2. 中国地质调查局-中国地质科学院地球深部探测中心, 北京 100037
2. SinoProbe Center, Chinese Academy of Geological Sciences and China Geological Survey, Beijing, 100037, China
阿拉善地块东接华北克拉通主体,西南部通过河西走廊盆地邻接祁连造山带(陈宣华等, 2019),北侧以巴丹吉林断裂带为界与中亚造山带相接(Zhang et al., 2015a),其大地构造属性是近年来地质界激烈争论的科学问题。传统上,阿拉善地块被认为是华北克拉通的组成部分(图 1a;宫江华等, 2011; Gong et al., 2012; Hu et al., 2014),可能是阴山地块的西部(Zhao et al., 2005; Wan et al., 2006; Zhao et al., 2012),也可能是孔兹岩带的西延(耿元生等, 2010; Zhang et al., 2013a; 张建新和宫江华, 2018)。近年来,通过研究阿拉善地块中部的新元古代岩浆作用、东部的早古生代沉积源区和古地磁极以及东缘的古生代剪切和沉积构造特征,部分学者提出阿拉善地块在前寒武纪不属于华北克拉通(李锦轶等, 2012; 张进等, 2012; Dan et al., 2016),可能与塔里木或扬子克拉通更具亲缘性(董国安等, 2007; Zhang et al., 2011, 2015b, 2016b; Dan et al., 2014; Yuan and Yang, 2015;Song et al., 2017),也可能是一个独立演化的前寒武纪微陆块(耿元生等, 2010; Dan et al., 2012; Zhang et al., 2013b, 2016a)。
![]() |
图 1 阿拉善地块大地构造位置(a据Zhao et al., 2005修改)和地质简图(b据Gong et al., 2012修改) Fig. 1 Tectonic map of the Alxa Block (a, modified from Zhao et al., 2005) and Geological sketch map of the Alxa Block (b, modified from Gong et al., 2012) |
阿拉善地区是否存在华北克拉通特征性的新太古代—古元古代基底及构造热事件(~2.7 Ga、~ 2.5 Ga、~1.95 Ga和~1.85 Ga;Zhao et al., 2005, 2010, 2012; Xia et al., 2006; Jiang et al., 2010; Han et al., 2012; Jian et al., 2012; Ma et al., 2012; Wang and Liu, 2012; Wan et al., 2014),是讨论上述争议问题的关键。阿拉善地块前寒武纪基底主要分布在东北部的迭布斯格、东部的巴彦乌拉山、西南部的龙首山和北大山等地区(图 1b)。迭布斯格杂岩可能是新太古代基底(~2.7 Ga;内蒙古自治区地质矿产局, 1991;耿元生等, 2006),但其副片麻岩的沉积年龄为古元古代(2.45~2.0 Ga;Dan et al., 2012)。巴彦乌拉山杂岩也曾被认为是新太古代基底(内蒙古自治区地质矿产局, 1991),而其变质火山岩的原岩可能形成于古元古代(2.34~2.24 Ga;耿元生等, 2006; Dan et al., 2012; Wu et al., 2014)。汤中立和白云来(1999)曾在龙首山群基性火山岩中获得中太古代(3.18 Ga)的Sm-Nd等时线年龄,但近年的锆石UPb定年结果表明其变质沉积岩(2.2~1.7 Ga)和花岗质片麻岩(2.17~1.91 Ga)都可能形成于古元古代(修群业等, 2002; 董国安等, 2007; 宫江华等, 2011)。此外,最近有学者在合黎山的前震旦系中识别出中元古代花岗质片麻岩(~1.2 Ga)和含新元古代碎屑锆石((968 ± 70)Ma)的变质沉积岩(Song et al., 2017)。值得注意的是,北大山地区出露的花岗闪长质片麻岩的成岩年龄为~2.5 Ga,其Hf同位素模式年龄为3.0~2.7 Ga(Gong et al., 2012; Zhang et al., 2013a)。并且,阿拉善基底记录的变质年龄主要集中在3个时段:~2.5 Ga、1.95~1.9 Ga和1.85~ 1.8 Ga(宫江华等, 2011; Dan et al., 2012; Gong et al., 2012; Zhang et al., 2013a; Wu et al., 2014)。
