文章快速检索    
 
  中国地质 2023, Vol. 50 Issue (1): 84-101  
0
引用本文
赵鑫娜, 杨忠芳, 余涛. 2023. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 50(1): 84-101.  
Zhao Xinna, Yang Zhongfang, Yu Tao. 2023. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 50(1): 84-101. (in Chinese with English abstract).  

矿区土壤重金属污染及修复技术研究进展
赵鑫娜1, 杨忠芳1, 余涛2    
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 中国地质大学(北京)数理学院, 北京 100083
摘要[研究目的] 土壤重金属污染是造成土壤生态环境质量下降、农作物重金属超标,甚至危及人体健康的主要因素。采矿及冶炼活动是土壤重金属污染的主要来源,中国矿山贫矿多、难选矿多、共伴生矿多,矿山开采过程中产生了大量的有毒有害重金属进入土壤,由于采矿活动造成土壤重金属污染严重。目前,寻找合适的方法修复矿区重金属污染土壤是国内外环境科学领域研究的热点和难点。[研究方法] 本文通过查阅大量矿区重金属污染土壤修复技术方向的文献,综述了国内外关于矿区土壤中重金属污染的特点、危害及修复技术最新研究进展。[研究结果] 目前矿区土壤重金属污染的修复方法包括:(1)工程修复技术:客土法;(2)物理修复技术:电动修复法、玻璃化法、热处理法等;(3)化学修复技术:土壤淋洗法、固定/稳定化法等;(4)生物修复技术:植物修复法、微生物修复法等。[结论] 目前客土法是使用较广、最有效的处理技术,植物修复技术是应用前景最好的技术。在实际矿山重金属污染土壤修复中,单一的修复技术往往存在一定的局限性而不能满足修复需求,因此可采用多种修复技术相结合的联合修复方法相互补充,以达到最佳修复效果。
创新点:(1)本文综述了矿区土壤重金属污染特点,对今后有关矿区土壤重金属污染研究有一定的帮助;(2)本文较为全面地整理了矿区重金属污染修复技术,提出关于矿区土壤重金属污染修复技术选择建议,希望能有效提高未来矿区土壤治理水平。
关键词矿区    土壤    重金属污染    修复技术    环境地质调查工程    
中图分类号:X53            文献标志码:A             文章编号:1000-3657(2023)01-0084-18
Review on heavy metal pollution and remediation technology in the soil of mining areas
ZHAO Xinna1, YANG Zhongfang1, YU Tao2    
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. School of Science, China University of Geosciences, Beijing 100083, China
Abstract: This paper is the result of environmental geological survey engineering.
[Objective] Soil heavy metal pollution is the main factor that causes the decline of soil ecological environment quality, crop heavy metal exceeds the national standard and even endangers human health. Mining and smelting activities are the primary source of soil heavy metal pollution. China's domestic metal mines have relatively low-grade and are expensive to process. The mining process produces a large amount of toxic and harmful heavy metals into the soil, which causes severe soil heavy metal pollution due to mining activities. At present, finding suitable methods to remediate heavy metal contaminated soils in mining areas is a hot issue and complex research area in environmental science. [Methods] This paper reviews the characteristics, hazards and remediation technology of heavy metal pollution in mining soils by many relevant literatures. [Results] The current remediation methods for soil heavy metal pollution in mining areas include: (1) engineering remediation technology: guest soil method; (2) physical remediation technology: electro kinetic remediation, vitrification method and heat treatment method; (3) chemical remediation techniques: soil leaching and fixation; (4) bioremediation technology: phytoremediation and microbial remediation method. [Conclusions] The guest soil method is the most widely used and effective treatment technique, and phytoremediation technology is the best application prospect. A single remediation technique often has certain limitations in the actual remediation of heavy metal contaminated soil in mines. It cannot meet the remediation needs, so a combined remediation method combining multiple remediation techniques can complement each other to achieve the best remediation effect.
Highlights: (1) This paper summarizes the characteristics of soil heavy metal pollution in mining areas, providing a reference for future research on such areas. (2) This paper comprehensively sorted out the remediation technology of soil heavy metal pollution in mining areas and provided some suggestions on the selection of remediation technology which would effectively improve the level of soil treatment in mining areas in the future.
Key words: mining    soil    heavy metal pollution    remediation technology    environmental geological survey engineering    

1 引言

土壤作为人类赖以生存的资源,在人类的生产生活中占据至关重要的位置。然而许多国家,尤其是发展中国家在大力推进工业化的同时,环境正遭受着一定的污染破坏,其中土壤的重金属污染问题较为严重。据估计,中国耕地约1/6左右受到了土壤重金属污染,经济损失严重(宋伟等,2013林荩等,2021)。土壤的重金属污染,不仅降低了土壤的质量,同时也会对人的身体健康造成很大的危害,土壤重金属污染治理已经成为当今社会环境保护不可避免的内容(余春浩,2019刘利等,2020綦峥等,2020)。

土壤中重金属元素主要有自然来源和人为输入两种途径。土壤自然来源的重金属元素主要指继承于成土母质或在成土过程中次生富集形成的重金属元素。通常情况下,源于自然源的土壤重金属,在含量特征与空间分布上对应于一定的地质体,如土壤中Cd、As、Hg、Cu、Zn等重金属异常区,即地质高背景区,与黑色岩系、煤系地层、金属矿床、磷矿等分布相一致(刘晓媛等,2019郭超等,2019何振嘉,2020杨琼等, 2021, 崔潇等,2021)。中国相当一部分受重金属污染的土壤分布在地质高背景区,特别是在金属硫矿床、磷矿等富含重金属元素的矿山分布的地质高背景区(Cheng et al., 2014Yang et al., 2014骆永明和滕应,2018),在金属矿山开采和资源利用过程中,所造成的土壤重金属污染元素种类多、异常范围广、污染程度高,且易在植物体内积累,并通过食物链富集到动物和人体中,诱发癌变或其他疾病,生态危害大(鲍丽然等,2020Liu et al., 2021),如铅中毒会影响人的神经系统、造血系统和消化系统等,镉中毒则会引起骨痛病等(徐友宁等,2013Wen et al., 2020朱丹尼等,2021)。

目前由于采矿活动世界许多国家都面临着不同程度的矿区土壤重金属污染问题。土壤修复技术的研制成为国际上的研究热点问题,在矿山污染土壤修复技术研制与管理方面,国外起步较早,早在20世纪初期,欧美等国家就开始了矿区的土地复垦和生态恢复工作(张永双等,2017)。和欧美发达国家相比,虽然中国矿山修复工作起步较晚,但随着规章制度的日渐完善及科学技术的不断进步,矿区土壤重金属污染修复工作也将逐渐规范化、系统化。本文系统地总结了矿区土壤重金属污染特点、现状和修复技术,并探讨了未来发展趋势,对于矿区土壤重金属污染防治具有重要的参考价值。

2 矿区土壤重金属污染特点

矿区土壤重金属污染多来源于富含有害重金属的矿山采选活动,土壤重金属污染具有重金属元素富集程度高、复合污染明显、污染面积大和生态危害显著的特点。

各类矿床中,重金属元素一般以硫化物矿物形式存在。在这些矿床的开采、冶炼过程中,会产生大量的含有Pb、Cd、As、Cu、Zn等重金属硫化物矿物的尾矿废石,在地表环境中极易氧化,一方面产生酸性废水,加速了矿物的溶解,一方面则使矿区中的重金属元素活化,以离子形态随地表水迁移到矿区周边的农田土壤,由于长时间的重金属累积效应,导致金属矿区土壤中重金属含量远远超过其背景值。邬光海等(2020)发现内蒙古赤峰市废弃钨钼矿区周围土壤重金属元素明显高于矿区周边背景值,As、Cd、Pb、Zn、Cu、Pb和Mo高含量区集中分布在尾矿周围,受矿山采选活动影响较大。

矿区土壤重金属污染常为多种重金属复合污染。由于矿山废石中常含有As、Pb、Zn、Hg、Cd、Cu、Co、Ni等多种化学元素,对矿区土壤造成污染的重金属元素种类较多,多是几种、甚至是十几种重金属元素交织的复合污染。Timofeev et al.(2018)对贝加尔湖钨钼矿周围土壤调查发现,在矿山废弃地周围土壤存在着Cd、Cu、As、Pb、Zn、Mo等重金属元素不同程度交织的污染状况。表 1列出了不同类型金属矿山的矿业活动造成的土壤重金属污染种类,土壤重金属复合污染是其突出的特点。

表 1 世界上一些受污染矿区土壤中某些重金属元素的浓度 Table 1 Summary of concentrations of some heavy metals in some contaminated mining areas in the world

矿区土壤重金属污染面积大。在世界范围内,随着矿山的开采和矿山废弃地的产生,已经使数以百万计的矿区土壤受到了重金属污染(Asensio et al., 2013Mahar et al., 2016)。据《2018中国环境统计年鉴》统计,截至2017年,中国因矿山开采累计破坏土地面积2607489 hm2,当年废弃地恢复面积仅75778 hm2周连碧等,2021)。

矿山土壤重金属污染生态危害显著。目前金属矿山的开采、冶炼及矿山废弃地的产生是造成土壤重金属污染、粮食重金属含量超标和生态风险增加的重要原因(Yang et al., 2019程睿,2020)。当土壤中重金属浓度过高时,不仅会损害土壤质量、引起大量的农作物减产甚至绝收、导致树木和动物死亡,甚至会危害矿区附近居民的身体健康(杨威杉等,2018Liu et al., 2020)。如广东韶关市上坝村就是由于村民长期食用在大宝山矿山开采时受到镉污染的稻米而成为癌症村(蓝楠,2014陈强等,2020)。

