文章快速检索    
 
  中国地质 2017, Vol. 44 Issue (6): 1190-1206  
0
引用本文
陈印, 冯晓曦, 陈路路, 金若时, 苗培森, 司马献章, 苗爱生, 汤超, 王贵, 刘忠仁. 2017. 鄂尔多斯盆地东北部直罗组内碎屑锆石和铀矿物赋存形式简析及其对铀源的指示[J]. 中国地质, 44(6): 1190-1206.  
CHEN Yin, FENG Xiaoxi, CHEN Lulu, JIN Ruoshi, MIAO Peisen, SIMA Xianzhang, MIAO Aisheng, TANG Chao, WANG Gui, LIU Zhongren. 2017. An analysis of U-Pb dating of detrital zircons and modes of occurrence of uranium minerals in the Zhiluo Formation of northeastern Ordos Basin and their indication to uranium sources[J]. Geology in China, 44(6): 1190-1206. (in Chinese with English abstract).  

鄂尔多斯盆地东北部直罗组内碎屑锆石和铀矿物赋存形式简析及其对铀源的指示
陈印1,2, 冯晓曦1,2, 陈路路1,2, 金若时1,2, 苗培森1,2, 司马献章1,2, 苗爱生3, 汤超1,2, 王贵3, 刘忠仁3    
1. 中国地质调查局天津地质调查中心, 天津 300170;
2. 中国地质调查局铀矿资源重点实验室, 天津 300170;
3. 中国核工业二〇八大队, 内蒙古 包头 014010
摘要: 鄂尔多斯盆地作为中国重要的多种能源共生的大型盆地,发育了大量的砂岩型铀矿床。本次工作选择盆地东北部纳岭沟铀矿床作为研究对象,在直罗组含矿段附近采取5个砂岩样品进行碎屑锆石U-Pb定年,并针对含矿样品进行电子探针分析。该地区直罗组含矿段碎屑锆石U-Pb年龄集中分布于5个阶段:(2479±11)Ma~(2460±19)Ma、(2300~1950)Ma、(1896±21)Ma~(1820±32)Ma、(316~266)Ma及165 Ma。同时,本文整理了鄂尔多斯盆地北部造山带内古老变质基底、孔兹岩带和晚古生代侵入岩时代,并发现在直罗组内获得的碎屑锆石年龄与北部造山带内地质体所记录的年龄相一致。结合前人地球化学及古地理研究,本次工作推断纳岭沟地区直罗组砂岩沉积物最终来自于鄂尔多斯盆地北部造山带。纳岭沟铀矿床内铀矿赋存形式主要为存在于碎屑颗粒内部、黏土矿物周边、黄铁矿周边和炭屑裂隙内部。结合野外地质体放射性异常测量,本次工作认为铀源主要来自于沉积成岩阶段含铀碎屑颗粒的预富集和后期高放射性异常地质体通过含铀含氧水向盆地内部的迁移。
关键词: 鄂尔多斯盆地    直罗组    碎屑锆石    U-Pb定年    铀矿    
中图分类号:P619.14;P597+.3            文献标志码:A             文章编号:1000-3657(2017)06-1190-17
An analysis of U-Pb dating of detrital zircons and modes of occurrence of uranium minerals in the Zhiluo Formation of northeastern Ordos Basin and their indication to uranium sources
CHEN Yin1,2, FENG Xiaoxi1,2, CHEN Lulu1,2, JIN Ruoshi1,2, MIAO Peisen1,2, SIMA Xianzhang1,2, MIAO Aisheng3, TANG Chao1,2, WANG Gui3, LIU Zhongren3    
1. Tianjin Geological Survey Center of China Geological Survey, Tianjin 300170, China;
2. Key Laboratory of Uranium Mineral Resources, China Geological Survey, Tianjin 300170, China;
3. No. 208 Geological Party, BOG, CNNG, Baotou 014010, Inner Mongolia, China
Abstract: The Ordos Basin is an important large basin with multi-energy resources, around which a series of sandstone-type uranium deposits are developed. The Nalinggou uranium deposit located in the northeastern part was chosen as a study object. Five sandstone samples surrounding the ore-bearing segment in the Zhiluo Formation were selected to make detrital zircon U-Pb dating, while electron microprobe analysis was performed for some sandstone samples with uranium minerals. The ages are distributed as 5 major peaks:(2479±11) Ma-(2460±19) Ma, (2300-1950)Ma, (1896±21) Ma-(1820±32) Ma, (316-266) Ma and 165 Ma. The authors further arranged the age data of metamorphosed basement, khondalite belt and Late Paleozoic intrusions in the orogenic belt on the north margin of the Ordos Basin. These zones of detrital zircons ages are consistent with the ages of geological bodies in the orogenic belts on the northern margin of the Ordos Basin. Combined with the previous work about geochemistry and paleogeography, the authors hold that the provenance of sandstone of Zhiluo Formation in Nalinggou area was finally derived from the orogenic belt on the northern margin of the Ordos Basin. The uranium minerals are spread in and around the clastic grains, clay minerals, pyrites, and fractures in charcoal fragments. The radioactive anomaly measurement in the field work shows that the uranium source probably came from the pre-enrichment of clastic grains from the provenance at the diagenetic stage, and from the migration of the uranium-and oxygen-bearing water through later leaching of the highly radioactive bodies of the provenance.
Key words: Ordos Basin    Zhiluo Formation    detrital zircon    U-Pb dating    uranium deposit    

1 引言

鄂尔多斯盆地作为中国重要的多种能源共生的大型盆地,蕴含了大量的煤、油、气及铀等重要能源(邓军等,2005a刘池洋等,2006)。该盆地位于中亚多金属成矿带及欧亚铀成矿带的东部,受古亚洲洋闭合及印支运动、燕山运动的影响,盆地周缘造山带活动频繁,自古近纪河套凹陷发育以来,处于相对稳定状态。盆地边缘发育了大量的砂岩型铀矿床,如盆地东北部的大营—东胜铀矿床(刘汉彬等,2007)、西部的宁东铀矿床(郭庆银等,2010)及南部的黄陵—店头铀矿床(邢秀娟等,2008)等等。这些铀矿床的发现,为我们进一步研究砂岩型铀成矿作用提供了天然实验室。

针对砂岩型铀成矿作用,前人已经从沉积环境和沉积相(杨仁超等,2007)、铀矿产出的部位、形态及分布(肖新建等,2004)、铀的成矿期次与成矿年代学(夏毓亮等,2003)、黏土矿物特征(杨晓勇等,2009)、赋矿砂岩的成岩作用及地球化学特征(罗静兰等,2005张天福等,2016)、铀成矿作用与流体和有机质(孙晔等,2016)等方面进行了研究,并获得了一批重要成果与认识。本文将通过对鄂尔多斯盆地东北部纳岭沟铀矿床含矿段附近层位砂岩内碎屑锆石进行U-Pb定年,加以对鄂尔多斯盆地北部出露岩石单元时代的分析,讨论纳岭沟铀矿床的物源问题,并剖析该地区含矿段铀矿物赋存形式,进一步研究该地区的铀源和铀成矿特征。

