文章快速检索    
 
  中国地质 2017, Vol. 44 Issue (6): 1159-1174  
0
引用本文
何付兵, 魏波, 徐吉祥, 孙永华, 李瑞杰. 2017. 内蒙古巴彦敖包地区宝力高庙组火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 中国地质, 44(6): 1159-1174.  
HE Fubing, WEI Bo, XU Jixiang, SUN Yonghua, LI Ruijie. 2017. Ages, origin and geological implications of the volcanic rocks in the Baoligaomiao Formation of East Ujimqin Banner, Inner Mongolia[J]. Geology in China, 44(6): 1159-1174. (in Chinese with English abstract).  

内蒙古巴彦敖包地区宝力高庙组火山岩地球化学特征、锆石U-Pb年龄及地质意义
何付兵1,2, 魏波2, 徐吉祥3, 孙永华2, 李瑞杰2    
1. 中国地震局地质研究所, 北京 100029;
2. 北京市地质调查研究院, 北京 100195;
3. 北京市地质矿产勘查开发局, 北京 100195
摘要: 内蒙古东乌旗巴彦敖包一带出露的宝力高庙组地层可划分为三段,可对应于查干敖包剖面二、三、四段。二段为一套杂色中酸性火山熔岩和火山碎屑岩类,火山喷发以喷溢相为主;三段为一套灰黄、灰白色火山-沉积碎屑岩类和陆源沉积岩,含Annularia植物化石,为火山间歇期沉积;四段为一套灰色、浅灰色酸性熔岩夹少量火山-沉积碎屑岩,火山喷发以溢流相为主。四段紫红色含晶屑流纹岩和二段灰黑色流纹岩锆石LA-ICP-MS U-Pb年龄分别为(305±4.1)Ma和(315.2±4.6)Ma,结合所含化石确定地层时代为晚石炭晚期—早二叠世早期。宝力高庙组中酸性火山岩为安山质、英安质、流纹质高钾钙碱性-钾玄岩系列火山岩组合,岩石呈现富硅、碱,贫钙、镁,A/NK值和FeOt/MgO值高,富Rb、Nb,贫过渡族元素,并具有显著的铕负异常,为A2亚类花岗岩类,其可能是幔源岩浆底侵形成的晚古生代新生下地壳物质部分熔融而成,岩浆演化经历了钛铁矿物、铁镁矿物及斜长石分离作用。宝力高庙组中酸性火山岩形成于后碰撞构造背景环境,其特征揭示兴蒙造山带内蒙古东乌旗地区晚石炭世—早二叠世已处于同碰撞-碰撞后阶段,早二叠世已经进入碰撞后伸展阶段。
关键词: 宝力高庙组    火山岩    锆石U-Pb年龄    岩石地球化学    构造背景    东乌珠穆沁旗    
中图分类号:P588.14;P597+.3            文献标志码:A             文章编号:1000-3657(2017)06-1159-16
Ages, origin and geological implications of the volcanic rocks in the Baoligaomiao Formation of East Ujimqin Banner, Inner Mongolia
HE Fubing1,2, WEI Bo2, XU Jixiang3, SUN Yonghua2, LI Ruijie2    
1. Institute of Geology, China Earthquake Administration, Beijing 100029, China;
2. Beijing Institute of Geological Survey, Beijing 100195, China;
3. Beijing Bureau of Geology and Mineral Exploration and Develoment, Beijing 100195, China
Abstract: Baoligaomiao Formation is outcropped in Bayan Aobao Town of East Ujimqin Banner, Inner Mongolia. It can be divided into three segments corresponding to the second, the third and the fourth section of Chaganaobao. The second segment comprises a set of variegated intermediate-acidic volcanic lava and volcanic clasts. Volcanic eruption is mainly as extrusive facies. The third segment includes a set of Annularia fossil-bearing grayish yellow, grayish white volcanic sedimentary clasts and terrigenous sediments, being an intermittent volcanic deposit; the fourth segment has a set of gray, light-gray acidic lavas containing rare volcanic-clastic sedimentary rock. Volcanic eruption is mainly as extrusive facies. The fourth segment includes purplish red crystal rhyolite, and the second segment is grayish black rhyolite with granite age being (305±4.1) Ma and (315.2±4.6) Ma. Isotope age and the fossils suggest that the stratigraphic age is late Carboniferous to early Early Permian. Baoligaomiao Formation has intermediateacidic volcanic rock, with separate andesitic, dacite, high-K calc-alkaline to Shoshonis series volcanic association. Major elements are characterized by enrichment of SiO2 and alkali and depletion of calcium and magnesium. Indexes of A/NK and FeOt/MgO are high, characterized by enrichment of Rb, Nb and depletion of transition group elements, with dramatic Eu negative anomaly, suggesting A2 type sub-granite. It was probably the magma from the mantle and partly from conglomerate substance of the lower crust in late Paleozoic. Magmatic evolution experienced dissociation to produce titanium iron minerals, ferromagnesian minerals, and plagioclase. The intermediate-acidic volcanic rock in Baoligaomiao Formation was formed in a post-collisional setting. Its characteristics reveal that Xing'an-Mongolian orogenic belt of East Ujimqin Banner was in the syn-collision to post-collision stage during late Carboniferous to early Permian period. In Early Permian, the evolution entered a stage of stretching after collision.
Key words: Baoligaomiao Formation    volcanic rock    zircon U-Pb age    lithochemistry    tectonic setting    East Ujimqin Banner    