本文在阿拉善南缘西部合黎山地区发现了侵入龙首山群的正长岩,并进行了锆石U-Pb定年以及元素和同位素地球化学分析。通过研究该岩体的成岩时代、岩浆成因和源区特征,结合前人研究成果,分析阿拉善基底及构造热事件的时代格架,这将有助于探讨阿拉善地块的大地构造属性。
2 地质背景及样品描述合黎山位于阿拉善南缘的最西端(图 1b),是龙首山的西延部分(宫江华等, 2011; Song et al., 2017),主要出露龙首山群、震旦系和古生代岩浆岩。龙首山群分布在河西走廊北侧,呈NWW-SEE走向,西起金塔县境内,经高台合黎山到金昌龙首山一带,以角闪岩相—绿片岩相的变质中基性火山岩和变沉积岩为主,岩性包括混合岩、大理岩、斜长角闪岩、黑云斜长片麻岩、云母片岩、石英片岩等。震旦系绿片岩相变质沉积岩不整合覆盖在龙首山群之上,岩性包括变石英砂岩、变硅质岩、大理岩、云母石英片岩以及黑云斜长片麻岩等。阿拉善地块西南缘的古生代岩浆岩可分为志留纪—早泥盆世和晚石炭世—二叠纪两期,岩性以中酸性花岗岩为主,基性和超基性岩浆岩零星出露。
采样点位于合黎山的东部(图 1b;39°32′06.00″ N,100°01′29.94″E),花岗岩侵入龙首山群黑云斜长片麻岩,二者共同被震旦系变石英砂岩不整合覆盖(图 2a)。该花岗岩(CQL2016-74)野外呈肉红色,中粗粒,主要由碱性长石(包括正长石、微斜长石、歪长石,~75%)、斜长石(~10%)、黑云母(~15%)和少量白云母构成,定名为正长岩(图 2b)。微斜长石和斜长石分别发育格子双晶和聚片双晶,偶见石英,副矿物可见锆石和磷灰石。
![]() |
图 2 合黎山正长岩的野外特征(a)和镜下特征(b,正交偏光) Bt—黑云母;Mc—微斜长石;Ms—白云母;Or—正长石;Pl—斜长石 Fig. 2 Field characteristics (a) and mineral assemblages (b, crossed nicols) of the Helishan syenite Bt-Biotite; Mc-Microcline; Ms-Muscovite; Or-Orthoclase; Pl-Plagioclase |
锆石的分离采用常规的重液和磁选方法,然后在双目镜下手工挑选。样品靶的制备过程参考宋彪等(2002)文献。在光学显微镜的透、反射光下分别观察锆石包体和裂隙分布,并用JSMIT-500型钨灯丝扫描电镜观察锆石生长结构。锆石U-Pb测年在中国地质科学院矿产资源研究所完成,测试仪器由Finnigan Neptune型多接收等离子质谱仪(MCICP-MS)和Newwave UP 213型激光剥蚀系统组成,详细操作流程参考侯可军等(2007, 2009)。普通铅校正采用Andersen(2002),谐和图和年龄计算应用ISOPLOT 4.15(Ludwig, 2009)。单个点位的同位素比值和表观年龄误差为1σ,加权平均年龄采用2σ误差,置信度为95%。测年数据见表 1。
![]() |
表 1 合黎山古元古代正长岩LA-ICP-MS锆石U-Pb定年数据 Table 1 LA-ICP-MS zircon U–Pb data for the Paleoproterozoic syenite in Helishan |
全岩主量及微量元素测试在中国地质科学院国家地质实验测试中心完成。主量元素含量的测试仪器为PW4400型X射线荧光光谱仪。其中,FeO的检测方法依据GB/T 14506.14-2010,其他主要氧化物含量的检测方法依据GB/T 14506.28-2010。稀土及微量元素含量的测试仪器为PE300D型等离子质谱仪,检测方法依据GB/T 14506.30-2010。分析结果见表 2。
![]() |
表 2 合黎山正长岩主量(%)及微量元素(10-6)含量 Table 2 Major (%) and trace element (10-6) concentrations of the Paleoproterozoic syenite in Helishan |
全岩Sr-Nd同位素测试在中国地质科学院地质研究所完成。其中,Sr同位素比值采用MAT262型固体同位素质谱计测定,SRM 987标准测定结果为87Sr/86Sr = 0.710243 ± 12 (2σ),质量分馏以88Sr/86Sr =8.37521校正。Nd同位素的测试仪器为Nu Plasam HR型多接收电感耦合等离子体质谱仪(MC-ICP-MS),分析方法参考唐索寒等(2017)。JMC标准测定结果为143Nd/144Nd = 0.511123 ± 10 (2σ),GSB标准测定结果为143Nd/144Nd = 0.512440 ± 10 (2σ),同位素质量分馏采用146Nd/144Nd = 0.7219校正。测试结果见表 3。
