doi: 10.12029/gc20240122001

章月华, 刘彦, 吕庆田, 陈召曦, 严加永. 2025. 二氧化碳地质封存地球物理监测技术研究进展与应用展望[J]. 中国地质, 52(1): 159-179. Zhang Yuehua, Liu Yan, Lü Qingtian, Chen Zhaoxi, Yan Jiayong. 2025. Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage[J]. Geology in China, 52(1): 159-179(in Chinese with English abstract).

二氧化碳地质封存地球物理监测技术研究进展与 应用展望

章月华^{1,2},刘彦^{1,3},吕庆田^{1,3},陈召曦²,严加永^{1,3}

(1.中国地质科学院,自然资源部深地科学与探测技术实验室,北京100037;2.中国地质大学(北京)地球物理与信息技术
 学院,北京100083;3.中国地质调查局中国地质科学院地球深部探测中心,北京100037)

摘要:【研究目的】全球升温是当今世界面临的严峻挑战之一,应运而生的二氧化碳地质封存是降碳减排的有效 途径,但该过程对储层和盖层都可能带来一系列影响,存在二氧化碳泄露的风险。二氧化碳注入前后储层物性参 数的改变为测井、地震、电磁及重力等地球物理监测方法奠定了理论依据。【研究方法】本文首先概述了二氧化 碳地质封存可能面临的风险及相应的地球物理监测方法,接着探讨了各种地球物理监测技术在二氧化碳地质封 存领域的研究进展,最后分析了当前地球物理监测技术面临的技术挑战和应用限制,同时也展望了其发展前 景。【研究结果】面对二氧化碳地质封存过程中可能出现的各种地质力学问题,可以针对性地采用各种地球物理 监测方法。如地表变形问题,可采用 InSAR、微震及时延重力方法;诱发地震问题,可采用微震方法;破坏并筒完 整性问题,可采用测井方法。而在追踪二氧化碳羽流运移及潜在泄露情况时,时延重力/地震、微震及电阻率层析 成像等多种方法都能够发挥重要作用。地球物理监测技术的研究进展给实际应用带来了很大信心,但技术本身的 局限性、数据处理的复杂性以及现场环境制约等因素依然是不容忽视的挑战。随着人工智能的蓬勃发展,地球 物理监测技术也迎来了新的发展机遇。此外,综合利用多源信息也将进一步推动地球物理监测技术的创新和发 展。【结论】二氧化碳地质封存是双碳目标为地球物理行业带来的新机遇,大力发展相适应的长期稳定的二氧化 碳地质封存监测体系,是地球物理开拓新市场的一个重要应用领域。借助人工智能浪潮、综合运用多种地球物理 方法来监测二氧化碳地质封存项目是未来的发展趋势。

关键 词:二氧化碳地质封存;地质力学风险;地球物理监测;人工智能;多源信息;碳捕获-利用与封存工程

创 新 点: 分析二氧化碳地质封存项目可能面临的风险及其对应的地球物理监测方法,总结地球物理监测二氧化 碳地质封存的研究进展,分析其面临的挑战与机遇,展望地球物理监测的发展潜力。

中图分类号: X701:P631 文献标志码: A 文章编号: 1000-3657(2025)01-0159-21

Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage

ZHANG Yuehua^{1,2}, LIU Yan^{1,3}, LÜ Qingtian^{1,3}, CHEN Zhaoxi², YAN Jiayong^{1,3}

(1. Chinese Academy of Geological Sciences, Deep Earth Science and Exploration Technology Laboratory, Ministry of Natural

收稿日期: 2024-01-22; 改回日期: 2024-12-25

- **基金项目:**中国地质科学院基本科研业务费专项(JKY202416)、中国地质调查局项目(DD20242085, DD20240079, DD20221643)和国家 自然科学基金项目(42174169)联合资助。
- 作者简介: 章月华,女,2000 年生,硕士生,主要从事地球物理重磁方法技术研究; E-mail: zhangyh27@email.cugb.edu.cn。

通信作者:刘彦,女,1975年生,正高级工程师,主要从事地球物理勘探技术和深部探测研究;E-mail: liuy@cags.ac.cn。

Resources, Beijing 100037, China; 2. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China; 3. SinoProbe Center, Chinese Academy of Geological Sciences and China Geological Survey, Beijing 100037, China)

Abstract: This paper is the result of CCUS (Carbon Capture Utilization and Storage) engineering.

[Objective] At present, global warming is one of the most serious challenges in the world. To reduce carbon emissions, carbon dioxide geological storage emerge as an effective way. However, the process may bring a series of impacts on both the reservoir and the cap layer, creating a risk of carbon dioxide leakage. The change of reservoir physical parameters before and after carbon dioxide injection lays a theoretical basis for geophysical monitoring methods such as logging, seismic, electromagnetic and gravity. [Methods] This paper firstly outlines the potential risks of carbon dioxide geological storage and the corresponding geophysical monitoring methods, then discusses the research progress of various geophysical monitoring techniques in the field of carbon dioxide geological storage, and finally analyzes the technical challenges and application limitations faced by current geophysical monitoring techniques, while also looking ahead to their future development. [Results] In the face of numerous geomechanical difficulties that may develop throughout the carbon dioxide geological storage process, we can use a variety of geophysical monitoring approaches to target them. For example, we can utilize InSAR, microseismic and time-lapse gravity methods for surface deformation; microseismic methods for induced seismicity; and well-logging methods to damage wellbore integrity. For tracking carbon dioxide plume transportation and potential leakage, time-lapse gravity/seismic, microseismic, and resistivity tomography methods can all play important roles. The advancement of geophysical monitoring technology has given us tremendous confidence in practical applications, but the limitations of the technology itself, the complexity of data processing, and the constraints of the field environment remain significant difficulties that must be addressed. With the booming development of artificial intelligence, geophysical monitoring technology also has new development prospects. In addition, the comprehensive utilization of multi-source information will foster innovation and progress in geophysical monitoring technologies. [Conclusions] Carbon dioxide geological storage is a new opportunity for the geophysical industry brought by the dual-carbon target, and vigorously developing a suitable long-term and stable monitoring system for carbon dioxide geological storage is an important application field for geophysics to develop new markets. Leveraging the wave of artificial intelligence and integrating multiple geophysical methods to monitor carbon dioxide geologic storage projects is a trend for the future.

Key words: carbon dioxide geological storage; geophysical monitoring; geomechanical risks; artificial intelligence; multi-source information; CCUS (Carbon Capture Utilization and Storage) engineering

Highlights: The possible risks of carbon dioxide geological storage projects and their corresponding geophysical monitoring methods were analyzed, and the research progress of geophysical monitoring of carbon dioxide geological storage was summarized. We analyze the challenges and opportunities, and look forward to the development potential of geophysical monitoring.

About the first author: ZHANG Yuehua, female, born in 2000, master candidate, mainly engaged in research on geophysical exploration technology and deep exploration; E-mail: zhangyh27@email.cugb.edu.cn.

About the corresponding author: LIU Yan, female, born in 1975, professor level senior engineer, mainly engaged in geophysical exploration techniques and deep exploration research; E-mail: liuy@cags.ac.cn.

Fund support: Supported by the projects of the Chinese Academy of Geological Sciences Centralized Public Welfare Research Institutes Basic Research Operating Expenses Project (No.JKY202416), China Geological Survey (No.DD20242085, No.DD20240079, No.DD20221643) and National Natural Science Foundation of China (No.42174169).

1 引 言

二氧化碳捕集利用与封存(Carbon Capture, Utilization and Storage, CCUS)是指将能源等相关产 业排放的二氧化碳捕获后分离、利用,输送至封存 地点进行长期封存的过程,是实现碳中和愿景的重 要途径之一,也是控制温室效应、实现人类社会可 持续发展最具潜力的技术之一(秦积舜等,2020;张 凯等,2023)。在 CCUS 的整个流程中,二氧化碳地 质封存是最后的关键环节,指将二氧化碳封存于具 有良好封闭性的地质体中。封存点通常会选取 800 m 深度以下渗透性良好且盖层渗透性低的储层,如咸 水层、枯竭油气藏及深层不可开采煤层等。具体来 说,依照封存地质体的不同特点,二氧化碳地质封 存可分为多种类型,包括:二氧化碳驱替煤层气封 存技术(CO₂-ECBM)、二氧化碳利用枯竭油气田强 化采气技术(CO,-EGR)、二氧化碳气驱强化采油技 术(CO,-EOR)和咸水层封存技术(CO,-EWR)等, 这些封存手段不仅有助于减少温室气体排放,还能 通过资源的再利用创造经济效益,因而被视为增值 型封存方式(张阳等, 2022)。经过长时间的技术探 索和示范应用,二氧化碳地质封存已经展现出规模 化应用的巨大潜力和较好的商业化应用前景。在 全球范围内, CO₂-EOR 凭借其高效性和实用性, 已 经率先进入商业应用阶段; CO₂-EWR 技术也在稳 步推进,目前已进入产业化示范阶段;至于其他技 术,虽然目前仍处于中试或更早阶段,但其发展潜 力和应用前景同样值得期待(张贤等, 2021; 刁玉杰 等,2023)。

近年来,随着一系列 CCUS 试点项目的推进, 国内外的研究重心逐渐聚焦于二氧化碳地质封存 的监测技术进展。这是因为当大量二氧化碳注入 地下进行地质封存时,可能会对储层和盖层产生一 系列影响,如引起地表变形、诱导地震产生等。封 存的二氧化碳若沿注入井或废弃井的井筒、地层裂 缝、断层等发生泄漏,泄漏气体会对周围环境造成 危害,威胁植被生长、污染地表水和地下水,甚至会 损坏人类健康、破坏生态系统(Unwin et al., 2011; Jung et al., 2013)。因此, 监测技术的完善性、周密 性、高效性和准确性显得尤为重要,这是确保 CCUS项目顺利实施、实现安全封存的关键(张琪 等, 2011; Yang et al., 2019; 赵改善, 2023)。理想的 监测方法应当能够估计流体驱替效应,追踪储层 中的流体运移路径并预测其空间分布状况,从而 尽早发现可能存在的泄漏迹象。虽然二氧化碳地 质封存可以通过地球化学方法进行直接监测(Kim et al., 2019; Bickle et al., 2020; Patidar et al., 2022), 但非地球物理手段往往局限于地表或是浅地下的 短程监测,所覆盖的研究区域相对有限,难以充 分观测到地下流体的动态运移过程(Appriou et al., $2020)_{\circ}$

地球物理方法贯穿于二氧化碳地质封存的全 过程,从注入前的选址决策到注入中的状态检测,

再到注入后的长期安全性监测,均发挥着不可或缺 的作用。在二氧化碳注入前,地球物理勘探技术为 选址决策提供了关键信息,确保所选封存地点封存 条件的适宜性。随着二氧化碳的注入,储层的电阻 率、波速及密度等物性参数发生变化,这为后续地 球物理监测二氧化碳地质封存提供了必要的物性 基础。在注入过程中,我们利用地球物理观测手段 获取储层及盖层的相应数据,进而对二氧化碳羽流 的形态、运移方向及空间展布情况进行有效表征、 检测、定位、归因和量化,同时可借助数值模拟进行 深入的分析和预测,以便及时发现并处理可能的泄 露问题,确保注入量与地质封存量的一致性,并据 此优化后续的注入方案。在二氧化碳停止注入后, 地球物理监测工作仍需长期或重复进行,通过比较 测量数据与基线数据之间的差异,评估二氧化碳地 质封存的有效性和安全性(李姜辉等, 2023)。

总的来说,地球物理监测二氧化碳地质封存是 比较理想且经济实用的方法,可助力双碳目标的实 现。本文从二氧化碳地质封存可能面临的风险及 相应可采用的地球物理监测方法出发,结合地球物 理监测技术的研究进展,分析了各方法面临的困难 与挑战,同时展望了其可能的发展机遇,为未来监 测工作的开展提供经验参考。

2 二氧化碳地质封存风险及地球物 理监测方法

由于地质条件的复杂性和不确定性,二氧化碳 地质封存始终面临气体泄露的风险,潜在的泄露通 道包括注入井及断层裂缝等。大量的二氧化碳注 入地层可能引发一系列地质力学问题,包括地表变 形、诱发地震及破坏井筒完整性等(Rutqvist, 2012)。 图 1 详细展示了二氧化碳地质封存过程中可能面 临的地质力学风险,表 1 介绍了各项封存风险相对 应的典型地球物理监测方法。

2.1 地表变形

二氧化碳注入引起的地表变形,主要源于两大 驱动力:(1)注入区域有效应力降低,孔隙体积膨 胀;(2)二氧化碳聚集至盖层对其产生浮托作用,使 得盖层弯曲拱起(李小春等,2016)。这两种驱动力 相互叠加,对上覆岩层产生挤压作用,上覆岩层发