3 中国矿区土壤重金属污染现状

中国矿产资源丰富,种类齐全,分布广泛,是世界主要矿业大国之一(图 1)。总体上看,中国矿产资源禀赋较好,以开采铁、铝、铅、锌、铜等金属矿产和石料、磷矿、建筑用砂等非金属矿产为主。据中国地质调查局统计,全国约有大型矿山4800多个,生产矿山7.8万个,矿山总面积约1.04×104 km2李国政,2019)。中国目前共有300多个以矿业为主导的矿业城市,开采规模居世界前列(黄永泉等,2012关锌,2016李小龙和王雪冬,2018Wang et al., 2018),随着中国的矿产资源被大量开采,产生了大量的矿渣,给环境带来了相当大的压力,矿区土壤重金属污染分布广泛,各省均存在不同程度重金属污染,空间分布上东部较西部严重,南部较北部严重,金属矿山造成的土壤重金属污染在中国西南、华东、华南地区尤为突出(何芳等,2010)。

图 1 中国主要矿产储量地区分布(据中国矿产资源报告(2021)修改) Fig. 1 Regional distribution of major mineral reserves in China (modified from Report of China Mineral Resources (2021))

据全国矿山地质环境调查数据统计,截至2010年底,中国矿山破坏土地面积约386.80×104 hm2,而恢复治理面积只有49.60×104 hm2,恢复治理率仅为12.80%(何芳等, 2013)。2014年环境保护部和国土资源部发布的《全国土壤污染状况调查公报》指出在全国范围内调查的70个矿区的1672个土壤点位中,超标点位占33.4%,其中,有色金属矿区周边土壤镉、砷、铅等污染较为严重,工矿业废弃地土壤环境问题突出。2016年,中国公布的《中国土壤修复技术与市场发展研究报告(2016—2020)》指出:目前中国需要环境恢复与治理的矿山中重金属矿山占30%,土壤重金属污染严重。修复治理矿区污染土壤、恢复并提升矿区土壤生态功能是解决我国土壤环境问题的当务之急(Zhao et al., 2015)。同年,国务院颁布《关于印发土壤污染防治行动计划的通知》,即“土十条”,旨在明确监管重点并加强空间布局管控。

4 矿区土壤重金属污染修复技术

在对矿区重金属污染土壤的修复技术进行研究时,须根据其污染特点制定合理且行之有效修复方法。目前矿区土壤重金属污染治理途径归纳起来主要有3种:一是改变重金属在土壤中的赋存状态,使其稳定或固定,降低其在环境中的迁移性和生物可利用性;二是利用各种技术从土壤中去除重金属,达到回收和减少土壤中重金属的双重目的;三是利用水泥、黏土等各种防渗材料,将污染地区与未污染地区隔离,以减少或阻止重金属的迁移和扩散,由此各国相继研究出物理法、化学法及生物法(陈桂荣等,2010)。在修复技术上,矿区土壤重金属修复治理一般包括工程修复技术、物理修复技术、化学修复技术、生物修复技术等。

4.1 工程修复技术

土壤的工程修复技术主要包括换土法、客土法与深耕翻土法等。换土法是指将被污染的土壤运走,在原本污染区域填入无污染的土壤;客土法是指在被污染的土壤上覆盖上无污染的土壤;深耕翻土是指翻动土壤上下层,将下层干净无污染土壤与上层被污染土壤调换位置从而改善表层土壤质量的方法(侯李云等,2015曲磊和石琛,2019)。客土法是一种最为传统的土壤改良技术,它可以在较短的时间内显著改善矿区土壤状况,加快生态修复速度(刘永光等,2012侯李云等,2015)。一般选择质地较好或肥力较高的壤土、沙壤土等作为客入的无污染土壤,此外客入土层的厚度还要能满足植物根系的健康生长需求,以避免其伸到污染土层。目前许多国家都已经利用客土法对矿区土壤进行了实地修复,并取得了不错的效果,但该方法整体工程量偏大,需耗费大量劳力,一般只适用于土壤污染面积较小的情况(闫德民等,2013)。

20世纪前半叶日本富山县周边的矿业公司向神通川流域的河道中排放了大量含镉废水,造成周边地区土壤、水稻中镉含量普遍超标,严重危害了当地居民的生命健康。据此,富山县政府宣布采用客土法修复污染土壤。1983—2002年,客土法修复受污染稻田,水稻籽粒Cd含量显著下降,如图 2中字母B到G所示(Aoshima,2016),未受污染的参考区(A区)水稻中Cd的平均含量稳定在0.1 μg/g左右,而Cd污染的神通川流域水稻中Cd平均含量在进行土壤修复后也逐渐稳定在0.1 μg/g左右(B~G区),除F区未进行复垦外,其他受污染地区水稻Cd含量均有显著下降。

图 2 1983—2002年神通川流域受污染水稻(B~G区)和参考区(A区)水稻镉(Cd)平均浓度的变化(据Aoshima, 2016修改) Fig. 2 Variation of average cadmium (Cd) concentration (geometric mean) in home-grown rice from the Jinzu River basin (Districts B-G) and the reference area (District A) from 1983 to 2002 (modified from Aoshima, 2016)
4.2 物理修复技术

物理修复是指通过各种物理过程把土壤中的污染物分离或去除的技术,目前物理修复的常见方法有电动修复法、玻璃化法、热处理法等。

4.2.1 电动修复法

电动修复技术(electrokinetic remediation, EKR)是指在污染土壤两侧施加直流电压(电动修复装置如图 3所示),在电场的驱动下使土壤重金属活化并通过电迁移、电渗流和电泳三种方式定向运动,促使重金属向两电极邻近区域富集,最后通过抽离电解质等方式实现重金属的去除,达到清洁污染土壤的目的(Vocciante et al., 2017Wu et al., 2021)。1993年,Acar and Alshawabkeh(1993)率先提出将电动力学技术用于重金属污染土壤的修复,目前,电动修复技术已应用于去除土壤中如铜、铅、锌和镉等多种重金属污染物(Isosaari et al., 2012; Asadollahfardi et al., 2021; 陈敏洁等, 2021)。土壤理化性质、电极材料、土壤pH、电解质、处理时间等均会影响电动修复效率(张小江等,2021)。电极材料是影响电动修复的重要因素,蔡宗平等(2016)采用不同电极材料(石墨、不锈钢、钛板)对尾矿附近的铅污染土壤进行电动修复,发现48小时后,石墨电极去除效果最好,总铅去除效率达到了77%。在进行电动修复之前,还可向土壤中添加络合剂或酸性溶液等辅助试剂调控土壤pH以提高土壤中重金属的去除率,Ryu et al.(2011)在去除金属冶炼厂附近土壤中铜等重金属元素的实验工作发现用酸性溶液预处理土壤后,土壤中Cu和Pb的最大去除效率提高至60.1%和75.7%。

图 3 电动修复原理示意图(据张小江等, 2021修改) Fig. 3 Schematic diagram of electrokinetic remediation (modified from Zhang Xiaojiang et al., 2021)

土壤系统的复杂性使该方法具一定的局限性,目前电动修复多停留在实验室模拟或比较小的尺度污染修复上,未大范围地进行应用推广。电动修复在去除土壤重金属同时,还可能影响到土壤中氮、磷、钾等营养物质含量,Zhou et al.(2015)研究发现,电动修复污染土壤后,从阳极到阴极, 土壤有效氮和磷含量逐渐减少,土壤有效钾含量逐渐增加。因此,电动修复后的耕地,须采取有效措施,增加土壤肥力、改善土壤结构,才能用于农业耕作。

4.2.2 热处理法

对挥发性的重金属如汞,可使用热处理技术,通过加热的方法将其从土壤中解吸出来,然后再回收利用,目前通常在高温(例如600~800℃)下修复汞污染土壤(Yao et al., 2012)。实施时,需严格设计并操作加热和蒸汽收集系统,以防污染物扩散而产生二次污染。高温热处理技术设备成本高且能耗大,近年有人提出使用太阳能代替传统的不可再生能源,如Navarro et al.(2009, 2014)利用太阳能供热修复汞矿污染土壤发现,土壤残留总汞和包括汞在内的重金属离子浸出浓度均有显著下降(Wang et al., 2012)。时间和温度是影响热处理效率的重要因素。Sierra et al.(2016)对Almadén矿区汞污染土壤进行热处理修复实验发现随着处理温度的升高,总汞含量不断下降,750℃时去除效率最高,土壤中残余汞含量降低到0.88 mg/kg。有学者研究贵州省某汞矿附近污染土壤时发现土壤中残留汞含量随着处理温度的升高和处理时间的增加而减少,但单纯增加处理时间并不能一直有效地降低残留汞含量,相同温度下处理60 min和90 min土壤残留汞含量几乎不变(Ma et al., 2014)。

热处理修复技术在采矿活动导致的土壤汞污染治理方面具有突出的应用价值(王泓博等, 2021)。热处理技术处理速率高、修复周期短、普适性强,但它能耗较高,成本高昂,只能用于小范围的土壤重金属污染修复。加入活性炭、纳米材料、生物炭、粉煤灰等可以提高热处理修复的效率,降低热处理温度。Ma et al.(2014)发现在添加FeCl3后,即使热处理温度低至400℃时土壤中汞含量仍降低到0.8 mg/kg。此外,热处理技术温度过高时,会破坏土壤中的有机质等营养物质,造成土壤理化性质发生变化,限制了该技术的应用(Huang et al., 2011)。

4.2.3 玻璃化法

玻璃化是通过加热将污染的土壤熔化,冷却形成比较稳定的玻璃态物质,借助玻璃体的致密结晶结构,使其转化为稳定状态(Mallampati et al., 2015Liu et al., 2018)。1991年美国爱达荷州工程试验把各种重金属废物(As、Ag、Ba、Cd等)填埋于0.66 m地下后,使用玻璃化法固定了重金属污染物,证明了该技术的可行性(王新和贾永锋, 2007)。玻璃化技术加热过程导致了玻璃相的形成,玻璃相可能吸收了土壤中存在的金属。温度是影响玻璃化技术固定化效果和工艺成本的关键因素(Liu et al., 2018)。Navarro et al.(2013)对西班牙某汞矿的采矿废料在1350℃进行玻璃化处理,发现土壤中Fe、Mn、Ni、Cu和Zn的含量降低且处理后的样品具有简单的矿物学特征。