1 引言

宝力高庙组创建于1960年1:100万呼和浩特幅区域地质调查,其主要分布在二连—贺根山缝合带以北的二连—东乌旗一带(图 1a),向北东可延伸至尕拉城等地,为一套陆相中酸性火山熔岩、火山碎屑岩和正常沉积的碎屑岩互层地层。碎屑岩中产安加拉植物Angaropteridium cardiopteroidesNoeggerathiopsis cf. theoderi、N. annustifolia等,少量华夏植物Asterophyllites sp.、Neuropteris sp.、Tingia hamaguchii、T. gerardiiLepidodendron sp.等(内蒙古自治区地质矿产局,1991)。近些年来,1:5万区域地质调查工作等众多工作(弓贵斌等,2011辛后田等,2011李朋武等,2012何雨栗等,2013宝音乌力吉等,2013谷凤羽,2014李晓伟,2014武跃勇等,2015朱俊宾等,2015贺淑赛等,2015),对宝力高庙组地层划分、生物化石及火山喷发旋回、火山岩形成时代进行了大量研究,为该组地层区域对比提供了众多资料。然而,上述研究工作多集中在内蒙古中部苏尼特左旗、阿巴嘎旗等地,内蒙古东部东乌旗大兴安岭地区少有涉及,且宝力高庙组地层因岩性组合同中生代满克头鄂博组基本相似,地层划分对比难度较大。贺淑赛等(2015)对内蒙古苏尼特左旗青格勒宝拉格地区原宝力高庙组局段LA-ICP-MS锆石U-Pb同位素年龄测试为(159.6±1.4)Ma,将其局段重新厘定为满克头鄂博组。笔者在东乌旗巴彦敖包地区开展1:5万区域地质调査工作时,对原1:20万宝力格幅划定的兴安岭群上火山岩组(满克头鄂博组)地层进行重新测制,开展火山岩高精度锆石U-Pb年龄测试和地球化学测试,结合在碎屑岩夹层中发现Annularia植物化石,将该组地层重新厘定为宝力高庙组,并同区域上地层层型剖面进行分段对比,同时讨论了该套火山岩岩石成因与岩浆来源、演化,为宝力高庙组地层形成精确年代和大地构造背景提供约束。

图 1 研究区大地构造位置和地质简图(图a据辛后田等,2011 Figure 1 Simplified geological map of the study area and tectonic position of the East Ujimqin Banner, Inner Mongolia (Fig. a after Xin Houtian et al.)
2 地质概况

研究区位于东乌旗行政中心正北约60 km,属于西伯利亚板块东南大陆边缘晚古生代天山—兴蒙造山带(Ⅱ级)之大兴安岭北段古生代陆缘增生带(Ⅲ级),内蒙古北部弧形褶皱带(Ⅳ级)的东乌旗复背斜之北翼(内蒙古自治区地质矿产局,1991)。区内新近系和第四系覆盖严重,小面积出露上泥盆统安格尔音乌拉组、石炭—二叠系宝力高庙组、下侏罗统玛尼吐组、下白垩统大磨拐河组和晚石炭世花岗岩早白垩世花岗闪长质侵入岩(图 1b1c)。

研究区内宝力高庙组地层分布局限且较为零星,但出露厚度巨大,且岩性复杂,东南邻区广泛出露。区内北部可见其不整合覆盖于上泥盆统安格尔音乌拉组地层之上,并被早白垩统大磨拐河组、新近系宝格拉乌拉组不整合覆盖;东南部可见其被晚侏罗统玛尼吐组喷发不整合覆盖,并被早白垩世花岗闪长岩侵入。近垂直地层走向测制的两条地层剖面(图略)基本无地层重复,可以基于地层产状和岩性组合对地层分段,并可同东乌旗白云敖包次层型剖面(内蒙古自治区地质矿产局,1996)及苏尼特左旗查干敖包剖面(武跃勇等,2015)进行对比,其相当于查干敖包剖面宝力高庙组的二、三、四段,但各段均出露不完整。二段为一套杂色中酸性火山熔岩和火山碎屑岩类,厚度大于1028.41 m,火山喷发以喷溢相为主,岩石类型主要为含晶屑流纹岩、流纹质凝灰熔岩、安山岩、安山质凝灰熔岩等;三段为一套灰黄、灰白色火山-沉积碎屑岩类和陆源沉积岩,含Annularia植物化石(图 2a2b),厚度大于563.88 m,为火山间歇期;四段为一套灰色、浅灰色酸性熔岩夹少量火山-沉积碎屑岩,厚度大于636.52 m,火山喷发以溢流相为主。

图 2 宝力高庙组火山-沉积碎屑岩植物化石与正交偏光显微结构 a, b—植物化石(三段碎屑岩);c—B012灰黑色流纹岩(二段火山岩);d—PM012-8紫红色含晶屑流纹岩(四段火山岩);Q—石英; Pl—斜长石; Bi—黑云母; Chl—绿泥石 Figure 2 Plants fossils and microphotographs showing textures of the volcanic-clastic sedimentary rocks in the Baoligaomiao Formation a, b-Sedimentary rocks and Plants fossil (3rd segment); c-Purplish red crystal rhyolite (2nd segment); d-grayish black rhyolite (4th segment); Q-quartz, Pl-Plagioclase, Bi-Biotite, Chl-Chlorite
3 样品采集及分析测试

年龄测试样品分别为四段紫红色含晶屑流纹岩(PM012-8-TW1,坐标:117°10′07″ E,45°56′13″ N)和二段灰黑色流纹岩(B012-TW1,坐标:117°28′ 48″ E,45°50′41″ N),具体取样位置见图 1。二者岩性均呈斑状结构、基质霏细或粒状结构,假流纹构造-块状构造。斑晶由斜长石和黑云母构成,半自形产出,弱蚀变。前者粒径0.15~3.0 mm,斜长石为主,聚片双晶(图 2c)发育,含量<10 %,黑云母少量,均被铁质、绢云母等交代呈假象。后者粒径0.5 ~ 3.5 mm(图 2d),斜长石可见环带构造,含量10 %~ 15 %,黑云母不均匀绿泥石化,部分呈假象,同样析出少量铁质,含量5 %~10 %。基质由长英质和少量黑云母构成,弱蚀变。前者呈微粒状,多黏土化,石英多作基底内嵌布尘点状、霏细状长石(图 2c)。后者呈细粒状,粒径<0.2 mm,半自形板条状斜长石含量50 %±;他形石英呈填隙状分布,含量10 %~ 15 %,少与钾长石似文象交生,并内嵌少量斜长石;他形粒状钾长石,含量<5 %;鳞片状黑云母多绿泥石化,含量<5 %。副矿物为锆石、磷灰石等。

主量元素使用XRF法测试(二价和三价铁由化学法测定),所用仪器为飞利浦PW2404X射线荧光光谱仪,精度优于5 %。微量元素采用酸溶法测试,所用仪器为德国Finnigan-MAT公司制造的HRICP-MS(Element I),工作温度、相对湿度分别为20 ℃和30 %,微量元素含量大于10×10-6时的相对误差<5 %,小于10×10-6时的相对误差<10 %。主量和微量元素分析在核工业北京地质研究院分析测试研究中心进行。

年代测试采用锆石LA-ICP-MS U-Pb同位素测年方法。在河北省区域地质矿产调查研究所进行锆石遴选,在西北大学大陆动力学国家重点实验室进行样品制靶、抛光、阴极发光及U-Pb同位素年龄测试,具体测试仪器及过程见何付兵等(2013)。测试分析过程中每分析5个样品点校正2次91500标样及测试1次GJ-1标样,每10个样品标准化1次NIST610。采用软件ICPMASDataCal(Liu et al., 2010)和Isoplot3.0(Ludwing, 2001)完成离线数据处理和图件绘制。

