【发现与进展】

doi: 10.12029/gc20220929002

大兴安岭南段安乐锡多金属矿床锡石 U-Pb 年龄及对 成矿时代的限定

于灵艳1, 王丰翔2,3, 王飞4, 王磊2,3, 刘翼飞3, 栾卓然2, 崔美娟1

(1.河北地质大学华信学院,河北石家庄 050702;2.河北省战略性关键矿产资源重点实验室 河北地质大学,河北石家庄 050031;
3.河北省光电信息与地球探测技术重点实验室 河北地质大学,河北石家庄 050031;4.青海省地质调查局,青海 西宁 810001)
Cassiterite U-Pb age of Anle Sn-polymetal deposit in the southern part of Great Xing'an Range: Constraints on the age of Sn-polymetal mineralization

YU Lingyan¹, WANG Fengxiang^{2,3}, WANG Fei⁴, WANG Lei^{2,3}, LIU Yifei³, LUAN Zhuoran², CUI Meijuan¹

(1. Huaxin College of Hebei GEO University, Shijiazhuang 050702, Hebei, China; 2. Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, Hebei, China; 3. Hebei Key Laboratory of Optoelectronic Information and Geo-detection Technology, Hebei GEO University, Shijiazhuang 050702, Hebei, China; 4.Qinghai Geological Survey, Xining 810001, Qinghai, China)

1 研究目的(Objective)

安乐锡多金属矿床位于大兴安岭南段,是一个 以"S型"断裂控制的Sn(W)-Cu-Ag(Pb-Zn)多金 属矿化为特征的典型锡多金属矿床。锡多金属矿化 主要寄宿在斑状花岗岩体内,在空间上与高分异的早 白垩世花岗斑岩密切有关。然而,由于缺乏高精度的 锡多金属成矿时代,安乐矿床的成矿时代和成因机制 尚不明确,在成因上是否与花岗斑岩有关仍然存在较 大的争论。本研究提供了新的LA-ICP-MS锡石 U-Pb年龄,为综合研究锡多金属矿化的成因提供了 高精度的年代学依据。

2 研究方法(Methods)

锡石 LA- ICP- MS U- Pb 测年分析利用 Neptune、Thermo Fisher Scientific MC-ICP-MS 在 天津地质矿产研究所测试完成。激光采样使用 ESIUP193FX ArF 准分子激光烧蚀系统,操作波长 为193 nm,脉冲宽度为5 ns。使用内部标准样品 (GJ-1和SRM 610),用于纠正仪器质量偏差和激光 诱导的 U- Pb 分馏。利用 ISOPLOT 程序 对²³⁸U/²⁰⁶Pb-²⁰⁶Pb/²⁰⁷Pb值进行了 2σ 水平的校正。

3 研究结果(Results)

31个锡石样品分别采自于矿床的下段 Sn (W) 矿化段(A带)和中部的 Sn (Cu)(B带)。阴极发光图 形显示,锡石主要呈自形一自形粒状(1~1.5 mm) (图 1a),多以浸染状和集合体形式赋存在石英脉和 花岗斑岩内。31个测试点的U和 Pb 的质量分别介 于1.99×10⁻⁶~567.11×10⁻⁶和0.93×10⁻⁶~13.87×10⁻⁶ (见附表)。²⁰⁷Pb/²³⁵U和²⁰⁶Pb/²³⁸U的比值分别介于 1.38~481.89和0.0333~3.9782。校正后的比值具 有良好的线性关系,得到可靠的等时线年龄为(144 ±13) Ma(MSWD=0.37;图 1a),与赋矿的斑状花岗 岩的锆石 U-Pb 年龄((144±3) Ma, MSWD=3.2) 非常吻合,说明锡多金属成矿与斑状花岗岩具有成 因联系。

4 结论(Conclusions)