![]() |
表 3 合黎山正长岩Sr-Nd同位素数据 Table 3 Sr-Nd isotopic compositions of the Helishan syenite |
合黎山正长岩中的锆石自形程度较高,多为菱形或柱状,长与宽的分布范围分别是100~300 μm和80~200 μm,部分锆石具有核-幔-边结构,所有锆石都保存了良好的岩浆震荡环带(图 3a)。在28颗锆石上进行了28点分析,谐和度均大于85%(图 3b,表 1),其Th、U含量分别为37× 10-6~300× 10-6和19× 10-6~622× 10-6,Th/U比值为0.25~2.19,指示锆石岩浆成因。207Pb/206Pb表观年龄的分布范围是2495~ 1840 Ma,且明显具有~2.5 Ga和~1.85 Ga两个峰值(图 3d)。其中,测试点07、17和18均位于锆石核上(图 3a),其207Pb/206Pb年龄的加权平均值为(2484 ± 20) Ma(MSWD = 0.95);测试点13位于锆石幔上(图 3a),其207Pb/206Pb表观年龄为(2098 ± 32) Ma;测试点6和24也位于锆石幔上,其207Pb/206Pb表观年龄分别为(1933 ± 60) Ma和(1976 ± 31) Ma;剩余的22个测试点聚集成簇(图 3c),位于锆石边或不发育核-幔-边结构的锆石上,其207Pb/206Pb年龄的加权平均值为(1872 ± 12) Ma(MSWD = 1.2;图 3e)。
![]() |
图 3 合黎山正长岩锆石阴极发光照片(CL)与谐和图 Fig. 3 Cathodoluminescence (CL) images and zircon U-Pb concordia diagrams of the Helishan syenite |
合黎山正长岩具有中硅(SiO2 = 62.40%)、富铝(Al2O3 = 18.39%)、富碱(ALK = 14.86%)的特征(图 4a),特别是强烈富钾(K2O = 13.77%,K2O/Na2O = 12.63),弱过铝质(A/CNK = 1.07;图 4b)。其稀土总量为139.37× 10-6,轻、重稀土分异明显(图 4c),(La/ Yb)N比值为46.62,Eu异常不明显或弱负异常(δEu = 0.92)。大离子亲石元素富集(Cs、Rb、Ba等),高场强元素亏损(Y、Yb、Lu等),具有明显的Nb-Ta负异常和Pb-Zr-Hf正异常(图 4d)。此外,该正长岩具有EM-I型同位素特征(图 5a),其初始87Sr/86Sr和初始143Nd/144Nd分别为0.705162和0.509957,εNd(t)为负值(-5.05)。样品的分异程度(fs=-0.59)高于大陆地壳平均水平(fcc=-0.4;Depaolo et al., 1991; Wu et al., 2005),计算得到其单阶段和二阶段Nd模式年龄分别为2505 Ma和2758 Ma(图 5b)。
![]() |
图 4 合黎山正长岩主量及微量元素特征 (下地壳平均组分参考Rudnick and Gao, 2003) Fig. 4 Diagrams showing major and trace element features of the Helishan syenite (the composition of lower crust after Rudnick and Gao, 2003) |
合黎山正长岩属于中性岩浆岩(SiO2 = 62.40 %),其源区应为玄武质,而强烈富钾与低Nb/ U比值(5.79)进一步指向陆壳源区(赵振华, 2005)。与下地壳平均组分相比,该正长岩的稀土分异程度更高(图 4c),表明源区残留相中可能存在石榴子石;Rb、Ba和Pb的富集(图 4d)可能与碱性长石作为主要熔体相有关(图 2b),但没有同时出现明显的Sr和Eu正异常,表明在残留相中可能存在大量斜长石;Zr-Hf正异常的出现与大陆地壳特征相似(Rudnick and Gao, 2003),而与典型岛弧岩浆岩特征不符(Wang et al., 2016a)。此外,合黎山正长岩的Sr-Nd同位素特征也指示大陆下地壳源区,综合判断该正长岩可能源于大陆玄武质下地壳的部分熔融。