4 测试结果 4.1 岩石地球化学

该组火山岩主量和微量地球化学分析结果见表 1。二段和四段酸性岩类主量元素特征基本相似,含量分布较为集中,个别点差异较大,可能受后期变质或蚀变影响,而中性岩类同酸性岩类略有差异。SiO2=59.36%~77.25%,TiO2=0.09%~0.54%,Al2O3=12.4% ~16.73%,CaO除2个样品分别为4.61%和6.43%(可能样品碳酸盐化)外,介于0.18%~1.47%,Na2O=2.78%~5.03%,K2O=2.06%~ 5.83%,全碱含量(K2O+Na2O)=6.45%~10.27%,酸性岩类MgO=0.14% ~0.92%,中性岩类MgO= 2.6 %,差异较大。酸性岩类K2O/Na2O除1个样为0.41外,其余1.04~1.93,中性岩类为0.63。岩石呈现富硅、碱,贫钙、镁,FeOt/MgO值高的特征,MgO、CaO含量稍低于天山—兴安造山系构造单元花岗岩类元素丰度(史长义等,2007),其余氧化物含量均不同程度偏高。在火山岩TAS图解(Le Maitre, 2002)(图 3)上,四段多为流纹岩,一个样品为英安岩;二段岩性复杂,多为流纹岩,少为粗面安山岩。在SiO2-K2O图解(Peccerillo et al., 1976Middlemost et al., 1985)(图 4)中,主体位于高钾钙碱性-钾玄岩系列(2个样品可能蚀变投在钙碱性系列)。A/CNK值1个样品为0.559,其余介于0.942~ 1.261(均值为1.086),主体为弱过铝质-过铝质岩石(Maniar et al., 1989)(图 5)。标准矿物计算中(安山岩除外)以碱性矿物钠长石(24.46 %~43.7 %)、正长石(12.5 %~34.69 %)和石英(18.58 %~35.63 %)为主,极少量钙长石(0.07 %~6.97 %),并出现极少量刚玉、透辉石、紫苏辉石、钛铁矿、磁铁矿、锆石、磷灰石矿物。二段和四段相比,四段更加富硅、钾而贫钛、铁。二段和四段全碱和镁值随Si2O(图略)变化而变化,在段内各自呈现独立的线性负相关演化,表明两期岩浆具有独立的岩浆演化,不仅仅是同源岩浆演化(罗照华等,2002)。

表 1 内蒙古东乌珠穆沁旗宝力高庙组火山岩主量元素(/%)、稀土元素(/10-6)及微量元素(/10-6)分析结果 Table 1 Major elements(/%)and trace elements(/10-6)compositions for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia
图 3 内蒙古东乌珠穆沁旗宝力高庙组火山岩SiO2-(K2O+Na2O)图(据Le Maitre, 2002 Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;R—流纹岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;F—副长石岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;Ir—Irvine分界线,上方为碱性,下方为亚碱性 Figure 3 SiO2-(K2O+Na2O) diagram for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia(afterLe Maitre, 2002) Pc-Picro-basalt, B-basalt, O1-Basaltic andesite; O2-Andesite; O3-Dacite; R-Rhyoite; S1-Trachy-basalt; S2-Basltic trachy-andesite; S3-Trachy-andesite; T-Trachyte-trachydacite; F-Foidite; U1-Tephrite/basanite; U2-Phonotephrite; U3-Tephriphonolite; Ph-Phonolite; Ir-Irvine line; alkaline series (upper); subalkalic series (lower)
图 4 内蒙古东乌珠穆沁旗宝力高庙组火山岩SiO2-K2O图 (实线据Peccerillo et al., 1976;虚线据Middlemost, 1985) Figure 4 SiO2-K2O diagram for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia (real line after Peccerillo et al., 1976, broken line after Middlemost, 1985)
图 5 内蒙古东乌珠穆沁旗宝力高庙组火山岩含铝指数图(据Maniar et al., 1989) Figure 5 Aluminous index diagrams for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia (after Maniar et al., 1989)

二段、四段稀土元素差异较大,二段稀土总量及轻重稀土比明显高于四段:二段稀土总量介于128.27×10-6~185.65×10-6,均值为164.18×10-6,轻稀土元素总量介于113.35×10-6~158.21×10-6,均值为140.88 × 10-6,重稀土元素含量介于14.92 × 10-6~ 27.49×10-6,均值为23.3×s10-6,而轻重稀土比介于5.07~7.76,均值为6.21,(La/Yb)N介于4.12~9.06,均值为5.38,其稀土元素特征类似于晚石炭世早期花岗岩岩类(何付兵等,2013);四段稀土总量介于38.75×10-6~80.72×10-6,均值为60.91×10-6,轻稀土元素总量介于29.57 × 10-6~60.87 × 10-6,均值为44.19×10-6,重稀土元素含量介于8.88×10-6~28.2× 10-6,均值为16.72×10-6,而轻重稀土比介于1.36~ 3.81,均值为2.96,(La/Yb)N介于1.19~2.54,均值为2.14,其稀土元素特征类似于晚石炭世晚期花岗岩类(程新彬等,2017)。在球粒陨石标准化稀土元素配分图(Sun et al., 1989)(图 6)上,二段配分曲线表现为轻稀土元素富集、重稀土元素亏损的轻重稀土元素分异较大、重稀土曲线却较为平坦的陡峭右倾型,δEu介于0.62~0.92,均值为0.76,表现出Eu负异常;四段配分曲线表现为轻稀土元素极弱富集、重稀土元素相对极弱亏损平坦右倾型-平坦型,δEu介于0.58~0.73,均值为0.67,表现出Eu负异常。稀土元素含量差异及配分曲线型式的不同也揭示两期岩浆活动可能具有复杂的岩浆来源(卢成忠等,2006吴鸣谦等,2014),二段具有更加偏低的形成温度。

图 6 内蒙古东乌珠穆沁旗宝力高庙组火山岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (球粒陨石标准化值和原始地幔标准化值据Sun et al., 1989) Figure 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia (normalization values after Sun et al., 1989)

