文章快速检索    
 
  中国地质 2018, Vol. 45 Issue (2): 334-350  
0
引用本文
彭银彪, 于胜尧, 张建新, 李三忠, 孙德有. 2018. 北阿尔金地区早古生代洋壳俯冲时限:来自斜长花岗岩和花岗闪长岩的证据[J]. 中国地质, 45(2): 334-350.  
PENG Yinbiao, YU Shengyao, ZHANG Jianxin, LI Sanzhong, SUN Deyou. 2018. Timing of Early Paleozoic oceanic crust subduction in North Altun: Evidence from plagiogranite and granodiorite[J]. Geology in China, 45(2): 334-350. (in Chinese with English abstract).  

北阿尔金地区早古生代洋壳俯冲时限:来自斜长花岗岩和花岗闪长岩的证据
彭银彪1, 于胜尧2,3, 张建新1, 李三忠2,3, 孙德有4    
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国海洋大学海洋地球科学学院, 海底科学与探测技术教育部重点实验室, 山东 青岛 266100;
3. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 山东 青岛 266061;
4. 吉林大学, 吉林 长春 130061
摘要: 蛇绿岩在不同演化阶段自身形成的花岗质岩石和侵入到蛇绿岩中的花岗质岩石对于蛇绿岩的精确定年具有重要意义,是揭示洋壳俯冲时限的有力证据。对北阿尔金红柳沟-拉配泉蛇绿岩中斜长花岗岩和花岗闪长岩的锆石U-Pb及Lu-Hf同位素分析表明,红柳沟斜长花岗岩和花岗闪长岩的锆石LA-ICP-MS U-Pb定年结果分别为(501±3)Ma和(496±2)Ma,表明北阿尔金洋的俯冲时限可能开始于中寒武世或更早。斜长花岗岩和花岗闪长岩的锆石εHft)值均为正值,结果分别为1.6~5.6和3.3~6.9,反映其源区均为亏损型地幔。全岩地球化学分析结果表明,斜长花岗岩具有高SiO2、高Sr、低Y和相应的高Sr/Y等类似于埃达克质岩石的特征,可能来自热的洋壳俯冲到石榴角闪岩相条件下变基性岩发生小比例部分熔融形成,且其形成深度应该在40~50 km;花岗闪长岩属于高钾钙碱性系列岩石,可能代表了岛弧环境下下地壳基性岩石部分熔融的产物。年代学分析表明,北阿尔金洋可能存在南北双向俯冲,并且北阿尔金洋向北俯冲可能略早于向南俯冲。北阿尔金和北祁连的俯冲时限对比研究表明,北阿尔金早古生代缝合带是北祁连早古生代缝合带的西延部分。
关键词: 北阿尔金地区    俯冲时限    斜长花岗岩    花岗闪长岩    早古生代    
中图分类号:P588.12;P597            文献标志码:A             文章编号:1000-3657(2018)02-0334-17
Timing of Early Paleozoic oceanic crust subduction in North Altun: Evidence from plagiogranite and granodiorite
PENG Yinbiao1, YU Shengyao2,3, ZHANG Jianxin1, LI Sanzhong2,3, SUN Deyou4    
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key Laboratory of Submarine Geosciences and Prospecting Technique, Ministry of Education; College of Marine Geoscience, Ocean University of China, Qingdao 266100, Shangdong, China;
3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China;
4. Jilin University, Changchun 130061, Jilin, China
Abstract: The granitic rocks that were formed from ophiolite or intruded into the ophiolites are important for the precise dating of ophiolites, and some of them can be the powerful evidence for constraining the timing of subduction. Based on detailed studies of field geological background and petrographical features, the authors conducted analysis of whole-rock major, trace and rare earth elements and zircon U-Pb ages as well as Lu-Hf isotopes for the plagiogranite and granodiorite. The weighted mean ages of plagiogranite and granodiorite from Hongliugou-Lapeiquan ophiolite in North Altun Mountains determined by LA-ICP-MS UPb method are 501±3 Ma and 496±2 Ma, respectively, suggesting that the subduction timing of the northern Altun Ocean might have started in the mid-Cambrian or earlier. The zircons from plagiogranite and granodiorite exhibit positive εHf (t) values of 1.6-5.6 and 2.7-6.9, separately, implying that the plagiogranites and granodiorites were all derived from the depleted mantle. Geochemical analysis indicates that the plagiogranites are characterized by high SiO2, high Sr, low Y and corresponding high Sr/Y, which are similar to features of adakitic rocks, suggesting that they resulted from the small proportion of partial melting of metabasites during the hot oceanic subduction to the depth of 40-50 km, belonging to the amphibolite facies. The granodiorite belongs to the series of high-Na calc-alkaline rocks, and may represent the product of mafic rocks remelting from the lower crustal in an island arc setting. The geochronological analysis indicates that the north Altun Ocean might have experienced both northward and southward subductions, and the northward subduction of the northern Altun Ocean may be slightly earlier than the southward subduction. The comparative study of the subduction time between the northern Altun and northern Qilian shows that the northern Altun Early Paleozoic suture zone is the extension of the North Qilian Early Paleozoic suture zone.
Key words: North Altun area    subduction timing    plagiogranite    granodiorite    early Paleozoic    