本研究测得的锡石 LA-ICP-MS U-Pb 年龄 (144 ± 13) Ma 与赋矿的花岗斑岩的锆石 U-Pb 年 龄(144 ± 3) Ma高度一致。这表明,安乐锡多金属矿 床与高分异的斑状花岗岩的侵位具有时空和成因学 上的联系。锡多金属矿化可能是岩浆热事件不断演

作者简介:于灵艳,女,1988年生,讲师,矿物学、岩石学、矿床学专业;E-mail:327716979@qq.com。

通讯作者:王丰翔,男,1984年生,助理研究员,矿产勘查专业,从事大型一超大型矿床研究;E-mail:wfx0316@163.com。

图1(a)锡石²³⁸U/²⁰⁶Pb-²⁰⁶Pb/²⁰⁷Pb等时线图并显示典型的锡石阴极发光照片和U-Pb测试位置(黄色圆圈);(b)高分异花岗斑岩 与安乐成矿系统的成因联系及成矿系统Sn、W、Cu、Zn、Pb、Ag等成矿元素的卸载顺序和空间定位;(c)大兴安岭南段区域性富 锡侵入岩体和典型锡多金属矿床年代学构架

Fig.1 (a)²³⁸U/²⁰⁶Pb⁻²⁰⁶Pb/²⁰⁷Pb isochron diagram with typical cassite cathode luminescence photo graph and U-Pb test location(yellow ciecle); (b) Carton showing temporal and spatial evolution of ore–forming element, such as Sn, W, Cu, Zn, Pb and Ag in the Anle Sn–polymetal mineral system; (c) The chronology of regional Sn–rich intrusions and typical Sn–polymetallic deposits in the south segment of the Great Xing 'an Range.

化的结果,结晶分异可能在其演化过程中发挥了重要作用(图1b)。随着温度、压力、氧逸度等物化条件的变化, Sn-W、Cu、Pb-Zn-Ag不断卸载,形成了多金属矿化的特征。

本次测得的锡石 U-Pb 年龄(~144 Ma)与大 兴安岭南段锡多金属成矿峰值期(149~131 Ma) 基本一致(图 1c)。这一时期在大兴安岭形成了 大量的与板内构造-岩浆演化有关的锡多金属矿 床,典型矿床包括大井、沙麦、查木罕、维拉斯托、 白音查干、双尖子山、白音诺尔、宝盖沟锡、毛登 和安乐锡多金属矿床(图 1c)。这些矿床均以多 金属成矿为特征,并处于造山后伸展的构造环 境,可能为蒙古—鄂霍次克和古太平洋构造体系共 同作用的产物。

5 基金项目(Fund support)

本研究由中国地质调查局项目(DD20221795、 DD20221684)资助。

こう こうちょう ひんしん しんしん しんしん しんしん しんしん しんしん しんしん しんし	2.全屋矿床锡石 1.4	-ICP-MS II-	Ph测试结里
	ノ 立 内 リ /小 沙 口 口 ∩		