2 地质背景

鄂尔多斯盆地位于中亚造山带东段南缘,华北克拉通西部。其周缘分别为阴山—燕山造山带、吕梁山—太行山造山带及秦岭—大别造山带,为一大型陆相盆地。

2.1 区域地质背景

鄂尔多斯盆地以太古宇变质岩及古元古界海相沉积岩为基底,以古生界及中生界为盖层的大型陆相沉积盆地。变质基底受多期构造运动影响,形成纵横交错的断裂网(邓军等,2005bLi et al., 2010Wang et al., 2015)。盆地盖层在古生代为华北陆缘海-滨浅海盆地,接受了下古生界碳酸盐岩和上古生界海陆交互相沉积。在晚三叠世—早白垩世,其为残存克拉通盆地,接受了大量河湖相及山前堆积。晚白垩世以来,盆地整体受构造抬升剥蚀影响,普遍缺失晚白垩世以来的沉积。在新生界,古气候由湿热转向干旱,构造由沉降转为隆升,并在盆地周缘发育一系列断陷盆地(朱红涛,2005)。

鄂尔多斯盆地以稳定克拉通岩石圈为代表,盆地内部缺乏岩浆活动,仅在盆地东部出露有紫金山碱性侵入岩,在北缘白垩纪地层内发育一层玄武岩(肖媛媛等,2007邹和平等,2008)。此外,王锡勇等(2010)指出在东部边缘有金伯利岩分布。

受多期构造运动影响,鄂尔多斯盆地西北部及北部出露大量的孔兹岩带,且周缘发育黄河坳陷、沁水盆地及渭河盆地等(图 1)。根据现今鄂尔多斯盆地的构造形态、基底性质及构造特征,其可划分为6个一级构造单元:伊盟隆起、西缘冲断带、天环坳陷、伊陕斜坡、晋西挠摺带和渭北隆起(图 1)。

图 1 鄂尔多斯盆地DEM图及构造区域划分(参考于王建民等,2013 Figure 1 DEM map of the Ordos Basin with regional tectonic division(modified from Wang et al., 2013)
2.2 纳岭沟地区地质背景

本次研究区(纳岭沟铀矿区)位于鄂尔多斯盆地东北部,伊盟隆起东北缘微扬起端北翼,北部以河套坳陷为隔与阴山造山带(乌拉山、大青山)毗邻,东部毗邻吕梁—太行山造山带,向南为伊陕斜坡,转换为宽缓斜坡带(图 1)。

该地区出露的地层主要为早白垩世东胜组,在东北部盆缘出露寒武—奥陶纪、二叠—侏罗纪沉积单元,形成该地区环形出露的构造格局(图 2图 3)。地层整体角度宽缓,向南西倾,倾角1~10°。自三叠纪以来,该地区主要发育:三叠纪刘家沟组、和尚沟组、纸坊组和延长组;侏罗纪富县组、延安组、直罗组、安定组及芬芳河组;早白垩世伊金霍洛组和东胜组(图 4)。受印支运动Ⅰ幕影响,延长组与纸坊组为角度不整合接触。侏罗系为该地区主要的铀含矿层,受印支运动Ⅱ幕影响,与下伏三叠纪地层角度不整合接触,受燕山运动A幕影响,与上覆白垩系以角度不整合接触(图 5ab)。白垩系为该地区出露的主要地层,受燕山运动B幕及喜山运动影响,后期遭受大规模的抬升剥蚀。

图 2 鄂尔多斯盆地北部区域地质简图 (年龄数据据Li et al., 2009Zhang et al., 2011Gong et al., 2014, 2015;及其内部参考文献。黑色为锆石U-Pb年龄,红色为Ar/Ar年龄) Figure 2 Geological map of the northern part of the Ordos Basin (Ages are from Li et al., 2009; Zhang et al., 2011; Gong et al., 2014 & 2015; and references therein. The black color is zircon U-Pb dating. The red color is Ar/Ar dating.)
图 3 鄂尔多斯盆地北部S-N向地质剖面(剖面位置见图 2,参考Yang et al., 2015 Figure 3 NS-trending cross-section through the northern part of the OrdosBasin (flocation see Fig. 2, after Yang et al., 2015)
图 4 鄂尔多斯盆地东北部地层综合柱状图(参考刘池洋等,2006张岳桥等,2006赵振宇等,2012 Figure 4 Comprehensive stratigraphic column of the northeastern part of the Ordos Basin(modified from Liu et al., 2006; Zhang et al., 2006; Zhao et al., 2012)
图 5 鄂尔多斯盆地东北部野外及钻孔照片 a—纳岭沟铀矿区东北部下白垩统东胜组与中侏罗统安定组角度不整合接触;b—东胜东部神山沟地区下白垩统东胜组底部砾岩与下部中侏罗统直罗组杂色砂岩夹泥岩角度不整合接触;c—东胜东部神山沟地区中侏罗统直罗组与延安组角度不整合接触;d—鄂尔多斯盆地北部大桦背岩体周边变质岩内发育高γ放射性异常石英脉及钾长花岗伟晶岩岩脉;e—纳岭沟铀矿区东北部下白垩统内发育正断层;f—纳岭沟铀矿区东北部下白垩统内发育左旋逆断层;g—纳岭沟铀矿区下白垩统红色砂岩内发育正断层,并被后期介质充填;h—纳岭沟铀矿区中侏罗统直罗组上段绿色砂岩内发育正断层;i—纳岭沟铀矿区中侏罗统直罗组下段灰色砂岩内发育正断层,并将标志层微错断 Figure 5 Field and core photos of the northeastern part of the Ordos Basin a-Angular unconformity between the Lower Cretaceous Dongsheng Formation and the Middle Jurassic Anding Formation in the northeastern part of the Nalinggou uranium orefield; b-Angular unconformity between the conglomerate at the bottom of the Lower Cretaceous Dongsheng Formation and the variegated sandstone interbeded with mudstone of the Middle Jurassic Zhiluo Formation; c-Angular unconformity between the Middle Jurassic Zhiluo Formation and Yan'an Formation in the Shenshangou area, Dongsheng; d-Highly γ radioactive anomaly quartz dike and K-feldspar granite pegmatite dikes that intruded into the metamorphic rocks around the Dahuabei pluton on the northern margin of the Ordos Basin; e-Normal fault developed in the Lower Cretaceous in the northeastern part of the Nalinggou uranium orefield; f-Sinistral thrust fault developed in the Lower Cretaceous in the northeastern part of the Nalinggou uranium orefield; g-Normal fault developed in the Lower Cretaceous red sandstone in the Nalinggou uranium orefield, filled with medium of later stage; h-Normal fault developed in the green sandstone in the upper segment of Middle Jurassic Zhiluo Formation in the Nalinggou uranium orefield; i-The normal fault developed in the gray sandstone in the lower segment of the Jurassic Zhiluo Formation in the Nalinggou uranium orefield

