
- 何艳红, 孙勇, 陈亮, 李海平, 袁洪林, 柳小明. 2005. 陇山杂岩的 LA-ICP-MS 锆石 U-Pb 年龄及其地质意义[J]. 岩石学报, 21(2): 125-134.
- 何中波, 黄志新, 郭强, 张建军, 辛秀. 2013. 新疆准噶尔盆地克拉玛 依地区侏罗系砂岩型铀矿找矿方向探讨[J]. 矿物学报, 增刊: 212-213.
- 黄喜峰,钱壮志,逯东霞,吴文奎,王成,陆彦俊.2009.贺兰山中南段 奥陶系米钵山组的沉积环境与构造背景分析[J].地球学报,30 (1):65-71.
- 焦养泉,陈安平,王敏芳,吴立群,原海涛,杨琴,张承泽,徐志诚. 2005.鄂尔多斯盆地东北部直罗组底部砂体成因分析——砂岩 型铀矿床预测的空间定位基础[J].沉积学报,23(3):371-379.
- 金若时,滕雪明.2022.中国北方砂岩型铀矿大规模成矿作用[J].华 北地质,45(1):43-57.
- 金若时,黄彭涛,苗培森,冯晓曦,汤超,李光耀.2014.准噶尔盆地东 缘侏罗系砂岩型铀矿成矿条件与找矿方向[J].地质通报,33(2/3): 359-369.
- 金惟浚, 张旗, 何登发, 贾秀勤. 2005. 西秦岭埃达克岩的 SHRIMP 定 年及其构造意义[J]. 岩石学报, 21 (3): 959-966.
- 李俊建, 骆辉, 周红英, 桑海清, 覃志安, 王守光, 孙政平. 2004. 内蒙 古阿拉善地区朱拉扎嘎金矿的成矿时代[J]. 地球化学, 33(6): 663-669.
- 李侃, 郭安林, 高春云, 李兴辉. 2015. 北秦岭柳叶河盆地上三叠统物 源区及其与鄂尔多斯盆地的关系[J]. 地质通报, 34(8): 1426-1437.
- 李立兴, 李厚民, 付建飞, 马玉波, 姚玉增, 栾金鹏. 2022. 华北克拉通 鞍山式铁矿床中发现新类型铌钽矿化[J]. 中国地质, 49(4): 1353-1354.
- 李猛, 王超, 李荣社, 彭岩. 2015. 北祁连肃南地区阴沟群形成时代及 沉积源区讨论——碎屑锆石 U-Pb 年龄证据[J]. 中国地质, 42(3): 601-615.
- 李曙光, 孙卫东, 张国伟, 陈家义, 杨永成. 1996. 南秦岭勉略构造带 黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭 合时代的证据[J]. 中国科学(D辑:地球科学), (3): 223-230.
- 李永军,李注苍,丁仨平,刘志武,李民贤,李金宝.2004. 西秦岭温泉 花岗岩体岩石学特征及岩浆混合标志[J]. 地球环境与环境学报, 26(3): 7-12.
- 李正辉,柳小明,董云鹏,肖志斌.2013.贺兰山古元古代同碰撞花岗 岩地球化学、锆石 U-Pb 年代及其地质意义[J].岩石学报,29(7): 2405-2415.
- 李子颖,刘武生,李伟涛,李西德,秦明宽,蔡煜琦,张云龙,何升,吴 曲波,邱林飞,刘持恒,朱鹏飞,纪宏伟,郭建.2022.内蒙古二连 盆地哈达图砂岩铀矿渗出铀成矿作用[J].中国地质,49(4):

1009-1047.