中

Fig.1 Geomechanical risks during CO₂ geological storage(after Yu Enyi et al., 2023)

生变形。如果累积变形足够大,地表将在一定范围 内出现隆起变形,这些迹象可以指示地下地层的地 质力学响应及二氧化碳羽流的空间变化。

为了确定地表的时空变形及实际的流体位移, 可以综合采用合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)、地震及时延重力 等成本效益较高的地球物理监测技术(全云霄等, 2024)。InSAR 是一种"距以千里、感知毫厘"的对 地微波观测技术,利用同一地区的两幅具有相干性 的雷达图像的重复观测相位信息获取地表形变,在 区域性地表形变监测中具有较高的垂向监测精度, 是监测地表形变最具性价比的方法之一(Zhang et al., 2021);微震监测技术通过在井中或地表布置一 系列地震传感器,实时采集并记录微震事件的地震 信号,推测地下岩体在应力作用下的稳定性和变形 状态,从而了解二氧化碳注入过程中地层发生的变 化(Meng et al., 2023);时延重力监测技术是观测地 下密度分布随时间变化的一种高效方法,对动态变化的储层进行至少两次的三维重力勘探,其响应与储层密度变化线性相关(Topham et al., 2020)。

阿尔及利亚 In Salah 二氧化碳地质封存项目已 经通过 InSAR 技术观测到由二氧化碳注入引起的 地表隆起现象,在活跃的二氧化碳注入井上方,地 表每年隆起约 5 mm(Vasco et al., 2008; Verdon et al., 2013);美国德克萨斯州西部 2014 年 11 月至 2019 年 1 月的 InSAR 结果显示,在油田作业活跃 的佩科斯附近可检测到多达 13 cm 的沉降和 7 cm 的地表隆起信号(Lee et al., 2023)。在这两个案例 中, InSAR 数据的分辨率都比较高。一个重要原因 在于,这两个地区均为无植被覆盖的沙漠地带,地 表条件良好,主要由坚硬的沙漠沉积物和裸岩构 成,可最大限度地提高雷达波相位一致性,以便于 InSAR 分析地表变形现象。

在上述 In Salah 项目的 KB-502 注入井周边, 能够观测到双叶状地表隆起现象(图 2)。为了进一 步刻画其细节特征、解释其地表变形机制,2009 年 开始部署微震监测系统,在注入点上方的垂直钻孔 中安装了 6 个三分量地震检波器,深入地下 500 m, 这也意味着只能追踪到部分二氧化碳羽流运移轨 迹。布置微震检波器的主要目标是识别微震事件 的发生,遗憾的是,由于技术故障,仅有一个地震检 波器提供了有效数据。尽管如此,我们仍能够确定 微震事件的发生频率,2010 年人工识别出 700 个事 件,其中一天内最多发生 35 个事件。Verdon et

风险		监测方法	优势	弊端	实例	
地质力学 问题	地表	InSAR	可检测到毫米级变形,不受昼 夜、天气影响	可探测性受坡度、地形和地貌的 影响	阿尔及利亚InSalah项目	
	变形	微震	可解释地表变形机制	监测成本高	加拿大Weyburn项目	
	Ż	时延重力	覆盖范围广	多作为补充数据	美国彭德尔顿市ASR项目	
	诱发地震	微震	具有很强的时空相关性,受地表 环境影响较小	需结合精确模型及储层地质信息 以准确评估储层状态变化	美国伊利诺斯州盆地Decatur项目	
	破坏筒 完整性	测井	高效检测井筒完整性	存在泄露风险	日本长冈Nagaoka项目	
		时延重力	经济实用	灵敏度阈值对二氧化碳注入量有 要求	挪威Sleipner项目	
二氧化 运移	化碳羽流 多及泄露	时延地震	分辨率高	成本高昂	澳大利亚Otway盆地二氧化碳地 质封存示范工程	
		微震	广泛适用于各类储层	成本较高	中石油吉林油田CO2-EOR项目	
_		电阻率层析成像	经济实惠	分辨率较低	德国Ketzin CO2-EWR项目	

表 1 二氧化碳地质封存风险及地球物理监测方法 Table 1 Risks of geological storage of carbon dioxide and corresponding geophysical monitoring methods

http://geochina.cgs.gov.cn 中国地质, 2025, 52(1)

图 2 In Salah 项目监测布局及 InSAR 结果示意图(据 Cao et al., 2021)

KB-502、KB-503 为两口注入井(KB-501 未显示); KB-5 为弃用的试验井; KB-601 为微震监测井; 背景轮廓显示卫星测量二氧化碳注入引起的地表变形, 展现了 KB-502 周边地表双叶状隆起; 白线代表已知的至 2000 m 深度的断层; 红色五角星标识微震事件
 Fig.2 Schematic diagram of the monitoring layout and InSAR results for the In Salah project (after Cao et al., 2021)
 KB-502, KB-503 are two injection wells (KB-501 not shown); KB-5 is an abandoned test well; KB-601 is a microseismic monitoring well; background contours show surface deformation caused by satellite measurements of carbon dioxide injection, demonstrating a bilobed uplift of the surface around KB-502; the white lines represent known faults up to 2000 m in depth; the red five-pointed star identifies the microseismic events

al.(2013)分析了微震事件的波形,确定事件的发生 与流体注入激活断裂带密切相关。加拿大 Weyburn 项目同样运用微震技术来监测地质力学变 形,2003年该项目部署了一个由8个三分量检波器 组成的单一井下阵列。所有记录到的微震事件均 发生在储层顶部 200 m 范围内, 这表明诱发的形变 并未为流体泄露提供通道。在覆盖层中产生的变 形是由应力传递造成的,因此,目前的变形情况不 会对封存安全构成直接威胁。从整个监测系统的 实施情况和以往研究成果来看,微震监测技术不仅 能更好地监测地下活动,协助探测从注入到封存过 程中的宝贵信息,还能提供比其他监测方法更灵敏 的预警(Meng et al., 2023)。但在这两个案例中, 地 震检波器的布置均局限在一定区域,若要更全面地 分析整个区域,势必要布设更多检波器,如此一来 微震监测成本将会大大增加。

美国俄勒冈州彭德尔顿市含水层储存与回采项目(Aquifer Storage and Recovery, ASR)于 2011 年 6 月 5 日、7 月 25 日和 9 月 25 日采用 LaCoste& RombergD 型相对重力仪先后 3 次开展时延重力测

量,时间分别对应于接近储存高峰期、开采3周后 和接近开采完成时。重力测量结果表明,彭德尔顿 ASR项目的注水井周围局部地区出现了明显的重 力异常,与合成孔径雷达差分干涉测量(Differential InSAR, DInSAR)监测到的亚厘米级地表变形相对 应。此外,重力信号可提供有关地下流体再分布的 更多信息(Bonneville et al., 2015)。

2.2 诱发地震

二氧化碳注入目标地层并开始置换流体进行 地质封存时,地层的孔隙压力会随之增加,这将打 破原有的应力平衡,进而改变地层的稳定性。一旦 作用于断裂或断层表面的外部剪应力超过其剪切 强度,注入地下的流体可能会诱发岩石的剪切拉伸 活动,进而释放地震能量、触发微震事件。

鉴于二氧化碳地质封存通常涉及长期、大规模 的超临界二氧化碳注入,近年来由二氧化碳注入诱 发的地震问题已引起了广泛关注。二氧化碳地质 封存通常选定高渗透储层,二氧化碳能够运移较远 距离,诱发地震的空间分布也就往往较为广泛,此 外长时间的运移和封存会导致注入压力逐渐消散,

中

因此大多数与二氧化碳注入相关的地震事件都属 于微震。但即使是小到中等震级的地震也可能对 盖岩的完整性造成威胁,增加二氧化碳泄漏的风险 (Cheng et al., 2023)。此外,大规模的二氧化碳注入 可能导致广泛的岩体应力扰动,进而激活构造断 层,从而有诱发大地震的风险,所以偶尔也会记录 到较大震级的地震。例如,美国 CogdellCO₂-EOR 项目在 2006—2011 年间记录到 18 次 M≥3 级的地 震,其中最大的一次发生在 2011 年,震级达到了 M4.4 级。因此,深入了解与现场二氧化碳注入相关 的诱发地震情况至关重要。

向储层注入流体诱发的微震活动具有很强的 时空相关性,其活动强度受注入速度、注入压力和 注入规模等因素的影响,通过微震监测,我们可以 获取到充分反映当前储层状态的信息。为了确保 项目的安全实施并避免泄漏事件的发生或扩大,我 们可以系统地开展微震监测工作,深入分析微震事 件的机理,并准确评估二氧化碳地质封存对储层可 能造成的破坏。

加拿大 Weyburn 项目于 2003 年安装了由 8 个 三分量检波器组成的井下监测阵列,在 2010年 10月二氧化碳注入停止后的一个月内监测到了 92个微震事件,震级从-3到-1 Mw不等,其中 -2 Mw 震级事件是在距离储层 500 m 处探测到的; 加拿大阿尔伯塔省 Pembina 油田在距注入井水平 距离 300 m 处设置了一口监测井,利用 8 个三分量 井眼检波器进行微震监测,在2005-2008年间未 探测到超过-1.5 Mw 的微震事件;美国伊利诺斯州 盆地 Decatur 项目(IBDP)的微震监测由两个独立的 检波器观测系统组成,在二氧化碳注入开始后的两 个月内仅监测到低震级事件(<1.2 Mw),其中约 90% 发生在注入层以下 280 m 的范围内;美国密歇 根盆地巴斯群岛白云岩油田向地下 1050 m 深处注 入了约 10000 t 超临界二氧化碳后, 监测到了超过 200个微震事件,通过对这些事件的震源定位、频率 特性分析和地震机制分类,发现这些微震事件是由 充满流体的裂缝中二氧化碳气体混合物的膨胀振 荡产生的,且大多发生在靠近井眼的位置(Meng et al., 2023)

2.3 破坏井筒完整性

在 CCUS 项目中, 井筒完整性是评估井内二氧

化碳泄漏风险的关键标准,并筒完整性的监测也就 显得尤为重要。并筒完整性的破坏可能会导致并 筒中二氧化碳的泄漏,而这种破坏主要归因于两个 关键因素:完井和作业中的不当操作以及井筒水泥 和套管材料的快速降解(Su et al., 2023)。在完井和 作业方面,风险通常源于水泥与周围地层岩石的黏 结力不足,水泥护套内存在气道和微裂缝,或水泥 与套管之间形成微环状结构;此外,二氧化碳与油 井水泥和钢套管之间的化学作用会导致井筒中形 成新的泄漏通道。

油井一方面是二氧化碳从封存地层向外运移 的主要潜在途径,同时也是监测技术实施的重要载 体。因此,全面评估井筒完整性对于保障二氧化碳 地质封存项目的长期稳定至关重要。必须充分考 虑到地质力学等因素的影响,并采取相应的监测技 术和管理措施,通过识别和解决井筒完整性被破坏 引起的潜在问题,尽可能降低二氧化碳泄漏的风 险,从而提高二氧化碳地质封存的整体效益。

井筒完整性监测,特别是在高泄漏风险井的周 边,是一项长期且成本较高的工作,主要通过测井 技术实现,目的是确保井筒的完整性并检测潜在的 二氧化碳泄漏。其中声波测井便基于岩石等介质 的声学特性,旨在研究钻井地质剖面并评估油井完 整性。例如, Nakajima and Xue(2013)利用时延超声 波测井和水泥胶结测井 CBL 数据, 对日本长冈 Nagaoka 项目二氧化碳注入点的油井完整性进行了 评估,结果显示储层深处的套管并未发生严重损坏 或变形, Nagaoka 项目也未发现二氧化碳泄漏的明 显证据; Duguid et al.(2017)在对美国 SECARB 油田项目的 CFU31F-2 和 CFU31F-3 两口监测井的 完整性评估中发现,附着在长套管上的监测设备可 以看到连续的低声阻抗特征,可能存在泄漏风险。 这些测井监测技术为识别和解决与二氧化碳泄漏 相关的潜在风险提供了重要信息。但值得注意的 是,在评估井筒完整性时,仪器的井中布设需经过 精心设计与评估,以限制泄露风险并最大限度地提 高井筒完整性。

2.4 二氧化碳羽流运移及泄露

二氧化碳羽流通常指的是二氧化碳在地下储 层中的分散和运移现象,其中,二次羽流特指在预 定注入及封存储层之外的地层中积聚的二氧化 碳。羽流的运移方向及分布范围等受到地质构造、 二氧化碳注入量及渗透率各向异性等多重因素的 影响(Gonzalez and Misra, 2022)。二氧化碳羽流运 移情况是指示二氧化碳地质封存泄露的唯一直接 依据,为确保二氧化碳地质封存的安全性,防止其 沿井筒或跨岩层泄漏,对地层中的二氧化碳羽流进 行长期监测至关重要(Glubokovskikh et al., 2021)。 准确掌握羽流的位置和运移信息对封存风险评估 极为关键,旨在确保封存地层中的二氧化碳质量满 足监管要求,并向公众证明封存的安全有效性。