LA-ICP-MS锆石U-Pb定年结果表明,合黎山正长岩形成于中元古代((1872 ± 12) Ma),且记录了~2.5 Ga和~1.95 Ga的岩浆活动信息。该正长岩的分异因子小于大陆地壳平均值(fs=-0.59 < fcc= -0.4),表明玄武质下地壳在部分熔融过程中发生了Sm/Nd分馏(Jahn et al., 2000),而fcc与fs可分别描述部分熔融发生前与发生后的Nd同位素演化(图 5b;Jacobsen, 1988),因此采用二阶段Nd模式年龄(TDM2),即该正长岩源区玄武质岩浆从亏损地幔的分离发生在新太古代(~2.7 Ga)。
5.2 对阿拉善地块大地构造属性的启示合黎山正长岩的发现,表明在远离华北克拉通主体的阿拉善地块西端(图 1)存在~2.7 Ga的地壳生长、~1.85 Ga的构造热事件,以及~2.5 Ga和~1.95 Ga的岩浆活动记录。在阿拉善地块南部的北大山地区,存在~2.5 Ga具有TTG特征的基底片麻岩,并记录了~2.8 Ga的地壳生长以及~2.5 Ga和~1.85 Ga两期变质事件(Gong et al., 2012; Zhang et al., 2013a)。在阿拉善地块东部的巴彦乌拉山地区,古元古代变质火山岩记录了~1.95 Ga和~1.85 Ga两期变质事件(Dan et al., 2012; Wu et al., 2014)。在阿拉善地块东北部的狼山地区,新太古代—古元古代基底的形成时代可分为~2.7 Ga、~2.6 Ga、~2.5 Ga、~1.95 Ga和~1.7 Ga 5个期次(Wang et al., 2016b)。此外,龙首山和迭布斯格地区的古元古代变质基底也记录了~1.95 Ga和1.85 Ga两期变质事件(宫江华等, 2011; Dan et al., 2012; Gong et al., 2016)。总结起来,阿拉善地块经历了2.8~2.7 Ga的地壳生长,存在~2.5 Ga变质基底和古元古代岩浆活动,并记录了~2.5 Ga、~1.95 Ga和~1.85 Ga三期变质事件。
华北克拉通主体的前寒武纪变质基底主要形成于新太古代—古元古代,以2.8~2.7 Ga的地壳生长时代(Wu et al., 2005; Jiang et al., 2010; Han et al., 2012)和~2.5 Ga的基底成岩时代为特征(Zhao et al., 2005; Zhai and Santosh, 2011; Wang and Liu, 2012; Wan et al., 2014),并记录了~1.95 Ga和~1.85 Ga两期大规模构造事件(Wu et al., 2005; Wan et al., 2006, 2014; Yin et al., 2009, 2011, 2014; Zhao et al., 2010, 2012; Dong et al., 2013; Cai et al., 2014)。可见,阿拉善地块与华北克拉通主体的新太古代—古元古代基底和构造热事件的时代特征非常一致,表明二者具有明显的亲缘关系。
如果阿拉善地块在前寒武纪不属于华北克拉通,那么二者之间应该存在古缝合带。值得注意的是,Liu et al.(2017)发表的近东西向横穿贺兰山及银川盆地的深地震反射剖面恰好位于阿拉善地块与鄂尔多斯地块的边界位置(图 1, 图 4),但地壳中并不存在俯冲缝合结构,这意味着这条尚未发现的缝合带如果存在的话,应位于贺兰山以西。因此,贺兰山及其南部的牛首山、香山、大罗山和小罗山等地区早古生界的沉积源区和古地磁极等地质特征不适合作为阿拉善地块与华北克拉通在早古生代尚未拼合的证据。并且,已有学者提出这一区域的早古生界可能是祁连造山带的组成部分(张建新和宫江华, 2018)。然而,阿拉善地块中部巴音诺尔公地区出露的新元古代S型花岗岩(ca. 930~904 Ma;耿元生和周喜文, 2010; Dan et al., 2014)与华北克拉通广泛发育的新元古代基性岩墙群(ca. 925~ 890 Ma;Peng et al., 2011; 翟明国等, 2014; Peng, 2015)确实存在明显差异。如果阿拉善地块属于华北克拉通的一部分,则必须对此差异进行合理解释,这需进一步深入研究。
6 结论合黎山正长岩形成于(1872 ± 12) Ma,属于中元古代,其记录了~2.7 Ga的地壳生长以及~2.5 Ga、~ 2.1 Ga和~1.95 Ga的岩浆活动,可能源于玄武质下地壳的部分熔融。该正长岩的发现进一步完善了阿拉善地块基底的区域分布和年代学格架,显示阿拉善地块与华北克拉通主体新太古代—古元古代基底和构造热事件的时代特征一致,这是二者具有亲缘性的重要佐证。
致谢: 感谢审稿人对本文的宝贵意见!感谢邵浩浩、苗慧心和史建杰在野外及实验过程中的帮助,锆石U-Pb定年和全岩Sr-Nd同位素测试过程中中国地质科学院矿产资源研究所王倩和中国地质科学院地质研究所唐索寒研究员的帮助!