中侏罗统直罗组为纳岭沟地区重要的含铀层,成南北向带状分布,与上下层位均有明显的沉积间断面(图 6图 5bc)。直罗组可以划分为上段和下段(上亚段、下亚段)(图 6)。下段下亚段主要为辫状河-辫状河三角洲沉积相的中-粗砂岩,主要表现为灰色、灰白色和灰绿色,局部地区底部可见砾岩层。下亚段为纳岭沟地区主要的含铀层,靠近延安组的层位发育大量的炭屑、黄铁矿及碳酸盐胶结。下段上亚段为低弯度曲流河沉积相的泥-沙-泥组合,以灰绿色中细砂岩夹泥岩为主,为该地区次要的含铀层位。直罗组上段主要为杂色砂岩夹泥岩,为干旱气候下河流及泛滥平原沉积体系,多表现为灰绿色砂岩与红色泥岩互层发育(图 5b)。

图 6 鄂尔多斯盆地东北部纳岭沟铀矿区含矿层位综合柱状图(据核工业208地质队资料修改) Figure 6 Comprehensive column of ore-bearing segment in the Nalinggou uranium orefield, northern part of the Ordos Basin (modified from Nuclear Industry Geological Team No.208)

下侏罗统延安组主要为河湖相及沼泽相下沉积的灰色砂岩及黑色煤系(图 6)。部分学者认为其顶部发育的一层白色砂岩为油气漂白带(吴柏林等,2015)或古风化壳(焦养泉等,2015)(图 5c)。

该地区地层相对稳定,区域性构造相对不发育,主要表现为杭锦旗断裂带(Yang et al., 2013)。纳岭沟地区遥感影像及DEM图像显示,该地区发育一环形构造带,并发育NW-SE向的东胜—石湾子断隆构造带及本害敖包—准格尔召断层(刘德长等,2006)。野外露头显示,该地区白垩纪地层内局部发育断裂构造(图 5ef)。岩心观察同样显示,在白垩系和侏罗系内常见断层发育,其中在侏罗系内部分正断层为早期逆断层的再活化(图 5ghi)。

在纳岭沟北部地区杭锦旗黑石头沟,在下白垩统砂岩之上发育一层玄武岩,全岩Ar/Ar年龄为126 Ma,形成于早白垩世,与鄂尔多斯盆地东部紫金山岩体(137~130) Ma的年龄接近,反映了该地区在早白垩世发生了一次构造-岩浆-热事件(邹和平等,2008)。

3 碎屑锆石U-Pb定年

本次工作主要集中于鄂尔多斯盆地东北部纳岭沟地区,共采集4个含矿孔直罗组下段含矿段周缘层位砂岩样品,1个无矿孔含矿段相等层位砂岩样品(72111k14)。

3.1 测试方法

本次工作碎屑锆石筛选由廊坊市宇能岩物分选技术服务有限公司完成。锆石靶、CL图像及锆石U-Pb测试工作在天津地质调查中心实验测试室完成。本次锆石U-Pb测试使用的仪器为具有New Wave UP-213激光剥蚀系统的Thermo Finnigan Element2(高分辨率电感耦合等离子体质谱仪),具体仪器参数请参照Chang et al.(2006)

3.2 碎屑锆石U-Pb定年结果

锆石CL图像显示,除1672k11样品外,其余样品中碎屑锆石直径普遍小于150 μm(图 7)。样品中较年轻锆石多呈棱角状,具有岩浆环带,无古老核的存在。古老锆石多呈棱角状、次圆状的扇形,部分可见古老的核,且环带不明显。1672k17样品采自于直罗组底部含砾砂岩之上的层位,其碎屑锆石多呈棱角状,且直径较大,可达200 μm。此外,5个样品的测试锆石颗粒均大于80个。

图 7 纳岭沟铀矿区碎屑锆石CL图像 Figure 7 CL images of detrital zircons from Nalinggou uranium deposit

2836k14样品位于矿区西部,其古老锆石主要峰值加权平均年龄为(2466 ± 12)Ma和(1896 ± 21) Ma,且两者所占比例相当,次峰值区间为2200~ 2100 Ma,其中最古老锆石年龄为(2556±13)Ma。年轻碎屑锆石年龄较少,且分布分散,无加权平均年龄,但发现一个中侏罗世年龄记录(164±2)Ma。

72111k17样品位于矿区的东部,为无矿孔样品,其古老锆石分布相对较分散,其主要峰值加权平均年龄为(2476±22) Ma和(1820±32)Ma,其中后者所占比例较大,次峰值区间为(2300~2150) Ma,最古老锆石年龄为(2546±17)Ma。其晚古生代年龄集中分布于316 Ma左右。

1672k11样品位于矿区西部,其古老锆石主要峰值加权平均年龄为(2463±13)Ma和(1856±9) Ma,次峰值区间为(2050~1950) Ma,最古老锆石年龄为(2666±21) Ma。年轻碎屑锆石年龄相对其他样品较少,集中于晚古生代。

1262k15样品位于矿区西部,其碎屑锆石年龄分布相对集中,古老锆石主要峰值加权平均年龄为(2479 ± 11) Ma和(1843 ± 10) Ma,次峰值区间为(2300~2100) Ma;年轻锆石加权平均年龄为(266.3± 2.9) Ma。其中最古老锆石年龄为(2551±21) Ma。该样品中同样具有中侏罗世碎屑锆石年龄记录,为(164.5±2) Ma。

3112k14样品位于矿区的南部,采样深度较大,古老锆石主要峰值加权平均年龄为(2460±19) Ma和(1846±10) Ma,次峰值区间为(2300~2200) Ma;年轻锆石谐和年龄为(285.4±3.9) Ma。其中最古老锆石年龄为(2598±20) Ma。该样品中亦发现中侏罗世碎屑锆石。

在所有样品中,中侏罗世(168~164)Ma的碎屑锆石,呈不规则棱角状,具有弱的岩浆环带,Th/U为0.65~1.05,为岩浆成因锆石(图 7表 1)。

表 1 锆石U-Pb定年数据 Table 1 Zircon U-Pb dating data

综上所述,纳岭沟地区直罗组下段含矿层位周边砂岩内碎屑锆石年龄分布具有明显的一致性(图 8图 9),集中分布于5个阶段:(2479 ± 11) Ma~ (2460 ± 19) Ma、(2300~1950) Ma、(1896 ± 21) Ma ~ 1820±32) Ma、(316~266) Ma及165 Ma。该地区所发现的最古老碎屑锆石年龄为(2666±21) Ma,最年轻碎屑锆石年龄为(164±2) Ma。