舭

质

- 林少泽, 王飞, 谢成龙, 向必伟, 赵田, 朱光. 2019. 华北克拉通北缘喀 喇沁变质核杂岩早白垩世构造演化过程与形成模式[J]. 大地构 造与成矿学, 43(1): 1-16.
- 刘池洋,赵红格,桂小军,岳乐平,赵俊峰,王建强.2006.鄂尔多 斯盆地演化-改造的时空坐标及其成藏(矿)响应[J].地质学报, 80(5):617-638.
- 刘会彬, 裴先治, 丁仨平, 李佐臣, 孙仁奇. 2006. 西秦岭天水市元 龙地区新元古代花岗质片麻岩锆石 LA-ICP-MS U-Pb年龄及 其地质意义[J].地质通报, 25(11): 1315-1320.
- 刘军锋,孙勇,张红.2007.北秦岭罗汉寺岩群锆石年龄及地质意 义[J].西北大学学报(自然科学版),37(6):907-911.
- 路东宇,叶会寿,曹晶,祁连忠,王鹏,抄尉尉.2017.西秦岭江里沟复 式岩体LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特 征及其地质意义[J].岩石学报,33(3):942-962.
- 罗顺社, 潘志远, 吕奇奇, 何维领, 文硕. 2017. 鄂尔多斯盆地西南 部上古生界碎屑锆石 U-Pb年龄及其构造意义[J]. 中国地质, 44 (3): 556-574.
- 骆必继.2013.西秦岭造山带印支期岩浆作用及深部过程[D].武汉: 中国地质大学.
- 马收先, 孟庆任, 曲永强. 2011. 华北地块北缘上石炭统一中三叠统 碎屑锆石研究及其地质意义[J]. 地质通报, 30(10): 1485-1500.
- 孟祥舒,何艳红,陈亮,务磊.2017.秦一祁构造结合部位早古生代埃 达克岩的发现及其造山作用意义[J].地质学报,91(12):2676-2696.
- 裴先治,孙仁奇,丁仨平,刘会彬,李佐臣,刘战庆,孟勇.2007.陇 东地区阎家店闪长岩LA-ICP-MS 锆石U-Pb测年及其地质意 义[J].中国地质,34(1):8-16.
- 彭润民, 翟裕生, 韩雪峰, 王志刚, 王建平, 沈存利, 陈喜峰. 2007. 内蒙古狼山造山带构造演化与成矿响应[J]. 岩石学报, 23(3): 679-688.
- 皮桥辉,刘长征,陈岳龙,李泳泉,李大鹏.2010.内蒙古霍各乞海 西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 29(3):437-451.
- 任军锋.2004.北秦岭(陕西段)古生代构造体制转换研究[D].西安: 西北大学,1-69.
- 沈其韩, 耿元生, 宋彪, 万渝生. 2005. 华北和扬子陆块及秦岭-大 别造山带地表和深部太古宙基底的新信息[J]. 地质学报, 79(5): 615-627.
- 孙小攀,徐学义,陈隽璐,高婷,李婷,李现冰,李晓英.2013.西秦 岭江里沟花岗岩体地球化学特征、年代学及地质意义[J].地质学 报,87(3):330-342.
- 陶继雄,胡凤翔.2002.内蒙卓资山地区深熔作用形成的石榴混合花 岗岩[J].前寒武纪研究进展,25(1):59-64.
- 王金荣.2006.北祁连造山带东段早古生代构造岩浆作用及成矿的研究[D].甘肃:兰州大学.
- 王敏芳, 焦养泉, 杨琴, 吴立群, 张承泽, 原海涛, 徐志诚. 2006. 鄂

尔多斯盆地东北部延安组铀异常与沉积体系的关系[J]. 现代地质, 20(2): 307-314.