火山岩微量元素与天山—兴安造山系花岗岩类(史长义等,2007)相比,除Cd、Ga、Nb、Rb、Th元素含量稍低外,其余元素含量高于或相当。而二段和四段相比,绝大多数元素二段高于或略高于四段,极少数元素含量相当。具有与稀土元素基本一致的特征,揭示两期岩浆活动可能具有复杂的岩浆来源(卢成忠等,2006吴鸣谦等,2014)。在原始地幔标准化微量元素蛛网图(Sun et al., 1989)(图 6b)上,宝力高庙组火山岩二段、四段特征也略有差异:二段岩性均表现为富集大离子亲石元素Rb、K,强烈亏损高场强元素Ti,极弱亏损P、Sr;二段较四段相比,其还富集Ba、Ta、LHREE。

4.2 锆石测年

双目镜下,锆石颜色单一,呈粉黄色,透明,金刚光泽,自形柱状,均可见锥柱不对称的歪晶发育,揭示锆石结晶时的介质环境不太适宜其按理想形态生长。宝力高庙组二段和四段火山岩锆石在形态、大小上有所差异:二段锆石形态复杂,以短柱状为主,颗粒较小,长100~180 μm,长宽比1.5:1~3:1;而四段锆石形态相对较为单一,以长柱状为主(15号锆石边部齿状,可能碎样时候破碎),颗粒相对略大,长约100~250 μm,长宽比2:1~4:1。二段火山岩锆石还有铁染、裂纹发育,个别还可见小的包裹体,但结晶后的改造痕迹不明显。

锆石阴极发光(CL)图像(图 7)中,两段火山岩锆石显示出岩浆型锆石的振荡/韵律环带结构或明暗相间的条带结构,均属于岩浆结晶的产物。二段锆石还显示具有相对较窄的岩浆环带,可能为低温条件下微量元素的扩散速度慢形成(吴元保等,2004)。两段火山岩锆石的U、Th含量分别介于185.47 × 10-6~3143.26 × 10-6和114.75 × 10-6~ 1524.15×10-6,Th/U比值介于0.19~1.20,远高于变质成因锆石(一般<0.1),而与典型的岩浆成因锆石一致(Williams et al., 1996)。

图 7 内蒙古东乌珠穆沁旗宝力高庙组火山岩锆石阴极发光(CL)图像 Figure 7 CL images of the zircons from the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia
5 讨论 5.1 火山岩形成时代

辛后田等(2011)在东乌旗宝力高庙组中发现大量植物化石,除脉羊齿为华夏植物群的典型分子外,其余多为安哥拉植物群的成分,和层型剖面及其他地区该组地层揭示的化石特征(内蒙古自治区地质矿产局,19911996;何雨栗等,2015;武跃勇等,2015)基本一致,这些化石限定地层年代为晚石炭世—早二叠世。本次在宝力高庙组三段中也发现含Annularia植物化石,其为晚石炭世—早三叠世典型分子。

对该组地层二段和四段火山岩分别进行LAICP-MS锆石U-Pb定年,测试结果(表 2)和锆石U-Pb年龄协和图(图 8)可知:二段火山岩(B012)除第1、4、6号样品点谐和性差(在谐和图上已经删除),其余样品位于谐和线上或其附近。其206Pb/238U年龄也偏大,可能为混合年龄。其余12个分析点年龄分布集中,范围在(308 ± 1.6)Ma~(320.4 ± 1.8)Ma,其加权平均年龄为(315.2 ± 4.6)Ma(n=13,MSWD=0.27);而四段火山岩(PM012-8)除第5、9号样品点谐和性差(在谐和图上已经删除),可能为混合年龄。第7、8、10、12号样品点略偏离谐和线,其余9个分析点年龄分布集中,范围在(304.9±2.1)Ma~(313.8 ± 1.8)Ma,其加权平均年龄为(305 ± 4.1)Ma(n=13,MSWD=0.3)。这一结果和辛后田等(2011)在东乌旗高庙敖包附近该组上段流纹岩、英安质晶屑凝灰岩和下段安山岩SHRIMP U-Pb定年结果(303.4 ± 6.7)Ma、(304.9 ± 3.1)Ma和(320.1 ± 7.2)Ma一致,形成时代均为晚石炭世。也同赵芝(2011)对小兴安岭地区卧都河林场宝力高庙组上段凝灰质流纹岩LA-ICP-MS锆石U-Pb定年(306.9±2.2)Ma一致。除此以外,李朋武等(2012)对苏尼特左旗白音乌拉附近该组地层中晶屑凝灰岩进行了LA-ICP-MS锆石U-Pb定年,结果为(299.5±1.6)Ma和(299.9±1.2)Ma;贺淑赛等(2015)对苏尼特左旗白音乌拉地区该组地层中流纹岩进行了锆石SHRIMP U-Pb定年,结果为(300.0±2.9)Ma;谷凤羽(2014)对苏尼特左旗塔拉拜农场附近宝力高庙组上段流纹岩进行了LA-ICP-MS锆石UPb定年,结果为(303.8±3.6)Ma;李晓伟(2014)对苏尼特左旗塔拉拜农场附近宝力高庙组下段火山熔岩进行了LA-ICP-MS锆石U-Pb定年,结果为(310.9±8.1)Ma;武跃勇等(2015)对查干敖包地区该组二段粗面岩进行LA-ICP-MS锆石U-Pb定年,结果为(297±1.2)Ma。已有年代学数据表明宝力高庙组火山岩段的年龄范围为299.5~320.1 Ma,其形成时代也为晚石炭世—早二叠世,同生物化石所反映的时代的完全一致。

表 2 内蒙古东乌珠穆沁旗宝力高庙组流纹岩锆石LA-ICP-MS U-Pb测年数据表 Table 2 LA-ICP-MS zircon U-Pb data of the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia
图 8 内蒙古东乌珠穆沁旗宝力高庙组火山岩锆石LA-ICP-MS U-Pb年龄谐和图 Figure 8 U-Pb concordia diagrams and recalculated weighted mean 206Pb/238U ages for zircons from the volcanic rocks in the aoligaomiao Formation in East Ujimqin Banner, Inner Mongolia

值得注意的是,宝力高庙组岩石地层在内蒙古中部苏尼特左旗、阿巴嘎旗等地和东部东乌旗、大兴安岭地区可以进行岩性分段并对比,已有同位素年龄揭示内蒙古东部地区各层段年龄普遍略大于中部地区对应各层段,是否同该组火山岩呈裂隙式喷发的火山由东部向西部迁移有关,有待于进一步研究。