图 8 碎屑锆石U-Pb定年谐和图及年龄分布图 Figure 8 Age probability density plotting and concordia diagram of detrital zircon U-Pb dating
图 9 碎屑锆石U-Pb测试中较年轻数据结果 Figure 9 Results of younger detrital zircon U-Pb dating
4 讨论 4.1 碎屑锆石U-Pb定年对物源区的示踪作用

鄂尔多斯盆地周缘出露大量的太古宙变质基底、孔兹岩带、元古宙沉积以及古生代和中生代侵入岩。自三叠纪以来,盆地北缘经历了印支运动、燕山运动和喜山运动,造成众多放射性异常地质体出露地表。由上文可知,盆地东北部直罗组内碎屑锆石年龄主要包括5个阶段:(2479±11)Ma ~ (2460 ± 19)Ma、(2300~1950)Ma、(1896 ± 21)Ma~ (1820±32) Ma、(316~266) Ma及165 Ma,并与鄂尔多斯盆地北缘造山带出露的岩石单元具有很好的对应关系。

本次工作得到大量(2479±11)Ma~(2460±19)Ma碎屑锆石年龄,其中最古老碎屑锆石年龄为(2666± 21) Ma。这与鄂尔多斯盆地北部出露的太古宙TTG岩系及一系列镁铁质、超镁铁质侵入岩的时代相一致(图 2),指示在纳岭沟地区直罗组内获得的新太古代—古元古代古老碎屑锆石最终来自于鄂尔多斯盆地北部阴山造山带内古老的变质基底或其他捕获此类锆石的地质体。前人大量年代学研究表明,鄂尔多斯盆地北缘造山带内出现大量的TTG岩系及一系列镁铁质、超镁铁质侵入岩,时代为(2.6~2.5)Ga(Zhao et al., 2005Guan et al., 2002Wan et al., 2013)。在内蒙古固阳地区和乌拉山—集宁地区,麻粒岩年龄为(2.65~2.35) Ga(张维杰等,2000王惠初等,2001吴昌华等,2006刘建辉等,2013)。因此,本次纳岭沟地区直罗组含矿段具有与盆地北缘出露的变质岩系时代相一致的碎屑锆石年龄。直罗组内碎屑锆石年龄主要集中分布在(2300~1950) Ma、(1896±21) Ma ~(1820±32) Ma;其中以后者为重要的峰值分布区间。这与鄂尔多斯盆地西部及北部出露的孔兹岩带内锆石的年龄记录相一致。前人研究表明孔兹岩系原岩沉积年龄为(2.3~1.9) Ga,并在(2.0~1.9) Ga发生重大变质事件(Xia et al., 2006Wan et al., 2006)。同时该地区在1.92 Ga发生板片断离,形成大量的岩浆活动及镁铁质岩脉的大规模侵入,并在1.85 Ga左右发生华北克拉通东西陆块的碰撞拼贴(Yin et al., 2009)。这一碎屑锆石年龄分析结果与孔兹岩带地区的构造演化时间段相一致,进一步指示直罗组内该阶段碎屑锆石最终来源于盆地北缘孔兹岩带。

Zhang et al.(2012)在对华北克拉通北缘碱性杂岩体研究时,指出在华北克拉通北缘发育大规模(250~200) Ma的花岗质侵入体。同时,牛晓露等(2016)指出华北克拉通北缘包头东正长岩是华北克拉通北缘三叠纪碱性岩带最西端的岩体,年龄为(214.7±1.1) Ma。但本次工作中,直罗组内缺乏该阶段碎屑锆石年龄记录。

本次研究在多个样品中发现了中侏罗世碎屑锆石年龄,与直罗组沉积的时代基本一致(图 7图 9表 1)。根据前人研究,在华北克拉通北部阴山—燕山造山带内发育大量侏罗系盆地,并分布一系列火山岩(Davis et al., 2001)。此外,赵宏刚(2005)在研究鄂尔多斯盆地构造演化与铀成矿关系时,指出鄂尔多斯盆地在中侏罗世直罗组时期经历了一次火山活动。针对本次工作获得的165 Ma左右的锆石年龄,本文推测其为阴山—燕山地区中生代侏罗纪火山活动的记录,但需进一步研究证实。

综上所述,本次工作在纳岭沟直罗组含矿段砂岩内获得的碎屑锆石年代学研究表明,碎屑锆石所记录的多阶段年龄均与鄂尔多斯盆地北缘出露的岩石单元的时代相一致。同时,碎屑锆石形态多呈棱角状,亦反映了近源搬运的特征。进一步结合前人对东胜地区直罗组砂岩地球化学特征及古地理研究成果(李宏涛等,2007吴兆剑等,2013王盟等,2013焦养泉等,2015),本文认为直罗组含矿段砂岩的物质源区为北部的阴山造山带。

根据这些锆石年龄记录,并结合上述前人研究成果,本文认为纳岭沟直罗组碎屑锆石的年龄分布反映了北部造山带内地质体的时代分布。在(2479± 11) Ma ~(2460±19) Ma,太古宙TTG岩系等变质基底发育。(2300~1950) Ma、(1896±21) Ma ~(1820± 32) Ma代表了孔兹岩系发育的时代,以及华北克拉通东西板块的碰撞拼贴的时间。(316~266) Ma指示该地区由于古亚洲洋闭合引起的大规模岩浆活动。碎屑锆石缺乏(250~200) Ma的记录,表明该时期地质体在中侏罗世未抬升至地表遭受剥蚀。至中侏罗世(165 Ma),阴山—燕山造山带普遍发育火山活动,并剥蚀搬运至盆地内部沉积。

此外,鄂尔多斯盆地北缘三叠纪以来构造变形以盆缘为主,在盆地内部构造变形较弱。印支运动的发育造成鄂尔多斯盆地北缘造山带物源区的形成,在盆地内部则发育含油、含煤等富有机质沉积体系,为后期铀的成矿富集提供大量的还原性介质。晚侏罗世燕山运动A幕的发育,造成鄂尔多斯盆地东部强烈抬升,东西两侧挤压变形,形成盆-山耦合体系。燕山运动B幕以后,鄂尔多斯盆地整体处于抬升剥蚀状态,保持了相对稳定的水动力条件及物源区来源,有利于含铀含氧水沿盆地边缘地层隆起端向下运移,与大量还原性介质接触,造成铀矿物的沉淀富集成矿。此外,区域应力场特征表明,鄂尔多斯盆地北缘遭受了长期的挤压变形(张岳桥等,2006),使该地区隆升剥蚀而成为鄂尔多斯盆地北缘主要的物源区。

4.2 铀矿物赋存形式及其对铀源的指示

本次工作通过对含矿砂岩电子探针研究表明,铀矿物的存在形式主要有几种:(1)存在于碎屑颗粒内部;(2)吸附于碎屑颗粒边缘黏土层周边;(3)存在于黄铁矿颗粒(包括不规则状黄铁矿、细脉状黄铁矿及草莓状黄铁矿)边缘;(4)少量存在于炭质条带裂隙内;(5)黏土矿化矿物周边(图 10)。