地球物理方法能够有效地对二氧化碳羽流进 行成像,以追踪其在储层中的运移路径以及可能通 过盖岩层发生的泄漏情况。密度、地震速度及电阻 率的变化与气体饱和度的变化密切相关,时延重力 /地震、微震及电阻率层析成像 ERT 等方法,已成为 监测注入的二氧化碳流向的有力工具。时延重力 /地震是指对动态变化的储层进行至少两次的三维 重力/地震勘探,包括初始基线调查以及后续的跟踪 调查,提供流体随时间变化的图像以监测储层的流 体动态变化情况;电阻率层析成像通过向地下供 电,形成以供电电极为源的等效点电源激发的电 场,通过观测不同方向的电位或电位差来研究探测 区的电阻率分布,因其施工方便、成本低、效率高等 突出优势,在监测二氧化碳羽流时具有良好的应用 潜力。上述方法若是在井中开展测量,有望提升监 测二氧化碳羽流时的分辨率,进而增强其探测泄漏 的能力。

无论注入的二氧化碳处于何种状态,重力都能 直接提供储层密度变化信息,但重力方法应用时对 二氧化碳的注入量有一定要求,因为过小的注入量 可能使微小变化难以被探测到。挪威 Sleipner 项目 通过操纵部署了 Scintrex CG5 相对重力仪的水下 机器人 ROV,于 2002 年开始进行重力基线观测并 在海底置放永久测点,随后在 2005、2009、2013 年 开展了多次重复调查(Alnes et al., 2008, 2011)。 Sleipner 项目最初是在互相垂直的两条线上布置了 30 个测点,覆盖了东西 7 km、南北 3 km 的区域。 如图 3 所示,随着时间的推移,二氧化碳羽流的运 移面积逐渐扩大,后续又增加了 13 个测点覆盖更 大监测区域,使用多种重力仪对每个监测点都进行 了至少 3 次的观测, 300 万 t 不同密度的二氧化碳

将带来-10 µGal 至-4 µGal 不等的重力变化。

鉴于注入的二氧化碳为超临界状态,其声波速 度信号显著,这为地震监测提供了有利条件。时延 地震可以通过对不同时刻的三维地震图像作差比 较,从而揭示流体的动态变化信息。为保证时延地 震监测技术的应用效果,多在孔隙度高、流体饱和 度变化显著且埋藏位置不会过深的储层中开展工 作,咸水层封存往往满足该条件,事实上时延地震 监测技术在 CO,-EWR 项目中应用效果也大都不 错。以 Sleipner 项目为例, 该项目在 1999、2001、 2002、2004、2006、2008、2010、2013及2016年进 行了多次时延地震重复监测,成功实现二氧化碳羽 流成像(Fabriol et al., 2011); 澳大利亚 Otway 盆地 二氧化碳地质封存示范工程 CO, CRC 通过采用永 久部署的检波器,成功开展了时延地震监测,其结 果清晰揭示了二氧化碳羽流朝东南方向运移的迹 象 (Popik et al., 2020)。然而,加拿大 Pembina Cardium 试验项目开展三维地震勘探的效果并不理 想,这可能是由于储层地层过薄(20m),难以分辨 振幅变化。

时延地震在绘制二氧化碳羽流、量化储层注入 量及探明早期泄漏方面无疑发挥着重要作用,但在 设计监测方案以及评估成本效益时,必须充分考虑 到不同项目储层地质特点的差异性(Krahenbuhl et al., 2011; Ma et al., 2014; Sambo et al., 2020)。

微震监测技术广泛适用于各类储层,通过分析

中

微震事件的震级、机理、时空频率及能量分布等,有效识别二氧化碳羽流的动态运移,在国内 CCUS 项目中的应用效果也比较理想。中石油吉林油田 CO₂-EOR 项目于 2009 年开展微震监测,结合不同 位置监测到的微震事件密度,通过反演来判断二氧 化碳在储层中的运移方向;中联煤层气山西 CO₂-ECBM 项目采取的近地表微震监测,由于目标 煤储层渗透率低、孔隙度小、破裂压力小,微震事件 位置不能直接精确对应流体运移范围,但通过分析 微震事件的密集分布趋势,依然能够大致描绘出羽 流的分布范围(Meng et al., 2023)。

电阻率层析成像 ERT 的分辨率虽不及地震方 法,但可以作为地震监测结果的重要补充。目前电 阻率层析成像多应用于工程环境领域,以检测地下 含水层的流体流向亦或是探测环境泄漏物(Uttam and Sharma, 2022; Issaoui et al., 2023)。如 Kiessling et al.(2010)在德国 Ketzin CO₂-EWR 项目约 650 m 深度处盐水含水层采用 ERT 技术对二氧化碳注入 后的扩展运移进行监测,结果显示二氧化碳的注入 致使电阻率增大约2倍(崔方智等, 2020)。然而,需 要注意的是,大多数现有或设想的二氧化碳注入深 度多介于 800~1000 m,与这一深度相比,若具有足 够孔隙度和渗透性的储层相对较薄(<100 m),可能 无法探测到储层中的电阻率变化。此外,ERT 无法 对远小于电极间距的二氧化碳饱和度细节进行成 像,但可以提供二氧化碳分布的大致信息。

3 地球物理监测技术研究进展

在二氧化碳地质封存项目的实施阶段及后续

运营管理中,动态监测与评估封存的有效性和安全 性至关重要。如表2所示,围绕不同项目的背景条 件及监测目标,可以针对性地发展适配的地球物理 监测技术,制定相应的技术应用流程,以确保监测 工作的精确性和高效性,为项目的长期稳定运行提 供有力保障。

3.1 测井监测

质

二氧化碳运移发生在不同尺度上,包括大尺度 (整个储层)、宏观尺度(储层数值模拟中使用的网 格块)、中尺度(岩心)和微观尺度(孔隙)(Sato et al., 2011)。监测技术的选取在很大程度上取决于 目标尺度,每种技术都有其适用范围。对于中尺 度到宏观尺度的监测,测井方法非常实用,它通过 探测声波时差、自然伽马等参数曲线来分析声学 及放射性等特征。在美国 Frio、Bell Creek 油田、 SECARB 油田、德国 Ketzin、加拿大 Aquistore 及 日本长冈 Nagaoka 等多个项目的应用均取得了显 著成效(Ivanova et al., 2012; Nakajima et al., 2013; Braunberger et al., 2014; Duguid et al., 2017; Topham et al., 2020)。国内, 中石油组建的 CCUS 工作团队 同样开展了诸多工作,包括在长庆油田实施多维成 像、动态监测等技术试验,在吉林油田重新厘定二 氧化碳驱第三类储层划分标准,优化套后饱和度 测井方案,开展井筒完整性评价等。这些实践探索 也为未来 CCUS 项目监测方案的部署提供了经验 启示。

在二氧化碳地质封存过程中,声波测井方法因 其对水和二氧化碳声波速度差异的敏感性而备受 推崇。Nakajima et al.(2019)在长冈 Nagaoka 项目

Table 2 Typical geophysical monitoring methods						
监测方法	观测参数	监测目的	典型应用			
测井	盐水盐度 声波速度 CO ₂ 饱和度	追踪储层CO2运移 校准三维地震调查地震波速	Nagaoka (Xue et al., 2006) 、 Frio (Hovorka et al., 2006) 、 Ketzin (Ivanova et al., 2012)			
电磁监测	地层电导率 电磁感应	追踪储层CO2运移	Ketzin (Kiessling et al., 2010)、 中联煤CO ₂ 驱煤层气项目(崔方智等, 2020)			
地震监测	P波和S波速度 反射界面 地震振幅衰减	追踪储层CO2的运移及分布	Frio (Hovorka et al., 2006) 、Otway (Dodds et al., 2009) 、 Snøhvit (Eiken et al., 2011) 、InSalah (Ringrose et al., 2013) 、 Sleipner (Furre et al., 2017) 、神华CCS示范工程(赵海英等, 2018) 、中联煤CO ₂ 驱煤层气项目(Li et al., 2022)			
重力监测	流体驱替引起的密度变化	追踪储层CO2的向上运移 地下CO2的质量分布	Sleipner (Alnes et al., 2008) Dover 33 (Bonneville et al., 2021)			

表 2 典型地球物理监测方法

167

中,通过时延声波测井观测到的地震波振幅及速度 变化,发现在二氧化碳饱和度较低时,时延声波测 井数据的振幅衰减可被明显探测到。这进一步证 实了纵波衰减在评估二氧化碳饱和度及早期泄漏 监测中的可靠性,也将鼓励我们在声波测井监测时 加强振幅分析,以获取更多关于地层中二氧化碳饱 和度的信息,并在早期发现沿井的二氧化碳泄漏方 面发挥优势。

对于 CCUS 项目中的二氧化碳饱和度变化监测,脉冲中子测井(PNG)等技术因其高精度和适用 性而备受青睐(Baumann et al., 2014)。近年来,测 井仪器研发也取得了显著进展,如斯伦贝谢公司开 发的储层饱和度测井仪(RST)提高了求解饱和度的 精度,多探测器脉冲中子(MDPN)测井能够更好地 估计低孔隙度储层中的气体饱和度,三探头脉冲中 子测井仪器则能同时同步测量多个地层性质,从而 实现对二氧化碳饱和度的定量监测(Fan et al., 2022)。这些观测仪器的进步不仅提高了监测精 度,也降低了监测阈值,为二氧化碳地质封存的安 全性和有效性提供了有力保障。

3.2 电磁监测

由阿尔奇公式可知,二氧化碳注入前后储层电

阻率会发生显著变化,这种变化可以被电磁技术检测到,这便为电磁监测提供了理论依据。随着电磁 仪器研发的持续进步和数据处理技术的突破,瞬变 电磁、音频大地电磁 AMT、可控源电磁 CSEM 及 电阻率层析成像 ERT 等电磁方法已经成功应用于 多个二氧化碳地质封存项目中,如德国的 Ketzin CO₂-ECBM 项目和山西沁水盆地柿庄北区块的 CO₂-ECBM 项目,均取得了比较理想的监测效果 (Kiessling et al., 2010;崔方智等, 2020)。

近年来,研究者们对电磁监测技术进行了更深入的研究。Börner et al.(2015)通过数值模拟,探讨 了时延电磁监测中源/接收器几何形状及灵敏度模 式对监测效果的影响,发现将发射或接收装置定位 在目标体附近时,监测效果最佳。这一发现对于优 化电磁监测的布局具有重要指导意义。此外,Ayani et al.(2020)提出了一种随机优化方法来反演时延海 洋 CSAMT 数据,以预测二氧化碳羽流位置。该方 法通过随机生成的模型,结合测量数据和预测的电 磁响应之间的差异进行迭代更新,能够更准确地描 述流体前缘位置。以挪威沿海 Johansen 地层为例, 如图 4 所示,与传统的确定性反演方法相比,该随 机反演方法展现出了更高的精确性。但高效利用

图 4 挪威沿海 Johansen 地层第 60 年的随机反演(a、b)和 Occam 确定性反演(c、d)所得二氧化碳饱和度模型比较 a、c 显示反演模型; b、d 显示预测饱和度值与真实饱和度值之间的差异(Ayani et al., 2020) Fig.4 Comparison of carbon dioxide saturation models obtained from stochastic inversion (a, b) and Occam deterministic inversion (c, d) for the Johansen Formation off the coast of Norway in 60th year

a, c show inversion models; b, d show differences between predicted and true saturation values (Ayani et al., 2020)

http://geochina.cgs.gov.cn 中国地质, 2025, 52(1)

中

这种随机反演方法的前提是能够选取一个恰当的 初始岩石物理模型,这仍然是一个挑战,需要后续 研究的深入探索。

3.3 地震监测

储层的各项物性参数会随着二氧化碳的注入 而发生显著改变,这种变化可以通过地震监测技术 中的速度、振幅与旅行时间差异等参数变化来反 映。研究表明,孔隙度、二氧化碳饱和度等参数的 数值大小对多相储层中的地震波频散具有重要影 响,而温度、压力等参数则会对地震波波速产生一 定影响。因此,在二氧化碳封存项目中,地震监测 技术显得尤为重要。垂直地震剖面(VSP)、微震、 井间地震和时延地震等都是常见的监测方法,并在 全球多个 CCUS 项目中得到了广泛应用,如 Sleipner、 Weyburn、Frio、Otway 等国外项目及神华 CCS、吉 林油田、胜利油田等国内项目。