5.2 岩性特点与成因

宝力高庙组火山岩为一套安山质、英安质、流纹质火山岩组合,矿物组成为石英、长石和碱性铁质黑云母(程启芬等,1987),副矿物中含电气石(可能为后生形成)、磷灰石等。这一特征和地球化学特征揭示其为A型花岗岩类或碱性流纹岩类(刘昌实等,2003张磊等,2013)。在(Zr + Nb + Ce + Y) −[(Na2O+K2O)/CaO]和Na2O-K2O图解(图略)上,样品都投在A型花岗岩区类。因此,宝力高庙组火山岩为A型花岗岩类。在Nb-Y-Ce图解(Eby, 1992)(图 9)上,大多数(尤其是二段)样品位于A2花岗岩类区或A1与A2过渡地带。考虑铝质A型花岗岩或碱性A型花岗岩属于A2亚类,表现出A1-A2的延续性(刘昌实等,2003贾小辉等,2009张磊等,2013),处于A2区或A1和A2过渡地带。宝力高庙组火山岩具有高铝、高碱含量,其还可能是A2亚类花岗岩类。

图 9 内蒙古东乌旗宝力高庙组火山岩Nb-Y-Ce判别图解(据Eby, 1992) Figure 9 Nb-Y-Ce diagram for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia (after Eby, 1992)

显示A型花岗岩类特征的流纹岩类常与同期玄武岩形成双峰式火山岩组成产出,且为下地壳麻粒岩相或古老基底变质岩相部分熔融的产物(Li et al., 2002)。然而,迄今为止,在宝力高庙组火山岩中未发现发育有玄武岩或玄武质火山岩。同时,宝力高庙组火山岩稀土元素含量较低,轻重稀土弱-中等分馏,也不同于典型A型“海鸥式”花岗岩类,而类似于安第斯型弧环境火山岩特征。A型花岗岩Nb/Ta比值(1.04~14.07)远低于幔源岩浆值(17±1)(Green et al., 1995解龙等,2015),暗示岩浆可能主要源于地壳。考虑研究区大地构造位置处于中亚造山带查干敖包—奥尤特—朝不楞晚古生代A型构造岩浆带内(张万益,2008张磊等,2013)。石炭纪侵入岩广泛分布,且晚石炭世早期侵入岩为类似喜马拉雅花岗岩高Sr低Yb的I型花岗岩,区域上存在加厚地壳(何付兵等,2013)。因此,研究区火山岩最可能的是幔源岩浆底侵形成的晚古生代新生下地壳物质部分熔融而成(谷凤羽,2014),Hf同位素研究支持这一观点(贺淑赛等,2015)。

一些研究者认为结晶分异可能是A型花岗岩岩浆主要演化机制(Collins et al., 1982Clemens et al., 1986Whalen et al., 1987Creaser et al., 1991King et al., 19972001)。A型花岗岩在形成过程中斜长石、斜方辉石可能为主要的残留或分离结晶矿物相(张磊等,2013)。本次所取宝力高庙组火山岩层位有限,岩性也以酸性岩类为主,地球化学含量变化小,成分接近,但其仍有一定的变化规律。在火山岩哈克图解(图略)中,随SiO2含量的增加,MgO、FeOt、TiO2含量的逐渐减少,说明其经历钛铁矿物及铁镁矿物分离结晶作用的影响;而随SiO2含量的增加,Al2O3和Na2O含量减少,CaO、K2O含量变化不明显,说明其还经历了斜长石的分离作用,这与在稀土元素球粒陨石标准化配分曲线图(图 6a)中,Eu出现了明显的负异常特征揭示一致。

5.3 区域构造地质环境探讨

宝力高庙组火山岩具有A2亚类花岗岩特征,形成于加厚下地壳的部分熔融,地球化学特征不具有与俯冲作用相关的岩浆特征。对宝力高庙组火山岩进行R1-R2因素判别图(Batchelor et al., 1985)投图(图 10),英安岩和安山岩样品分别位于碰撞前花岗岩区和碰撞后隆起期花岗岩区,无图解意义外,其余均位于造山期后A型花岗岩和同碰撞花岗岩过渡区内。且二段和四段相比,四段更趋于向造山期后A花岗岩。在(Ta+Yb)-Rb和Yb-Ta因素判别图(Pearce et al., 1984)(图 10)上,二段两个样品投在了板内花岗岩区(原因不详),绝大多数样品均投在了后碰撞花岗岩区内。

图 10 内蒙古东乌旗宝力高庙组火山岩R1-R2、Yb-Ta和(Yb+Ta)-Rb构造环境判别图(据Batchelor R A and Pearce J A) Figure 10 R1-R2 diagram, Yb-Ta diagram and(Yb+Ta)-Rb diagram for the volcanic rocks in the Baoligaomiao Formation in East Ujimqin Banner, Inner Mongolia (after Batchelor R A and Pearce J A)

一些学者(Tang, 1990邵济安,1991Sengör et al., 1993Chen et al., 2000Windley et al., 2007李朋武等,2009沈晓丽等,2012)认为兴蒙造山带晚石炭世—早二叠世处于洋壳俯冲阶段,直至晚二叠世才进入碰撞阶段。然而,最近资料揭示研究区及邻近地区晚石炭世早期(310~320 Ma)发育为类喜马拉雅式高Sr低Yb、Y的典型I型ACG花岗岩类(何付兵等,2013李维波等,2015)。晚石炭世晚期—早二叠世(290~310 Ma)发育为类浙闽型花岗岩(Eby, 1991;李敏等,2016程新彬等,2017),可构成从同碰撞岩浆作用到碰撞后伸展环境下的岩浆作用转换。宝力高庙组形成于晚石炭世—早二叠世,在兴蒙造山带中广泛分布,且岩性组合完全可以对比(辛后田等,2011武跃勇等,2015),其为陆相中酸性火山熔岩、火山碎屑岩和正常沉积的碎屑岩相间或交互出现。其中,东乌珠穆沁旗为当时的火山喷发中心(内蒙古自治区地质矿产局,1991武跃勇等,2015),发育为大量厚层状的熔岩和火山角砾岩堆积,正常碎屑岩较少。火山活动方式也主要表现为陆相裂隙-中心式的火山喷发(弓贵斌等,2011)。古地磁资料反映东乌旗乌里雅斯太地区古磁极位置也和华北同时代的古磁极位置均相近(Chen et al., 1997李朋武等,2012)。内蒙古二连—东乌旗地区华夏植物群和安哥拉植物在晚石炭—早、中二叠世地层中大量混生(周志广等,2010辛后田等,2011)。因此,兴蒙造山带内蒙古东乌旗地区晚石炭世—早二叠世已处于同碰撞-碰撞后阶段,早二叠世已经进入碰撞后伸展阶段。