图 10 纳岭沟铀矿区铀矿物赋存形式 a—铀矿物存在与碎屑颗粒内部;b—铀矿物吸附于颗粒边缘的黏土层上;c—草莓状黄铁矿周边发育铀矿物;d—不规则黄铁矿周围发育铀矿物;e—炭质条带裂隙内发育铀矿物;f—黏土矿化颗粒周边及解理内发育铀矿物 Figure 10 Uranium minerals of the Nalinggou uranium orefield a-Uranium minerals in the detrital grain; b-Uranium minerals absorbed to the clay layer around the grain; c-Uranium minerals developed surrounding the framboidal pyrite; d-Uranium minerals developed around the irregular pyrite; e-Uranium minerals developed in the fractures of carbon belts; f-Uranium minerals developed around the clay mineralized clastic grains and in their cleavages

在纳岭沟地区,部分钻孔内可见含铀碎屑颗粒的存在。这些碎屑颗粒普遍被一层黏土类矿物薄层包裹,避免了颗粒内部铀矿物受后期流体影响。由于纳岭沟地区含矿段砂岩内普遍发育黏土类矿物,具有较强的吸附能力,后期流体成因的铀矿物易在黏土矿物表面吸附富集。在纳岭沟直罗组下亚段普遍发育黄铁矿。大部分黄铁矿以不规则状存在,胶结早期碎屑颗粒或沿裂隙呈脉状发育。另一部分黄铁矿以细小的草莓状黄铁矿颗粒存在。由于黄铁矿的还原能力,可将含氧含铀流体中的铀元素在黄铁矿周边还原富集沉淀成矿。直罗组下段发育大量的炭屑,为铀矿物的氧化还原作用提供了很好的还原环境,由于炭屑本身的还原能力和吸附能力,在炭屑孔隙内发育铀矿物。早期解理发育的矿物,如云母类矿物,受后期流体等作用发生强烈的粘土化,但保留了早期矿物的形态。因黏土矿物强烈的吸附能力,易于铀富集成矿。

樊爱萍等(2007)指出东胜地区成岩序列为:玉髓→绿泥石薄膜(蒙脱石、伊/蒙混层和绿/蒙混层)→孔隙充填绿泥石、伊利石→泥晶方解石→长石溶蚀、自生高岭石、石英次生加大→亮晶方解石、黄铁矿、水化黑云母。这显示纳岭沟地区碎屑颗粒边缘普遍发育的黏土层为早期成岩阶段的产物。因此,直罗组内保存完好的含铀碎屑颗粒来自含铀地质体,并可作为纳岭沟地区后期铀成矿的铀源。

鄂尔多斯盆地北缘乌拉山地区野外放射性测量发现,该地区存在大量的放射性异常地质体,尤其以钾长花岗伟晶岩脉和石英岩脉为代表(图 5d)。这与张复新等(2006)的研究成果相一致,在阴山褶皱系,表现为高钾异常带,U、Au等元素伴随钾、钠的活化分异而迁移富集。便携式γ能谱仪测试显示,出露的异常地质体以Th异常为主。但UTh异常常伴生出现,且U的地球化学特征相对较活泼,易受地表水淋滤及氧化作用形成含铀含氧水而流失,形成以Th异常为主的“氧化帽”。在乌拉山山前第四系堆积内,本次工作同样发现了相对较高的放射性异常。此外,前人已经指出乌拉山地区大桦背岩体的时代为330 Ma。且前文已经提到,纳岭沟含矿段直罗组砂岩内亦有该时期碎屑锆石记录。这表明,目前鄂尔多斯盆地北缘乌拉山地区出露的放射性异常地质体在中侏罗世可能已经局部出露地表遭受剥蚀,而可以作为纳岭沟地区铀成矿的铀源。因此,鄂尔多斯盆地北缘物源区放射性异常地质体,早期为直罗组提供了大量含铀矿物的碎屑颗粒,导致沉积层铀矿物的原始预富集;后期物源区由于淋滤作用形成的大量含铀含氧水,沿盆缘剥露区及断层向下运移,经直罗组遇还原性介质发生氧化还原反应,在黏土矿物表面吸附富集成矿。

5 结论

本次工作对纳岭沟地区直罗组含矿段附近砂岩碎屑锆石U-Pb年代学及含矿段砂岩电子探针的研究表明:

(1)纳岭沟直罗组砂岩内碎屑锆石U-Pb年龄集中分布于5个阶段:(2479±11)Ma ~(2460±19)Ma、(2300~1950)Ma、(1896±21)Ma ~(1820±32)Ma、(316~ 266)Ma及165 Ma。其中,最古老碎屑锆石年龄为(2666±21)Ma,最年轻碎屑锆石年龄为(164±2)Ma。该年龄分布与鄂尔多斯盆地北部造山带内地质体内记录的时间相一致,进一步指示了纳岭沟地区直罗组砂岩物源区为鄂尔多斯盆地北部造山带。

(2)纳岭沟铀矿床内铀矿物的赋存形式主要表现为碎屑颗粒内部、黏土矿物周边、黄铁矿周边和部分炭屑裂隙内。其中碎屑颗粒内部铀矿物的富集指示了该地区铀成矿的原始富集。

(3)纳岭沟铀矿床的铀源主要来自于沉积成岩阶段盆地北部阴山造山带内含铀碎屑颗粒的预富集和后期物源区高异常地质体通过含铀含氧水向盆地内部的迁移。

感谢: 在锆石U-Pb测试和电子探针测试过程中得到了天津地质调查中心实验室肖志斌、张永清和郭虎的大力支持,在样品采集过程中得到了中国核工业二〇八大队的大力支持,在此一致表示感谢。同时感谢评审专家及编辑提出的宝贵意见。

参考文献(References)