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X |
Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol(Inner Mongolia) Autonomous Region[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
|
Cai J, Liu F, Liu P, Liu C, Wang F, Shi J. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton[J]. Precambrian Research, 241: 161-184. DOI:10.1016/j.precamres.2013.11.012 |
Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, Gao Rui, Xu Shenglin, Zhang Yiping, Li Bing, Wang Ye. 2019. Early Cretaceous overthrusting of Yumu Mountain and hydrocarbon prospect on the northern margin of the Qilian Orogenic Belt[J]. Acta Geoscientica Sinica, 40: 377-392 (in Chinese with English abstract). |
Dan W, Li X H, Guo J, Liu Y, Wang X C. 2012. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 21: 838-864. DOI:10.1016/j.gr.2011.09.004 |
Dan W, Li X H, Wang Q, Wang X C, Liu Y. 2014. Neoproterozoic Stype granites in the Alxa Block, westernmost North China and tectonic implications:In situ zircon U-Pb-Hf-O isotopic and geochemical constraints[J]. American Journal of Science, 314: 110-153. DOI:10.2475/01.2014.04 |
Dan W, Li X H, Wang Q, Wang X C, Wyman D A, Liu Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton:Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 32: 105-121. DOI:10.1016/j.gr.2015.02.011 |
Depaolo D J, Linn A M, Schubert G. 1991. The continental crustal age distribution:Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States[J]. Journal of Geophysical Research, 96(B2): 2071-2088. DOI:10.1029/90JB02219 |
Dong C, Wan Y, Xu Z, Liu D, Yang Z, Ma M, Xie H. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton[J]. Science China Earth Sciences, 56(1): 115-125. |
Geng Yuansheng, Zhou Xiwen. 2010. Early Neoproterozoic granite events in Alxa area of Inner Mongolia and their geological significance:Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 29(6): 779-795 (in Chinese with English abstract). |
Geng Yuansheng, Wang Xinshe, Shen Qihan, Wu Chunming. 2006. Redefinition of the Alxa Group-Complex (Precambrian metamorphic basement) in the Alxa area, Inner Mongolia[J]. Geology in China, 33(1): 138-145 (in Chinese with English abstract). |
Geng Yuansheng, Wang Xinshe, Wu Chunming, Zhou Xiwen. 2010. Late Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area:Evidence from geochronology[J]. Acta Petrologica Sinica, 26(4): 1159-1170 (in Chinese with English abstract). |
Gong Jianghua, Zhang Jianxin, Yu Shengyao. 2011. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa Block:Constraint from LA-ICP-MS U-Pb zircon dating[J]. Acta Petrologica et Mineralogica, 30(5): 795-818 (in Chinese with English abstract). |
Gong J, Zhang J, Wang Z, Yu S, Li H, Li Y. 2016. Origin of the Alxa Block, western China:New evidence from zircon U-Pb geochronology and Hf isotopes of the Longshoushan Complex[J]. Gondwana Research, 36: 359-375. DOI:10.1016/j.gr.2015.06.014 |
Gong J, Zhang J, Yu S, Li H, Hou K. 2012. Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications[J]. Chinese Science Bulletin, 57: 4064-4076. DOI:10.1007/s11434-012-5315-8 |
Han B F, Xu Z, Ren R, Li L L, Yang J H, Yang Y H. 2012. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton:A case study of the Fuping Complex[J]. Geological Magazine, 149: 729-742. DOI:10.1017/S0016756811001014 |
Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). |
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological implications[J]. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). |
Hu J, Gong W, Wu S, Liu Y, Liu S. 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255(2): 756-770. |