6 结论

通过对内蒙古东乌旗巴彦敖包一带宝力高庙组地层剖面测制,植物化石发现,结合地层火山岩岩石学、岩石地球化学、锆石U-Pb年代学研究,得出如下结论:

(1)内蒙古东乌旗巴彦敖包一带出露宝力高庙组地层可划分为三段,相当于查干敖包剖面的二、三、四段,但各段均出露不完整。二段为一套杂色中酸性火山熔岩和火山碎屑岩类,火山喷发以喷溢相为主;三段为一套灰黄、灰白色火山-沉积碎屑岩类和陆源沉积岩,含Annularia植物化石,为火山间歇期沉积;四段为一套灰色、浅灰色酸性熔岩夹少量火山-沉积碎屑岩,火山喷发以溢流相为主。

(2)宝力高庙组四段紫红色含晶屑流纹岩加权锆石206Pb/238U平均年龄为(305 ± 4.1)Ma(n=13,MSWD=0.3),而二段灰黑色流纹岩的为(315.2± 4.6)Ma(n=13,MSWD=0.27),火山活动喷发时代均为晚石炭世,结合底层所含化石确定地层形成时代为晚石炭晚期—早二叠世早期。

(3)宝力高庙组中酸性火山岩为安山质、英安质、流纹质高钾钙碱性-钾玄岩系列火山岩组合,岩石呈现富硅、碱,贫钙、镁,A/NK值和FeOt/MgO值高,富Rb、Nb,贫过渡族元素,并具有显著的铕负异常,为A2亚类花岗岩类,其可能是幔源岩浆底侵形成的晚古生代新生下地壳物质部分熔融而成,岩浆演化经历了钛铁矿物、铁镁矿物及斜长石分离作用。

(4)宝力高庙组中酸性火山岩形成于后碰撞构造背景环境。兴蒙造山带内蒙古东乌旗地区晚石炭世—早二叠世已处于同碰撞-碰撞后阶段,早二叠世已经进入碰撞后伸展阶段。

致谢: 本文是参与该区域地质调查项目人员的集体成果,在此对参与该项目人员表示感谢!同时感谢审稿老师和编辑部老师提出了宝贵意见!

参考文献(References)