玻璃化技术对土壤的修复效率较高,修复效果良好。玻璃化技术形成的玻璃类物质结构稳定,一般试剂很难降解,这使得玻璃化技术实现了对土壤重金属的永久固定,处理后对环境危害较小。但是该技术的应用需要相关设备的支持,能耗较大、成本较高,因此玻璃化技术目前仍停留在实验尺度(曲永军, 2021)。

4.3 化学修复技术

化学修复是指通过各种化学过程把土壤中的污染物分离或去除的技术,目前化学修复的常见方法有固化/稳定化技术和化学淋洗技术等。

4.3.1 固定/稳定化法

固定/稳定化技术(S/S)是指向土壤中添加固化/稳定剂将土壤中的有害污染物固定起来,或者将污染物转化成化学性质不活泼的形态,阻止其在环境中迁移、扩散等过程,从而降低污染物质毒害程度的修复技术(郝汉舟等,2011)。目前常用的S/S固定剂包括:(1)水泥;(2)石灰/粉煤灰;(3)有机堆肥、城市污泥等有机物料;(4)硫酸亚铁、磷酸盐等药剂;(5)海泡石、沸石等矿物材料(赵述华等,2013Derakhshan et al., 2018)。水泥是一种无机胶结材料,加水后能发生水化反应生成坚硬的水泥固化体。由于水泥原料来源丰富、处理费用低、效果好、操作简单,所以在固定/稳定化应用中使用最为广泛。在水泥的水化过程中,重金属可以通过吸附、沉降、离子交换、钝化等多种方式与水泥发生反应,最终以氢氧化物或络合物的形式停留在水泥水化形成的水化硅酸盐胶体表面,同时水泥的加入也能提高土壤的pH,抑制重金属的浸出与迁移(Amin et al., 2012Wang et al., 2014)。固定剂的种类和用量是影响固定/稳定化效果的重要因素,不同固定/稳定剂对不同重金属元素污染土壤修复效果不同,表 2总结了一些目前重金属固定/稳定剂的研究与应用。

表 2 固定/稳定剂的研究与应用 Table 2 Research and application of solidification/stabilization agents

Fernández-Caliani et al.(2021)在西班牙一硫化物铜矿区使用甜菜石灰(sugar beet lime,一种糖提纯过程的副产品,可以缓解土壤酸性的石灰材料)和有机固体堆肥作为固定剂,通过深耕将其彻底混合到深度约为50 cm土壤中,发现经修复后矿区污染土壤中重金属含量有所降低(图 4所示中Cu、Zn的中位数增加,可能是由于废石堆酸性径流中可溶性硫酸盐矿物的短暂沉淀所致)。固定/稳定化技术快速、有效、经济,在国外已经形成较完善的技术体系(谭科艳等, 2017), 但它只改变了重金属元素在土壤中存在的形态,金属元素仍保留在土壤中,并不是一种永久的修复措施,修复后场地的后续利用可能使固化材料老化或失效,从而影响其修复效果(O'Day and Vlassopoulos, 2010)。

图 4 修前后土壤重金属元素总浓度中位数比较柱状图(据Fernández-Caliani et al., 2021修改) Fig. 4 Bar charts comparing the median total concentrations of trace elements in soil before and 15 years after the mine land reclamation (modified from Fernández-Caliani et al., 2021)
4.3.2 化学淋洗技术

化学淋洗技术是指通过淋洗剂或能促进土壤中重金属溶解和迁移的溶剂,将重金属从固相的土壤提取出来,再把富含重金属的废水进一步回收处理的土壤修复方法。目前常用的淋洗剂包括酸性溶液、盐溶液、螯合剂、表面活性剂、无机淋洗剂等(Sharma et al., 2018)。何苏祺等(2021)用无患子皂苷与柠檬酸复配淋洗剂修复铅锌矿区重金属污染土壤,发现在pH为5.0、淋洗时间为12.0 h时,土壤中Cd和Pb的去除率可达75.2%和41.6%。一般来说,酸性强或氧化性强或螯合能力强的淋洗剂对重金属阳离子的去除效果好,且淋洗剂浓度越高淋洗效果越好(朱健泷等,2021),同时土壤的理化性质、淋洗时间、淋洗方式等也是影响土壤化学淋洗效果的重要因素。莫良玉等(2013)采用3种淋洗剂(硝酸铵、磷酸二氢铵、草酸铵)对受尾矿重金属污染严重的土壤进行修复,发现草酸铵去除土壤Zn能力最强,且随着淋洗次数和淋洗液浓度的增加,淋洗液中锌浓度不断降低。

化学淋洗技术效率高、易于操作、治理范围广、见效快(Baldissarelli et al., 2019)。但淋洗修复土壤时需要消耗大量的淋洗剂,不仅成本高,而且会产生大量的淋洗废液,对其处理和回收成为一大问题。其次,淋洗剂在淋出重金属的同时,势必会将土壤中其他元素洗脱出去, 造成土壤中营养元素的流失,导致土壤肥力的下降(周智全等, 2016)。目前该技术关键是寻找一种既能提取各种形态的重金属,又不破坏土壤结构、降低土壤肥力,同时不会对环境造成二次污染的新型淋洗材料(孙涛等,2015; Morillo and Villaverde, 2017曹明超等,2019)。

4.4 生物修复技术

生物修复是指通过各种生物过程把土壤中的污染物分离或去除的技术,目前生物修复的常见方法有动物修复技术、植物修复技术和微生物修复技术。

4.4.1 动物修复技术

动物修复技术是指利用自然界某些动物的生命代谢活动降低矿区污染土壤中重金属的含量,或通过改变重金属在土壤中的赋存形态从而降低其毒性(水新芳等, 2021)。目前对于可修复重金属污染土壤的动物研究较多的为蚯蚓、鼠类等,蚯蚓粪表面积较大,吸附能力较强,对Pb、Cd等重金属有一定的吸收能力(敬佩等,2009Singh et al., 2020)。矿区栖息蚁种的生态系统工程活动具有改善土壤质量、降低土壤重金属含量的潜力,Khan et al.(2017)等发现某煤矿采矿场长脚蚁(Cataglyphis longipedem)和短腹蚁(Camponotus compressus)两蚁穴栖息地附近土壤的总重金属含量和有效重金属浓度均显著低于其他土壤。

4.4.2 植物修复技术

植物修复技术是指在受污染土壤中科学种植适合的植物,利用植物提取、吸收、分解、转化和固定土壤中有毒有害污染物,从而实现改善土壤理化性质、降低土壤重金属含量的目的(黄益宗等, 2013Mahar et al., 2016Khalid et al., 2017Shah and Daverey, 2020)。植物修复技术包括植物固定技术、植物提取技术、植物挥发技术、根系过滤技术等(图 5)。本文主要介绍植物提取技术和植物固定技术。

图 5 植物修复土壤重金属污染示意图 Fig. 5 Schematic diagram of phytoremediation of heavy metal contamination in soil

超富集植物是指相对于普通植物能在重金属浓度较高的土壤中生存,并对土壤中重金属有良好的吸附和富集效果的植物(Baker et al., 1994何玉君等,2020)。植物提取就是利用超富集植物对重金属污染物的吸收并在地上茎叶部分的积累,通过收割地上部分并对其进行专门处置降低土壤重金属含量(沈振国和陈怀满, 2020; 赵云峰等, 2020)。现今世界上共发现了400多种超富集植物,表 3给出了一些已发现的重金属超富集植物。超富集植物通常都只能对一种重金属元素表现出富集能力,仅少部分可以超富集吸收两种或两种以上的重金属元素(Wilson-Corral et al., 2012),植物提取的关键在于因地制宜地筛选出超富集植物。中国在利用超富集植物提取重金属的研究领域工作开展较晚,目前国内报道的主要为As、Zn、Cd、Mn等元素的超富集植物(韦朝阳等,2002Qiu et al., 2006Zhang et al., 2010郑太辉等,2015)。Chen et al.(2002)在生长于湖南省石门雌黄矿矿区的大量植物中筛选并发现蜈蚣草对As具有超强的富集能力,通过刈割可以提高其对砷的去除能力,蜈蚣草是国际上首次报导的砷超富集植物,在砷污染土壤的修复和植物学研究中具有重要价值。

表 3 Zn、Cd等重金属的超富集植物 Table 3 Hyperaccumulator of Zn, Cd and other heavy metals

植物固定是指通过建立耐受性植物覆盖层,将重金属固定或沉淀在土壤周围,不向地上部分迁移(Sylvain et al., 2016谢东等,2019)。用于植物稳定的植物不仅要耐重金属,并且从根到地上部分的迁移率应该相对较低。由于土壤理化性质的不同和矿区污染类型的差异,要有针对性地选取特定的植物进行固定修复,表 4给出了一些不同矿区重金属污染土壤耐受植物及一些使用植物固定矿区污染土壤中重金属元素所需的改良剂。

表 4 植物固定修复土壤重金属所采用的植物及相应的改良剂 Table 4 List of hyperaccumulator plant species for phytoextraction and corresponding amendments

植物提取技术成本高、修复时间长,主要应用于土地价值高及可以等待较长时间恢复的地区。植物固定技术成本低、易操作,但植物固定并不是从污染土壤中去除重金属,所以当土壤环境发生变化时,稳定的重金属可能被重新活化(Bolan et al., 2011Ali et al., 2013)。植物修复作为一种不破坏土壤结构、不引起二次污染的土壤污染治理技术,在重金属污染土壤治理方面有广阔的发展前景(Shah and Daverey, 2020肖鹏飞和吴德东,2021)。但单一的植物很难完成对复合污染的修复,因此寻找富集重金属种类更多、累积能力更强的植物或植物组合是植物修复技术的研究重点。