Jacobsen S B. 1988. Isotopic constraints on crustal growth and recycling[J]. Earth and Planetary Science Letters, 90: 315-329. DOI:10.1016/0012-821X(88)90133-1 |
Jahn B M, Wu F Y, Chen B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82-92. DOI:10.18814/epiiugs/2000/v23i2/001 |
Jian P, Kröner A, Windley B F, Zhang Q, Zhang W, Zhang L. 2012. Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton:Zircon ages of magmatic and metamorphic rocks from the Yinshan Block[J]. Precambrian Research, 222-223: 230-254. DOI:10.1016/j.precamres.2012.03.002 |
Jiang N, Guo J, Zhai M, Zhang S. 2010. -2.7 Ga crust growth in the North China craton[J]. Precambrian Research, 179: 37-49. DOI:10.1016/j.precamres.2010.02.010 |
Li Jinyi, Zhang Jin, Qu Junfeng. 2012. Amalgamation of the North China Craton with Alxa Block in the late of Early Paleozoic:Evidence from sedmentary sequences in the Niushou Mountain, Ningxia Hui Autonomous Region, NW China[J]. Geological Review, 58(2): 208-214 (in Chinese with English abstract). |
Liu B, Feng S, Ji J, Wang S, Zhang J, Yuan H, Yang G. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin:Results of deep seismic reflection profiling[J]. Science China Earth Sciences, 60: 589-601. DOI:10.1007/s11430-016-5069-4 |
Ludwig K R. 2009. User's Manual for Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, 1-76.
|
Ma M, Wan Y, Santosh M, Xu Z, Xie H, Dong C, Liu D, Guo C. 2012. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan, North China Craton[J]. Gondwana Research, 22: 810-827. DOI:10.1016/j.gr.2012.02.020 |
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications[J]. Science China Earth Sciences, 58: 649-675. |
Peng P, Zhai M G, Li Q, Wu F, Hou Q, Li Z, Li T, Zhang Y. 2011. Neoproterozoic (~900 Ma) Sariwon sills in North Korea:Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton[J]. Gondwana Research, 20: 243-254. DOI:10.1016/j.gr.2010.12.011 |
Rudnick R L and Gao S. 2003. Composition of the Continental Crust[C]//Turekian, H D H K(Ed.). Treatise on geochemistry[M]. Pergamon, Oxford, 1-64.
|
Song Biao, Zhang Yuhai, Wan Yusheng, Jian Ping. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48: 26-30 (in Chinese with English abstract). |
Song D, Xiao W, Collins A S, Glorie S, Han C, Li Y. 2017. New chronological constrains on the tectonic affinity of the Alxa Block, NW China[J]. Precambrian Research, 299: 230-243. DOI:10.1016/j.precamres.2017.07.015 |
Tang Suohan, Li Jin, Liang Xirong, Zhang Liguo, Li Guozhan, Pu Wei, Li Chaofeng, Yang Yueheng, Chu Zhuyin, Zhang Jun, Hou Kejun, Wang Xiaoming. 2017. Reference material preparation of 143Nd/144Nd isotope ratio[J]. Rock and Mineral Analysis, 36(2): 163-170 (in Chinese with English abstract). |
Tang Zhongli, Bai Yunlai. 1995. Geotectonic framework and metallogenic system in the southwest margin of north China paleocontinent[J]. Earth science Frontiers (China University of Geosciences, Beijing), 6(2): 271-283 (in Chinese with English abstract). |
Tung K, Yang H, Liu D, Zhang J, Tseng C, Wan Y. 2007. SHRIMP UPb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Chinese Science Bulletin, 52(10): 1414-1425. DOI:10.1007/s11434-007-0189-x |
Wan Y, Song B, Liu D, Wilde S A, Wu J, Shi Y, Yin X, Zhou H. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 149: 249-271. DOI:10.1016/j.precamres.2006.06.006 |
Wan Y, Xie S, Yang C, Kröner A, Ma M, Dong C, Du L, Xie H, Liu D. 2014. Early Neoarchean (-2.7 Ga) tectono-thermal events in the North China Craton:A synthesis[J]. Precambrian Research, 247: 45-63. DOI:10.1016/j.precamres.2014.03.019 |
Wang X C, Wilde S A, Xu B, Pang C J. 2016a. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 261: 5-45.