Baoyin Wulij, Zhao Wentao, Bao Fengqin. Characteristics and Tectonic Setting of the Baoligaomiao Volcanic Formation in Northern Erenhot-Abagaqi, Inner Mongolia[J]. Geology and Resources, 2013, 22(5): 355-359.
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem.Geol., 1985, 48: 43-55. DOI:10.1016/0009-2541(85)90034-8
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional Geology of Inner Mongolia Autonomous Region[M]. Beijing: Geological Publishing House, 1991.
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Rock Stratigraphic of Inner Mongolia Autonomous Region[M]. Wuhan: China University of Geoscience Press, 1996.
Chen B, Jahn B M, Wilde S, Xu B. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1): 157-182.
Chen H, Dobson J P, Heller F, Hao J. Preliminary Paleomagnetic Results from the Upper Carboniferous of Uliastai Block, Inner Mongolia, China[J]. Geophysical Research Letters, 1997, 24(22): 2833-2836. DOI:10.1029/97GL02897
Chen Qifen, Mao Jianren, Su Youxiang, Chen Sanyuan, Zhao Shuliangh. The Feature and Significance of Biotite from the Intermediate-acidic Intrusive Bodies in Middle-Lover Yangtze Valley[J]. Bull. Nanjing Inst. Geol. M.R., Chinese Acad. Geol. Sci., 1987, 8(3): 56-70.
Cheng Xinbin, Wang Wei, Wei Bo, Xu Jixiang, Sun Yonghua, Fang Tongming, Liu Zhenhua, You Shina, Liu Hong, He Fubing. Ages, Origin and Geological Implications of the Chaganaobao Granite Body in the East Ujimqin Banner, Inner Mongolia[J]. Geoscience, 2017.
Clemens J D, Holloway J R, White A J R. Origin of A-type granites:Experimental constraints[J]. Am Mineral, 1986, 71: 317-324.
Collins W J, Beams S D, White A J R, Chappell B W. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contrib. Mineral. Petrol., 1982, 80: 189-200. DOI:10.1007/BF00374895
Creaser R A, Price R C, Wormald R J. A-type granites revisited:Assessment of a residual-sourcemode[J]. Geology, 1991, 19: 163-166. DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20: 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Gong Guibin, Wang Quanqi. Characteristics and environment of the Baoligaomiao volcanic Formation in the Abagaqi, Inner Mongolia[J]. Resources, 2011, 2: 69-73.
Gu Fengyu. 2014. Origin of Volcanic Rocks from the Upper Section of the Baoligaomiao Formation in Sonidzuoqi, Inner Mongolia[D]. Shijiazhuang, Shijiazhuang University of Economics(in Chinese with English abstract).
Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3): 347-359.
He Fubing, Xu Jixiang, Gu Xiaodan, Cheng Xinbin, Wei Bo, Li Zhao, Liang Yanan, Wang Zelong, Huang Qi. Age, origin and geological implications of the Amuguleng composite granite in East Ujimqin Banner, Inner Mongolia[J]. Geological Review, 2013, 59(6): 1150-1164.
He Shusai, Li Qiugen, Wang Zongqi, Xu Xueyi, Liu Shunwen, Chen Junlu, Li Zhipei, Hu Zhaochu. Zircon U-Pb-Hf isotopic characteristics from felsic volcanic rocks of Baoligaomiao Formation, the middle segment of Inner Mongolia:Implications for geological evolution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1): 50-64.
He Yushu, Yang Guolin, Wang Haofei, Wang Wenjia, Sun Bainian. 2013. Stratigraphic age and volcano eruption cycle of the Baoligaomiao volcanic formation(the second segment) in the North of Abagaqi, Inner Mongolia[C]//Dongyang:The 11th National Congress of the Palaeontological Society of China (PSC) and the 27th Annual Conference of PSC, 93:86(in Chinese).
Jia Xiaohui, Wang Qiang, Tang gongjian. A-type Granites:Research Progress and Implications[J]. Geotectonicaet Metalbgenia, 2009, 33(3): 465-480.
King P L, White A J R, Chappell B W. Characterization and origin of aluminous A type granites of the Lachlan Fold Belt, southeastern Australia[J]. J Petrol, 1997, 36: 371-391.
King P L, Chappell B W, Allen C M., White A J R. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Aust J. Earth Sci., 2001, 48: 501-514. DOI:10.1046/j.1440-0952.2001.00881.x
Le Maitre R W. Igneous Rocks, A Classification and Glossary of Terms[M]. 2nd ed. Cambridge: Cambridge University Press, 2002.
Li Min, Cheng Yinhang, Ren Bangfang, Li Yanfeng, Zhang Tianfu. Chronology and petrogenesis of the diorite and monzonitic granite in Dong Ujimqin Banner, Inner Mongolia[J]. Geology in China, 2016, 43(1): 380-394.
Li Pengwu, Zhang Shihong, Gao Rui, Li Qiusheng. New Upper Carboniferous-Lower Permian Paleomagnetic Results from the Central Inner Mongolia and their Geological Implications[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(3): 521-527.
Li Pengwu, Zhang Shihong, Gao Rui, Li Haiyan, Zhao Qingle, Li Qiusheng, Guan Ye. New Upper Carboniferous-Lower Permian paleomagnetic results from the central Inner Mongolia and their geological implications[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(1): 423-440.
Li Weibo, Li Jianghai, Wang Honghao, Ta Siken. Characteristics of the reconstruction of Permian paleoplate and lithofacies paleogeography[J]. Geology in China, 2015, 42(2): 685-694.
Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liu Ying, Peter D K. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:Implications for the initial rifting of Rodinia[J]. Precamvrian Res., 2002, 113: 135-154. DOI:10.1016/S0301-9268(01)00207-8
Li Xiaowei. 2014. The petrological characteristics of the lower segment of Baoligaomiao volcanic rocks in Sonidzuoqi, Inner Mongolia[D]. Shijiazhuang, Shijiazhuang University of Economics(in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. Subdivision, discrimination criteria and genesis for A type rock suites[J]. Geological Journal of China Universities, 2003, 9(4): 573-591.
Liu Yongsheng, Gao Shan, Hu Zhaochu, Wang Dongbing. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1&2): 537-571.
Lu Chengzhong, Yan Tiezeng, Dong Chuanwan, Gu Mingguang. Magmatic consanguinity analysis of the Muchen intrusion and Xishantou Formation volcanic rocks in Zhejiang[J]. Geology in China, 2006, 33(1): 146-152.
Ludwing K R. 2001. Users manual for Isoplot/EX(Rev.2.49):A geochronological toolkit for Microsoft Execl. Berkeley Geochronology Center Special Pulication, 1-55. https://www.researchgate.net/publication/245539605_Users_manual_for_IsoplotEx_a_geochronological_toolkit_for_Microsoft_Excel
Luo Zhaohua, Chen Hongwei, Ke Shan, Luo Fei. Perrogenesis and evolution of the Dongsu Granite Series in Sonid Zuoqi, Inner Mongolia[J]. Geology in China, 2002, 29(3): 291-296.
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost EAK. Magmas and Magmatic Rocks[M]. London: Longman Group Ltd, 1985.
Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. DOI:10.1007/BF00384745