4.4.3 微生物修复技术

微生物修复是指微生物通过吸附、沉淀、淋滤、氧化还原等方式参与土壤中重金属的转化,降低土壤中重金属的浓度和活性,改变土壤中重金属的赋存状态,将重金属转化为无毒或低毒的化合物形式的修复方法(郭维君等,2010)。微生物修复技术包括生物稳定、生物薄膜吸附、生物淋滤等方式。生物稳定是利用细菌活动将土壤中溶解态重金属元素转化为更加稳定的结合态,降低其活性和生物利用度的方法(黄春晓,2011)。研究发现从香蒲根际中分离出的一些菌株能钝化固定土壤中的Cu和Cd,降低它们在土壤中的可交换态含量(Tiwari et al., 2008)。生物薄膜是一种高效的生物修复工具,有研究发现利用微藻生物膜的吸附作用可以去除矿山废石堆渗滤液中的Zn(Li et al., 2015)。生物淋滤是利用特定微生物或其代谢产物的氧化、还原、络合、吸附或溶解作用,将土壤中重金属浸出并再回收的方法(Solisio and Lodi, 2002Kumar and Nagendran, 2007)。经微生物修复后的土壤理化性质基本保持不变,对环境影响很小。但微生物修复技术也具有一定的局限性,微生物需要一定的生长条件和生活环境,且微生物修复技术的周期相对较长,这限制了微生物修复的大范围运用或推广;同时加入到修复现场中的微生物可能会与土著菌株竞争或难以适应环境从而导致实际作用与实验结果有较大出入(余天红和黎华涛, 2014)。

5 联合修复技术

与单一的物理修复、化学修复和生物修复技术相比,联合修复技术(如植物-微生物联合修复、化学-植物联合修复、化学-微生物联合修复等)同时具备多种修复技术的优势和特点,修复效率相对会比较高,尤其针对重金属复合污染严重的矿区土壤修复治理效果突出。邓敏等(2021)以硫酸盐还原菌为修复微生物,以低分子有机酸为络合剂,对攀西矿区典型重金属污染土壤开展了化学-微生物联合修复,结果表明:与单一的化学修复技术相比,化学-微生物联合修复技术对矿区土壤中铅、镉含量有着显著的钝化效果,土壤中镉交换态含量最大降低了60.7%。叶攀骅等(2016)利用改良剂和超富集植物对锰污染土壤进行联合修复,发现添加改良剂(海泡石和沸石)能显著提高植物茎叶中的Mn含量,表明海泡石等改良剂可以与植物联合使用,改良重金属土壤修复效果。崔照豪(2018)采用植物-微生物联合技术降低尾矿的重金属含量,发现接种土著微生物菌剂能够促进地肤、波斯菊和紫羊茅这3种重金属耐受植物的生长,从而有效提高重金属的去除效率。目前运用多种修复技术结合的联合修复技术是土壤生态恢复新的研究方向,同时,随着遥感技术的研究进步,遥感监测重金属污染土壤修复的研究及应用也会有很大的提升(宋文等,2021),它将为矿区重金属污染土壤的高效、低耗修复提供更优解法。

6 结论

矿区土壤重金属污染形式日益严峻,生态风险不断增加,迫切需要采取土壤修复措施,降低土壤重金属含量或活性。过去数十年间,世界各国已陆续研发出了多种修复技术。本文综述了这些修复技术的原理、制约因素、优缺点和适用范围等。目前,传统的复技术相对常见,物理修复方法耗时短、效率高,对土壤重金属复合污染修复较为有效;化学修复方法方便实用,发展前景广阔。但部分物理化学修复技术如电动法、淋洗法等,也会存在破坏土壤的理化性质和营养元素等问题,因此在进行实际操作时,要结合重金属污染土壤的性质与未来土地规划,选择最合理的修复技术。生物修复技术虽然安全环保,不会造成二次污染,但修复时间过长、植物耐受的重金属元素过于单一、修复过程不确定因素过多等都成为制约其进一步发展的阻碍。因此,在现有修复技术基础之上,因地制宜地发展适用范围广、二次污染小、高效实用、成本低的新型土壤修复技术,合理运用多手段结合的联合修复技术是未来土壤重金属污染修复领域的研究热点。