|
Wang A, Liu Y. 2012. Neoarchean (2.5-2.8 Ga) crustal growth of the North China Craton revealed by zircon Hf isotope:A synthesis[J]. Geoscience Frontiers, 3: 147-173. DOI:10.1016/j.gsf.2011.10.006 |
Wang Z Z, Han B F, Feng L X, Liu B, Zheng B, Kong L J. 2016. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the Western North China Craton:Evidence from LAICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 261: 278-295. DOI:10.1016/j.lithos.2016.03.005 |
Wu F, Zhao G, Wilde S A, Sun D. 2005. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 24(5): 523-545. DOI:10.1016/j.jseaes.2003.10.011 |
Wu S, Hu J, Ren M, Gong W, Liu Y, Yan J. 2014. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex:Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 94: 226-239. DOI:10.1016/j.jseaes.2014.05.011 |
Xia X, Sun M, Zhao G, Luo Y. 2006. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance[J]. Precambrian Research, 144: 199-212. DOI:10.1016/j.precamres.2005.11.004 |
Xiu Qunye, Lu Songnian, Yu Haifeng, Yang Chunliang. 2002. The isotopic age evidence for main Longshoushan Group contributing to Paleoproterozoic[J]. Progress in Precambrian Research, 25(2): 93-96 (in Chinese with English abstract). |
Yin C, Zhao G, Guo J, Sun M, Xia X, Zhou X, Liu C. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Lithos, 122(1/2): 25-38. |
Yin C, Zhao G, Sun M, Xia X, Wei C, Zhou X, Leung W. 2009. LAICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 174(1/2): 78-94. |
Yin C, Zhao G, Wei C, Sun M, Guo J, Zhou X. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex:Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton[J]. Precambrian Research, 242(0): 172-186. |
Yuan W, Yang Z. 2015. The Alashan Terrane was not part of North China by the Late Devonian:Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Gondwana Research, 27: 1270-1282. |
Zhai Mingguo, Hu Bo, Peng Peng, Zhao Taiping. 2014. MesoNeoproterozoic magmatic events and multi-stage rifting in the NCC[J]. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract). |
Zhai M G, Santosh M. 2011. The early Precambrian odyssey of the North China Craton:A synoptic overview[J]. Gondwana Research, 20(1): 6-25. |
Zhang B H, Zhang J, Zhang Y, Zhao H, Wang Y, Nie F. 2016a. Tectonic affinity of the Alxa Block, Northwest China:Constrained by detrital zircon U-Pb ages from the early Paleozoic strata on its southern and eastern margins[J]. Sedimentary Geology, 339: 289-303. DOI:10.1016/j.sedgeo.2016.02.017 |
Zhang Jianxin, Gong Jianghua. 2018. Revisiting the nature and affinity of the Alxa Block[J]. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract). |
Zhang J, Gong J, Yu S, Li H, Hou K. 2013a. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication:Evidence from zircon U-Pb ages and Hf isotopic composition[J]. Precambrian Research, 235: 36-57. DOI:10.1016/j.precamres.2013.05.002 |
Zhang J, Li J, Liu J, Feng Q. 2011. Detrital zircon U-Pb ages of Middle Ordovician flysch sandstones in the western ordos margin:New constraints on their provenances, and tectonic implications[J]. Journal of Asian Earth Sciences, 42: 1030-1047. DOI:10.1016/j.jseaes.2011.03.009 |
Zhang Jin, Li Jinyi, Liu Jianfeng, Li Yanfeng, Qu Junfeng, Feng Qianwen. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic:New information from the Middle Ordovician detrital zircon ages in the eastern Alxa Block[J]. Acta Petrologica Sinica, 28(9): 2912-2934 (in Chinese with English abstract). |