时延井间地震监测技术在追踪二氧化碳羽流 运移方面表现出色,能够准确捕捉地震波在储层中 的传播特性,从而反映出储层物性变化,在美国 Frio和日本 Nagaoka 等项目中的应用已经展现出该 方法的灵敏度(Spetzler et al., 2008; Onishi et al., 2009)。此外, Zhu et al.(2019)提出了通过监测地震 尾波来追踪二氧化碳羽流的时空演变的新方法, 并在美国 Frio-II 试验项目中成功应用,为定量监测 二氧化碳羽流运移提供了新的思路; Bhakta et al. (2022)研究发现光纤分布式声波传感(DAS)数据能 够监测二氧化碳羽流运动,这为地震监测技术增添 了新的手段。

传统的纵波勘探在区分地震监测结果差异来 源时存在局限性,难以明确是压力变化还是二氧化 碳饱和度改变所致。为了突破这一限制,多分量地 震监测技术应运而生,并逐渐成为地震勘探领域的 前沿发展方向(Ma et al., 2022)。西北大学马劲风 课题组对目标层转换波剖面和纵波剖面进行了深 入研究,发现前者在揭示薄层信息方面更具优势(杨 扬等,2015);Klokov and Hardage(2017)展示了一种 对二氧化碳储层进行剪切波成像的低成本方案,伊 利诺伊盆地-迪凯特项目(IBDP)的实验发现, SV-P模式对二氧化碳羽流敏感性较低,但其具有 转换波的优点,且只需要最简单的垂直检波器接收 配置,这种模式有助于在 CCUS 项目中对地表地震 数据进行多分量分析。这些探索为地震监测技术 的实践应用提供了宝贵的研究经验。加拿大 Weyburn 油田在 1999—2007 年先后 5 次开展三维 三分量 3D3C 地震采集(Preston et al., 2009), 1999— 2008 年先后 8 次开展四维三分量 4D3C 地面地震 采集(Ma et al., 2016), 科罗拉多矿业大学的 Davis 团队在 2000—2002 年期间先后 3 次开展三维九分 量 3D9C 地面地震采集(Davis et al., 2003), 为地震 监测技术的实践应用提供了宝贵的实践经验。

在反演方法方面,传统的全波形反演在预测储 层弹性参数方面具有很高的准确性,但它依赖于低 频信息和数据质量,需要大量计算成本。为此,Liet al.(2021b)提出了一种基于曲波变换的多尺度时延 反演方法,该方法在保持精度的同时提高了计算效 率,为二氧化碳地质封存监测提供了新的解决方 案。此外,Huang et al.(2023)提出的 TLFWI 数据同 化和 QFWI 黏声介质全波形反演方法,在构建高分 辨率监测数据和恢复速度模型方面表现出色,并在 Frio 项目中印证了其适用性。

3.4 重力监测

二氧化碳注入到地下储层后,会驱替储层中 原位孔隙流体,若二者之间存在密度差异,那么储 层密度、质量等参数在二氧化碳注入前后都会发 生变化,继而引起相应重力场的变化,这便为重力 监测二氧化碳地质封存提供了坚实的物性依据。 重力监测通常包含地表及井下两种途径:地表重 力监测覆盖范围广、重复周期短,适用于探测浅层 富集的低密度二氧化碳,并结合地震数据资料估 算二氧化碳封存潜力。然而,其井周围饱和度 信息的分辨率较低,且不适用于二氧化碳与储层 流体密度相近的情况。井下重力监测能够克服 地表测量分辨率较低的局限,使监测井底附近 二氧化碳的扩展和运移成为可能(任韶然等, 2012; Feitz et al., 2022)。重力监测已成功应用于 挪威 Sleipner 项目、Snøhvit 项目、美国 SECARB Cranfield项目、Farnsworth油田项目、Dover 33项 目、加拿大 Aquistore 项目及日本 Tomakomai 项目 等多个项目中(Sherlock et al., 2006; Alnes et al., 2008, 2011; Dodds et al., 2013; Sugihara et al., 2013, 2014; Krahenbuhl et al., 2015; Black et al., 2016; Furre et al., 2017; Wilkinson et al., 2017; Topham et al., 2020; Bonneville et al., 2021).

为了确定在噪声水平之上可以观察到重力响 应,需综合考虑多种影响密度变化的因素,孔隙度、 渗透率等参数可定义储层类型如致密储层或正常 储层等,间接指示异常;而储层深度、二氧化碳质量 及密度等信息可直接影响观测阈值(Kabirzadeh et al., 2020)。以渗透率为例, Capriotti and Li(2015)从 时延重力数据和注采数据的组合中直接构建储层 渗透率分布模型,结合多孔介质中的流体流动与时 延重力响应进行正演模拟,再非线性反演重建储层 中的渗透率分布。如此所得模型满足所有数据集, 同时遵守流体通过多孔介质的流体力学,数值模拟 表明,两个动态数据集富含的大量信息可以作为渗 透率分布的约束条件,但最终的渗透率模型的分辨 率可能低于预期。Goto et al.(2020)在此基础上进 一步深入考虑了不同深度条件下储层渗透率对于 重力变化数值的影响,研究发现检测重力变化所需 的时间取决于渗透率。当储层渗透率较低时,在二 氧化碳注入阶段重力下降速度很慢,注入结束后重 力下降幅度会比较明显。在 800 m 深度处二氧化 碳逼近临界点,这种效应会更明显。高渗透率条件 下,在注入结束的初始阶段由于浮力及二氧化碳羽 流横向运移的缘故,重力数值兴许会增加;低渗透 率条件下,由地面变形带来的重力变化是不容忽视 的,必须要借助测量数据进行修正。

正反演模拟作为重力勘探资料解释中的核心 环节, 历来都是学者们重点关注的研究领域(陈召曦 等, 2012; 刘彦等, 2015; 王祥和郭良辉, 2020; 李红 蕾等, 2021)。Karaoulis et al.(2013) 提出了一种确 定的时延算法, 结合图像聚焦技术和时间约束正则 化特性, 有效过滤不相关的含噪声数据, 成功应用 于密度变化的监测和 CO₂-EOR 项目; Appriou et al.(2020)借助 TOUGH2 软件构建了 Kimberlina 地 区一个详细的地质模型, 旨在模拟二氧化碳的运移 和泄露过程。该模型正演模拟了地面及垂直钻孔 中二氧化碳羽流沿断层泄漏, 并运移到不同深度高 渗透层的重力响应。此外, 他们还介绍了其中一种 情景的反演结果, 以展示该方法在估算泄漏二氧化 碳质量方面的潜力。

4 地球物理监测技术挑战与机遇

地球物理监测技术在二氧化碳地质封存领域

扮演着至关重要的角色。然而,实际应用过程中, 地球物理监测技术同样面临着诸多挑战,包括地下 环境的不确定性、数据处理与解释的复杂性等,这 些挑战限制了其在学术研究和实际应用中的进一 步发展。不过,正是这些挑战推动了技术的不断创 新与突破。

4.1 地球物理监测技术研究挑战

笔者将从测井、电磁、地震、重力等多种地球 物理监测方法出发,探讨这些技术在数据采集及处 理解释环节可能遇到的难题。

4.1.1 测井监测

在探讨二氧化碳地质封存的监测技术时,测井 技术作为直观评价二氧化碳地质封存安全性的重 要方法,在研究及应用过程中面临着多重挑战。尽 管测井数据能够直接反映地层中二氧化碳饱和度 的变化,但精确测定这一参数仍然十分复杂。

以Weyburn和Sleipner等成熟项目为例,尽管 提出了钻专用监测井的设想,但由于其高昂的监测 成本、技术成熟度不足以及潜在的泄露风险,这些 建议最终未被采纳。而在日本 Nagaoka 项目中,尽 管进行了多次灌注后的测井作业,但所获取的二氧 化碳饱和度数据与理论计算值之间仍存在显著差 异,这反映出当前岩石物理理论和方法仍有待完 善。此外,裸眼井测井和套管井测井的不同形式也 增加了观测的不确定性,使得测井数据的解释变得 更为复杂。为获取地下地层准确的二氧化碳信息, 数据解释往往需要结合岩石物理等信息。

在监测二氧化碳地质封存安全性时,测井方法 还面临着井周无盖层及断层泄露风险等限制,且其 监测范围相对有限。为准确判断二氧化碳是否向 其他地层运移,进而验证封存的安全性,需要发展 先进的成像技术,以获取不同地层中二氧化碳的空 间分布特征。然而,考虑到钻探及深层钻井的高昂 成本,必须在二氧化碳地质封存试点研究中寻求更 高效、更经济的监测手段。

4.1.2 电磁监测

瞬变电磁法作为常用的电磁监测手段,其测得 的电阻率基于感应电压计算,这一过程中存在人为 影响因素。在沁水盆地柿庄 CO₂-ECBM 类封存项 目中,应用瞬变电磁法时需充分考虑多种因素。例 如,注入井套管可能降低观测到的地层视电阻率, 中

但不影响灌注导致的煤层电阻率增大的整体趋势。因此,利用数值模拟等手段来排除套管等因素影响,对于准确划分二氧化碳运移富集区域至关重要。此外,焖井时间长短及焖井过程中储层参数的改变、二氧化碳的不同运移扩散路径等,都会对周围地层电阻率数值产生直接影响,具体的影响机制有待进一步分析研究。

可控源电磁 CSEM 的商业应用在 21 世纪初达 到顶峰,其数据依赖于岩石电阻率,因此对流体饱 和度甚至是岩石孔隙度展现出高度的敏感性。电 阻率层析成像 ERT 技术同样依赖电阻率信息,并能 反映气态及溶解二氧化碳的综合效应。然而, ERT 在当前的应用中尚无法明确区分这两种不同 的影响,这在一定程度上限制了其应用的精确性。

为了更深入地了解 ERT 技术的局限性, Raab et al.(2020)利用精细网格电阻率模型模拟了多种可能的不同观测条件下的响应,结果显示 ERT 对二氧化碳羽流有足够的分辨率,但探测少量注入的二氧化碳时却面临挑战。进一步的研究表明, ERT 和大地电磁测深 MT 的检测阈值分别为视电阻率变化的10%和20%,两种方法均能检测到深度小于600m的20000t 或更多的二氧化碳羽流,推断实际应用时会存在探测深度较浅的问题(屈文璋和安志国, 2020)。

为了获取更精准的结果, ERT 的应用需要更加标准化的数据采集、处理及解释流程。事实上单独的 ERT 观测得到的二氧化碳饱和度往往较低, 可将 并间-地表 ERT 与地震方法相结合, 利用地震资料 作为先验信息约束电阻率反演(Bergmann et al., 2014), 可以提高二氧化碳饱和度测量的准确性, 并 有效追踪储层内二氧化碳羽流的运移方向(Yang et al., 2015, 2019)。

电磁技术成本较低,可以根据不同的封存场地 来选择监测间隔,出于成本预算选择电磁监测是合 理的,但相应的电磁方法的分辨率也比较低,因此 需要开展更多研究来提高电磁监测手段的分辨率 和整体效率(Gasperikova et al., 2022)。如果电磁方 法检测到任何超出预期变化的响应信号,可能还是 需要采取更高分辨率的地震调查来进一步确认,而 且金属设施如管道套管等会干扰到潜在地质响应 的接收, Orujov et al.(2022)分析了井中套管对时延 近地表电磁测量的影响,结果表明当源或接收器靠 近套管时,导电套管能够降低电阻阻碍电流的能力 并扭曲时延响应。目前的技术水平不能完全消除 金属设施影响,数据处理解释时必须要考虑到该因 素的作用。鉴于储层组分的多样性、多变性,CCUS 项目开展电磁监测难度相对较大,缺乏深度、成熟 的应用经验。

4.1.3 地震监测

质

以时延地震为例,尽管油气行业已经积累了近 30年的时延地震监测经验,但在将其应用于二氧化 碳地质封存项目时,仍面临着多重挑战(Ma et al., 2016)。

首先,多次采集的地震数据的可重复性是当前 时延地震监测面临的关键问题,包括震源和检波器 的一致性。为克服这一难题,研究者们进行了大量 的实践探索。例如, Couëslan et al.(2013)在 IBDP 项目中发现,三维垂直地震剖面的震源可重复性更 易实现,并且井中检波器的布设能减小近地表变化 和地表噪声的影响,提高数据分辨率。CO, CRC 项 目通过永久埋设的地震检波器大幅提升了信噪比 和数据可重复性,固定检波器几何形状同时也缩短 了地震数据处理时间。此外,在地下布设检波器就 无需在地面使用通信电缆,大大减少了对该地区生 产生活的干扰(Popik et al., 2020)。Aquistore项目 则通过埋设一系列稀疏排布的永久检波器并选用 可控震源来解决数据采集的一致性和可重复性问 题,但稀疏布设节省项目成本的代价是覆盖次数及 信噪比的降低,如何平衡多方因素去设计永久地震 观测系统,是值得考虑的问题。