- 王银川.2013. 秦祁结合部位加里东期碰撞--后碰撞型花岗岩地质特征及构造意义[D].西安:长安大学,1-86.
- 魏然, 王义天, 胡乔青, 黄诗康, 袁群虎, 柏全良, 胡文荣, 张湘君, 蔡 拓. 2017. 西秦岭厂坝、黄渚关岩体的锆石 U-Pb年龄、Hf同位素 组成及其地质意义[J]. 矿床地质, 36(6): 1367-1386.
- 吴亚飞,曾键年,曹建劲,吴政权,陈津华,周树达,陆顺富,李小芬. 2013. 内蒙古东升庙海西期岩体锆石 U-Pb 年龄及 Hf 同位素特 征[J]. 地质科技情报, 32(6): 22-30.
- 夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群. 2001. 北祁连山构造-火 山岩浆-成矿动力学[M]. 北京: 地质出版社: 1-403.
- 夏林圻, 夏祖春, 徐学义.1996.北祁连山海相火山岩岩石成因[M]. 北京:地质出版社:1-324.
- 徐欢. 2019. 鄂尔多斯地块西南部古元古代中-晚期构造岩浆作 用[D]. 西安: 西北大学, 1-148.
- 徐可心,何艳红,陈亮,孟祥舒,务磊.2018.秦-祁构造结合部位陇山 岩群中碎屑锆石年代学研究及地质意义[J].地质科学,53(3): 1054-1074.
- 徐学义, 王洪亮, 陈隽璐, 何世平, 武鹏, 高婷. 2008a. 中祁连东段 兴隆山群基性火山岩锆石U-Pb定年及岩石成因研究[J]. 岩石学 报, 24(4): 827-840.
- 徐学义,何世平,王洪亮.2008b.早古生代北秦岭—北祁连结合部构造格局的地层及构造岩浆事件约束[J].西北地质,41(1):1-21.
- 闫义,林舸,李自安.2003.利用锆石形态、成分组成及年龄分析进行 沉积物源区示踪的综合研究[J].大地构造与成矿学,27(2):184-190.
- 杨甫,陈刚,陈强,丁超,高磊,雷盼盼,张文龙,师晓林,童明军. 2015.鄂尔多斯盆地西南缘上奥陶统平凉组碎屑岩锆石 U-Pb年 龄及物源分析[J].地质评论,61(1):172-182.
- 杨华,刘自亮,朱筱敏,邓秀琴,张忠义,齐亚林.2013.鄂尔多斯盆地 西南缘上三叠统延长组物源与沉积体系特征[J].地学前缘,20 (2):10-18.
- 尤佳, 罗金海, 程佳孝, 王师迪, 徐欢, 赵慧. 2014. 华北地块西南 缘古元古代花岗斑岩及其构造意义[J]. 高校地质学报, 20(3):

368-377.

- 翟明国.2004.华北克拉通2.1-1.7 Ga 地质事件群的分解和构造意 义探讨[J].岩石学报,20(6):1343-1354.
- 张成立,刘良,王涛,王晓霞,李雷,龚齐福,李小菲.2013.北秦岭早 古生代大陆碰撞过程中的花岗岩浆作用[J].科学通报,58(23): 2323-2329.
- 张国伟, 袁学诚, 张本仁, 肖庆辉. 2001. 秦岭造山带与大陆动力 学[M].北京: 科学出版社: 1-806.
- 张金带, 徐高中, 林锦荣, 彭云彪, 王果. 2010. 中国北方 6 种新的 砂岩型铀矿对铀资源潜力的提示[J]. 中国地质, 37(5): 1434-1449.
- 张进,李锦轶,刘建峰,李岩峰,曲军峰,冯乾文.2012.早古生代阿 拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎 屑锆石的信息[J].岩石学报,28(9):2912-2935.
- 张珂, 邹和平, 刘忠厚, 马占武. 2009. 鄂尔多斯盆地侏罗纪西界分析[J]. 地质论评, 55(6): 761-774.
- 张维杰, 李龙, 耿明山. 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代[J]. 地球科学, 25(3): 221-226.
- 张志国, 陈隽璐, 徐学义, 杜志刚, 张占武, 王洪亮, 李平. 2011.木 其滩岩组形成时代、地球化学特征——对北秦岭构造演化的制 约[J].岩石学报, 27(3): 757-769.
- 赵华雷, 臧永亮, 李建国, 张博, 陈路路, 苗培森, 刘晓杰.2022. 鄂尔多 斯盆地西南部彭阳铀矿床下白垩统洛河组铀的赋存状态初探[J]. 华北地质, 45(4): 21-27.
- 赵俊峰,刘池洋,喻林,王晓梅.2008.鄂尔多斯盆地中生代沉积和 堆积中心迁移及其地质意义[J].地质学报,82(4):540-552.
- 赵文智,王新民,郭彦如,刘化清,白云来.2006.鄂尔多斯盆地西 部晚三叠世原型盆地恢复及其改造演化[J].石油勘探与开发,33 (1):6-13.
- 周喜文, 耿元生.2009.贺兰山孔兹岩系的变质时代及其对华北克拉 通西部陆块演化的制约[J].岩石学报,25(8):1843-1852.
- 邹雷, 刘平华, 田忠华, 冀磊, 施建荣. 2019. 东阿拉善地块前寒武 纪变质基底中晚古生代变质杂岩: 来自波罗斯坦庙杂岩 LA-ICP-MS 锆石 U-Pb 定年的新证据[J]. 地球科学, 44(4): 1406-1436.