Zhang J, Li J, Xiao W, Wang Y, Qi W. 2013b. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 57: 38-57. DOI:10.1016/j.jsg.2013.10.002 |
Zhang J, Wang T, Zhang L, Tong Y, Zhang Z, Shi X, Guo L, Huang H, Yang Q, Huang W, Zhao J, Ye K, Hou J. 2015a. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China:Constraints on the southern boundary of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 108: 150-169. DOI:10.1016/j.jseaes.2015.04.019 |
Zhang J, Zhang B, Zhao H. 2016b. Timing of amalgamation of the Alxa Block and the North China Block:Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 668-669: 65-81. DOI:10.1016/j.tecto.2015.12.006 |
Zhang J, Zhang Y, Xiao W, Wang Y, Zhang B. 2015b. Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic:Constraints from detrital zircon U-Pb ages and Cambrian sedimentary records[J]. Gondwana Research, 28: 1168-1182. DOI:10.1016/j.gr.2014.09.012 |
Zhao G, Cawood P A, Li S, Wilde S A, Sun M, Zhang J, He Y, Yin C. 2012. Amalgamation of the North China Craton:Key issues and discussion[J]. Precambrian Research, 222-223: 55-76. DOI:10.1016/j.precamres.2012.09.016 |
Zhao G, Sun M, Wilde S A, Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Research, 136: 177-202. DOI:10.1016/j.precamres.2004.10.002 |
Zhao G, Wilde S A, Guo J, Cawood P A, Sun M, Li X. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177: 266-276. DOI:10.1016/j.precamres.2009.12.007 |
Zhao Zhenhua. 2005. Advances in trace element geochemistry[C]//Zhang Benren, Fu Jiamo (eds.). Advances in Geochemistry.Beijing: Chemical Industry Press, 199-248 (in Chinese).
|
陈宣华, 邵兆刚, 熊小松, 高锐, 徐盛林, 张义平, 李冰, 王叶. 2019. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J]. 地球学报, 40(3): 377-392. |
董国安, 杨洪仪, 刘敦一, 张建新, 曾建元, 万渝生. 2007. 龙首山岩群碎屑锆石SHRIMP U-Pb年代学及其地质意义[J]. 科学通报, 52(6): 688-697. DOI:10.3321/j.issn:0023-074X.2007.06.014 |
耿元生, 王新社, 沈其韩, 吴春明. 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J]. 中国地质, 33(1): 138-145. |
耿元生, 王新社, 吴春明, 周喜文. 2010. 阿拉善变质基底古元古代晚期的构造热事件[J]. 岩石学报, 26(4): 1159-1170. |
耿元生, 周喜文. 2010. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志, 29(6): 779-795. DOI:10.3969/j.issn.1000-6524.2010.06.014 |
宫江华, 张建新, 于胜尧. 2011. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属——来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 30(5): 795-818. DOI:10.3969/j.issn.1000-6524.2011.05.005 |
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位UPb定年技术[J]. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010 |
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025 |
李锦轶, 张进, 曲军峰. 2012. 华北与阿拉善两个古陆在早古生代晚期拼合[J]. 地质论评, 58(2): 208-214. DOI:10.3969/j.issn.0371-5736.2012.02.002 |
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社.
|
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48: 26-30. |
汤中立, 白云来. 1999. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 6(2): 271-283. DOI:10.3321/j.issn:1005-2321.1999.02.006 |
唐索寒, 李津, 梁细荣, 张利国, 李国占, 濮巍, 李潮峰, 杨岳衡, 储著银, 张俊, 侯可军, 王晓明. 2017. 钕同位素比值~(143)Nd/~(144)Nd标准溶液研制[J]. 岩矿测试, 36(2): 163-170. |
修群业, 陆松年, 于海峰, 杨春亮. 2002. 龙首山岩群主体划归古元古代的同位素年龄证据[J]. 前寒武纪研究进展, 25(2): 93-96. DOI:10.3969/j.issn.1672-4135.2002.02.005 |
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 21(1): 100-119. |
张建新, 宫江华. 2018. 阿拉善地块性质和归属的再认识[J]. 岩石学报, 34(4): 940-962. |
张进, 李锦轶, 刘建峰, 李岩峰, 曲军峰, 冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J]. 岩石学报, 28(9): 2912-2934. |
赵振华. 2005. 微量元素地球化学研究进展[M]. 北京: 化学工业出版社.
|