参考文献
Acar Y B, Alshawabkeh A N. 1993. Principles of electrokinetic remediation[J]. Environmental Science and Technology, 27(13): 2638-2647. DOI:10.1021/es00049a002
Ali H, Khan E, Sajad M A. 2013. Phytoremediation of heavy metals——concepts and applications[J]. Chemosphere, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075
Amin M S, Hashem F S, Mohamed M R. 2012. Solidification/stabilization of Zn2+ ions in metakaolin and homrablended cement matrices[J]. Advances in Cement Research, 24(4): 239-248. DOI:10.1680/adcr.11.00023
Aoshima K. 2016. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives[J]. Soil Science and Plant Nutrition, 62(4): 319-326. DOI:10.1080/00380768.2016.1159116
Asadollahfardi G, Sarmadi M S, Rezaee M, Khodadadi-Darban A, Yazdani M, Paz-Garcia J M. 2021. Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings[J]. Journal of Environmental Management, 279: 111728. DOI:10.1016/j.jenvman.2020.111728
Asensio V, Vega F A, Singh B R, Covelo E F. 2013. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils[J]. Science of the Total Environment, 443: 446-453. DOI:10.1016/j.scitotenv.2012.09.069
Baker A J M, McGrath S P, Sidoli C M D, Reeves R D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources, Conservation and Recycling, 11(1/4): 41-49.
Baldissarelli D P, Vargas G D L P, Korf E P, Galon L, Kaufmann C, Santos J B. 2019. Remediation of soils contaminated by pesticides using physicochemical processes: A brief review[J]. Planta Daninha, 37.
Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract).
Bolan N S, Par J H, Robinson B, Naidu R, Huh K Y. 2011. Phyto stabilization: A green approach to contaminant containment[J]. Advances in Agronomy, 112: 145-204.
Boughattas I, Hattab S, Boussetta H, Viarengo A, Banni M, Sforzini S. 2016. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia[J]. Environmental Pollution, 218: 530-541. DOI:10.1016/j.envpol.2016.07.033
Burges A, Epelde L, Benito G, Artetxe U, Becerril J M, Garbisu C. 2016. Enhancement of ecosystem services during endophyteassisted aided phytostabilization of metal contaminated mine soil[J]. Science of the Total Environment, 562: 480-492. DOI:10.1016/j.scitotenv.2016.04.080
Cai Zongping, Wang Wenxiang, Li Weishan. 2016. Effects of electrode material on electrode remediation of lead-contaminated soil near a mine tailing[J]. Environmental Science and Management, 41(5): 108-111 (in Chinese with English abstract).
Cao Mingchao, Ren Yupeng, Zhang Yanyan, Zeng Yu, Chen Wenhao, Zhou Huiguang. 2019. Research progress in remediation of heavy metal contaminated soil by in-situ flushing method[J]. Applied Chemical Industry, 48(3): 668-672, 676 (in Chinese with English abstract).
Chen Guirong, Zeng Xiangdong, Li Wei, Yuan Yanmei, Zhou Yuanyuan. 2010. Overview on current situation of heavy metal pollution in soils and remediation technology of contaminated soils in metal mines[J]. Conservation and Utilization of Mineral Resources, (2): 41-44 (in Chinese with English abstract).
Chen Minjie, Liu Xuefeng, Li Bowen, Li Yafei, Zhao Dingran, Zheng Chunli. 2021. Electric remediation of radioactive thorium contamination soil around mining area with auxiliary reagents[J]. Non-ferrous Metals (Smelting), (3): 36-42, 50 (in Chinese with English abstract).
Chen N S, Huang Q Y, Liu L N, Cai P, Liang W, Ming L I. 2010. Poultry manure compost alleviates the phytotoxicity of soil cadmium: Influence on growth of pakchoi (brassica chinensis L.)[J]. Pedosphere, 20(1): 63-70. DOI:10.1016/S1002-0160(09)60283-6
Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z. 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 47(11): 902-905. DOI:10.1360/02tb9202
Chen Qiang, Ma Mingjie, You YuanHang, Yang Di. 2020. Cadmium input flux in farmland soil near the Dabaoshan mining area of Guangdong Province[J]. Geology and Mineral Resources of South China, 36(2): 147-152 (in Chinese with English abstract).
Chen Sanxiong, Chen Jiadong, Xie Li, Liao Jianwen, Zhang Jinchi, Yang Qunliang. 2011. Heavy metal accumulation characteristics of plants in Dabaoshan mine in Guangdong Province[J]. Journal of Soil and Water Conservation, 25(6): 216-220 (in Chinese with English abstract).
Chen Yiping. 2008. Research trends on heavy metals hyperaccumulators[J]. Environmental Science and Management, 33(3): 20-24 (in Chinese with English abstract).
Cheng H X, Li M, Zhao C D, Li K, Peng M, Qin A H, Cheng X M. 2014. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 139: 31-52. DOI:10.1016/j.gexplo.2013.08.012
Cheng Rui. 2020. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology, 10(2): 280-287 (in Chinese with English abstract).
Christou A, Theologides C P, Costa C, Kalavrouziotis I K, Varnavas S P. 2017. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plants species in Limni abandoned copper mining site, Cyprus[J]. Journal of Geochemical Exploration, 178: 16-22. DOI:10.1016/j.gexplo.2017.03.012
Cui Xiao, Zhou Yanru, Liu Xiaoyang, Bai Zhongke. 2021. Comprehensive evaluation of rock and soil quality of different geological stratum groups in Pingshuo opencast coal mine reclamation area[J]. Hydrogeology & Engineering Geology, 48(2): 164-173 (in Chinese with English abstract).
Cui Zhaohao. 2018. Combined Remediation and Improvement Techniques of Plant-microorganism in Utilization of Iron Tailings[D]. Jinan: Shandong University, 1-82 (in Chinese with English abstract).
Deng Min, Cheng Rong, Shu Rongbo. 2021. Exploration of chemicalmicrobial remediation technology for typical heavy metal contaminated soils in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 4: 1-9 (in Chinese with English abstract).
Derakhshan N Z, Jung M C, Kim K H. 2018. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology[J]. Environmental Geochemistry Health, 40(7): 927-953.
Dong Hui, Kong Jiaoyan, He Liping, Qin Li, Wang Miao, Zhao Yanbo, Wei Zhonghua, Li Guotai, Wu Jianxun, Kang Shaoguo. 2021. Pilot-scale study on solid classification and stabilization of multiple heavy metals[C]//2021 Science and Technology Annual Conference of Chinese Society for Environmental Sciences——Environmental Engineering Technology Innovation and Application Session (Ⅲ), 7 (in Chinese with English abstract).
Fernández-Caliani J C, Giráldez M I, Waken W H, Del Río Z M, Córdoba F. 2021. Soil quality changes in an Iberian pyrite mine site 15 years after land reclamation[J]. Catena, 206: 105538. DOI:10.1016/j.catena.2021.105538
Guan Liang, Guo Guanlin, Wang Qunhui, Li Fasheng. 2010. Immobilization of heavy metal contaminated soil by different cementation materials[J]. Research of Environmental Sciences, 23(1): 106-111 (in Chinese with English abstract).
Guan Xin. 2016. Preliminary analysis on the recovery and management of mine ecological environment in inner Mongolia area——A case study of Shendong coal group[J]. The Chinese Journal of Geological Hazard and Control, 27(3): 143-147 (in Chinese with English abstract).
Guo Chao, Wen Yubo, Yang Zhongfang, Li Wei, Guan Dongxing, Xi Junfeng. 2019. Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background[J]. Journal of Nanjing University (Natural Science), 55(4): 678-687 (in Chinese with English abstract).
Guo Weijun, Jiang Xiaowen, Chen Wenjun, Yang Mingxian, Chen Shuwen, Qin Shifu. 2010. Research on soil remediation technology of heavy metal pollution abandoned land in metal mine[J]. Journal of Anhui Agricultural Sciences, 38(22): 11954-11956 (in Chinese with English abstract).
Hao Hanzhou, Chen Tongbin, Jin Menggui, Lei Mei, Liu Chengwu, Zu Wenpu, Huang Limi. 2011. Recent advance in solidification/stabilization technology for the remediation of heavy metals contaminated soil[J]. Chinese Journal of Applied Ecology, 22(3): 816-824 (in Chinese with English abstract).
Hao Q, Jiang C. 2015. Heavy metal concentrations in soils and plants in Rongxi Manganese mine of Chongqing, southwest of China[J]. Acta Ecologica Sinica, 35(1): 46-51. DOI:10.1016/j.chnaes.2015.01.002
He Fang, Xu Youning, Qiao Gang, Liu Riuping. 2010. Regional distribution characteristics of mine environmental geological problems in China[J]. Geology in China, 37(5): 1520-1529 (in Chinese with English abstract).
He Fang, Qiao Gang, Liu Ruiping, Chen Huaqin. 2013. Discussion for mining land reclamation models[J]. Northwestern Geology, 46(2): 201-209 (in Chinese with English abstract).
He Suqi, Xiao Yao, Zhong Anliang, Guo Danhua, Hu Jiehua. 2010. Synergistic leaching of Cd and Pb from contaminated soil using sapindus saponins and citric acid[J]. Environmental Protection of Chemical Industry, 41(1): 196-201 (in Chinese with English abstract).
He Yujun, Sun Menghe, Shen Yatin, Shuai Qin, Luo Liqiang. 2020. Research progress on the interaction mechanism between hyperaccumulator and heavy metals and its application[J]. Rock and Mineral Analysis, 39(5): 639-657 (in Chinese with English abstract).
He Zhenjia. 2020. Analysis on the harm of heavy metal pollution in coal mine area and its treatment technology[J]. Shaanxi Coal, 39(2): 73-75, 137 (in Chinese with English abstract).