Chang Zhaoshan, Vervoort Jeffery D, McClelland William C, Knaack Charles. U-Pb dating of zircon by LA-ICP-MS[J]. Geochemistry Geophysics Geosystems, 2006, 7(5): 145-162.
Che Yin, Zhu Guang, Jiang Dazhi, Zhang Bilong. Timing determination of phase B of the Yanshanian movement in the eastern North China Craton:evidence from dating of a ductile shear zone in Sihetang, northeastern Beijing[J]. Acta Geologica Sinica, 2013, 87: 295-310.
Davis Gregory A, Zheng Yadong, Wang Cong, Darby Brian J, Zhang Changhou, Gehrels George. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China[J]. Geological Society of America Memoir, 2001, 194: 171-197.
Deng Jun, Wang Qingfei, Gao Bangfei. Evolution of Ordos basin and its distribution of various energy resources[J]. Geoscince, 2005a, 19(4): 538-545.
Deng Jun, Wang Qingfei, Huang Dinghua. Basement evolution of the Ordos Basin and its constraint on cap rock[J]. Earth Science Frontiers, 2005, 12(3): 091-099.
Fan Aipin, Liu Yiqun, Yang Renchao, Feng Qiao, Zhang Fuxin, Han Zuozhen. Research on the diagenesis of the sandstone-type uranium deposits in Dongsheng area, Ordos Bain[J]. Science in China (Series D), 2007, 50(Supp.): 166-172.
Gong Wangbin, Hu Jianmin, Wu Sujuan, Chen Hong, Qu Hongjie, Li Zhenhong, Liu Yang, Wang Lijun. Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic:Constraints from kinematic and geochronologic analysis of peripheral ductile shear zones[J]. Precambrian Research, 2014, 255: 716-733. DOI:10.1016/j.precamres.2014.05.001
Gong Wangbin, Hu Jianmin, Chen Hong, Li Zhenhong, Qu Hongjie, Yang Yong. Late Mesozoic tectonic evolution and kinematic mechanisms in the Daqing Shan at the northern margin of the North China Craton[J]. Journal of Asian Earth Sciences, 2015, 114: 103-114. DOI:10.1016/j.jseaes.2015.07.016
Guan Hong, Sun Min, Wilde Simon A., Zhou Xinhua, Zhai Mingguo. SHRIMP U-Pb zircon geochronology of the Fuping Complex:Implications for formation and assembly of the North China Craton[J]. Precambrian Research, 2002, 113(1/2): 1-18.
Guo Qingyin, Li Ziying, Yu Jinshui, Li Xiaocui. Meso-Neozoic structural evolution in the western margin of Ordos basin with respect to uranium ore formation[J]. Uranium Geology, 2010, 26(3): 137-144.
Li Hongtao, Cai Chunfang, Luo Xiaorong, Sun Xiyong. Geochemical evidence for sedimentary provenance of Middle Jurassic sandstones in Dongsheng area, Inner Mongolia[J]. Chinese Journal of Geology, 2007, 42(2): 353-361.
Li Ming, Gao JianRong. Basement faults and volcanic rock distributions in the Ordos Basin[J]. Science China:Earth Sciences, 2010, 153(11): 1625-1633.
Li Dapeng, Chen Yuelong, Chen Liemeng, Wang Zhong, Liu Jinbao. Zircon LA-ICPMS study and petrogenesis simulation of Dahuabei pluton in the Wulashan area, Inner Mongolia[J]. Progress in Natural Science, 2009, 19: 1727-1737. DOI:10.1016/j.pnsc.2009.09.003
Liu Chiyang, Zhao Hongge, Gui Xiaojun, Yue Leping, Zhao Junfeng, Wang Jianqiang. Space-Time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
Liu Dechang, Ye Fawang, Zhao Yingjun. Analyzing regional geological setting of DS uranium deposit based on the extensional research of remote sensing information[J]. World Nuclear Geoscience, 2006, 23(4): 232-237.
Liu Hanbin, Xia Yuliang, Tian Shifeng. Study on geochronology and uranium source of sandstone-type uranium deposit in Dongsheng area[J]. Uranium Geology, 2007, 23(1): 23-29.
Liu Jianhui, Liu Fulai, Ding Zhengjiang, Chen Junqiang, Liu Pinghua, Shi Jianrong, Cai Jia, Wang Fang. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 485-500.
Luo Jinglan, Liu Xiaohong, Zhang Fuxin, Jia Heng, Li Bo. Petrology and diagenesis of uranium-bearing sandstones in Dongsheng area of Ordos Basin and Shihongtan area of Tuha Basin[J]. Acta Petrolei Sinica, 2005, 26(4): 39-49.
Jiao Yangquan, Wu Liqun, Peng Yunbiao, Rong Hui, Ji Dongmin, Miao Aisheng, Li Hongliang. Sedimentary-tectonic setting of the deposition-type uranium deposits forming in the PaleoAsian Tectonic Domain, North China[J]. Earth Science Frontiers, 2015, 22(1): 189-205.
Niu Xiaoxia, Yang Jingsui, Liu Fei, Zhang Hongyu, Yang Mingchun. Origin of Baotoudong syenites in North China Craton:Petrological, mineralogical and geochemical evidence[J]. Science China Earth Sciences, 2016, 59: 95-110. DOI:10.1007/s11430-015-5216-1
Sun Ye. Organic geochemical zonation characteristics of sandstone-type uranium deposit and its relation to metallization-A case study of Zaohuohao uranium deposit in Inner Mongolia[J]. Uranium Geology, 2016, 32(3): 129-136.
Wan Yusheng, Wilde Simon A., Liu Dunyi, Yang Changxiu, Song Biao, Yin Xiaoyan. Further evidence for ~1.85Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research, 2006, 9(1/2): 189-197.
Wan Yuesheng, Xie Hangqian, Yang Hua, Wang Zejiu, Liu Dunyi, Kroner Alfred, Wild Simon A, Geng Yuansheng, Sun Liuyi, Ma Mingzhu, Liu Shoujie, Dong Chunyan, Du Lilin. Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton[J]. American Journal of Science, 2013, 313: 683-711. DOI:10.2475/07.2013.03