其次,关于监测的时间间隔问题,挪威 Sleipner 项目提供了宝贵的经验。该项目在前 15 年内每两 年进行一次监测,发现所得数值变化不大,随后考 虑成本等因素,调整为每四年一次。第一次监测应 当在开始注入二氧化碳后尽快进行,CO₂ CRC 项目 在二氧化碳注入后的一年和两年先后开展两次监 测工作(Popik et al., 2020),而 Anyosa et al.(2021)通 过挪威西部的 Smeaheia 储层实例研究,指出最佳监 测时间可能是灌注开始后的 10 年左右。这表明不 同项目应根据地质背景条件灵活调整监测计划。

然而,即便在监测仪器布设和监测计划安排上 有所突破,地震监测在二氧化碳地质封存领域仍缺 乏统一的标准解释方法。如何充分挖掘和利用地 震数据中的丰富信息,成为地震监测方法未来发展 的主要方向。

此外,定量能够探测到的异常阈值也是当前地 震监测面临的挑战之一。时延地震本身具有探测 范围广的优点,理想条件下能够有效监测到即使注 入量较小的二氧化碳,但不同 CCUS 项目和地质条 件下的监测效果差异显著。例如,挪威 Sleipner 项 目和加拿大 Weyburn 项目在灌注前后得到的参数 变化幅值就存在明显差异,这反映了不同储层条件 下地震监测的复杂性(Ma et al., 2016)。Ketzin 项目 综合了储层岩心样本进行的岩石物理实验和时延 地震数据的频谱分解,研究结果表明二氧化碳注入 引起的储层孔隙压力变化对地震振幅的影响很小, 观测到的振幅异常可归因于二氧化碳饱和(Ivandic et al., 2018)。

地震勘探在识别流体类型和反映中高二氧化 碳饱和度变化方面存在局限。一般而言,3000 m 深 度内,高孔隙度(>25%)、软砂岩、厚储层条件下开 展时延地震监测能够较为理想地监测到流体前缘 及其动态特征。但当地震方法应用于注入枯竭油 气藏的二氧化碳监测时,灵敏度会降低,因为地层 中的空隙体积可能导致大量气体残留。因此,在开 展地震监测时,不仅要考虑储层物性变化产生的异 常能否被捕捉到,还需考虑如何排除地震观测的噪 声干扰。同时,如何弹性安排监测的时间间隔、减 小环境因素的影响、提高多次采集数据的可重复 性,以及如何平衡昂贵的成本及精确的监测效果 等,这都是未来研究需要解决的问题。

4.1.4 重力监测

在二氧化碳地质封存领域,重力监测虽然具有 广泛应用的潜力,但也面临着诸多挑战。在选择重 力监测方法时,需要特别考虑封存的二氧化碳质 量、深度等先决条件。例如,在 CO₂-EOR 项目中, 由于二氧化碳的注入量相对较少或分布较广,重力 变化往往较小,而在 CO₂-ECBM 项目中,由于二氧 化碳密度较大,重力信号则相对明显。

重力监测并非总是能够顺利实施。重力基站 的选择和传感器的布置方式对监测结果具有显著 影响(Gettings et al., 2008)。此外,重力异常大小随 目标体与测点之间的距离平方衰减,这使得深层变 化的探测变得较为困难。例如,加拿大 Quest CCS 项目就因储层深度达 2 km 而放弃了地表重力监测 方案(Bourne et al., 2014)。

两种流体的密度对比是决定重力勘探有效性 的关键因素。而储层属性、地质条件、测井数据及 地震等先验信息的可用性都取决于具体项目,这使 得没有一种方法适用于所有情况。因此,实际监测 方案需要根据具体需求和现场条件进行深入分析。

为提高重力监测的精确性和应用效果, Sugihara et al.(2013)采用了弹簧重力仪、绝对重力仪、超导 重力仪等多种重力仪器混合监测的方法。但在美 国 Farnsworth CO₂-EOR 油田的实际应用中,由于 储层较薄且位置较深,地表重力信号微弱且易受地 下水文变化影响(Sugihara et al., 2014),即便采用了 混合监测方法,仍面临诸多挑战。

开展时延重力监测时,为提高测量结果的可重 复性并降低其不确定性,许多项目选择布设永久性 基准装置。然而,这些装置在实际运行中也可能面 临各种挑战。例如,海床上的永久性探测器阵列虽 然能够收集高频数据,但必须能够抵御拖网等渔具 的干扰,以免对设备造成不可逆的损坏(Nooner et al., 2007; Paradis et al., 2021)。此外,基准周围的地 质活动、沉积物冲刷迁移及生物干扰等因素也可能 对重力观测结果产生影响。日本 Tomakomai 项目 在开展重力观测时,将超导重力仪安装在混凝土重 力平台上,并设置围栏保护,其目的仍然是提供一 个稳定的平台,从而最大限度地减少各种干扰。

重力监测在二氧化碳地质封存领域的研究虽 然取得了显著进展,但仍面临着诸多挑战。为了克 服这些挑战并进一步提高监测效果,需要不断深入 研究、优化监测方案并加强现场监测设备的保护和 管理。

4.2 地球物理监测技术应用限制

在二氧化碳地质封存项目中,已采取了包括测 井、电磁、地震及重力等多种地球物理监测方法。 这些技术通过直接或间接方式探测和成像地下深 层的二氧化碳羽流变化等,最终目的皆是确保注入 的二氧化碳在工程运行阶段被有效且安全地封存 在地下储层中(Gasperikova et al., 2022)。

测井监测多用于评估井筒完整性,所得测井资料多为后续的监测设计和作业决策提供宝贵的先

中

验信息与背景支持。可深部钻井的高昂成本以及 二氧化碳泄露的潜在风险,这些因素同样需要被审 慎考虑。但在此,我们不再深入讨论测井监测,而 是聚焦于电磁、地震及重力这些可追踪二氧化碳羽 流的地球物理监测方法。如表3所示,每一种方法 都有其独特的适用性和局限性。地震方法因其高 穿透深度和高空间分辨率,在大型项目中常用于注 入前的基线研究和注入过程中的时延监测,但其高 昂的成本也是长期监测过程中的一项重大挑战;电 磁技术对流体性质变化敏感,而重力法能直接估算 深层二氧化碳质量分布。电磁和重力方法虽空间 分辨率较低,但对地震监测有补充作用。如果电磁 或重力勘探发现任何超出预期变化的信号反应,就 需要进行更高分辨率的地震监测。监测工具的多 样性凸显了二氧化碳地质封存项目监测方案设计 过程中灵活洗用方法的重要性,需要将实验室研究 成果与示范工程应用经验相结合,从而助力双碳目 标的落实(吴江等, 2022)。

国外的二氧化碳地质封存及地球物理监测技术已较为成熟,并已在许多 CCUS 项目中成功应用,达到了增产减排的双重功效(Wang et al., 2023)。但在中国,对二氧化碳地质封存监测的相应研究主要集中在地表或大气、土壤层面,对深层地球物理监测技术的研究还不够深入,离成熟的应用还有很长一段路要走,如表 4 所示。

各大二氧化碳地质封存区域经过多年勘探开 发,积累了数量众多的钻井及地震、测井和地质研 究资料,有助于观测二氧化碳的羽流状态,而对缺 乏相应资料地区的二氧化碳运移模型构建和监测 还需要积累和发展(Jia et al., 2023)。总的来说,目 前中国尚未形成完备的二氧化碳地质封存监测标 准规范,大多依据项目背景个性化设定。由于当前 国内 CCUS 项目成本普遍较高,发展低成本监测技 术将是未来 CCUS 项目重点关注的方向之一。

4.3 地球物理监测技术发展机遇

地球物理监测技术正迎来前所未有的发展机

表 3 电磁、地震及重力监测方法比较

Table 3	Comparison of	electromagnetic,	seismic and	gravity 1	monitoring me	ethods
	4	0 ,		0	0	

方法	最低二氧化碳注入量级/t	地质限制	应用限制				
电磁	10^{4}	浅层低电阻率薄层	受金属设备影响较大;分辨率相对较低				
地震	10 ³	低孔隙度较厚层	时延数据可重复性、背景噪声变化不可预测;数据覆盖范围有限、野外采集工作繁杂				
重力	10^{4}	季节性地表变化	分辨率相对较低;不能成像显示CO2的溶解				

表4 国内典型 CCUS 项目

Table 4 Typical CCUS projects in China								
而日友称	乐大少主	CO ₂ 来源	CO ₂ 输送。	CO ₂ 利用/封存				
坝日名称	所住有巾			负责单位/企业	处置技术		投运年份	地球初理监测于段
中联煤CO ₂ 驱煤层气 项目(柿庄)	山西 沁水	外购气	罐车	中联煤	ECBM	运行中	2004	AMT; 地震 (微震、VSP)
国家能源集团煤制油 CCS项目	内蒙古鄂尔多斯	煤制油	罐车	神华煤制油化工 有限公司	EWR	于2016年停止注入, 监测中	2011	地震(4D地震、 VSP)
大庆油田EOR项目	黑龙江大庆	天然气处理	罐车+管道	中石油大庆油田	EOR	运行中	2003	测井
新疆油田EOR项目	新疆克拉玛依	甲醇厂	罐车	中石油新疆油田	EOR	运行中	2015	测井
长庆石油EOR项目	陕西西安	甲醇厂	罐车	中石油长庆油田	EOR	运行中	2017	测井
中石油吉林油田 EOR项目	吉林松原	天然气处理	管道	中石油吉林油田	EOR	运行中	2008	测井;井中自然电位测量;地震(微震、井中地震)
中石化华东油田 EOR项目	江苏东台	化工厂	罐车+船舶	中石化华东分公司	EOR	运行中	2005	测井
中石化中原油田 EOR项目	河南濮阳	化肥厂	罐车	中石化中原油田	EOR	运行中	2015	测井
中石化胜利油田 EOR项目	山东东营	燃煤电厂	罐车	中石化胜利油田	EOR	运行中	2010	4D地震
延长石油煤化工 CO ₂ 捕集与驱油示范 项目	陕西榆林/延安	煤制气	罐车	延长石油靖边/ 吴起油田	EOR	运行中	2013	测井/3D地震

遇。飞速发展的人工智能为地球物理监测提供了 更高效的数据处理手段,此外,多种地球物理方法 的综合运用,使得我们能够获取更丰富、更详尽的 地下信息。以下将探讨地球物理监测技术如何借 助人工智能的浪潮以及如何综合利用多源信息,实 现 CCUS 项目的高效监测。

4.3.1 借助人工智能浪潮

首先,电磁方法作为储层流体成像的常用手 段,其与流体电阻率的强耦合性使其具有独特的优 势。然而,数据获取和解释的时间成本一直是个问 题。Strack et al.(2021)利用人工智能和基于云平台 的数据采集技术,成功将电磁数据的作业反馈时间 缩短到接近实时,解释时间也缩短至 24 h 左右,该 方法在噪音较大的环境中也展现出良好的适用 性。Attias et al.(2018)通过反演挪威近海 Nyegga 地区的海底和拖曳式电磁接收机数据,有效地垂直 划分了浅层天然气水合物特征,该方法可应用于二 氧化碳地质封存的监测; Colombo et al.(2020)借助 深度学习神经网络,结合流体动态运移模拟,测试 了深度学习反演对多种电磁成分、数据噪声、泛化 问题以及三维重建的敏感性,结果表明机器学习反 演可充分利用电磁技术对流体饱和度的敏感性,且 不会影响结果的分辨率和准确性。

在地震监测领域,深度学习同样为处理监测数 据提供了一种更便捷、更高效的工具。Li et al. (2021a)基于全卷积神经网络提出的二氧化碳地质 封存监测方法,通过模拟 2800 套时延差异数据及 相应的速度变化来训练网络,结果显示,基于全卷 积神经网络的监测方法相较于传统的时延全波形 反演,效率更高、精度也更高;Um et al.(2022)提出 的基于 U-Net 架构的深度学习全波形反演方法,能 够实时成像二氧化碳饱和度,并借助蒙特卡洛和集 成学习算法来量化其不确定性;Sheng et al.(2023) 构建了二氧化碳羽流形状、大小和位置各不相同的 三维阻抗模型,从野外地震数据中提取噪声并将这 些噪声添加到训练集中以提高真实性,最终能够以 95.8%的准确率将二氧化碳羽流从预先存在的流 体、噪声中区分出来。

多项试验结果表明,深度学习反演方法可以作 为一种稳定的实时监测工具来监测二氧化碳地质 封存储层特征随时间的变化规律(Um et al., 2022)。Glubokovskikh et al.(2021)提出了一种数据 驱动的方法,根据过去观测到的图像预测未来的时 延地震图像,并在 Otway 项目的阶段数据上对这种 方法进行了测试。预测器的核心部分是一个卷积 神经网络,它将后续羽流图视为颜色层,一旦预 测器经过训练,它就能近乎实时地预测羽流的演 变,并有效地适应不断变化的二氧化碳运移动态。 Gonzalez and Misra(2022)提出了一种基于多级聚 类的无监督学习方法,以可视化地下二氧化碳羽 流,并将其应用于 SECARB Cranfield 项目的井间地 震层析成像数据。这种方法具有自适应和可扩展 性,无需结合预定义的地球物理模型,可快速监测 地下二氧化碳的含量和分布。