Hou Liyun, Zeng Xibai, Zhang Yangzhu. 2015. Application and outlook of alien earth soil-improving technology in arseniccontaminated soil remediation[J]. Chinese Journal of EcoAgriculture, 23(1): 20-26 (in Chinese with English abstract).
Huang Chunxiao. 2011. Microbial remediation of soils polluted by heavy metal[J]. Journal of Zhongyuan University of Technology, 22(3): 41-44 (in Chinese with English abstract).
Huang Yizong, Hao Xiaowe, Lei Ming, Tie Boqing. 2013. The remediation technology and remediation practice of heavy metalscontaminated soil[J]. Journal of Agro-Environment Science, 32(3): 409-417 (in Chinese with English abstract).
Huang Yongquan, Wei Chao, He Jingyuan. 2012. Environmental quality evaluation of mines in Jiangxi Province based on grey correlation analysis[J]. East China Geology, 33(4): 268-273 (in Chinese with English abstract).
Huang Y T, Hseu Z Y, Hsi H C. 2011. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals[J]. Chemosphere, 84(9): 1244-1249. DOI:10.1016/j.chemosphere.2011.05.015
Jing Pei, Li Guangde, Liu Kun, Zhang Zhongwen, Zhang Shiyuan, Jiao Wei. 2009. Effect of earthworm on bio-availability of Pb and Cd in soil[J]. Journal of Soil and Water Conservation, 23(3): 65-68, 96 (in Chinese with English abstract).
Johansson L, Xydas C, Messios N. 2005. Growth and cuaccu cyprus[J]. Applied Geochemistry, 20: 101-107. DOI:10.1016/j.apgeochem.2004.07.003
Isosaari P, Sillanpää M. 2012. Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings[J]. Separation and Purification Technology, 86: 26-34. DOI:10.1016/j.seppur.2011.10.016
Khalid S, Shahid M, Niazi N K, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 182: 247-268. DOI:10.1016/j.gexplo.2016.11.021
Khan S R, Singh S K, Rastogi N. 2017. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil[J]. Environmental Monitoring and Assessment, 189(4): 1-19.
Kumar R N, Nagendran R. 2007. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans[J]. Chemosphere, 66(9): 1775-1781. DOI:10.1016/j.chemosphere.2006.07.091
Lan Nan. 2014. Urgent attention needs to be paid to the drinking water safety in mining area: Reflection on the cancer cases of Guangdong Dabaoshan[J]. The Environmental Protection, 42(13): 49-51 (in Chinese with English abstract).
Li Feili, Shao Luze, Wu Xingfei, Lu Minying. 2021. Research progress of enhanced phytoremediation for heavy metals and intercropping technique[J]. Journal of Zhejiang University of Technology, 49(3): 345-354 (in Chinese with English abstract).
Li Guozheng. 2019. Upgrading and reshaping of mine geological restoration model in new era: Conceptual analysis based on "Geological Restoration 3.0"[J]. Northwestern Geology, 52(4): 270-278 (in Chinese with English abstract).
Li T, Lin G Y, Podola B, Melkonian M. 2015. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR[J]. Journal of Hazardous Materials, 297: 112-118. DOI:10.1016/j.jhazmat.2015.04.080
Li Xiaolong, Wang Xuedong. 2018. Geological environment characteristics of abandoned limestone mines in Shandong: Exploration of management and restoration[J]. Geology and Resources, 27(1): 89-92 (in Chinese with English abstract).
Liao Xiaoyong, Chen Tongbin, Yan Xiulan, Xie Hua, Zhai Limei, Nie Canjun, Xiao Xiyuan, Wu Bin. 2007. Heavy metals in plants growing on Ni/Cu mining areas in desert, Northwest China and the adaptive pioneer species[J]. Journal of Natural Resources, (3): 486-495 (in Chinese with English abstract).
Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecological and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749-763 (in Chinese with English abstract).
Liu Li, Zhang Jiawen, Chen Fenfei, Sheng Sheng, Tian Ziqiang, Wang Jian. 2020. Pollution characteristics and ecological risk assessment of heavy metals in the sediment of Hengshui Lake[J]. Journal of Environmental Engineering Technology, 10(2): 205-211 (in Chinese with English abstract).
Liu L W, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environmental, 633: 206-219. DOI:10.1016/j.scitotenv.2018.03.161
Liu R P, Xu Y N, Zhang J H, Wang W K, Rafaey M E. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3(3): 402-410.
Liu R P, Xu Y N, Rui H C, El-Wardany R M, Dong Y. 2021. Migration and speciation transformation mechanisms of mercury in undercurrent zones of the Tongguan gold mining area, Shaanxi Loess Plateau and impact on the environment[J]. China Geology, 4(2): 311-328.
Liu Xiaoyuan, Liu Pinzhen, Du Qilu, Shen Qiandi, Wu Di. 2019. Evaluation of heavy metal pollution in soil of lead-zinc mine wasteland with geological high background[J]. Non-ferrous Metals (Smelting), (2): 76-82 (in Chinese with English abstract).
Liu Yongguang, Sun Xiangyang, Li Jinhai, Zhang Guozhen, Yang Jiandong, Wang Hongli, Liu Kefeng. 2012. Restoration effect analysis of abandoned coal mine engineering of Mentougou in Beijing based on soil physicochemical properties[J]. Chinese Agricultural Science Bulletin, 28(14): 246-251 (in Chinese with English abstract).
Luo Yongming, Teng Ying. 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 33(2): 145-152 (in Chinese with English abstract).
Ma F, Zang Q, Xu D, Hou D., Li F, Gu Q. 2014. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 117: 388-393. DOI:10.1016/j.chemosphere.2014.08.012
Mahar A, Wang P, Ali A, Awasthi M K, Lahori A H, Wang Q, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology and Environmental Safety, 126: 111-121. DOI:10.1016/j.ecoenv.2015.12.023
Mallampati S R, Mitoma Y, Okuda T, Simion C, Lee B K. 2015. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites[J]. Journal of Environmental Radioactivity, 139: 118-124. DOI:10.1016/j.jenvrad.2014.10.006
Mo Liangyu, Fan Zhilian, Chen Haifeng. 2013. Effect of different ammonium salt on metal-contaminant removal from field soil[J]. Southwest China Journal of Agricultural Sciences, 26(6): 2407-2411 (in Chinese with English abstract).
Morillo E, Villaverde J. 2017. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 586: 576-597. DOI:10.1016/j.scitotenv.2017.02.020
Navarro A, Canadas I, Martinez D, Rodriguez J, Mendoza J L. 2009. Application of solar thermal desorption to remediation of mercurycontaminated soils[J]. Soil Energy, 83(8): 1405-1414. DOI:10.1016/j.solener.2009.03.013
Navarro A, Canadas I, Rodriguez J A T. 2014. Thermal treatment of mercury mine wastes using a rotary solar kiln[J]. Minerals, 4(1): 37-51. DOI:10.3390/min4010037
Navarro A, Cardellach E, Canadas I, Rodríguez J. 2013. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 119: 65-74. DOI:10.1016/j.minpro.2012.12.002
Nouri M, Goncalves F, Sousa J P, Römbke J, Ksibi M. 2014. Metal concentrations and metal mobility in ait ammar moroccan mining site[J]. Moroccan Mining Site, 5(1): 271-280.
Nouri M, Haddioui A. 2016. Assessment of metals contamination and ecological risk in ait ammar abandoned iron mine soil, Morocco[J]. Ekológia (Bratislava), 35: 32-49. DOI:10.1515/eko-2016-0003
O'Day P A, Vlassopoulos D. 2010. Mineral-based amendments for remediation[J]. Elements, 6(6): 375-381. DOI:10.2113/gselements.6.6.375
Qi Zheng, Qi Yue, Yang Hong, Zhang Tielin, Ling Na. 2020. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety and Quality, 11(7): 2286-2294 (in Chinese with English abstract).
Qiu R L, Fang X H, Tang Y T. 2006. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook[J]. International Journal of Phytoremediation, 8: 299-310. DOI:10.1080/15226510600992865
Ok Y S, Lim J E, Moon D H. 2011. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells[J]. Environmental Geochemistry and Health, 3: 83-91.
Ryu B G, Park G Y, Yang J W, Baek K. 2011. Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil[J]. Separation and Purification Technology, 79(2): 170-176. DOI:10.1016/j.seppur.2011.02.025
Shah V, Daverey A. 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology and Innovation, 18: 100774. DOI:10.1016/j.eti.2020.100774
Shen Zhenguo, Chen Manhuai. 2020. Bioremediation of heavy metal polluted soils[J]. Journal of Ecology and Rural Environment, 16(2): 39-44 (in Chinese with English abstract).
Shui Xinfang, Zhao Yuanyi, Wang Qiang. 2021. Progress and prospect of remediation technology of heavy metal contaminated soil in mines[J]. Geological Review, 67(3): 752-766 (in Chinese with English abstract).
Sierra M J, Millán R, López F A, Alguacil F J, Cañadas I. 2016. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science and Pollution Research, 23(5): 4898-4907. DOI:10.1007/s11356-015-5688-8
Singh A, Karmegam N, Singh G S, Bhadauria T, Chang S W, Awasthi M K, Sudhakar S, Arunachalam K D, Biruntha M, Ravindran B. 2020. Earthworms and vermicompost: An eco-friendly approach for repaying nature's debt[J]. Environmental Geochemistry and Health, 42(6): 1617-1642. DOI:10.1007/s10653-019-00510-4
Solisio C, Lodi A. 2002. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans[J]. Waste Management, 22(6): 667-675. DOI:10.1016/S0956-053X(01)00052-6
Song Wei, Chen Baiming, Liu Lin. 2013. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 20(2): 293-298 (in Chinese with English abstract).