1 引言

北阿尔金俯冲增生杂岩带呈近EW向分布在红柳沟—拉配泉一带,由浅变质的火山岩、火山碎屑岩及碎屑岩等所组成,夹超基性岩、堆晶辉长岩、基性岩墙群和基性枕状熔岩(蛇绿岩套),并有大量花岗岩侵入。先前的研究已经在北阿尔金的高压/低温变质岩、蛇绿岩和侵入岩的岩石学和年代学方面取得了一系列成果。但目前对北阿尔金洋盆闭合及俯冲时限还存在认识上的分歧。早期的研究显示北阿尔金红柳沟—拉配泉蛇绿岩为前寒武纪大洋残片,如孙勇等(1997)取得拉配泉断裂北侧的基性火山岩的Sm-Nd等时线年龄为(1793±20)Ma;郭召杰等(1998)获得半鄂博地区蛇绿混杂岩中的辉长岩的Sm-Nd等时线年龄为(829±60)Ma,并认为代表该蛇绿岩带的成岩年龄;崔军文等(1999)则认为索尔库里一带的蛇绿岩可能形成于元古宙。近些年来的研究显示北阿尔金红柳沟—拉配泉碰撞-混杂带可能为早古生代洋壳俯冲过程中在海沟及其附近堆积形成的一套混杂岩(戚学祥等,2005)。其中,高压/低温蓝片岩和榴辉岩中多硅白云母和钠云母等Ar-Ar年龄为(491±3)Ma~(512±3)Ma(张建新等,2007);刘良等(1999)获得红柳泉枕状玄武岩的Sm-Nd全岩等时线年龄为(524±44)Ma,认为这一年龄代表了洋岛玄武岩的形成时代;而修群叶等(2007)对剖面中玄武岩分选出的锆石采用TIMS方法,获得了(448±3)Ma的锆石U-Pb谐和年龄,认为该年龄代表枕状玄武岩的成岩年龄。北阿尔金地区获得的最老的辉长岩年龄是位于阿克塞青崖子地区,SHRIMP锆石U-Pb年龄为(521±12)Ma(张志诚等,2009);而杨经绥等(2008)获得红柳沟堆晶辉长岩的结晶时代为(479±8)Ma;北阿尔金冰沟获得最年轻辉长岩的形成时代为(450±11)Ma(扬子江等,2012)。近年来在红柳沟—拉配泉碰撞-混杂带也先后发现一系列俯冲-碰撞相关的花岗岩,如俯冲相关的Ⅰ型花岗(石英)闪长岩形成时代为481 Ma;碰撞相关的S型花岗岩形成时代为437~411 Ma(吴才来等,2007)。以上研究成果虽证实北阿尔金红柳沟—拉配泉蛇绿混杂带主体可能形成于早古生代,但考虑到不同测年方法获得的结果存在近80 Ma(524~448 Ma)的时差,有必要对北阿尔金红柳沟—拉配泉蛇绿混杂带洋壳俯冲时限的进一步确定。因此,本文选择北阿尔金红柳沟—拉配泉蛇绿混杂带的斜长花岗岩和花岗闪长岩进行岩石学、年代学和地球化学研究,为探讨北阿尔金构造格局及其演化提供重要依据。

2 区域地质背景和岩石学特征

红柳沟—拉配泉俯冲-增生杂岩带位于阿尔金造山带北缘, 构成北阿尔金近东西向构造带的重要组成部分。俯冲-增生杂岩与两侧地质单元均为断层接触,其南侧为由碳酸盐岩和碎屑岩组成的中新元古代金雁山群,属于中阿尔金地块的一部分,北侧为太古宙—古元古代米兰杂岩,被认为是塔里木克拉通变质基底的组成部分(葛肖虹等,2013毕政家等,2016曹玉亭等,2015)(图 1)。红柳沟—拉配泉俯冲-增生杂岩带走向近东西, 宽约20 km, 主要由蛇绿岩、具复理石特征的深海、半深海碎屑岩、碳酸盐岩、变质岩和花岗岩类组成。蛇绿岩主要由玄武岩、枕状玄武岩、细碧岩、凝灰岩、硅质岩及大量基性、超基性岩或岩墙组成, 其中的玄武岩具有过渡型洋中脊玄武岩性质, 并与洋岛玄武岩共生(郭召杰等,1998刘良等,1999Sobel et al., 1999吴峻等,2002孟繁聪等,2010夏林圻等,2016)。北阿尔金HP/LT变质岩石呈构造岩片分布在北阿尔金俯冲增生杂岩之中,并构成俯冲增生杂岩带的一部分(张建新等,2007Zhang et al., 2010)。HP/LT变质带主要由蓝片岩、榴辉岩、泥质片岩及钙质片岩等所组成。榴辉岩和蓝片岩在露头上互层状产出,它们一起构成的透镜体分布在泥质片岩和钙质片岩之中,局部也见与泥质片岩和钙质片岩呈互层状产出,它们共同构成一个宽2~5 km,长约40 km的构造岩片(或HP/LT混杂岩岩片),分布在北阿尔金俯冲-增生杂岩的中部,呈NWW-SEE向展布,与两侧由超基性岩、辉长岩、基性枕状熔岩及硅质岩等所组成的蛇绿混杂岩呈断层接触(图 1)。

图 1 北阿尔金地区地质简图和采样点 Figure 1 Geological sketch map of North Altun area and sampling sites

斜长花岗岩主要呈岩脉的形式侵入到斜长角闪岩中,最大宽度可达3~5 m,中细粒结构,块状构造,主要由斜长石(45%~50%)、石英(45%~55%)及少量的角闪石等组成,副矿物为磷灰石、锆石和榍石等,其中石英呈他形粒状,粒径0.2~0.5 mm,斜长石呈半自形粒状,粒径0.5~2 mm,部分发育聚片双晶,受绢云母及绿帘石化蚀变影响,表面浑浊(图 2a, 2c)。花岗闪长岩主要呈岩脉侵入到基性火山岩或辉长岩中,宽度超过10 m,并被后期的钾长花岗岩侵入(图 2b)。花岗闪长岩呈中粒等粒结构,主要由钾长石(25%~30%)、斜长石(35%~45%)、石英(20%~25%)、角闪石(5%~10%)和少量黑云母和磷灰石等组成,石英呈他形粒状,局部可见波状消光,长石呈半自形粒状,粒径1~3 mm,局部绿帘石化(图 2d)。

图 2 北阿尔金斜长花岗岩和花岗闪长岩野外地质产状和镜下显微特征 a,c—斜长花岗岩;b,d—花岗闪长岩 Figure 2 Outcrops and microphotographs of plagiogranite and granodiorite in North Altun area a, c-Plagiogranite; b, d-Granodiorite
3 锆石U-Pb年代学

锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25 μm,频率为10 Hz,能量密度约为2.5 J/cm2,以He为载气。信号较小的207Pb、206Pb、204Pb(+204Hg)、202Hg用离子计数器(multiion-counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度均为2%左右,对锆石标准的定年精度和准确度在1%(2 s)左右。LA-MC-ICPMS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态, 锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U:923×10-6;Th:439×10-6;Th/U: 0.475)(Nasdala et al., 2008)为外标进行校正。测试过程中在每测定5~7个样品前后重复测定2个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序,测量过程中绝大多数分析点206Pb/204Pb>1000, 未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得。详细实验测试过程可参见文献(侯可军等,2007)。