Wang Huichu, Yuan Guibang, Xin Houtian. U-Pb single zircon ages for granulites in Cunkongshan Area, Guyang Inner Mongolia and enlightenment for its geological signification, China[J]. Progress in Precambrain Research, 2001, 24(1): 28-34.
Wang Jianmin, Wang Jiayuan. Low-amplitude structures and oil-gas enrichment on the Yishaan Slope, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(1): 49-58.
Wang Meng, Luo Jinglan, Li Miao, Bai Xuejing, Cheng Chen, Yan Liaowei. Provenance and tectonic setting of sandstone-type uranium deposit in Dongsheng area, Ordos basin:Evidence from U-Pb age and Hf isotopes of detrital zircons[J]. Acta Petrologica Sinica, 2013, 29(8): 2746-2758.
Wang Xiyong, Zhang Qinglong, Wang Liangshu, Ge Rongfeng, Chen Juan. Structural features and tectonic stress fields of the Mesozoic and Cenozoic in the eastern margin of the Ordos basin, China[J]. Geological Bulletin of China, 2010, 29(8): 1168-1176.
Wang Wei, Liu Shuwen, Santosh M., Bai Xiang, Li Qiugen, Yang Pengtao, Guo Rongrong. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province:constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research, 2013, 224: 184-221. DOI:10.1016/j.precamres.2012.09.019
Wang Zhentao, Zhou Hongrui, Wang Xunlian, Jing Xiuchun. Characteristics of the crystalline basement beneath the Ordos Basin:Constraint from aeromagnetic data[J]. Geoscience Frontiers, 2015, 6: 465-475. DOI:10.1016/j.gsf.2014.02.004
Wu Bailin, Wei Anjun, Liu Chiyang, Song Zisheng, Hu Liang, Wang Dan, Cun Xiaoni, Sun Li, Luo Jingjing. Stable isotope tracing on the Formation of White Sandstone in Yan'an Group, Northern Ordos Basin, and its geological significance[J]. Earth Science Frontiers, 2015, 22(3): 205-214.
Wu Changhua, Sun Min, Li Huimin, Zhao Guochun, Xia Xiaoping. La-ICP-Ms U-Pb zircon ages of the khondalites from the Wulashan and Jining hing-grade terrain in northern margin of the North China Craton:contraints on sedimentary age of the khondalite[J]. Acta Petrologica Sinica, 2006, 22(11): 2639-2654.
Wu Zhaojian, Han Xiaozhong, Yi Chao, Qi Caiji, Hui Xiaochao, Wang Mingtai. Geochemistry of sandstones from the Middle Jurassic Zhiluo Formation, Dongsheng District, Northeastern Ordos Basin:Implications for provenance and tectonic setting[J]. Geoscience, 2013, 27(3): 557-567.
Xia Xiaoping, Sun Min, Zhao Guochun, Wu Fuyuan, Xu Ping, Zhang Jiheng, Luo Yan. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 581-593.
Xia Yuliang, Lin Jinrong, Liu Hanbin, Fan Guang, Hou Yanxiang. Analysis on metallogenic conditions and prospect prognosis for interlayer oxidation zone sandstone-type uranium deposit at western slope of Songliao basin[J]. Uranium Geology, 2003, 19(3): 129-136.
Xiang Xiujuan, Liu Yiqun, Li Weihong, Long Binli. Sandstone Diagenesis and Uranium Mineralization of the Zhiluo Formation in the Diantou Area, Southern Ordos Basin[J]. Acta Geoscientica Sinica, 2008, 29(2): 179-188.
Xiao Xinjian, Li Ziying, Chen Anping. Prel iminary study on features of mineralogical zoning of epigenetic alteration at sandstone-type uranium deposit, Dongsheng area, Ordos basin[J]. Uranium Geology, 2004, 20(2): 136-141.
Xiao Yuanyuan, Ren Zhanli, Qin Jiangfeng, Zeng Zhen. Geochemistry and zircon LA-ICP MS U-Pb dating of the Zijinshan alkaline complex in the Linxian County, Shanxi Province:Geological implication[J]. Geological Review, 2007, 53(5): 656-663.
Yang Minghui, Li Liang, Zhou Jin, Qu Xiaoyan, Zhou Duo. Segmentation and inversion of the Hangjinqi fault zone, the northern Ordos basin (north China)[J]. Journal of Asian Earth Sciences, 2013, 70(71): 64-78.
Yang Minghui, Li Liang, Zhou Jin, Jia Huichong, Sun Xiao, Qu Xiaoyan, Zhou Duo, Gong Ting, Ding Chao. Mesozoic structural evolution of the Hangjinqi area in the northern Ordos Basin, North China[J]. Marine and Petroleum Geology, 2015, 66(4): 695-710.
Yang Renchao, Han Zuozhen, Fan Aiping. Sedimentary micorofacies and sequence stratigraphy of sandstone-type uranium deposit in The Dongsheng Area of The Ordos Basin[J]. Journal of Stratigraphy, 2007, 31(3): 261-266.
Yang Xiaoyong, Ling Mingxing, Lai Xiaodong, Sun Wei, Liu Chiyang. Uranium Mineral Occurrence of Sandstone-Type Uranium Deposits in the Dongsheng-Huanglong Region, Ordos Basin[J]. Acta Geologica Sinica, 2009, 83(8): 1167-1177.
Yin Changqing, Zhao Guochun, Sun Min, Xia Xiaoping, Wei Chunjing, Zhou Xiwen, Leung Winghang. LA-ICP-MS zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 2009, 174(1-2): 78-94. DOI:10.1016/j.precamres.2009.06.008
Zhang Fuxin, Qiao Haiming, Jia Heng. TheMetal logenic Condition and Epigenetic Alteration Mineralization of Dongsheng Uranium Deposit in the Inner Mongolia[J]. Acta Geologica Sinica, 2006, 80(5): 733-739.
Zhang Jin, Li Jinyi, Liu Jianfeng, Feng Qianwen. Detrital zircon U-Pb ages of Middle Ordovician flysch sandstones in the western ordos margin:New constraints on their provenances, and tectonic implications[J]. Journal of Asian Earth Sciences, 2011, 42: 1030-1047. DOI:10.1016/j.jseaes.2011.03.009
Zhang Shuanhong, Zhao Yan, Song Biao, Wu Huaichun. Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Paleozoic active continental margin[J]. Journal of the Geological Society, 2007, 164(2): 451-463. DOI:10.1144/0016-76492005-190