Attached Table LA-ICP-MS U-Pb testing results of Anle Sn-polymetal deposit

占台	Pb	Th	U	同位素比值					rh o	
<u> </u>		10-6		207Pb/206Pb	1σ	207Pb/235U	1σ	$^{206}Pb/^{238}U$	1σ	гпо
AL-19-9-2	28.1279	0.0393	9.0414	0.73075	0.01624	16.67537	0.73136	0.16227	0.00571	0.802726
AL-19-9-4	1.9854	0.0017	1.7941	0.61890	0.04158	6.10759	0.59756	0.06795	0.00526	0.790889
AL-19-9-5	10.7752	0.0070	6.7446	0.63009	0.01967	6.75755	0.44657	0.07522	0.00359	0.722222
AL-19-9-6	32.9133	0.0197	1.8287	0.83563	0.01482	83.21276	3.13266	0.73332	0.02906	1.052516
AL-19-9-7	77.0739	0.0379	4.1034	0.85465	0.02456	90.91101	3.83146	0.77658	0.02833	0.865659
AL-19-9-8	3.6718	0.0032	7.9138	0.39808	0.01645	2.21326	0.12214	0.04099	0.00215	0.952459
AL-19-9-9	60.3567	0.0332	6.7794	0.78587	0.01694	43.36147	3.09803	0.41248	0.03466	1.176245
AL-19-9-10	113.1511	0.0555	13.8663	0.80058	0.01278	41.43624	1.71018	0.38074	0.01719	1.09391
AL-19-9-12	22.6207	0.0217	3.7826	0.77804	0.02034	32.86179	3.36609	0.29282	0.02638	0.879463
AL-19-9-13	51.9938	0.0455	6.1035	0.79905	0.01084	37.86014	3.41844	0.34223	0.03131	1.01312
AL-19-9-14	140.3074	0.0578	6.9426	0.86777	0.03636	94.17740	4.62017	0.80065	0.03364	0.856344
AL-19-9-17	44.5670	0.0166	7.2326	0.77603	0.01400	31.46080	2.33011	0.28499	0.01692	0.801804
AL-19-9-18	135.7870	0.0354	9.7114	0.82046	0.00927	66.09969	3.71417	0.58388	0.03270	0.996604
AL-19-9-19	72.3196	0.0396	7.0635	0.80626	0.00872	48.94569	1.63124	0.44118	0.01455	0.989259
AL-19-9-20	7.9359	0.0022	4.4165	0.48882	0.03846	8.10324	1.52161	0.08560	0.01179	0.733455
AL-19-9-21	116.2126	0.0287	8.8373	0.81968	0.01121	63.35347	3.89114	0.55898	0.03400	0.990299
AL-19-9-22	37.7042	0.0395	3.8570	0.83173	0.02423	50.65832	3.11575	0.43606	0.02161	0.805828
AL-19-9-25	4.6739	0.0039	0.9323	0.82652	0.04813	25.76901	1.80873	0.24150	0.01636	0.965242
AL-19-9-27	37.3673	0.0712	3.4900	0.88211	0.05476	54.23255	4.68686	0.43856	0.01475	0.389147
AL-19-9-28	79.1352	0.0662	9.3580	0.78631	0.01034	39.01181	1.42647	0.36296	0.01399	1.054127
AL-19-9-29	56.6636	0.0315	9.6219	0.80094	0.01545	28.39659	0.86232	0.29675	0.04450	4.937911
AL-19-9-30	12.1736	0.2412	3.9783	0.67676	0.03478	13.90179	2.49744	0.14449	0.02331	0.898080
AL-19-9-31	3.6125	0.0062	12.9664	0.28036	0.01548	1.38312	0.16028	0.03335	0.00143	0.370655
AL-19-9-32	77.1064	0.0340	7.7728	0.81267	0.01078	47.04451	1.44420	0.41897	0.01161	0.902469
AL-19-9-33	67.9792	0.0248	7.2881	0.78433	0.01089	40.45361	3.45489	0.36871	0.02729	0.866768
AL-19-9-34	67.0447	0.0274	8.9903	0.81827	0.02874	35.78800	2.66119	0.31099	0.01999	0.864475
AL-19-9-35	54.7256	0.0539	6.5567	0.80066	0.01268	41.55674	1.47728	0.38921	0.02216	1.601663
AL-19-9-36	183.9872	0.0604	3.3866	0.84844	0.01020	264.28850	15.26640	2.24563	0.12694	0.978623
AL-19-9-37	567.1051	0.1030	6.4905	0.88567	0.02778	481.88926	53.96785	3.97819	0.44920	1.008252
AL-19-9-38	79.4492	0.0451	4.3902	0.81955	0.01067	85.94972	3.16484	0.76608	0.02879	1.020525
AL-19-9-39	110.7616	0.0834	9.2944	0.83467	0.00977	55.17796	2.26601	0.48286	0.02040	1.028966