斜长花岗岩AQ11-11-1.1锆石以自形柱状锆石为主,粒度为100~200 mm,CL图像显示锆石具有明显的岩浆结晶锆石的振荡环带。LA-ICP-MS测定显示岩浆锆石的206Pb/238U表面年龄变化在(494± 3)Ma和(509±4)Ma,15个谐和的数据206Pb/238U表面年龄加权平均为(501±3)Ma(MSWD = 2.2)(图 3a表 1)。花岗闪长岩样品AQ11-7-3.4以自形具有岩浆振荡环带的锆石为主,LA-ICP-MS U-Pb测定大部分具有岩浆特征的锆石其206Pb/238U表面年龄集中在(480±5)Ma和(500±4)Ma,21个数据点的206Pb/ 238U表面年龄的加权平均年龄为(496 ± 2)Ma(MSWD = 1.4)(图 3b表 2)。

图 3 北阿尔金斜长花岗岩(AQ11-11-1.1)和花岗闪长岩(AQ11-7-3.4)的锆石LA-ICP-MS U-Pb谐和图及CL图像 Figure 3 LA-ICP-MS U-Pb concordia diagrams and CL images of zircons from plagiogranite(AQ11-11-1.1) and granodiorite (AQ11-7-3.4)in North Altun area
表 1 北阿尔金斜长花岗岩的锆石U-Th-Pb LA-ICP-MS年龄测定分析结果 Table 1 U-Th-Pb LA-ICP-MS data of zircons from plagiogranite(AQ11-11-1.1)in North Altun area
表 2 北阿尔金花岗闪长岩的LA-ICP-MS锆石U-Th-Pb分析结果 Table 2 U-Th-Pb LA-ICP-MS data of zircons from granodiorite(AQ11-7-3.4)in North Altun area
4 锆石Lu-Hf同位素

在锆石U-Pb定年的基础上,选择2个典型的样品进行Hf同位素测定。锆石Hf同位素测试在UPb测定后进行,测定点位置选择与U-Pb测定相同的结构位置但范围更大(与Hf同位素测定的束斑更大有关)。Hf同位素测定是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,根据锆石大小,剥蚀直径采用55 μm或40 μm,测定时使用锆石国际标样GJ1作为参考物质。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值为0.282015 ± 8 (2σ, n=10),与文献报道值(侯可军等,2007Elhlou et al., 2006)在误差范围内完全一致。εHf(t)计算采用衰变常数λ=1.865×10-11a-1(Schlerer et al., 2001), (176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, 0=0.282772(Bichert-Toft et al., 1997)亏损地幔模式年龄(TDM1)计算采用(176Yb/177Hf)DM=0.0384,(176Hf/177Hf)DM= 0.28325,两阶段Hf模式年龄(TDM2)计算时, 平均地壳的176Lu/177Hf比值为0.015。

笔者选择2个进行过锆石U-Pb定年的花岗岩样品进行了Lu-Hf同位素分析,详细分析结果见表 3图 4。斜长花岗岩样品AQ11-11-1.1的176Hf/ 177Hf比值主要变化在0.282521~0.282654,对应的εHf (t)值为1.6~5.6,相应的亏损地幔Hf模式年龄(TDM1)为883~1073 Ma,二阶段模式年龄为1023~1240 Ma。花岗闪长岩样品AQ11-7-3.4的176Hf/177Hf比值主要变化在0.282556~0.282770,对应的εHf (t)值为3.3~6.9,相应的亏损地幔Hf模式年龄(TDM1)为823~984 Ma,二阶段模式年龄为878~1150 Ma。

表 3 红柳沟地区斜长花岗岩和花岗闪长岩锆石Hf同位素数据 Table 3 Zircon Hf isotopic compositions of plagiogranite and granodiorite in Hongliugou area
图 4 北阿尔金斜长花岗岩和花岗闪长岩的锆石t-εHf (t)图解 Figure 4 Zircon t-εHf (t) diagram of plagiogranite in North Altun area
5 岩石地球化学特征

斜长花岗岩和花岗闪长岩的主微量元素测试均是在国家测试中心(中国地质科学院)进行,主量元素通过X荧光光谱仪3080E测试,微量元素和稀土元素通过电感耦合等离子体质谱仪(ICP-MSexcel)分析。北阿尔金斜长花岗岩和花岗闪长岩的主量、稀土和微量元素地球化学特征见表 4。总体上讲, 斜长花岗岩显示出高SiO2, 低MgO,高Na2O和低K2O的特征,属富钠低钾(拉斑)花岗岩(图 5a, 5b)。花岗闪长岩显示出低SiO2、低K2O、高Na2O和CaO的特征,Na2O/K2O>1,属富钠高钾钙碱性花岗岩(图 5a, 5b)。斜长花岗岩的铝饱和指数大于1,为1.01~1.07,为弱过铝质。花岗闪长岩的铝饱和指数小于1,为0.91~0.92,为准铝质,二者的铝饱和指数均小于1.1,应该属于Ⅰ型花岗岩(图 6)。斜长花岗岩稀土元素球粒陨石标准配分曲线向右倾斜,稀土总量较低,轻重稀土强烈分馏,具有弱的正Eu异常。对应的微量元素蛛网图中,富集Sr、Rb、Th等大离子亲石元素,而Nb、Ta等高场强元素则相对亏损(图 7)。花岗闪长岩的稀土元素总量较高, ∑REE= 251.34×10-6~261.12×10-6, 稀土元素球粒陨石标准化图总体显示强烈分馏的稀土元素分配模式(LaN/YbN= 23.02~23.39), 即轻稀土明显富集, 而重稀土强烈亏损, 配分曲线呈明显的右倾型, 但从Ho到Lu的重稀土元素分布样式平坦。值得注意的是, 花岗岩显示出无Eu异常或弱的正Eu异常。其微量元素图解中,富集Sr、K、Rb、Th等大离子亲石元素,而Nb、Ta和Ti等高场强元素则相对亏损(图 7)。

表 4 北阿尔金斜长花岗岩和花岗闪长岩的的主量元素(%)和微量元素(10-6)分析结果 Table 4 Analytical results of major elements(%) and trace elements(10-6)of plagiogranite and granodiorite in North Altun area
图 5 北阿尔金斜长花岗岩及花岗闪长岩的K2O/Na2O-SiO2图解(a)和K2O-SiO2图解(b),(底图据Peccerillo et al., 1976 Figure 5 K2O/Na2O versus SiO2 diagram (a) and K2O versus SiO2 diagram (b) of plagiogranite and granodiorite in North Altun area (after Peccerillo et al., 1976)
图 6 北阿尔金斜长花岗岩-花岗闪长岩的A/CNK-A/NK图解(据Maniar & Piccoli, 1989 Figure 6 A/CNK versus A/NK diagram (after Maniar & Piccoli, 1989 of plagiogranite and granodiorite in North Altun area
图 7 北阿尔金斜长花岗岩-花岗闪长岩的稀土元素球粒陨石标准化配分图(a)、微量元素原始地幔标准化蛛网图(b) (标准值据文献Sun and McDonough, 1989) Figure 7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element (b) diagrams for plagiogranite and granodiorite in North Altun area (after Sun and McDonough, 1989)
6 讨论 6.1 斜长花岗岩形成环境探讨