在重力资料的处理解释方面,深度学习也提供 了很多新思路。Celava et al.(2023)提出了两种反演 时延重力数据的算法,包括数据驱动的深度学习方 法及考虑地面重力时间演化的数据驱动方法,以模 拟二氧化碳羽流。为克服 L,反演模型偏离及深度 学习反演数据偏离的问题(Yang et al., 2022), Celaya et al.(2023)建议先进行深度学习建模预测, 再进行 L,反演,这种算法相较于传统反演方法,展 现出了更高的分辨率,并被证实为监测二氧化碳地 质封存有效且受干扰小的方法。但应用于实际 CCUS 项目时能够获得的数据量是有限的,建立起 详细的储层模型也具有挑战性。Alyousuf et al. (2022)基于前馈神经网络的机器学习方法,使用从 油田储层模型得出的相关重力响应来训练神经网 络,以反演时延三轴钻孔重力数据并预测二氧化碳 羽流位置,在挪威近海 Johansen 地层演示的结果表 明该方法可监测二氧化碳相关密度变化。Yang et al.(2022)构建了一种基于 U-Net 网格的深度学习 模型,用于地表重力数据反演,以预测二氧化碳地 质封存过程中井筒泄漏的二氧化碳的垂向分布。 该方法生成的预测结果可重复、误差可接受,空间 分辨率也有所提高,能准确地划定目标体边界,并 探测到深层、小型或低饱和度的二氧化碳羽流。

总的来说,人工智能为电磁、地震及重力等地 球物理方法提供了强大的技术支持,使得这些方法 在监测二氧化碳地质封存的地下流体分布方面更 加高效。但上述基于人工智能处理监测数据的方 法依然还面临着两个较大的挑战:数据集标签缺 中

乏、模型泛化能力有限。此外,实际应用时得根据 项目需要选取准确的反演方式。 4.3.2 综合利用多源信息

在二氧化碳地质封存过程中,综合利用多源信 息和多种方法,可以帮助我们更好地监测和评估 封存的安全有效性(Fibbi et al., 2023)。Wang and Morozov(2019)结合测井数据,提出了一种比较完 善的声波阻抗反演方法,该方法适用于基线数据的 分析,无需主观选择参数或正则化方法,也无需先 验模型; Tveit et al.(2020)提出了一种分步反演方 法,该方法结合了不同分辨率的地球物理数据,首 先处理 CSEM 或重力观测数据, 再利用这些先验信 息改进地震 AVO 反演结果; Fawad and Mondol (2022)引入了一个新的岩石物理模型,利用声阻抗 并结合时延地震叠前反演得到的纵横波速度比,对 二氧化碳饱和度、羽流划分及储层内压力变化进行 时延估算,如图 5 所示,能够清晰地观察到二氧化 碳羽流随着时间推移向西南方向的运移; Wang et al.(2022)基于 Landrø提出的时延地震 AVO 反演方 法,区分了注入二氧化碳后的流体饱和度和压力效 应,并进行定量分析。上述方法的有效试验均为监 测二氧化碳地下运移和封存状态提供了依据。

图 5 Sognefjord 储层 2030 年 (a)、2040 年 (b)、2050 年 (c)、 2060 年 (d) 二氧化碳饱和度预测成像(据 Fawad and Mondol, 2022)

Fig.5 Projected carbon dioxide saturation imaging of the Sognefjord reservoir 2030(a), 2040(b), 2050 (c), 2060 (d) (after Fawad and Mondol, 2022)

5 结 论

质

二氧化碳地质封存是 2030 年前实现碳达峰、 2060 年前实现碳中和的重要途径。为了预防和阻止封存环境下二氧化碳泄漏安全事故的发生,国内 外学者开展了广泛的理论研究,但针对二氧化碳地 质封存可能面临的风险及相应可采取的地球物理 监测方法,当前研究及应用缺乏系统性整合,监测 方案未形成体系化建设。我们在上述章节提到了 当前地球物理监测技术的研究进展,但实际应用时 仍然存在着不少困难。

各地球物理监测技术均有其独特优势与局限 性。测井是评估二氧化碳封存安全性最为直观的 方法,但其高精度数据受制于其有限的观测范围, 且深部钻监测井不仅需要考虑成本问题,还要顾及 该井是否会成为二氧化碳泄露潜在路径。电磁监 测与之相较具备成本较低的优势,可测量与流体饱 和度相关的独立参数,但其受金属设备影响较大, 且分辨率较低。地震勘探是当前公认的应用最广 泛、最成熟的监测方法,主要提供地下储层的构造 信息,但若要在一个地点进行频繁的监测应用,地 震数据采集的成本可能高得令人望而却步。这样 的价格往往决定了只有在出现泄露预警或间隔时 间较长的情况下,才会采取该方法。但地震勘探对 目标储层的充分了解为重力监测方法的应用提供 了理想的约束条件,作为一种低成本、高性价比的 监测方法,重力测量对流体驱替引起的密度变化直 接敏感,可以检测全范围的二氧化碳饱和度。多项 学术研究及工业应用均验证了重力勘探适用于监 测二氧化碳流体驱替及运移等问题。

地球物理监测二氧化碳地质封存在实际应用 过程中,对技术水平和经济成本都有一定的要求, 任何单一监测方法均无法全面满足监测需求,因 此,构建一个融合多种地球物理监测技术的综合监 测体系,可以提供丰富的地下信息,是分析二氧化 碳封存状态最准确的一种手段。此外,人工智能的 飞速发展也为地球物理监测数据的处理与解释提 供了新的可能性。随着技术的进步和监测体系的 完善,地球物理监测技术在二氧化碳地质封存中的 应用将更加广泛。

References

- Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M. 2011. Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO₂ plume[J]. Energy Procedia, 4: 5504–5511.
- Alnes H, Eiken O, Stenvold T. 2008. Monitoring gas production and CO₂ injection at the Sleipner field using time–lapse gravimetry[J]. Geophysics, 73(6): WA155–WA161.
- Alyousuf T, Li Y, Krahenbuhl R. 2022. Machine learning inversion of time–lapse three–axis borehole gravity data for CO₂ monitoring[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 3099–3103.
- Anyosa S, Bunting S, Eidsvik J, Romdhane A, Bergmo P. 2021. Assessing the value of seismic monitoring of CO₂ storage using simulations and statistical analysis[J]. International Journal of Greenhouse Gas Control, 105: 103219.
- Appriou D, Bonneville A, Zhou Q, Gasperikova E. 2020. Time–lapse gravity monitoring of CO₂ migration based on numerical modeling of a faulted storage complex[J]. International Journal of Greenhouse Gas Control, 95: 102956.
- Attias E, Weitemeyer K, Hölz S, Naif S, Minshull T, Best A, Haroon A, Jegen–Kulcsar M, Berndt C. 2018. High–resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean–bottom receiver data[J]. Geophysical Journal International, 214(3): 1701–1714.
- Ayani M, Grana D, Liu M. 2020. Stochastic inversion method of time–lapse controlled source electromagnetic data for CO₂ plume monitoring[J]. International Journal of Greenhouse Gas Control, 100: 103098.
- Baumann G, Henninges J, De Lucia M. 2014. Monitoring of saturation changes and salt precipitation during CO₂ injection using pulsed neutron–gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 28: 134–146.
- Bergmann P, Ivandic M, Norden B, Rücker C, Kiessling D, Lüth S, Schmidt–Hattenberger C, Juhlin C. 2014. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO₂ storage site, Ketzin, Germany[J]. Geophysics, 79(2): B37–B50.
- Bhakta T, Paap B, Vandeweijer V, Mannseth T. 2022. Monitoring of CO₂ plume movement using time–lapse distributed acoustic sensing (DAS) data[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 478–482.
- Bickle M J, Stevenson E I, Haese R R. 2020. Sr–isotopic ratios trace mixing and dispersion in CO₂ push–pull injection experiments at the CO₂CRC Otway Research Facility, Australia[J]. Chemical Geology, 538: 119489.
- Black A, Hare J, Macqueen J. 2016. Borehole gravity monitoring in the Aquistore CO₂ sequestration well[C]//SEG Technical Program Expanded Abstracts 2016. Dallas, Texas: Society of Exploration Geophysicists, 768–772.
- Bonneville A, Black A J, Hare J L, Kelley M E, Place M, Gupta N. 2021. Time–lapse borehole gravity imaging of CO₂ injection and

withdrawal in a closed carbonate reef[J]. Geophysics, 86(6): G113–G132.

- Bonneville A, Heggy E, Strickland C, Normand J, Dermond J, Fang Y, Sullivan C. 2015. Geophysical monitoring of ground surface deformation associated with a confined aquifer storage and recovery operation[J]. Water Resources Management, 29(13): 4667–4682.
- Börner J H, Wang F, Weißflog J, Bär M, Görz I, Spitzer K. 2015. Multi–method virtual electromagnetic experiments for developing suitable monitoring designs: A fictitious CO₂ sequestration scenario in Northern Germany[J]. Geophysical Prospecting, 63(6): 1430–1449.
- Bourne S, Crouch S, Smith M. 2014. A risk–based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada[J]. International Journal of Greenhouse Gas Control, 26: 109–126.
- Braunberger J, Hamling J, Gorecki C, Miller H, Rawson J, Walsh F, Pasternack E, Rowe W, Butsch R, Steadman E, Harju J. 2014. Characterization and time–lapse monitoring utilizing pulsed–neutron well logging: Associated CO₂ storage at a commercial CO₂ EOR project[J]. Energy Procedia, 63: 3935–3944.
- Cao W Z, Shi J Q, Durucan S, Korre A. 2021. Evaluation of shear slip stress transfer mechanism for induced microseismicity at In Salah CO₂ storage site[J]. International Journal of Greenhouse Gas Control, 107: 103302.
- Capriotti J, Li Y. 2015. Inversion for permeability distribution from time–lapse gravity data[J]. Geophysics, 80: WA69–WA83.
- Celaya A, Denel B, Sun Y, Araya–Polo M, Price A. 2023. Inversion of time–lapse surface gravity data for detection of 3–D CO₂ plumes via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 1–11.
- Chen Zhaoxi, Meng Xiaohong, Guo Lianghui, Liu Guofeng. 2012. Three–dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 55(12): 4069–4077 (in Chinese with English abstract).
- Cheng Y, Liu W, Xu T, ZhangY, Zhang X, Xing Y, Feng B, Xia Y. 2023. Seismicity induced by geological CO₂ storage: A review[J]. Earth–Science Reviews, 239: 104369.
- Colombo D, Li W, Sandoval–Curiel E, McNeice G W. 2020. Deep–learning electromagnetic monitoring coupled to fluid flow simulators[J]. Geophysics, 85(4): WA1–WA12.
- Couëslan M L, Ali S, Campbell A, Nutt W L, Leaney W S, Finley R J, Greenberg S E. 2013. Monitoring CO₂ injection for carbon capture and storage using time–lapse 3D VSPs[J]. The Leading Edge, 32(10): 1268–1276.
- Cui Fangzhi, Zhou Tao, Zhang Bing. 2020. TEM monitoring technology of CO₂ injection and transport in coal seam[J]. Geophysical and Geochemical Exploration, 44(3): 573–581 (in Chinese with English abstract).
- Davis T L, Terrell M J, Benson R D, Cardona R, Kendall R R, Winarsky R. 2003. Multicomponent seismic characterization and monitoring of the CO₂ flood at Weyburn Field, Saskatchewan[J]. The Leading Edge, 22(7): 696–697.
- Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide

geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943–951 (in Chinese with English abstract).