Sengör A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. DOI:10.1038/364299a0
Shao Ji'an. Crustal Evolution in the Middle Part of the Northern Margin of the Sino Korean Plate[M]. Beijing: Peking University Pres, 1991.
Shen Xiaoli, Zhang Baolin, Jia Wenchen, Guo Zhihua, Huang Xuefei, Cui Minli. Geochemical characteristics of Late PaleozoicEarly Mesozoic Bayinsukhtu monzonitic granite and it's constraints on tectonic setting in southeastern Mongolia[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(1): 281-295.
Shi Changyi, Yan Mingcai, Chi Qinghua. Abundances of chemical elements of granitoids in different geotectonic Units of China and their characteristics[J]. Acta Geologcica Sinica, 2007, 81(1): 47-59.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42:313-345. https://academic.oup.com/petrology
Tang Kedong. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton[J]. Tectonics, 1990, 9(2): 249-260. DOI:10.1029/TC009i002p00249
Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95: 407-419. DOI:10.1007/BF00402202
Williams I S, Buick A, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynold Region, central Australia[J]. Journal of Metamorphic Geology, 1996, 14: 29-47.
Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. DOI:10.1144/0016-76492006-022
Wu Mingqian, Zhao Guochun, Gao Jianwei, Wang Haitao. Geochemical characteristics of the Dushan complex and their geological significance[J]. Geology in China, 2014, 41(1): 108-121.
Wu Yueyong, Shao Yongxu, Kou Shuai, Jiang Haijiao. U-Pb age of Baoligaomiao volcanic rocks in the Chaganaobao, Sonidzuoqi, Inner Mongolia[J]. Resources, 2015, 3: 186-188.
Wu Yueyong, Ju Wenxin, Shao Yongxu, Jiang Haijiao. Stratigraphic division and age of Upper Carboniferous-Lower Permian Baoligaomiao Formation in Qagan Obo area, Sonid Left Banner, Inner Mongolia[J]. Geology in China, 2015, 42(4): 937-947.
Wu Yuanbao, Zheng Yongfei. Genetic mineralogy of zircons and its constraints to the age of U-Pb geochronology[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
Xie Long, Dun Du, Zhu Lidong, Ni Maciren, Yang Wenguang, Tao Gang, Li Chao, He Bi, He Yuan. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet[J]. Geology in China, 2015, 42(5): 1214-1227.
Xin Houtian, Teng Xuejian, Cheng Yinhang. Stratigraphic subdivision and isotope geochronology study on the Baoligaomiao Formation in the East Ujimqin County, Inner Mongolia[J]. Geological Survey and Resarch, 2011, 34(1): 1-9.
Zhao Zhi. 2011. Late Paleozoic Magmatism and its Tectonic Significance in the Northern Great Xing'an Range, Northeastern China[D].Changchun:Jilin University(in Chinese with English abstract).
Zhang Lei, Lv Xinbiao, Liu Ge, Chen Jun, Chen Chao, Gao Qi, Liu Hong. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt[J]. Geology in China, 2013, 40(3): 869-884.
Zhang Wanyi. 2008. Magmatic Activity and Metallogeny of Dong Ujimqin Banner, Inner Mongolia[D]. Beijing:Chinese Academy of Geological Sciences(in Chinese with English abstract).
Zhou Zhiguang, Gu Yongchang, Liu Changfeng, Yu Yangsen, Zhang Bin, Tian Zhijun, He Fubin, Wang Biren. Discovery of EarlyMiddle Permian cathaysian flora in Manduhubaolage area, Dong Ujimqin Qi, Inner Mongolia, China and its geological significance[J]. Geological Bulletin of China, 2010, 28(12): 21-25.
Zhu Junbin, Sun Lixin, Ren Jishun, Li Shan. LA-MC-ICP-MS Zircon U-Pb dating of the volcanic rocks from the Gegen Obo Formation in East Ujimqin Banner Area, Inner Mongolia, and its significance[J]. Acta Geoscientica Sinica, 2015, 36(4): 466-472.
宝音乌力吉, 赵文涛, 包凤琴. 内蒙古二连浩特-阿巴嘎旗北部宝力高庙组火山岩特征及构造背景[J]. 地质与资源, 2013, 22(5): 355-359.
程启芬, 毛建仁, 苏郁香, 陈三元, 赵曙良. 长江中下游中酸性侵入岩中的黑云母及其地质意义[J]. 中国地质科学院南京地质矿产研究所所刊, 1987, 8(3): 56-70.
程新彬, 王玮, 魏波, 徐吉祥, 孙永华, 方同明, 刘振华, 尤世娜, 刘鸿, 何付兵. 内蒙古东乌珠穆沁旗查干敖包花岗岩体时代、成因及地质意义[J]. 现代地质, 2017, 31(3): 508-520.
弓贵斌, 王全旗. 内蒙古自治区阿巴嘎旗地区上石炭统至下二叠统宝力高庙组火山岩特征与环境研究[J]. 西部资源, 2011, 2: 69-73.
谷凤羽. 2014. 内蒙古苏尼特左旗地区宝力高庙组上段火山岩的成因[D]. 石家庄: 石家庄经济学院. http://d.wanfangdata.com.cn/Thesis_D502657.aspx
何付兵, 徐吉祥, 谷晓丹, 程新彬, 魏波, 李昭, 梁亚南, 王泽龙, 黄淇. 内蒙古东乌珠穆沁旗阿木古楞复式花岗岩体时代、成因及地质意义[J]. 地质论评, 2013, 59(6): 1150-1164.
贺淑赛, 李秋根, 王宗起, 徐学义, 刘树文, 陈隽璐, 李智佩, 胡兆初. 内蒙古中部宝力高庙组长英质火山岩U-Pb-Hf同位素特征及其地质意义[J]. 北京大学学报(自然科学版), 2015, 51(1): 50-64.
何雨栗, 杨国林, 王浩飞, 王文佳, 孙柏年. 2013. 内蒙古阿巴嘎旗北部宝力高庙组二段地层时代及火山喷发旋回[C]. 东阳: 中国古生物学会第11届学术会议暨第27届年会, 93: 86. http://d.g.wanfangdata.com.cn/Conference_8250543.aspx
贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480.
李敏, 程银行, 任邦方, 李艳锋, 张天福. 内蒙古东乌旗晚古生代闪长岩、二长花岗岩年代学特征及岩石成因[J]. 中国地质, 2016, 43(1): 380-394.
李维波, 李江海, 王洪浩, 塔斯肯. 二叠纪古板块再造与岩相古地理特征分析[J]. 中国地质, 2015, 42(2): 685-694.
李朋武, 张世红, 高锐, 李海燕, 赵庆乐, 李秋生, 管烨. 内蒙古中部晚石炭世-早二叠世古地磁新数据及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(1): 423-440.
李朋武, 高锐, 管烨, 李秋生. 古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因[J]. 吉林大学学报(地球科学版), 2009, 39(3): 521-527.
李晓伟. 2014. 内蒙古苏尼特左旗地区宝力高庙组下段火山岩岩石学特征[硕士学位论文]. 石家庄: 石家庄经济学院. http://cdmd.cnki.com.cn/Article/CDMD-10077-1014034945.htm
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591.
卢成忠, 颜铁增, 董传万, 顾明光. 浙江沐尘岩体与西山头组火山岩的岩浆同源性分析[J]. 中国地质, 2006, 33(1): 146-152.
罗照华, 谌宏伟, 柯珊, 罗飞. 内蒙古苏尼特左旗东苏岩石系列的成因与演化[J]. 中国地质, 2002, 29(3): 291-296.
内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991.
内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996.
邵济安. 中朝板块北缘中段地壳演化[M]. 北京: 北京大学出版社, 1991.
沈晓丽, 张宝林, 贾文臣, 郭志华, 黄雪飞, 崔敏利. 蒙古国东南部巴音苏赫图晚古生代-早中生代二长花岗岩地球化学特征及其对构造环境的约束[J]. 吉林大学学报(地球科学版), 2012, 42(1): 281-295.
史长义, 鄢明才, 迟清华. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 2007, 81(1): 47-59.
吴鸣谦, 赵国春, 高建伟, 王海涛. 河北都山杂岩体地球化学特征及其地质意义[J]. 中国地质, 2014, 41(1): 108-121.
武跃勇, 鞠文信, 邵永旭, 姜海蛟. 内蒙古查干敖包地区上石炭-下二叠统宝力高庙组特征及时代[J]. 中国地质, 2015, 42(4): 937-947.
武跃勇, 邵永旭, 寇帅, 姜海蛟. 内蒙古苏尼特左旗查干敖包地区上石炭-下二叠统宝力高庙组同位素年龄[J]. 西部资源, 2015, 3: 186-188.
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(8): 1589-1604.
解龙, 顿都, 朱利东, 尼玛次仁, 杨文光, 陶刚, 李超, 何碧, 和源. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 2015, 42(5): 1214-1227.
辛后田, 滕学建, 程银行. 内蒙古东乌旗宝力高庙组地层划分及其同位素年代学研究[J]. 地质调查与研究, 2011, 34(1): 1-9.
张磊, 吕新彪, 刘阁, 陈俊, 陈超, 高奇, 刘洪. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J]. 中国地质, 2013, 40(3): 869-884.
张万益. 2008. 内蒙古东乌珠穆沁旗岩浆活动与金属成矿作用[D]. 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177372.htm
赵芝. 2011. 大兴安岭北部晚古生代岩浆作用及其构造意义[D]. 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011098859.htm
周志广, 谷永昌, 柳长峰, 於炀森, 张冰, 田志军, 何付兵, 王必任. 内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义[J]. 地质通报, 2010, 29(1): 21-25.
朱俊宾, 孙立新, 任纪舜, 李舢. 内蒙古东乌旗地区格根敖包组火山岩锆石LA-MC-ICP-MS U-Pb年龄及其地质意义[J]. 地球学报, 2015, 36(4): 466-472. DOI:10.3975/cagsb.2015.04.09