以上分析显示斜长花岗岩具有类似于埃达克质岩石的地球化学特征:(1)高SiO2和低MgO; (2)高Sr,低Y和相应的高Sr/Y; (3)高La/Yb和低Yb (图 8)。已有的研究表明埃达克质岩石可以形成于多种构造环境: (1)年轻(<25 Ma)、热的洋壳板片俯冲到角闪岩-榴辉岩相发生脱水熔融形成的埃达克质熔体, 或较老的洋壳在不断的加热升温条件下发生熔融形成埃达克岩(Defent et al., 1990; Gutscher et al., 2000肖庆辉等,2016); (2)俯冲大陆地壳的部分熔融作用或增厚下地壳的部分熔融作用(Wang et al., 2005; Xu et al., 2010, 2013);(3)拆沉下地壳的部分熔融作用(Xu et al., 2002; Gao et al., 2004; Wang et al., 2007)(; 4)幔源基性岩浆和壳源酸性岩浆的混合作用(Guo et al., 2007; Barr et al., 2007);(5)含水地幔橄榄岩的部分熔融作用(Stern et al., 1996)。下面笔者将对北阿尔金斜长花岗岩可能的成因环境进行探讨。

图 8 北阿尔金花岗岩及花岗闪长岩的Sr/Y-Y判别图解(a)和(La/Yb)N-(Yb)N判别图解(b)(底图据Defant and Xu, 2002; Defant and Drummond, 1990 Figure 8 Diagrams of Sr/Y-Y (a) and (La/Yb)N-(Yb)N for plagiogranite and granodiorite in North Altun area (b) (after Defant and Xu, 2002; Defant and Drummond, 1990)

首先, 北阿尔金斜长花岗岩不可能来自俯冲陆壳或增厚下地壳的部分熔融, 主要证据如下: (1)研究区内斜长花岗岩侵位时大洋俯冲正在进行,而陆壳俯冲尚未开启;(2)斜长花岗岩具有低的K2O(0.94%~1.39%)含量,明显不同于陆壳深熔作用形成的熔体特征。其次,明显偏低的Cr(11.3×10-6~ 34.9×10-6)、Ni (7.89×10-6~10.8×10-6)和Mg# (43~48)同样排除了拆沉下地壳的部分熔融作用的可能性(Xu et al., 2002; Gao et al., 2004; Wang et al., 2007)。第三,Guo et al.(2007)研究显示延吉地区埃达克质安山岩可能是由低Mg#、低Sr和高Y和HREE的壳源岩浆与高Sr、低Y和高Sr/Y的幔源岩浆混合而成。这种模式形成的岩石具有与高Mg埃达克质岩石类似的地球化学特征。北阿尔金斜长花岗岩明显偏低的Mg#、Cr和Ni排除了岩浆混合作用成因的可能性(图 9);而且同时代的基性岩浆也不具备高Sr、低Y和高Sr/Y的地球化学特征。最后,斜长花岗岩较高的SiO2含量(70.49%~71.33%)明显不同于含水地幔橄榄岩部分熔融作用产生的熔体(SiO2<56%)(Green et al., 1980; Jahn et al., 1984; Baker et al., 1995)。

图 9 北阿尔金斜长花岗岩和花岗闪长岩的MgO-SiO2图解 (底图据王强等,2005 Figure 9 Diagram of MgO-SiO2 for plagiogranite and granodiorite in North Altun area (base map modified after Wang et al., 2005)

综上所述,笔者认为北阿尔金埃达克质斜长花岗岩可能来自于俯冲洋壳的部分熔融作用。但是与典型俯冲洋壳深熔作用形成的埃达克质熔体相比,北阿尔金斜长花岗岩显示出富Na2O, 低Mg和贫Yb的特征。具有相似地球化学特征的埃达克质岩浆在中国的赣东北西湾蛇绿岩中首先发现,因此也被称之为西湾型埃达克岩(Li et al., 2003; 张旗,2008)。该类埃达克岩一般规模较小,通常与蛇绿岩伴生,可能是洋壳俯冲到一定深度发生小比例的部分熔融作用形成的。这种埃达克岩通常没有经过较长距离的迁移,并且未明显地与上覆地幔楔发生物质交换,是具有初始特征的埃达克岩(张旗,2008)。

实验研究表明, 变基性岩和变泥质岩均可在高压条件下(>1.0 GPa)部分熔融形成高Sr/Y岩石(Moyen, 2009), 然而, 北阿尔金埃达克质斜长花岗岩具有低K2O (0.94%~1.39%)和低Rb/Sr (0.04~0.09)的特征反映其可能主要来源于变基性岩的部分熔融作用, 而明显不同于典型变泥质岩部分熔融作用形成熔体的特征(Harris et al., 1992; Zeng et al., 2005)。同时, 变基性岩的脱水熔融实验进一步证实埃达克质岩浆的形成深度一般大于40 km(Rapp et al., 1995, 1999), 当压力大于1.5 GPa (>50 km)时, 榴辉岩或高压麻粒岩为源区主要残留相, 而在压力小于1.5 GPa时, 石榴角闪岩为源区主要残留相(Rapp et al., 1995; Sen et al., 1994; Litvinovsky et al., 2000; Douce et al., 1998, 2004)。研究区埃达克质斜长花岗岩较低的Nb/Ta比值(10.20~13.58)指示石榴角闪岩可能为主要的源区残留相(Foley et al., 2000; Schmidt et al., 2004; Xiong, 2006), 即形成深度应小于50 km。