- Dodds K, Daley T, Freifeld B, Urosevic M, Kepic A, Sharma S. 2009. Developing a monitoring and verification plan with reference to the Australian Otway CO₂ pilot project[J]. The Leading Edge, 28(7): 812–818.
- Dodds K, Krahenbuhl R, Reitz A, Li Y G, Hovorka S. 2013. Evaluating time–lapse borehole gravity for CO₂ plume detection at SECARB Cranfield[J]. International Journal of Greenhouse Gas Control, 18: 421–429.
- Duguid A, Guo B, Nygaard R. 2017. Well integrity assessment of monitoring wells at an active CO₂–EOR flood[J]. Energy Procedia, 114: 5118–5138.
- Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp T A, Høier L. 2011. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit[J]. Energy Procedia, 4: 5541–5548.
- Fabriol H, Bitri A, Bourgeois B, Delatre M, Girard J F, Pajot G, Rohmer J. 2011. Geophysical methods for CO₂ plume imaging: Comparison of performances[J]. Energy Procedia, 4: 3604–3611.
- Fan J L, Zhang F, Tian L L, Xiao G P, Zhang H, Fang Q W. 2022. A monitoring CO₂ method by the dual cross section pulsed neutron logging technology in heavy oil reservoirs[C]//SPWLA 63rd Annual Symposium Transactions. Society of Petrophysicists and Well Log Analysts.
- Fawad M, Mondol N H. 2022. Monitoring geological storage of CO₂ using a new rock physics model[J]. Scientific Reports, 12(1): 297.
- Feitz A, Radke B, Ricard L, Glubokovskikh S, Kalinowski A, Wang L, Tenthorey E, Schaa R, Tertyshnikov K, Schacht U, Chan K, Jordana S, Vialle S, Harris B, Lebedev M, Pevzner R, Sidenko E, Ziramov S, Urosevic M, Green S, Ennis–King J, Coene E, Laviña M, Abarca E, Idiart A, Silva O, Grandia F, Sainz–García A, Takemura T, Dewhurst D, Credoz A. 2022. The CO₂ CRC Otway shallow CO₂ controlled release experiment: Fault characterization and geophysical monitoring design[J]. International Journal of Greenhouse Gas Control, 118: 103667.
- Fibbi G, Del Soldato M, Fanti R, 2023. Review of the monitoring applications involved in the underground storage of natural gas and CO₂[J]. Energies, 16(1): 12.
- Furre A–K, Eiken O, Alnes H, Vevatne J N, Kiær A F. 2017. 20 Years of monitoring CO₂–injection at Sleipner[J]. Energy Procedia, 114: 3916–3926.
- Gasperikova E, Appriou D, Bonneville A, Feng Z, Huang L, Gao K, Yang X, Daley T. 2022. Sensitivity of geophysical techniques for monitoring secondary CO₂ storage plumes[J]. International Journal of Greenhouse Gas Control, 114: 103585.
- Gettings P, Chapman D S, Allis R. 2008. Techniques, analysis, and noise in a Salt Lake Valley 4D gravity experiment[J]. Geophysics, 73(6): WA71–WA82.
- Glubokovskikh S, Wang R, Ricard L, Bagheri M, Gurevich B, Pevzner R. 2021. Toward automated early detection of risks for a CO₂ plume containment from permanent seismic monitoring data[J]. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021087.
- Gonzalez K, Misra S. 2022. Unsupervised learning monitors the carbon–dioxide plume in the subsurface carbon storage reservoir[J]. Expert Systems with Applications, 201: 117216.

- Goto H, Ishido T, Sorai M, 2020. Numerical study of reservoir permeability effects on gravity changes associated with CO₂ geological storage: Implications for gravimetric monitoring feasibility[J]. Greenhouse Gases: Science and Technology, 10(3): 557–566.
- Hovorka S, Benson S, Doughty C, Freifeld B, Sakurai S, Daley T, Kharaka Y, Holtz M, Trautz R, Nance H, Myer L, Knauss K. 2006. Measuring permanence of CO₂ storage in saline formations: The Frio experiment[J]. Environmental Geosciences, 13: 105–121.
- Huang C, Zhu T, Xing G. 2023. Data–assimilated time–lapse visco–acoustic full–waveform inversion: Theory and application for injected CO₂ plume monitoring[J]. Geophysics, 88(1): R105–R120.
- Issaoui W, Nasr I H, Khaskhoussi S, Inoubli M H. 2023. Monitoring of soil contamination from olive mill wastewater (OMW) using physico-chemical, geotechnical analysis and electrical resistivity tomography (ERT) investigation[J]. Environmental Earth Sciences, 82(13): 331.
- Ivandic M, Bergmann P, Kummerow J, Huang F, Juhlin C, Lueth S. 2018. Monitoring CO₂ saturation using time–lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO₂ storage pilot site, Germany[J]. Geophysical Prospecting, 66(8): 1568–1585.
- Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, Lüth S, Ivandic M. 2012. Monitoring and volumetric estimation of injected CO₂ using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany[J]. Geophysical Prospecting, 60(5): 957–973.
- Jia L Q, Chen X J, Liu Y, Hao Z G. 2023. Progress in carbon capture, utilization and storage of China Geological Survey and other geological exploration entities[J]. China Geology, 6(3): 541–544.
- Jung Y, Zhou Q, Birkholzer J T. 2013. Early detection of brine and CO₂ leakage through abandoned wells using pressure and surface–deformation monitoring data: Concept and demonstration[J]. Advances in Water Resources, 62: 555–569.
- Kabirzadeh H, Kim J W, Sideris M G, Vatankhah S. 2020. Analysis of surface gravity and ground deformation responses of geological CO₂ reservoirs to variations in CO₂ mass and density and reservoir depth and size[J]. Environmental Earth Sciences, 79(7): 163.
- Karaoulis M, Minsley B, Todesco M, Zhang J, Werkema D. 2013. Time–lapse gravity inversion with an active time constraint[J]. Geophysical Journal International, 196(2): 748–759.
- Kiessling D, Schmidt–Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO₂ SINK Group. 2010. Geoelectrical methods for monitoring geological CO₂ storage: First results from cross–hole and surface–downhole measurements from the CO₂SINK test site at Ketzin (Germany)[J]. International Journal of Greenhouse Gas Control, 4(5): 816–826.
- Kim J, Yu S, Yun S T, Kim K H, Kim J H, Shinn Y J, Chae G. 2019. CO₂ leakage detection in the near–surface above natural CO₂–rich water aquifer using soil gas monitoring[J]. International Journal of Greenhouse Gas Control, 88: 261–271.
- Klokov A, Hardage B. 2017. Seismic characterization and monitoring of a deep CO₂ storage reservoir with 3D VSP using direct shear waves[J]. Journal of Petroleum Science and Engineering, 155: 109–119.
- Krahenbuhl R A, Li Y, Davis T. 2011. Understanding the applications and limitations of time-lapse gravity for reservoir monitoring[J].

第52卷第1期

The Leading Edge, 30(9): 1060–1068.

- Krahenbuhl R A, Martinez C, Li Y, Flanagan G. 2015. Time–lapse monitoring of CO₂ sequestration: A site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data[J]. Geophysics, 80(2): WA15–WA24.
- Lee H P, Staniewicz S, Chen J, Hennings P, Olson J E. 2023. Subsurface deformation monitoring with InSAR and elastic inversion modeling in west Texas[J]. Geoenergy Science and Engineering, 231: 212299.
- Li D, Peng S, Guo Y, Lu Y, Cui X. 2021a. CO₂ storage monitoring based on time–lapse seismic data via deep learning[J]. International Journal of Greenhouse Gas Control, 108: 103336.
- Li D, Peng S, Huang X, Guo Y, LuY, Cui X. 2021b. Time–lapse full waveform inversion based on curvelet transform: Case study of CO₂ storage monitoring[J]. International Journal of Greenhouse Gas Control, 110: 103417.
- Li D, Peng S, Yang R, Zheng J, Cai Z, Zhang T, Zhang W. 2022. Joint monitoring of CO₂–ECBM based on multiple geophysical methods: A case study of Shizhuang Town, Shanxi Province, China[J]. International Journal of Greenhouse Gas Control, 121: 103795.
- Li Honglei, Chen Shi, Zhuang Jiancang, Zhang Bei, Shi Lei. 2021. Gravity inversion method base on Bayesian–assimilation and its application in constructing crust density model of the Longmenshan region[J]. Chinese Journal of Geophysics, 64(4): 1236–1252 (in Chinese with English abstract).
- Li Jianghui, Yu Fengling, Niu Xiongwei, Zhou Tian, Zhang Yunxiu, Li Wenling. 2023. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science, 38(11): 1121–1144 (in Chinese with English abstract).
- Li Xiaochun, Yuan Wei, Bai Bing. 2016. A review of numerical simulation methods for geomechanical problems induced by CO₂ geological storage[J]. Rock and Soil Mechanics, 37(6): 1762–1772 (in Chinese with English abstract).
- Liu Yan, Lü Qingtian, Li Xiaobin, Qi Guang, Zhao Jinhua, Yan Jiayong, Deng Zhen. 2015. 3D gravity inversion based on Bayesian method with model order reduction[J]. Chinese Journal of Geophysics, 58(12): 4727–4739 (in Chinese with English abstract).
- Ma J, Wang X, Gao R, Zhang X, Wei Y, Wang Z, Ma J, Huang C, Zhao X, Jiang S, Liu L, Li L, Yu H, Wang H. 2014. Jingbian CCS Project, China: Second year of injection, measurement, monitoring and verification[J]. Energy Procedia, 63: 2921–2938.
- Ma J F, Li L, Wang H F, Tan M Y, Cui S L, Zhang Y Y, Qu Z P, Jia L Y, Zhang S H. 2016. Geophysical monitoring technology for CO₂ sequestration[J]. Applied Geophysics, 13(2): 288–306, 417–418.
- Ma J F, Li L, Wang H G, Du Y, Ma J J, Zhang X L, Wang Z L. 2022. Carbon capture and storage: History and the road ahead[J]. Engineering, 14: 33–43.
- Meng L, Zheng J, Yang R, Peng S, Sun Y, Xie J, Li D. 2023. Microseismic monitoring technology developments and prospects in CCUS Injection Engineering[J]. Energies, 16(7): 3101.
- Nakajima T, Wang L, Xue Z. 2019. Utilization of wave attenuation in the time–lapse sonic logging at the Nagaoka site for a near well monitoring of CO₂ migration[J]. International Journal of Greenhouse Gas Control, 88: 342–352.
- Nakajima T, Xue Z. 2013. Evaluation of a resistivity model derived from time-lapse well logging of a pilot-scale CO₂ injection site,

Nagaoka, Japan[J]. International Journal of Greenhouse Gas Control, 12: 288–299.

- Nakajima T, Xue Z, Watanabe J, Ito Y, Sakashita S. 2013. Assessment of well integrity at Nagaoka CO₂ injection site using ultrasonic logging and cement bond log data[J]. Energy Procedia, 37: 5746–5753.
- Nooner S L, Eiken O, Hermanrud C, Sasagawa G S, Stenvold T, Zumberge M A. 2007. Constraints on the in situ density of CO₂ within the Utsira formation from time–lapse seafloor gravity measurements[J]. International Journal of Greenhouse Gas Control, 1(2): 198–214.
- Onishi K, Ueyama T, Matsuoka T, Nobuoka D, Saito H, Azuma H, Xue Z. 2009. Application of crosswell seismic tomography using difference analysis with data normalization to monitor CO₂ flooding in an aquifer[J]. International Journal of Greenhouse Gas Control, 3(3): 311–321.
- Orujov G, Swidinsky A, Streich R. 2022. Do metal infrastructure effects cancel out in time–lapse electromagnetic measurements?[J]. Geophysics: Journal of the Society of Exploration Geophysicists, 87(2): E91–E101.
- Paradis S, Goñi M, Masqué P, Durán R, Arjona Camas M, Palanques A, Puig P. 2021. Persistence of biogeochemical alterations of deep - sea sediments by bottom trawling[J]. Geophysical Research Letters, 48(2): e2020GL091279.
- Patidar A K, Joshi D, Dristant U, Choudhury T. 2022. A review of tracer testing techniques in porous media specially attributed to the oil and gas industry[J]. Journal of Petroleum Exploration and Production Technology, 12(12): 3339–3356.
- Popik S, Pevzner R, Tertyshnikov K, Popik D, Urosevic M, Shulakova V, Glubokovskikh S, Gurevich B. 2020. 4D surface seismic monitoring the evolution of a small CO₂ plume during and after injection: CO₂CRC Otway Project study[J]. Exploration Geophysics, 51(5): 570–580.
- Preston C, Whittaker S, Rostron B, Chalaturnyk R, White D, Hawkesd C, Johnsone J W, Wilkinsona A, Sacuta N. 2009. IEA GHG Weyburn–Midale CO₂ monitoring and storage project–moving forward with the Final Phase[J]. Energy Procedia, 1(1): 1743–1750.
- Qin Jishun, Li Yongliang, Wu Debin, Weng Hui, Wang Gaofeng. 2020. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 27(1): 20–28 (in Chinese with English abstract).
- Qu Wenzhang, An Zhiguo. 2020. Numerical simulation of time–lapse audio magnetotelluric monitoring[J]. Progress in Geophysics, 35(4): 1595–1604 (in Chinese with English abstract).
- Raab T, Weinzierl W, Wiese B, Rippe D, Schmidt–Hattenberger C. 2020. Development of an electrical resistivity tomography monitoring concept for the svelvik CO₂ field lab, Norway[C]// Advances in Geosciences. Copernicus GmbH: 41–53.
- Ren Shaoran, Ren Bo, Li Yongzhao, Zhang Liang, Kang Wanli, Liu Yuncheng, Chen Guoli, Zhang Hua. 2012. Monitoring techniques of CO₂ geological storage and its application analysis[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 36(1): 106–111 (in Chinese with English abstract).
- Ringrose P S, Mathieson A S, Wright I W, Selama F, Hansen O, Bissell R, Saoula N, Midgley J. 2013. The In Salah CO₂ Storage Project: Lessons learned and knowledge transfer[J]. Energy Procedia, 37:

6226-6236.