Zhang Shuanhong, Zhao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, WU Hai. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block:a preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29: 824-842.
Zhang Shuanhong, Zhao Yue, Ye Hao, Hou Kejun, Li Chaofeng. Early Mesozoic alkaline complexes in the northern North China Craton:Implications for cratonic lithospheric destruction[J]. Lithos, 2012, 155: 1-18. DOI:10.1016/j.lithos.2012.08.009
Zhang Tianfu, Sun Lixin, Zhang Yun, et al. Geochamical characteristics of the Jurassic Yan'an and Zhiluo Formations in the Northern Margin of Ordos Basin and Their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472.
Zhang Weijie, Li Long, Geng Mingshan. Petrology and dating of Neo-Archean intrusive rocks from Guyang area, Inner Mongolia[J]. Earth Science, 2000, 25(3): 221-226.
Zhang Yueqiao, Liao Chaozhen. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos basin[J]. Geology in China, 2006, 33(1): 28-40.
Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao Zhenyu, Guo Yanru, Wang Yan, Lin Dongjuan. Study Progress in Tectonic Evolution and Paleogeography of Ordos Basin[J]. Special Oil and Gas Reserveirs, 2012, 19(5): 15-21.
Zhu Hongtao. 2005. Research on High Resolution Sequence Stratigraphy and Sedimentary Models of Shanxi Formation in the Northeastern Part of Ordos Basin[D].Wuhan:China University of Geosciences, 12-15 (in Chinese with English abstract).
Zhou Liyun, Wang Yu. Late Carboniferous syn-tectonic magmatic flow at the northern margin of the North China Craton-evidence for the reactivation of cratonic basement[J]. Journal of Asian Earth Sciences, 2012, 54-55: 131-142. DOI:10.1016/j.jseaes.2012.04.007
Zou Heping, Zhang Ge, Li Gang. Cretaceous Tectono-Thermal Event in The Ordos Block an Ar-Ar Chronological Evidence from Basalt at Hangjin banner, Inner Mongolia, North China Craton[J]. Geotectonica et Metallogenia, 2008, 32(3): 360-364.
陈印, 朱光, 姜大志, 张必龙. 四合堂剪切带活动时代及其对燕山运动B幕时间的限定[J]. 地质学报, 2013, 87(3): 295-310.
邓军, 王庆飞, 高帮飞. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005a, 19(4): 538-545.
邓军, 王庆飞, 黄定华. 鄂尔多斯盆地基底演化及其对盖层控制作用[J]. 地学前缘, 2005b, 12: 92-99.
樊爱萍, 柳益群, 杨仁超, 冯乔, 张复新, 韩作振. 鄂尔多斯盆地东胜地区砂岩型铀矿成岩作用研究[J]. 中国科学D辑:地球科学, 2007, 37(增刊Ⅰ): 166-172.
郭庆银, 李子颖, 于金水, 李晓翠. 鄂尔多斯盆地西缘中新生代构造演化与铀成矿作用[J]. 铀矿地质, 2010, 26(3): 137-144.
李宏涛, 蔡春芳, 罗晓容, 孙希勇. 内蒙古东胜地区中侏罗统砂岩沉积物源的地球化学证据[J]. 地质科学, 2007, 42(2): 353-361.
刘池洋, 赵红格, 桂小军, 岳乐平, 赵俊峰, 王建强. 鄂尔多斯盆地演化——改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638.
刘德长, 叶发旺, 赵英俊. 基于遥感信息延伸研究的DS铀矿床区域地质背景分析[J]. 世界核地质科学, 2006, 23(4): 232-237.
刘汉彬, 夏毓亮, 田时丰. 东胜地区砂岩型铀矿成矿年代学和成矿铀源研究[J]. 铀矿地质, 2007, 23(1): 23-29.
刘建辉, 刘福来, 丁正江, 陈军强, 刘平华, 施建荣, 蔡佳, 王舫. 乌拉山地区早古元古代花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J]. 岩石学报, 2013, 29(2): 485-500.
罗静兰, 刘小红, 张复新, 贾恒, 李博. 鄂尔多斯盆地东胜地区和吐哈盆地十红滩地区含铀砂岩岩石学及成岩作用[J]. 石油学报, 2005, 26(4): 39-49. DOI:10.7623/syxb200504008
焦养泉, 吴立群, 彭云彪, 荣辉, 季东民, 苗爱生, 里宏亮. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析[J]. 地学前缘, 2015, 22(1): 189-205.
牛晓露, 杨经绥, 刘飞, 张红雨, 杨明春. 华北克拉通北缘包头东正长岩的成因:来自岩石矿物学和地球化学的证据[J]. 中国科学:地球科学, 2016, 46: 374-391. DOI:10.1360/N072014-00571
孙晔. 砂岩型铀矿床的有机地球化学分带性及其与铀成矿的关系——以内蒙古皂火壕铀矿床为例[J]. 铀矿地质, 2016, 32(3): 129-136.
王惠初, 袁桂邦, 辛后田. 内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示[J]. 前寒武纪研究进展, 2001, 24(1): 28-34.
王建民, 王佳媛. 鄂尔多斯盆地伊陕斜坡上的低幅度构造与油气富集[J]. 石油勘探与开发, 2013, 40(1): 49-58.
王盟, 罗静兰, 李杪, 白雪晶, 程辰, 闫辽伟. 鄂尔多斯盆地东胜地区砂岩型铀矿源区及其构造背景分析——来自碎屑锆石UPb年龄及Hf同位素的证据[J]. 岩石学报, 2013, 29(8): 2746-2758.
王锡勇, 张庆龙, 王良书, 葛荣峰, 陈娟. 鄂尔多斯盆地东缘中-新生代构造特征及构造应力场分析[J]. 地质通报, 2010, 29(8): 1168-1176.
吴柏林, 魏安军, 刘池洋, 宋子升, 胡亮, 王丹, 寸小妮, 孙莉, 罗晶晶. 鄂尔多斯盆地北部延安组白色砂岩形成的稳定同位素示踪及其地质意义[J]. 地学前缘, 2015, 22(3): 205-214.
吴昌华, 孙敏, 李惠民, 赵国春, 夏小平. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究[J]. 岩石学报, 2006, 22(11): 2639-2654.
吴兆剑, 韩效忠, 易超, 祁才吉, 惠小朝, 王明太. 鄂尔多斯盆地东胜地区直罗组砂岩的地球化学特征与物源分析[J]. 现代地质, 2013, 27(3): 557-567.
夏毓亮, 林锦荣, 刘汉彬, 范光, 侯艳先. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J]. 铀矿地质, 2003, 19(3): 129-136.
邢秀娟, 柳益群, 李卫宏, 龚斌利. 鄂尔多斯盆地南部店头地区直罗组砂岩成岩演化与铀成矿[J]. 地球学报, 2008, 29(2): 179-188.
肖新建, 李子颖, 陈安平. 东胜地区砂岩型铀矿床后生蚀变矿物分带特征初步研究[J]. 铀矿地质, 2004, 20(2): 136-141.
肖媛媛, 任战利, 秦江锋, 曾震. 山西临县紫金山碱性杂岩LAICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质论评, 2007, 53(5): 656-663.
杨仁超, 韩作振, 樊爱萍. 鄂尔多斯盆地东胜地区砂岩型铀矿床沉积微相与层序地层[J]. 地层学杂志, 2007, 31(3): 261-266.
杨晓勇, 凌明星, 赖小东, 孙卫, 刘池洋. 鄂尔多斯盆地东胜-黄龙地区砂岩型铀矿铀矿物赋存状态研究[J]. 地质学报, 2009, 83(8): 1167-1177.
张复新, 乔海明, 贾恒. 内蒙古东胜砂岩型铀矿床形成条件与成矿作用[J]. 地质学报, 2006, 80(5): 733-739.
张天福, 孙立新, 张云, 程银行, 李艳锋, 马海林, 鲁超, 杨才, 郭根万. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12): 3454-3472. DOI:10.3969/j.issn.0001-5717.2016.12.013
张维杰, 李龙, 耿明山. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代[J]. 地球科学, 2000, 25(3): 221-226.
张岳桥, 廖昌珍. 晚中生代-新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 2006, 33(1): 28-40.
赵宏刚. 鄂尔多斯盆地构造热演化与砂岩型铀成矿[J]. 铀矿地质, 2005, 21(5): 275-282.
赵振宇, 郭彦如, 王艳, 林冬娟. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-21.
朱红涛. 2005. 鄂尔多斯盆地东北部山西组高分辨率层序地层与沉积模式研究[D]. 武汉: 中国地质大学. 12-15. 鄂尔多斯盆地东北部山西组高分辨率层序地层与沉积模式研究
邹和平, 张珂, 李刚. 鄂尔多斯地块早白垩世构造-热事件:杭锦旗玄武岩的Ar-Ar年代学证据[J]. 大地构造与成矿学, 2008, 32(3): 360-364.