6.2 花岗闪长岩形成环境探讨

北阿尔金花岗闪长岩为高钾钙碱性系列岩石,与典型岛弧岩浆岩微量元素特征较为相似:富集Rb、Ba、Th、U和K等大离子亲石元素,而贫Nb、Ta和Ti等高场强元素。在Rb-(Y+Nb)、Nb-Y、Rb-(Ta+Yb)、Ta-Yb图中位于VAG区(火山岛弧花岗岩)(图 10)。实验岩石学结果表明富钠花岗岩的形成机制有两种:变泥质岩在高压条件下的水致部分熔融(Douce et al., 1998)或变基性岩的部分熔融(Rapp et al., 1995; Stevenson et al., 2005)。根据已有的资料,笔者推测变泥质岩不可能是花岗闪长岩的源区,主要证据如下:(1)花岗闪长岩具有非常低的Rb/Sr比值(< 0.1),而变泥质熔融形成熔体的通常具有较高的Rb/Sr比值(>1);(2)花岗闪长岩具有正的锆石εHft)值,而区域上变泥质岩熔融形成的花岗岩锆石εHf(t)为明显负值(-7~-5)(康磊等,2011)。花岗闪长岩的REE配分模式显示为向右倾斜的特征,即LREE相对富集, 而HREE则相对亏损, 而且样品(La/Yb)N和(Gd/Yb)N值都很高,分别是大于23和大于1.8,反映了在部分熔融过程中石榴石可能为主要残留相。实验岩石学结果显示石榴石与熔体之间的分配系数从Ho到Lu依次增高,当仅有石榴石为残留相时,熔体从Ho到Lu元素含量逐渐降低。北阿尔金花岗闪长岩从Ho到Lu元素相对平坦,指示在部分熔融过程中石榴石不是唯一残留相。实验研究显示当角闪石作为残留相时,从Ho到Lu元素在角闪石和熔体之间的配分系数变化较小,可导致熔体平坦的HREE配分模式。以上研究显示花岗闪长岩浆形成过程中石榴石和角闪石可能同时为残留相。另外,花岗闪长岩具有高的Sr和微弱的正Eu异常,表明在部分熔融过程中斜长石是熔融反应相,所形成熔体没有经历强烈的斜长石分离结晶作用的影响。

图 10 北阿尔金花岗闪长岩的微量元素含量构造环境判别图解(底图据Pearce et al., 1984 VAG—火山弧花岗岩; WPG—板内花岗岩; syn-COLG—同碰撞花岗岩; ORG—洋中脊花岗岩; A-ORG—异常洋中脊花岗岩 Figure 10 Diagenetic setting diagram of plagiogranite and granodiorite in North Altun area according to their trace element values (after Pearce et al., 1984) VAG-Volcanic arc granite; WPG-Intraplate granite; syn-COLG-Syn-collisional granite; ORG-Mid-ocean ridge granite; A-ORG-Abnormal mid-ocean ridge granite
6.3 区域构造意义 6.3.1 北阿尔金洋盆的开启及俯冲时限

北阿尔金地区获得的最老的辉长岩年龄是位于阿克塞青崖子地区,SHRIMP锆石U-Pb年龄为(521±12)Ma(张志诚等,2009);而杨经绥等(2008)获得红柳沟堆晶辉长岩的结晶时代为(479±8)Ma(Ma);笔者最近也在北阿尔金地区获得辉长岩SHRIMP锆石U-Pb年龄(512±3)Ma(于胜尧等,未刊资料)。另外,高晓峰等(2012)等在红柳沟—拉配泉地区获得低Sr/Y斜长花岗岩的锆石U-Pb年龄为(512±3)Ma,并认为可能代表了红柳沟—拉配泉有限洋盆的开启时限。综上所述,笔者认为北阿尔金洋盆开启的时代应为早寒武世或更早(表 5)。

表 5 北阿尔金地区早古生代年代学数据统计 Table 5 Statistics of age data of Early Paleozoic in North Altun area

考虑到北阿尔金构造混杂带南北两侧都发现一系列与洋盆关闭和洋壳俯冲相关的花岗岩(表 5),因此可以推测北阿尔金洋盆为双向俯冲。其中北阿尔金带北部与洋壳俯冲相关的弧岩浆作用的年龄为482~494 Ma(戚学祥等,2005;孟令通等,2015);代表洋壳至少俯冲到60 km深处的榴辉岩中多硅白云母的Ar-Ar坪年龄为(512±3)Ma(张建新等,2007);另外本文在红柳沟地区获得的代表洋壳至少俯冲到40 km并发生部分熔融作用形成的高Sr/Y型斜长花岗岩的形成时代为(501±3)Ma。洋壳开始俯冲的时间应该早于变质作用和弧岩浆作用的年龄,结合现有数据说明北阿尔金洋壳向北开始俯冲早于512 Ma, 反映北阿尔金洋壳向北开始俯冲可能早于中寒武世。

前人在北阿尔金带南侧获得的代表洋壳俯冲诱发形成的花岗岩年龄介于470~500 Ma(表 5),这与本文在南带获得的代表了岛弧(大陆弧)环境下基性地壳物质的熔融形成的花岗闪长岩的锆石U-Pb年龄(496±2)Ma相符合。说明北阿尔金洋向南俯冲早于500 Ma, 反映北阿尔金洋向南俯冲可能早于晚寒武世。因此,北阿尔金洋可能存在南北向的俯冲,且北阿尔金洋向北俯冲可能略早于向南俯冲。

6.3.2 北阿尔金和北祁连俯冲时限的对比研究

前人根据北阿尔金—北祁连包括与洋壳俯冲有关的HP/LT变质带、蛇绿混杂岩带、火山杂岩等典型增生造山的物质组成,特别是硬柱石榴辉岩和含纤柱石的高压变沉积岩(Zhang et al., 2006; 张建新等,2007; Song et al., 2007; Wei et al., 2008)的相似性,认为在早古生代北阿尔金是北祁连的西延部分,二者曾经是一条统一的早古生代缝合带,后被阿尔金巨型走滑断裂错断约400 km(许志琴等, 1999)。结合前人研究,本文在北阿尔金地区获得的代表洋壳俯冲之后形成的花岗岩和高压低温变质岩的年龄为470~512 Ma(表 5),因此笔者推测北阿尔金洋开始俯冲要早于512 Ma。在北祁连同样报道有岛弧型的深成侵入体,以闪长岩和花岗闪长岩为主,其形成时代主要在476~512 Ma(表 5)。如柴达诺花岗岩的形成时代为508 Ma(吴才来等,2010),柯柯里石英闪长岩和斜长花岗岩的形成时代分别为501 Ma、512 Ma(吴才来等,2010),牛心山花岗岩和石英闪长岩的时代为476~477 Ma(吴才来等, 2006, 2010),下古城花岗岩体的形成时代为(505±4)Ma(秦海鹏等,2014)。这些年龄数据表明代表洋壳俯冲下限年龄的北阿尔金与北祁连的花岗岩、闪长岩、花岗闪长岩年龄在误差范围内一致,北阿尔金洋和北祁连洋的俯冲时限近乎一致,可能均早于中寒武世。以上分析也进一步证实北阿尔金早古生代缝合带是北祁连早古生代缝合带西延部分的推断(Zhang et al., 2007)。