Song Wen, Cheng Shaoping, Chi Xiaojie, Ai Yanjun, Gu Haihong. 2021. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, (4): 21-28 (in Chinese with English abstract).
Sun Tao, Lu Kouping, Wang Hailong. 2015. Advance in washing technology for remediation of heavy metal contaminated soils: Effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University, 32(1): 140-149 (in Chinese with English abstract).
Sylvain B, Mikael M H, Florie M, Emmanuel J, Marilyne S, Sylvain B, Domenico M. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine techno sols[J]. Catena, 136: 44-52. DOI:10.1016/j.catena.2015.07.008
Tan Yanke, Wang Zhe, Cai Jingyi, Chen Yanfang, Wang Zhuo, Liu Jiuchen, Tang Qifeng, Yuan Xin, Yang Hong. 2017. The application of geochemical engineering technology to the remediation of a Pb polluted abandoned farmland in Jiangxi Province[J]. Acta Geoscientia Sinica, 38(6): 953-960 (in Chinese with English abstract).
Tian Jie, Luo Lin, Fan Meirong, Wei Jianhong, Hu Bo, Liu Yan. 2012. Effects of red mud on the morphology of Cd, Pb and Zn in contaminated soil and rice growth[J]. Chinese Journal of Soil Science, 43(1): 195-199 (in Chinese with English abstract).
Timofeev I, Kosheleva N, Kasimov N. 2018. Contamination of soils by potentially toxic elements in the impact zone of tungstenmolybdenum ore mine in the Baikal region: A survey and risk assessment[J]. Science of the Total Environment, 642: 63-76. DOI:10.1016/j.scitotenv.2018.06.042
Tiwari S, Kumari B, Singh S. 2008. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps[J]. Bioresource Technology, 99(5): 1305-1310. DOI:10.1016/j.biortech.2007.02.010
Vocciante M, Bagatin R, Ferro S. 2017. Enhancements in electrokinetic remediation technology: Focus on water management and wastewater recovery[J]. Chemical Engineering Journal, 309: 708-716. DOI:10.1016/j.cej.2016.10.091
Wang D H, Zhao Z, Yu Y, Dai J J, Deng M C, Zhao T, Liu L J. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China[J]. China Geology, 1(3): 415-424.
Wang F, Wang H, Al-Tabbaa A. 2014. Leachability and heavy metal speciation of 17 year old stabilised/solidified contaminated site soils[J]. Journal of Hazardous Materials, 278: 144-151. DOI:10.1016/j.jhazmat.2014.05.102
Wang Hongbo, Gou Wenxian, Wu Yuqing, Li Wei. 2021. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies[J]. Chinese Journal of Ecology, 40(8): 2277-2288 (in Chinese with English abstract).
Wang Hua, Tang Shumei, Liao Xiangjun, Cao Qian, Yang Anfu, Wang Tingzhong. 2007. A new Manganese-hyperaccumulator: Polygonum hydropiper L[J]. Ecology and Environmental Sciences, 16(3): 830-834 (in Chinese with English abstract).
Wang J, Feng X, Anderson C W N, Christopher W N. 2012. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Materials, 221: 1-18.
Wang Rui, Yu Zongling, Guan Yang. 2013. Overview on phytoremediation of nickel contaminated soil[J]. Environmental Science and Management, 38(8): 111-114 (in Chinese with English abstract).
Wang Xin, Jia Yongfeng. 2007. Contamination and remediation of arsenic in soil[J]. Environmental Science and Technology, (2): 107-110, 121 (in Chinese).
Wei Chaoyang, Chen Tongbin, Huang Zechun, Zhang Xueqing. 2002. Cretan Brake (Pteris cretica L): An arsenic accumulating plant[J]. Acta Ecologica Sinica, 22(5): 777-778 (in Chinese with English abstract).
Wei Shuhe, Zhou Qixing, Wang Xin. 2005. Cadmium-Hyperaccumulator solanum nigrum L. and its accumulating characteristics[J]. Environmental Science, 24(3): 167-171 (in Chinese with English abstract).
Wen D G, Zhang F C, An Y H. 2020. Support service of geological technology in lifting residents of endemic disease area out of poverty[J]. China Geology, 3(4): 656-660. DOI:10.31035/cg2020074
Wilson-Corral V, Anderson C W N, Rodriguez-Lopez M. 2012. A review of the relevance of this technology to mineral extraction in the 21st century[J]. Journal of Environmental Management, 111: 249-257. DOI:10.1016/j.jenvman.2012.07.037
Wu C, Tuo J, Zhang M, Sun L, Qian Y, Liu Y. 2016. Sedimentary and residual gas geochemical characteristics of the lower Cambrian organic-rich shales in Southeastern Chongqing[J]. Marine and Petroleum Geology, 75: 140-150. DOI:10.1016/j.marpetgeo.2016.04.013
Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Ecoenvironmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838-1852 (in Chinese with English abstract).
Wu J, Wei B, Lü Z, Fu Y. 2021. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil[J]. Separation and Purification Technology, 272: 118882. DOI:10.1016/j.seppur.2021.118882
Wu Shuangtao, Wu Xiaofu, Hu Yueli, Chen Shaojin, Hu Jingzhao, Chen Yifei, Xie Ningzi. 2004. Studies on soil pollution around PdZn smelting factory and heavy metals hyperaccumulators[J]. Ecology and Environmental Sciences, 13(2): 156-157, 160 (in Chinese with English abstract).
Xiao Pengfei, Wu Dedong. 2021. Econometric analysis of global phytoremediation literature[J]. Acta Ecologica Sinica, 41(21): 8685-8695 (in Chinese).
Xiao R, Wang S, Li R, Wang J J, Zhang Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi[J]. Ecotoxicology and Environmental Safety, 141: 17-24. DOI:10.1016/j.ecoenv.2017.03.002
Xie Dong, Li Siyu, He Sen, Pan Tao, Dong Wei. 2019. Research advances on rhisopheric microecology of phytoremediated soil contaminated by heavy metals[J]. Journal of Jiangxi University of Science and Technology, 40(5): 64-71 (in Chinese with English abstract).
Xu Youning, Zhang Jianghua, Ke Hailing, Liu Runping, Chen Huanqing. 2013. Cd contamination of farmland soil in a gold mining area and its environmental effects[J]. Geology in China, 40(2): 636-643 (in Chinese with English abstract).
Xue Shengguo, Chen Yingxu, Lin Qi, Xu Shengyou, Wang Yuanpeng. 2003. Phytolacca acinosa Roxb (Phytolaccaceae): A new manganese hyperaccumulator plant from Southern China[J]. Acta Ecologica Sinica, (5): 935-937 (in Chinese with English abstract).
Yan Demin, Zhao Fangying, Sun Jianxin. 2013. Characters of the vegetations with different restoration age on a mining site of Shouyun Iron Ore Mine, Beijing[J]. Chinese Journal of Ecology, 32(1): 1-6 (in Chinese with English abstract).
Yang Qiong, Yang Zhongfang, Zhang Qizuan, Liu Xu, Zhuo Xiaowei, Wu Tiansheng, Wang Lei, Wei Xueji, Ji Junfeng. 2021. Ecological risk assessment of Cd and other heavy metals in soil-rice system in karst geological high background region of Guangxi, China[J]. Scientia Sinica (Terrae), 51(8): 1317-1331 (in Chinese). DOI:10.1360/SSTe-2020-0168
Yang S X, Liao B, Yang Z H, Chai L Y, Li J T. 2016. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China[J]. Science of the Total Environment, 562: 427-434. DOI:10.1016/j.scitotenv.2016.03.208
Yang S, Ge W Y, Chen H H, Xu W L. 2019. Investigation of soil and groundwater environment in urban area during post-industrial era: A case study of brownfield in Zhenjiang, Jiangsu Province, China[J]. China Geology, 2(4): 501-511.
Yang Weishan, Yu Fang, Zhao Dan, Li Meng. 2018. Characteristics of heavy metals in reclaimed soils of a phosphorite-mining area around Dianchi Lake[J]. Ecology and Environmental Sciences, 27(6): 1145-1152 (in Chinese with English abstract).
Yang Xiumin, Hu Zhenqi, Li Ning, Yang Xiuhong, Zhang Yingchun. 2009. Adsorption of heavy metals Cu2+, Zn2+ and Cd2+ in Nabentonite[J]. Journal of China Coal Society, 34(6): 819-822 (in Chinese with English abstract).
Yang Z F, Yu T, Hou Q Y, Xia X Q, Feng H Y, Huang C L, Wang L S, Lü Y Y, Zhang M. 2014. Geochemical evaluation of land quality in China and its applications[J]. Journal of Geochemical Exploration, 139: 122-135. DOI:10.1016/j.gexplo.2013.07.014
Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 16: 722-729. DOI:10.1016/j.proenv.2012.10.099
Ye Panye, Wang Yang, Liu Kehui, Zhou Zhenming, Chen Menglin, Liu Hua, Su Yinping, Yu Fangming. 2016. Effects of amendments on manganese uptake and antioxidant enzyme system of Polygonum breviflora, a manganese superenrichment plant[J]. Soils, 48(1): 109-116 (in Chinese with English abstract).
Yildirim D, Sasmaz A. 2016. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey)[J]. Journal of Geochemical Exploration, 182: 228-234.
Yu Chunhao. 2019. Review of soil pollution in petrochemical industry[J]. Contemporary Chemical Industry, 48(10): 2385-2387, 2423 (in Chinese with English abstract).
Yu Tianhong, Li Yuashou. 2014. Mechanism of bioremediation in arsenic contaminated soil land its research progress[J]. Environmental Pollution and Control, 36(12): 77-82 (in Chinese with English abstract).
Zhang X, Xia H, Li Z, Zhuang P, Gao B. 2010. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource technology, 101(6): 2063-2066. DOI:10.1016/j.biortech.2009.11.065
Zhang Xiaojiang, Zong Zhiqing, Ye Jinghong, Qin Yan, Peng Cheng, Wang Dongfang, Cai Dongqing. 2021. Research progress on enhanced electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Donghua University (Natural Science), 47(6): 91-99 (in Chinese with English abstract).
Zhang Xinyan, Wang Qichao. 2009. Recent advances in stabilization/solidification technology for treatment of Hg-containing hazardous wastes[J]. Environmental Science and Technology, 32(9): 110-115 (in Chinese with English abstract).