- Rutqvist J. 2012. The geomechanics of CO₂ storage in deep sedimentary formations[J]. Geotechnical and Geological Engineering, 30(3): 525–551.
- Sambo C, Iferobia C C, Babasafari A A, Rezaei S, Akanni O A. 2020. The role of time lapse(4D) seismic technology as reservoir monitoring and surveillance tool: A Comprehensive review[J]. Journal of Natural Gas Science and Engineering, 80: 103312.
- Sato K, Mito S, Horie T, Ohkuma H, Saito H, Watanabe J, Yoshimura T. 2011. Monitoring and simulation studies for assessing macroand meso-scale migration of CO₂ sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan[J]. International Journal of Greenhouse Gas Control, 5(1): 125–137.
- Sheng H, Wu X, Sun X, Wu L. 2023. Deep learning for characterizing CO, migration in time–lapse seismic images[J]. Fuel, 336: 126806.
- Sherlock D, Toomey A, Hoversten M, Gasperikova E, Dodds K. 2006. Gravity monitoring of CO₂ storage in a depleted gas field: A sensitivity study[J]. Exploration Geophysics, 37(1): 37–43.
- Spetzler J, Xue Z, Saito H, Nishizawa O. 2008. Case story: Time–lapse seismic crosswell monitoring of CO₂ injected in an onshore sandstone aquifer[J]. Geophysical Journal International, 172(1): 214–225.
- Strack K, Davydycheva S, Passalacqua H, Smirnov M, Xu X. 2021. Using cloud-based array electromagnetics on the path to zero carbon footprint during the energy transition[J]. Journal of Marine Science and Engineering, 9(8): 906.
- Su X, Liu S, Zhang L, Liu G, Wang Y, Gan M, Li X. 2023. Wellbore leakage risk management in CO₂ geological utilization and storage: A review[J]. Energy Reviews, 2(4): 100049.
- Sugihara M, Nawa K, Nishi Y, Ishido T, Soma N. 2013. Continuous gravity monitoring for CO₂ geo–sequestration[J]. Energy Procedia, 37: 4302–4309.
- Sugihara M, Nawa K, Soma N, Ishido T, Miyakawa A, Nishi Y. 2014. Continuous gravity monitoring for CO₂ geo–sequestration (2) a case study at the Farnsworth CO₂–EOR Field[J]. Energy Procedia, 63: 4404–4410.
- Tong Yunxiao, Yang Junquan, Wang Xue, Tan Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield, Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170–183 (in Chinese with English abstract).
- Topham A, Lofts J, Du Z, Espie T, Zett A, Krahenbuhl R, Li Y. 2020. 3–axis borehole gravity: method and application to CO₂ storage monitoring and oil/gas production[C]// SPE Annual Technical Conference and Exhibition, 2020. Virtual: SPE: D031S025R004.
- Tveit S, Mannseth T, Park J, Sauvin G, Agersborg R. 2020. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large–scale CO₂ injection[J]. Computational Geosciences, 24(3): 1201–1220.
- Um E S, Alumbaugh D, Lin Y, Feng S. 2022. Realtime deep–learning inversion of seismic full waveform data for CO₂ saturation and uncertainty in geological carbon storage monitoring[J]. Geophysical Prospecting, 72: 199–212.
- Unwin S D, Sadovsky A, Sullivan E C, Anderson R M. 2011. Risk–informed monitoring, verification and accounting (RI–MVA). An NRAP white paper documenting methods and a demonstration

model for risk-informed MVA system design and operations in geologic carbon sequestration: PNNL-20808[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States).

- Uttam S, Sharma P K. 2022. Seasonal groundwater monitoring using surface NMR and 2D/3D ERT[J]. Environmental Earth Sciences, 81(7): 198–198.
- Vasco D W, Ferretti A, Novali F. 2008. Reservoir monitoring and characterization using satellite geodetic data: Interferometric synthetic aperture radar observations from the Krechba field, Algeria[J]. Geophysics, 73(6): WA113–WA122.
- Verdon J P, Kendall J–M, Stork A L, Chadwick R A, White D J, BissellR C. 2013. Comparison of geomechanical deformation induced by megatonne–scale CO₂ storage at Sleipner, Weyburn, and In Salah[J]. Proceedings of the National Academy of Sciences, 110(30): E2762–E2771.
- Wang Xiang, Guo Lianghui. 2020. Density interface inversion method in spherical coordinates and its application in the South China mainland[J]. Geophysical and Geochemical Exploration, 44(5): 1161–1171 (in Chinese with English abstract).
- Wang Y, Morozov I. 2019. Time–lapse acoustic impedance variations during CO₂ injection in Weyburn oilfield, Canada[J]. Geophysics, 85: 1–58.
- Wang H, Wang Z, Ma J, Li L, Wang Y, Tan M, Zhang Y, Cui S, Qu Z. 2022. Effective pressure prediction from 4D seismic AVO data during CO₂–EOR and storage[J]. International Journal of Greenhouse Gas Control, 113: 103525.
- Wang H, Xu J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536–540.
- Wilkinson M, Mouli–Castillo J, Morgan P, Eid R. 2017. Time–lapse gravity surveying as a monitoring tool for CO₂ storage[J]. International Journal of Greenhouse Gas Control, 60: 93–99.
- Wu Jiang, Ren Siyuan, Sun Yijing, Liu Qizhen. 2022. Research and application of CCUS technology based on "doublecarbon" background[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 50(7): 89–100 (in Chinese with English abstract).
- Xue Z, Tanase D, Watanabe J. 2006. Estimation of CO₂ saturation from time–lapse CO₂ well logging in an onshore aquifer, Nagaoka, Japan[J]. Exploration Geophysics, 37(1): 19–29.
- Yang X, Buscheck T A, Mansoor K, Wang Z, Gao K, Huang L, Appriou D, Carroll S A. 2019. Assessment of geophysical monitoring methods for detection of brine and CO₂ leakage in drinking water aquifers[J]. International Journal of Greenhouse Gas Control, 90: 102803.
- Yang X, Chen X, Smith M M. 2022. Deep learning inversion of gravity data for detection of CO₂ plumes in overlying aquifers[J]. Journal of Applied Geophysics, 196: 104507.
- Yang X, Lassen R N, Jensen K H, Looms M C. 2015. Monitoring CO₂ migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography[J]. International Journal of Greenhouse Gas

Control, 42: 534-544.

- Yang Yang, Ma Jinfeng, Li Lin. 2015. Research progress of 4D multicomponent seismic monitoring techniquein carbon capture and storage[J]. Advances in Earth Science, 30(10): 1119–1126 (in Chinese with English abstract).
- Yu Enyi, Di Yuan, Wu Hui, Cao Xiaopeng, Zhang Qingfu, Zhang Chuanbao. 2023. Numerical simulation on risk analysis of CO₂ geological storage under multi–field coupling: A review[J]. Chinese Journal of Theoretical and Applied Mechanics, 55(9): 2075–2090 (in Chinese with English abstract).
- Zhang T, Zhang W, Yang R, Liu Y, Jafari M. 2021. CO₂ capture and storage monitoring based on remote sensing techniques: A review[J]. Journal of Cleaner Production, 281: 124409.
- Zhang Xian, Li Yang, Ma Qiao, Liu Lingna. 2021. Development of carbon capture, utilization and storage technology in China[J]. Engineering, 23(6): 70–80 (in Chinese with English abstract).
- Zhang Kai, Chen Zhangxing, Lan Haifan, Ma Haoming, Jiang Liangliang, Xue Zhenqian, Zhang Yuming, Cheng Shixuan. 2023. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 30(2): 1–12 (in Chinese with English abstract).
- Zhang Qi, Cui Yongjun, Bu Xuepeng, Chen Qiang. 2011. Analysis of the current development status of CCS monitoring technology[J]. Shenhua Science and Technology, 9(2): 77–82 (in Chinese with English abstract).
- Zhang Yang, Sun Jiawen, Zhao Haidong, Qiao Ting. 2022. Path for realization of ecological product value of CO₂ geological storagein lnner Mongolia under the carbon peak and carbon neutrality goals[J]. Journal of Arid Land Resources and Environment, 36(11): 19–26 (in Chinese with English abstract).
- Zhao Gaishan. 2023. Geophysical monitoring for geological carbon sequestration: Present status, challenges, and future development[J]. Geophysical Prospecting for Petroleum, 62(2): 194–211 (in Chinese with English abstract).
- Zhao Haiying, Chen Yuanzhong, Li Yanpeng, Liu Guojun, Li Tao, Xia Shujun, Fan Hanzhou. 2018. CO₂ monitoring with time–lapse vertical seismic profile[J]. Rock and Soil Mechanics, 39(8): 3095–3102 (in Chinese with English abstract).
- Zhu T, Ajo–Franklin J, Daley T M, Marone C. 2019. Dynamics of geologic CO₂ storage and plume motion revealed by seismic coda waves[J]. Proceedings of the National Academy of Sciences, 116(7): 2464–2469.

附中文参考文献

陈召曦, 孟小红, 郭良辉, 刘国峰. 2012. 基于 GPU 并行的重力、重力 梯度三维正演快速计算及反演策略[J]. 地球物理学报, 55(12): 4069-4077.

- 崔方智,周韬,张兵.2020.煤层中 CO₂注入运移瞬变电磁法监测技 术探索[J].物探与化探,44(3):573-581.
- 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质 封存潜力分级及评价思路[J]. 中国地质, 50(3): 943-951.
- 李红蕾, 陈石, 庄建仓, 张贝, 石磊. 2021. 贝叶斯同化重力反演方法 构建龙门山地壳密度模型[J]. 地球物理学报, 64(4): 1236-1252.
- 李姜辉, 余凤玲, 牛雄伟, 周天, 张运修, 李雯菱. 2023. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展, 38(11): 1121-1144.
- 李小春, 袁维, 白冰. 2016. CO₂ 地质封存力学问题的数值模拟方法 综述[J]. 岩土力学, 37(6): 1762–1772.
- 刘彦, 吕庆田, 李晓斌, 祈光, 赵金花, 严加永, 邓震. 2015. 基于模型 降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报, 58(12): 4727-4739.
- 秦积舜, 李永亮, 吴德彬, 翁慧, 王高峰. 2020. CCUS 全球进展与中国对策建议[J]. 油气地质与采收率, 27(1): 20-28.
- 屈文璋,安志国. 2020. 时移音频大地电磁监测数值模拟研究[J]. 地 球物理学进展, 35(4): 1595–1604.
- 任韶然,任博,李永钊,张亮,康万利,刘运成,陈国利,张华. 2012. CO₂地质埋存监测技术及其应用分析[J].中国石油大学学报(自 然科学版),36(1):106-111.
- 仝云霄,杨俊泉,王雪,谭琨. 2024. 基于时序 InSAR 的山西大同煤田 地表沉降监测及时空演化分析[J]. 中国地质, 51(1): 170–183.
- 王祥, 郭良辉. 2020. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 44(5): 1161–1171.
- 吴江,任思源,孙一景,刘启贞.2022.基于"双碳"背景的 CCUS 技术 研究与应用[J].华中科技大学学报 (自然科学版), 50(7):89-100.
- 杨扬, 马劲风, 李琳. 2015. CO₂ 地质封存四维多分量地震监测技术 进展[J]. 地球科学进展, 30(10): 1119–1126.
- 于恩毅, 邸元, 吴辉, 曹小朋, 张庆福, 张传宝. 2023. CO₂ 地质封存风 险分析的多场耦合数值模拟技术综述[J]. 力学学报, 55(9): 2075-2090.
- 张贤,李阳,马乔,刘玲娜. 2021. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 23(6): 70-80.
- 张凯,陈掌星,兰海帆,马浩铭,姜亮亮,薛振乾,张育铭,程世轩.
 2023. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 30(2): 1-12.
- 张琪, 崔永君, 步学朋, 陈强. 2011. CCS 监测技术发展现状分析[J]. 神华科技, 9(2): 77-82.
- 张阳,孙佳文,赵海东,乔婷.2022.碳达峰碳中和目标下内蒙古 CO₂地质封存的生态产品价值实现路径[J].干旱区资源与环境, 36(11):19-26.
- 赵改善. 2023. 二氧化碳地质封存地球物理监测: 现状、挑战与未来 发展[J]. 石油物探, 62(2): 194-211.
- 赵海英, 陈沅忠, 李彦鹏, 刘国军, 李陶, 夏淑君, 范含周. 2018. CO₂ 地质封存时移垂直地震监测技术[J]. 岩土力学, 39(8): 3095-3102.