7 结论

(1)北阿尔金蛇绿岩中斜长花岗岩和花岗闪长岩的LA-ICP-MS锆石U-Pb年龄分别为(501±3)Ma和(496±2)Ma。表明北阿尔金洋的俯冲时限可能开始于中寒武世或更早。

(2)地球化学特征表明北阿尔金斜长花岗岩为埃达克质岩石,可能来自热的洋壳俯冲到石榴角闪岩相条件下变基性岩发生小比例部分熔融形成,其形成深度为40~50 km。花岗闪长岩可能代表了岛弧环境下下地壳基性岩石部分熔融的产物。

(3)北阿尔金洋可能存在南北双向的俯冲,并且北阿尔金洋向北俯冲可能略早于向南俯冲。

(4)北阿尔金和北祁连的俯冲时限对比研究表明北阿尔金早古生代缝合带是北祁连早古生代缝合带的西延部分。

致谢: 本文在成文过程中得到了矿产资源所侯可军老师的实验指导,同时两名匿名评审专家和编辑老师给出了建设性修改意见与建议,在此深表感谢!

参考文献
Baker M B, Hirschmann M M, Ghiorso M S, Stolper E M. 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations[J]. Nature, 375(6529): 308-311. DOI:10.1038/375308a0
Barr J, Grove T L, Elkinstanton L. 2007. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive melt:Comment and Reply:Comment[J]. Geology, 35(1): 351-354.
Bi Zhengjia, Zeng Zhongcheng, Zhang Kunkun, Cao Tongli, Liu Demin, Chen Ning, Zhao Jianglin, Li Qi, Li Dewei. 2016. Geochronology, geochemical characteristics and tectonic implications of the amphibolite from Paxialayidang area on the southern margin of Altun terrain[J]. Geology in China, 43(4): 1149-1164.
Cui Junwen. 1999. The Altyn Tagh Fault System[M]. Beijing: Geological Publishing House.
Douce A E P, Harris N. 1998. Experimental Constraints on Himalayan Anatexis[J]. Journal of Petrology, 39(4): 689-710. DOI:10.1093/petroj/39.4.689
Douce A E P. 2004. Vapor-Absent Melting of Tonalite at 15-32 kbar[J]. Journal of Petrology, 46(2): 275-290. DOI:10.1093/petrology/egh071
Defant M J, Drummond M S. 1990. Drivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Defent M J, Xu Jifeng, Kepezhinskas P, Wang Qiang, Zhang Qi, Xiao Long. 2002. Adakites:Some variations on a theme[J]. Acta Petrologica Sinica, 18(2): 129-142.
Drummond M S, Defant M J. 1990. A model for TrondhjemiteTonalite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research Atmospheres, 95(B13): 21503-21521. DOI:10.1029/JB095iB13p21503
Elhlou S, Belousova E, Griffin W L, Pearson N J, O'Reilly S Y. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J]. Geochmica et Cosmochimica Acta, 70(18): 407-421.
Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochimica et Cosmochimica Acta, 64(5): 933-938. DOI:10.1016/S0016-7037(99)00355-5
Gao S, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenliang, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the North China craton[J]. Nature, 432(7019): 892-897. DOI:10.1038/nature03162
Gao Xiaofeng, Xiao Peixi, Guo Lei, Dong Zengchan, Xi Rengang. 2012. Openging of an Early Paleozoic limited oceanic basin in the northern Altyn area:Constrains from plagiogranites in the Hongliugou-Lapeiquan ophilolitic mélange[J]. Science in China(Series D), 42(3): 359-368.
Ge Xiaohong, Ma Wenpu, Liu Junlai, Ren Shoumai, Yuan Sihua. 2015. Prospect of researches on regional tectonics of China[J]. Geology in China, 40(1): 61-73.
Green T H. 1980. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology and geochemistry[J]. Tectonophysics, 63(1/4): 367-385.
Guo F, Nakamuru E, Fan Weiming, Kobayoshi K, Li Chaowen. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China[J]. Journal of Petrology, 48(4): 41-55.
Guo Zhaojie, Zhang Zhicheng, Wang Jianjun. 1998. Sm-Nd isochron age of the ophiolite belt in the northern Altyn Tagh and its tectonic significance[J]. Chinese Science Bulletin, 18: 1981-1984.
Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000. Can slab melting be caused by flat subduction?[J]. Geology, 28(6): 535-538. DOI:10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
Harris N B W, Inger S. 1992. Trace element modelling of pelitederived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46-56. DOI:10.1007/BF00310881
Hou Kejun, Li Yanhe, Zou Tianren, Tian Yourong, Qu Xiaoming, Shi Ruoyu, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604.
Jahn B M, Zhang Z Q. 1984. Archean granulite gneisses from eastern Hebei Province, China:Rare earth geochemistry and tectonic implications[J]. Contributions to Mineralogy and Petrology, 26(3): 224-243.
Kang lei, Liu liang, Cao Yuting, Wang Chao, Yang Wenqiang, Zhu Xiaohui. 2011. Geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopes of Hongliugou moyite from north Altyn Tagh tectonic belt[J]. Geological Bulletin of China, 30(7): 1066-1076.
Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust:Melting of charnockite and Leucogranite at 15, 20 and 25 kbar[J]. Journal of Petrology, 41(5): 717-737. DOI:10.1093/petrology/41.5.717
Li Wuxian, Li Xianhua. 2003. Rock types and tectonic significance of the granitoid rocks within ophiolites[J]. Advance in Earth Sciences, 18(3): 392-397.
Liu Liang, Che Zicheng, Wang Yan, Luo Jinghai, Chen Danling. 1999. The petrological characters and geotectonic setting of highpressure metamorphic rock belts in Altun Mountains[J]. Acta Petrologica Sinica, (1): 57-64.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Meng Fancong, Zhang Jianxin, Yu Shengyao, Chen Songyong. 2010. The Early Paleozoic pillow basalt in northern Altyn, Western China and it tectonic implications[J]. Acta Geoscientica Sinica, 84(7): 981-990.
Moyen J F. 2009. High Sr/Y and La/Yb ratios:The meaning of the "adakitic signature"[J]. Lithos, 112(3/4): 556-574.