Zhang Xuehong, Luo Yaping, Huang Haitao, Liu Jie, Zhu Yinian, Zeng Quanfang. 2006. Leersia hexandra Swartz: A newly discovered hygrophyte with chromium hyperaccumulator properties[J]. Acta Ecologica Sinica, (3): 950-953 (in Chinese with English abstract).
Zhang Yongshuang, Sun Lu, Yin Xiulan, Meng Hui. 2017. Progress and prospect of research on environmental geology of China: A review[J]. Geology in China, 44(5): 901-912 (in Chinese with English abstract).
Zhao F J, Ma Y B, Zhu Y G, Tang Z, McGrath S P. 2015. Soil Contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759. DOI:10.1021/es5047099
Zhao Lei. 2009. Screening of Hyperaccumulators and Tolerance Research in Baiyinuoer Lead-Zinc Mine[D]. Hohhot: Inner Mongolia Agricultural University, 1-41 (in Chinese with English abstract).
Zhao Shuhua, Chen Ziliang, Zhang Taiping, Peng Xiaochun, Zhang Yuenan, Ding Zong, Lei Guojian. 2013. Advances in solidification/stabilization technology treatment of heavy metal in contaminated soils[J]. Chinese Journal of Soil Science, 44(6): 1531-1536 (in Chinese with English abstract).
Zhao Yunfeng, Zhang Tao, Tian Zhijun, Wu Dapeng, Liang Kaixuan, Han Juanjuan. 2020. Research progress on phytoremediation technology of heavy metal contaminated soil around mining area[J]. Urban Geology, 15(1): 22-33 (in Chinese with English abstract).
Zheng Taihui, Wang Lingyun, Chen Xiao'an. 2015. Research progress and trends in phytoremediation technology of heavy metal contaminations in mining area[J]. Environmental Engineering, 33(6): 148-152 (in Chinese with English abstract).
Zhou M, Wang H, Zhu S, Liu Y, Xu J. 2015. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility[J]. Environmental Science and Pollution Research, 22(21): 16907-16913. DOI:10.1007/s11356-015-4909-5
Zhou Lianbi, Wang Qiong, Yang Yueqing. 2021. Progress in research and practice of ecological restoration of contaminated soil in typical metal mining areas[J]. Nonferrous Metals (Extractive Metallurgy), (3): 10-18 (in Chinese with English abstract).
Zhou Zhiquan, Zhang Yuge, Xu Huanhuan, Gu Yan. 2016. Research progress on the remediation of heavy metal contaminated soil by chemical washing[J]. Journal of Green Science and Technology, 24: 12-15 (in Chinese with English abstract).
Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil-crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708-720 (in Chinese with English abstract).
Zhu Jianlong, Li Ting, Xiao Yueqi, Wang Kai. 2021. Research progress on remediation of Pb contaminated soil by chemical washing[J]. Energy and Environment, (5): 20-22 (in Chinese with English abstract).
鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636.
蔡宗平, 王文祥, 李伟善. 2016. 电极材料对电动修复尾矿周边铅污染土壤的影响研究[J]. 环境科学与管理, 41(5): 108-111.
曹明超, 任宇鹏, 张严严, 曾俞, 陈文浩, 周慧广. 2019. 原位淋洗法修复重金属污染土壤研究进展[J]. 应用化工, 48(3): 668-672, 676.
陈桂荣, 曾向东, 黎巍, 袁艳梅, 周圆圆. 2010. 金属矿山土壤重金属污染现状及修复技术展望[J]. 矿产保护与利用, (2): 41-44.
陈敏洁, 刘雪峰, 李博文, 李亚飞, 赵丁冉, 郑春丽. 2021. 辅助试剂强化电动修复矿区周边土壤中放射性钍污染[J]. 有色金属(冶炼部分), (3): 36-42+50.
陈强, 马明杰, 游远航, 杨棣. 2020. 广东大宝山矿区附近农田土壤镉元素输入通量研究[J]. 华南地质与矿产, 36(2): 147-152.
陈三雄, 陈家栋, 谢莉, 廖建文, 张金池, 杨群良. 2011. 广东大宝山矿区植物对重金属的富集特征[J]. 水土保持学报, 25(6): 216-220.
陈一萍. 2008. 重金属超积累植物的研究进展[J]. 环境科学与管理, 33(3): 20-24.
程睿. 2020. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报, 10(2): 280-287.
崔潇, 周妍如, 刘孝阳, 白中科. 2021. 平朔露天煤矿复垦区不同地质层组岩土质量综合评价[J]. 水文地质工程地质, 48(2): 164-173.
崔照豪. 2018. 铁尾矿土壤化利用植物-微生物联合修复与改良技术研究[D]. 济南: 山东大学, 1-82.
邓敏, 程蓉, 舒荣波. 2021. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 4: 1-9.
董慧, 孔娇艳, 和丽萍, 秦立, 王苗, 赵彦波, 魏中华, 李国泰, 吴见珣, 康绍果. 2021. 云南某化工厂重金属复合污染土壤固化稳定化修复中试[C]//中国环境科学学会环境工程分会, 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三), 7.
关亮, 郭观林, 汪群慧, 李发生. 2010. 不同胶结材料对重金属污染土壤的固化效果[J]. 环境科学研究, 23(1): 106-111.
关锌. 2016. 内蒙古地区矿山地质环境恢复治理浅析——以神东煤田为例[J]. 中国地质灾害与防治学报, 27(3): 143-147.
郭超, 文宇博, 杨忠芳, 李伟, 管冬兴, 季峻峰. 2019. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报(自然科学), 55(4): 678-687.
郭维君, 蒋孝文, 陈学军, 杨明显, 陈书文, 覃世福. 2010. 金属矿山重金属污染废弃地土壤修复技术研究[J]. 安徽农业科学, 38(22): 11954-11956.
郝汉舟, 陈同斌, 靳孟贵, 雷梅, 刘成武, 祖文普, 黄莉敏. 2011. 重金属污染土壤稳定/固化修复技术研究进展[J]. 应用生态学报, 22(3): 816-824.
何芳, 徐友宁, 乔冈, 刘瑞平. 2010. 中国矿山环境地质问题区域分布特征[J]. 中国地质, 37(5): 1520-1529.
何芳, 乔冈, 刘瑞平, 陈华清. 2013. 矿山土地复垦模式探讨[J]. 西北地质, 46(2): 201-209.
何苏祺, 肖尧, 钟安良, 郭丹花, 胡杰华. 2021. 无患子皂苷与柠檬酸协同洗脱污染土壤中镉铅[J]. 化工环保, 41(1): 196-201.
何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 2020. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 39(5): 639-657.
何振嘉. 2020. 煤矿区重金属污染的危害及其治理技术分析[J]. 陕西煤炭, 39(2): 73-75, 137.
侯李云, 曾希柏, 张杨珠. 2015. 客土改良技术及其在砷污染土壤修复中的应用展望[J]. 中国生态农业学报, 23(1): 20-26.
黄春晓. 2011. 重金属污染土壤原位微生物修复技术及其研究进展[J]. 中原工学院学报, 22(3): 41-44.
黄益宗, 郝晓伟, 雷鸣, 铁柏清. 2013. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 32(3): 409-417.
黄永泉, 危超, 何景媛. 2012. 基于灰色关联分析法的江西省矿山环境质量评价[J]. 资源调查与环境, 33(4): 268-273.
敬佩, 李光德, 刘坤, 张中文, 张世远, 焦伟. 2009. 蚯蚓诱导对土壤中铅镉形态的影响[J]. 水土保持学报, 23(3): 65-68, 96.
蓝楠. 2014. 矿区村民饮水安全亟待关注——广东大宝山矿区废水污染40余年致沿河400余人患癌案引发的思考[J]. 环境保护, 42(13): 49-51.
李非里, 邵鲁泽, 吴兴飞, 陆敏英. 2021. 植物修复重金属强化技术和间套种研究进展[J]. 浙江工业大学学报, 49(3): 345-354.
李国政. 2019. 新时代矿山地质修复模式的升级与重塑: 基于"地质修复3.0" 的概念分析[J]. 西北地质, 52(4): 270-278.
李小龙, 王雪冬. 2018. 山东废弃石灰岩矿山地质环境特征与治理恢复探索[J]. 地质与资源, 27(1): 89-92.
廖晓勇, 陈同斌, 阎秀兰, 谢华, 翟丽梅, 聂灿军, 肖细元, 武斌. 2007. 金昌镍铜矿区植物的重金属含量特征与先锋植物筛选[J]. 自然资源学报, (3): 486-495.
刘利, 张嘉雯, 陈奋飞, 盛晟, 田自强, 王俭. 2020. 衡水湖底泥重金属污染特征及生态风险评价[J]. 环境工程技术学报, 10(2): 205-211.
刘晓媛, 刘品祯, 杜启露, 沈乾杰, 吴迪. 2019. 地质高背景区铅锌矿废弃地土壤重金属污染评价[J]. 有色金属(冶炼部分), (2): 76-82.
刘永光, 孙向阳, 李金海, 张国祯, 杨建东, 王红利, 刘克锋. 2012. 基于土壤理化性状的北京市门头沟区废弃煤矿工程恢复效果分析[J]. 中国农学通报, 28(14): 246-251.
林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749-763.
骆永明, 滕应. 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33(2): 145-152.
莫良玉, 范稚莲, 陈海凤. 2013. 不同铵盐去除农田土壤重金属研究[J]. 西南农业学报, 26(6): 2407-2411.
綦峥, 齐越, 杨红, 张铁林, 凌娜. 2020. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 11(7): 2286-2294.
曲磊, 石琛. 2019. 土壤重金属修复技术研究进展[J]. 中国金属通报, (9): 178-179.
曲永军. 2021. 土壤重金属污染修复技术[J]. 乡村科技, 12(10): 97-98.
沈振国, 陈怀满. 2000. 土壤重金属污染生物修复的研究进展[J]. 农村生态环境, 16(2): 39-44.
水新芳, 赵元艺, 王强. 2021. 矿山重金属污染土壤修复技术进展及展望[J]. 地质论评, 67(3): 752-766.
宋伟, 陈百明, 刘琳. 2013. 中国耕地土壤重金属污染概况[J]. 水土保持研究, (2): 293-298.
宋文, 成少平, 迟晓杰, 艾艳君, 谷海红. 2021. 重金属污染土壤修复遥感监测研究进展[J]. 矿产综合利用, (4): 21-28.
孙涛, 陆扣萍, 王海龙. 2015. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 32(1): 140-149.
谭科艳, 王喆, 蔡敬怡, 陈燕芳, 王卓, 刘久臣, 汤奇峰, 袁欣, 杨宏. 2017. 地球化学工程技术修复江西某Pb超标耕地的应用[J]. 地球学报, 38(6): 953-960.
田杰, 罗琳, 范美蓉, 魏建宏, 胡波, 刘艳. 2012. 赤泥对污染土壤中Cd, Pb和Zn形态及水稻生长的影响[J]. 土壤通报, 43(1): 195-199.
邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838-1852.
王泓博, 苟文贤, 吴玉清, 李伟. 2021. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 40(8): 2277-2288.
王华, 唐树梅, 廖香俊, 曹启民, 杨安富, 王汀忠. 2007. 锰超积累植物——水蓼[J]. 生态环境, 16(3): 830-834.
王锐, 于宗灵, 关旸. 2013. 土壤镍污染植物修复的研究概况[J]. 环境科学与管理, 38(8): 111-114.
王新, 贾永锋. 2007. 土壤砷污染及修复技术[J]. 环境科学与技术, (2): 107-110, 121.
韦朝阳, 陈同斌, 黄泽春, 张学青. 2002. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报, 22(5): 777-778.
魏树和, 周启星, 王新. 2005. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 24(3): 167-171.
吴双桃, 吴晓芙, 胡曰利, 陈少瑾, 胡劲召, 陈宜菲, 谢凝子. 2004. 铅锌冶炼厂土壤污染及重金属富集植物的研究[J]. 生态环境, 13(2): 156-157, 160.
肖鹏飞, 吴德东. 2021. 全球植物修复研究文献计量分析[J]. 生态学报, 41(21): 8685-8695.
谢东, 李丝雨, 何森, 潘涛, 董伟. 2019. 重金属污染土壤修复植物根际微生态的研究进展[J]. 江西理工大学学报, 40(5): 64-71.
徐友宁, 张江华, 柯海玲, 刘瑞萍, 陈华清. 2013. 某金矿区农田土壤镉污染及其环境效应[J]. 中国地质, 40(2): 636-643.
薛生国, 陈英旭, 林琦, 徐圣友, 王远鹏. 2003. 中国首次发现的锰超积累植物——商陆[J]. 生态学报, (5): 935-937.
闫德民, 赵方莹, 孙建新. 2013. 铁矿采矿迹地不同恢复年限的植被特征[J]. 生态学杂志, 32(1): 1-6.
杨琼, 杨忠芳, 张起钻, 刘旭, 卓小雄, 吴天生, 王磊, 韦雪姬, 季峻峰. 2021. 中国广西岩溶地质高背景区土壤-水稻系统Cd等重金属生态风险评价[J]. 中国科学: 地球科学, 51(8): 1317-1331.
杨威杉, 於方, 赵丹, 李猛. 2018. 滇池周边磷矿复垦区土壤重金属污染特征研究[J]. 生态环境学报, 27(6): 1145-1152.
杨晓琼. 2017. 单纯植物修复重金属铬(Cr)污染土壤的研究进展[J]. 种子科技, 35(5): 113.
杨秀敏, 胡振琪, 李宁, 杨秀红, 张迎春. 2009. 钠基膨润土对重金属离子Cu2+, Zn2+, Cd2+的吸附实验[J]. 煤炭学报, 34(6): 819-822.
叶攀骅, 王洋, 刘可慧, 周振明, 陈孟林, 刘华, 苏银萍, 于方明. 2016. 改良剂对锰超富集植物短毛蓼锰吸收及抗氧化酶系统的影响[J]. 土壤, 48(1): 109-116.
余春浩. 2019. 石油泄漏对土壤的污染[J]. 当代化工, 48(10): 2385-2387, 2423.
余天红, 黎华寿. 2014. 砷污染土壤微生物修复机制及其研究进展[J]. 环境污染与防治, 36(12): 77-82.
张小江, 宗志强, 叶静宏, 秦艳, 彭程, 王冬芳, 蔡冬清. 2021. 土壤重金属污染强化电动修复研究进展[J]. 东华大学学报(自然科学版), 47(6): 91-99.
张新艳, 王起超. 2009. 含汞有害固体废弃物的固化/稳定化技术研究进展[J]. 环境科学与技术, 32(9): 110-115.
张学洪, 罗亚平, 黄海涛, 刘杰, 朱义年, 曾全方. 2006. 一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra Swartz)[J]. 生态学报, (3): 950-953.
张永双, 孙璐, 殷秀兰, 孟晖. 2017. 中国环境地质研究主要进展与展望[J]. 中国地质, 44(5): 901-912.
赵磊. 2009. 白音诺尔铅锌矿铅超富集植物筛选及其耐性研究[D]. 呼和浩特: 内蒙古农业大学, 1-41.
赵述华, 陈志良, 张太平, 彭晓春, 张越男, 丁琮, 雷国建. 2013. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 44(6): 1531-1536.
赵云峰, 张涛, 田志君, 吴大鹏, 梁凯旋, 韩娟娟. 2020. 矿区周边重金属污染土壤植物修复技术研究进展[J]. 城市地质, 15(1): 22-33.
郑太辉, 王凌云, 陈晓安. 2015. 矿区重金属植被修复研究进展和趋势[J]. 环境工程, 33(6): 148-152.
周连碧, 王琼, 杨越晴. 2021. 典型金属矿区污染土壤生态修复研究与实践进展[J]. 有色金属(冶炼部分), (3): 10-18.
周智全, 张玉歌, 徐欢欢, 顾燕. 2016. 化学淋洗修复重金属污染土壤研究进展[J]. 绿色科技, (24): 12-15.
朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤-农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708-720.
朱健泷, 李婷, 肖月琦, 汪凯. 2021. 化学淋洗修复Pb污染土壤的研究进展[J]. 能源与环境, (5): 20-22.