Nasdala L, Hofmeister W, Norberg N, Martinson J M, Corfu F, Dörr W. 2008. Zircon M257-a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J]. Geostandards and Geoanalytical Research, 32(3): 247-265. DOI:10.1111/ggr.2008.32.issue-3
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic Rocks[J]. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Qi Xuexiang, Li Haibing, Wu Cailai, Yang Jingsui, Meng Fancon, Shi Rendeng, Chen Songyong. 2005. SHRIMP U-Pb dating of zircons from the Qiashikansayi granodiorite from Northern Altyn Tagh and its geological significance[J]. Chinese Science Bulletin, 50(6): 571-576.
Qin Haipeng, Wu Cailai, Wang Cisong, Lei Min, Liu Chunhua, Li Mingze. 2014. LA-ICP-MS Zircon U-Pb Geochronology and Geochemical Characteristical of Xiagucheng Granite in North Qilian[J]. Acta Geologica Sinica, 88(10): 1832-1842.
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0
Schmidt M W, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes[J]. Earth and Planetary Science Letters, 226(3/4): 415-432.
Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa:Implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 117(4): 394-409. DOI:10.1007/BF00307273
Sobel E R, Arnaud N. 1999. A possible middle Paleozoic suture in the Altyn Tagh, NW China[J]. Tectonics, 18(1): 64-74. DOI:10.1029/1998TC900023
Song Shuguang, Zhang Lifei, Niu Yaoling, Wei Cunjing, Liu J G, Shu G M. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China:Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle[J]. Journal of Metamorphic Geology, 25(5): 547-563. DOI:10.1111/jmg.2007.25.issue-5
Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone[J]. Contributions to Mineralogy and Petrology, 123(3): 263-281. DOI:10.1007/s004100050155
Stevenson J A, Daczko N R, Clarke G L, Pearson N, Klepeis K A. 2005. Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand[J]. Terra Nova, 17(1): 73-79. DOI:10.1111/ter.2005.17.issue-1
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Sun Yong, Liu Chiyang. 1997. The Proterozoic rifting volcanic rocks and their tectonic significance in the Lapeiquan area, Altun Mountains[J]. Geological Review, 43(1): 17-24.
Wang Qiang, Xu Jifeng, Jian Ping, Bao Zhiwei, Zhao Zhenhuan, Li Chaofeng, Xiong Xiaolin, Ma Jinlong. 2005. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144.
Wang Qiang, Wyman D A, Xu Jifeng, Jian Ping, Zhao Zhenhua, Li Chaofeng, Xu Wei, Ma Jinlong, He Bin. 2007. Early Cretaceous adakitic granites in the northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. DOI:10.1016/j.gca.2007.03.008
Wei Cunjing, Song Shuguang. 2008. Chloritoid-glaucophane schist in the north Qilian orogen, NW China:Phase equilibria and P-T path from garnet zonation[J]. Journal of Metamorphic Geology, 26(3): 301-316. DOI:10.1111/jmg.2008.26.issue-3
Wu Cailai, Yao Shangzhi, Zeng Lingsen, Yang Jingsui, Wooden J L, Mazadab F K. 2007. Petrology and SHRIMP U-Pb zircon dating of granitic complexes from Bashikaogong-Simierbulake in northern Altyn[J]. Science in China (Series D), 37(1): 10-26.
Wu Cailai, Xu Xueyi, Gao Qianming, Li Xiangmin, Lei Min, Gao Yuanhong. 2010. Early Palaeozoic granitoid magmatism and tectonic evolution in the North Qilian, NW China[J]. Acta Petrologica Sinica, 26(4): 1027-1044.
Wu Cailai, Yao Shangzhi, Yang Jingsui, Zeng Lingsen, Chen Songyong, Li Haibin, Qi Xuexiang. 2006. Double subduction of Early Palaeozoic North Qilian ocean plate:Evidence from granites in the central segment of North Qilian, NW China[J]. Geology in China, 33(6): 1197-1208.
Wu Jun, Lan Zhaoli, Li Jiliang, Yu Liangjun. 2002. Geochemical evidence of MORB and OIB combination in Hongliugou ophiolite melanges, Altun fault belt[J]. Acta Petrologica et Mineralogica, 21(1): 24-30.
Xiong Xiaolin. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geology, 34(11): 945. DOI:10.1130/G22711A.1
Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4): 1087-1138.
Xiao Qinghui, Li Tingdong, Pan Guitang, Lu Songnian, Ding Xiaozhong, Deng Jinfu, Feng yimin, Liu Yong, Kou Caihua, Yang Linlin. 2016. Petrologic ideas for identification of ocean-continent transition:Recognition of intra-oceanic arc and initial subduction[J]. Geology in China, 43(3): 721-737.
Xiu Qunye, Yu Haifeng, Liu Yongshun, Lu Songnian, Mao Debao, Li Huimin, Li Quan. 2007. Geology and Zircon U-Pb age of pillow basalt at Qiashikansoy in northern Altyn Tagh, W China[J]. Acta Geoscientica Sinica, 81(6): 787-794.
Xu Haijin, Ma Changqian, Zhang Junfeng, Ye Kai. 2013. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China:Petrogenesis and implications for destruction of the over-thickened lower continental crust[J]. Gondwana Research, 23(1): 190-207. DOI:10.1016/j.gr.2011.12.009
Xu Jifeng, Shinjo R, Defant M J, Wang Qiang, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 1111-1114. DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu Wangchun, Zhang Hongfeng, Guo Liang, Yuan Honglin. 2010. Miocene high Sr/Y magmatism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication[J]. Lithos, 114(3/4): 293-306.
Xu Zhiqing, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibin, Cui Junwen. 1999. A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-slip Fault and the Mechanism of Lithospheric Shearing[J]. Acta Geologica Sinica, 73(3): 193-205.
Yang Jingsui, Shi Rendeng, Wu Cailai, Su Dechen, Chen Songyong, Wang Xibin, Wooden Joseph. 2008. Petrology and SHRIMP age of the Hongliugou ophilolite at Milan, north Altun, at the northern of the Tibetan plateau[J]. Acta Petrologica Sinica, 24(7): 1567-1584.
Yang Zijiang, Ma Huadong, Wang Zongxiu, Xiao Weifeng. 2012. SHRIMP U-Pb zircon dating of gabbro from the Binggou ophiolite mélange in the northern Altyn, and geological implication[J]. Acta Petrologica Sinica, 28(7): 2269-2276.
Zeng Lingsen, Asimow P D, Saleeby J B. 2005. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 69(14): 3671-3682. DOI:10.1016/j.gca.2005.02.035
Zhang Jianxin, Meng Fancong. 2006. Lawsonite-bearing eclogites in the north Qilian and north Altyn Tagh:Evidence for cold subduction of oceanic crust[J]. Chinese Science Bulletin, 51(10): 1238-1244. DOI:10.1007/s11434-006-1238-6
Zhang Jianxin, Meng Fancon, Wan Yusheng. 2007. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints[J]. Journal of Metamorphic Geology, 25(3): 285-304. DOI:10.1111/jmg.2007.25.issue-3
Zhang Jianxin, Meng Fancon, Yu Shengyao, Chen wen, Chen Songyong. 2007. 39Ar-40Ar geochronology of high-pressure/lowtemperature blueschist and eclogite in the North Altyn Tagh and their tectonic implications[J]. Geology in China, 34(4): 558-564.
Zhang Jianxin, Meng Fancong, Yang Jingsui. 2010. A New HP/LT Metamorphic Terrane in the Northern Altyn Tagh, Western China[J]. International Geology Review, 47(4): 371-386.
Zhang Qi. 2008. Adakite and granite[M]. Beijing: China Land Press.
Zhang Zhanwu, Huang Gang, Li Huaimin, Zhang Wenfeng. 2012. LAICP-MS zircon U-Pb geochronology and geochemistry of gabbro and diorite from Qilesayi pluton in Lapeiquan area of northern Altun Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 31(1): 13-27.
Zhang Zhicheng, Guo Zhaojie, Song Biao. 2009. SHRIMP U-Pb dating of gabbro from the ophilolite melange in the northern Altyn Tagh and its geological significance[J]. Acta Petrologica Sinica, 25(3): 568-576.
毕政家, 曾忠诚, 张昆昆, 曹同礼, 刘德民, 陈宁, 赵江林, 李琦, 李德威. 2016. 阿尔金南缘帕夏拉依档沟斜长角闪岩年代学、地球化学及其构造意义[J]. 中国地质, 43(4): 1149-1164.
曹玉亭, 刘良, 王超, 康磊, 杨文强, 梁莎, 廖小莹, 王亚伟. 2015. 南阿尔金木纳布拉克地区长城系巴什库尔干岩群LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质通报, 34(8): 1447-1459.
崔军文. 1999. 阿尔金断裂系[M]. 北京: 地质出版社.
高晓峰, 校培喜, 过磊, 董增产, 奚仁刚. 2012. 北阿尔金地区早古生代有限洋盆开启时限:来自斜长花岗岩的证据[J]. 中国科学:地球科学, 42(3): 359-368.
葛肖虹, 马文璞, 刘俊来, 任收麦, 袁四化. 2013. 中国区域大地构造学的研究展望[J]. 中国地质, 40(1): 61-73.
郭召杰, 张志诚, 王建君. 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义[J]. 科学通报, 18: 1981-1984. DOI:10.3321/j.issn:0023-074X.1998.18.018
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
康磊, 刘良, 曹玉亭, 王超, 杨文强, 朱小辉. 2011. 北阿尔金构造带红柳沟钾长花岗岩地球化学特征、LA-ICP-MS锆石U-Pb定年和Hf同位素组成[J]. 地质通报, 30(7): 1066-1076.
李武显, 李献华. 2003. 蛇绿岩中的花岗质岩石成因类型与构造意义[J]. 地球科学进展, 18(3): 392-397.
刘良, 车自成, 王焰, 罗金海, 陈丹玲. 1999. 阿尔金高压变质岩带的特征及其构造意义[J]. 岩石学报, (1): 57-64.
孟繁聪, 张建新, 于胜尧, 陈松永. 2010. 北阿尔金红柳泉早古生代枕状玄武岩及其大地构造意义[J]. 地质学报, 84(7): 981-990.
戚学祥, 李海兵, 吴才来, 杨经绥, 张建新, 孟繁聪, 史仁灯, 陈松永. 2005. 北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义[J]. 科学通报, 50(6): 571-576.
秦海鹏, 吴才来, 王次松, 雷敏, 刘春花, 李名则. 2014. 北祁连下古城花岗岩体LA-ICP-MS锆石U-Pb年代学及岩石化学特征[J]. 地质学报, 88(10): 1832-1842.
孙勇, 刘池阳. 1997. 阿尔金山拉配泉地区元古宙裂谷火山岩系及其构造意义[J]. 地质论评, 43(1): 17-24.
吴才来, 姚尚志, 曾令森, 杨经绥, WoodenJ L, MazadabF K. 2007. 北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年[J]. 中国科学:地球科学, 37(1): 10-26.
吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, FrostR B, WoodenJ L. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 26(4): 1027-1044.
吴才来, 姚尚志, 杨经绥, 曾令森, 陈松永, 李海兵, 戚学祥. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据[J]. 中国地质, 33(6): 1197-1208.
吴峻, 兰朝利, 李继亮, 俞良军. 2002. 阿尔金红柳沟蛇绿混杂岩中MORB与OIB组合的地球化学证据[J]. 岩石矿物学杂志, 21(1): 24-30.
夏林圻, 李向民, 余吉远, 王国强. 2016. 祁连山新元古代中-晚期至早古生代火山作用与构造演化[J]. 中国地质, 43(4): 1087-1138.
肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016. 识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J]. 中国地质, 43(3): 721-737. DOI:10.12029/gc20160303
修群业, 于海峰, 刘永顺, 陆松年, 毛德宝, 李惠民, 李铨. 2007. 阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄[J]. 地质学报, 81(6): 787-794.
许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 73(3): 193-205.
杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, WOODENJoseph. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIM定年[J]. 岩石学报, 24(7): 1567-1584.
杨子江, 马华东, 王宗秀, 肖伟峰. 2012. 阿尔金山北缘冰沟蛇绿混杂岩中辉长岩锆石SHRIMPU-Pb定年及其地质意义[J]. 岩石学报, 28(7): 2269-2276.
张建新, 孟繁聪, 于胜尧, 陈文, 陈松永. 2007. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J]. 中国地质, 34(4): 558-564.
张旗. 2008. 埃达克岩和花岗岩[M]. 北京: 中国大地出版社.
张占武, 黄岗, 李怀敏, 张文峰. 2012. 北阿尔金拉配泉地区齐勒萨依岩体的年代学、地球化学特征及其构造意义[J]. 岩石矿物学杂志, 31(1): 13-27.
张志诚, 郭召杰, 宋彪. 2009. 阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 25(3): 568-576.