文章快速检索    
 
  中国地质 2018, Vol. 45 Issue (3): 469-482  
0
引用本文
朱彦菲, 木合塔尔·扎日, 赵同阳, 韩琼, 郑加行. 2018. 新疆阿尔泰山西段喀纳斯地区奥陶纪火山岩锆石UPb年龄和地球化学特征[J]. 中国地质, 45(3): 469-482.  
ZHU Yanfei, MU Hetaer·zhari, ZHAO Tongyang, HAN Qiong, ZHENG Jiaxing. 2018. Zircon U-Pb age and geochemical characteristics of Ordovician volcanic rocks from Kanasi area in Western Altay Mountains, Xinjiang[J]. Geology in China, 45(3): 469-482. (in Chinese with English abstract).  

新疆阿尔泰山西段喀纳斯地区奥陶纪火山岩锆石UPb年龄和地球化学特征
朱彦菲1,2, 木合塔尔·扎日1, 赵同阳2, 韩琼2, 郑加行2    
1. 新疆大学, 新疆 乌鲁木齐 830000;
2. 新疆地质调查院, 新疆 乌鲁木齐 830000
摘要: 喀纳斯地区发育一套火山-沉积地层东锡勒克组,因缺少可靠的年龄和地球化学数据,其形成时代及地球动力学背景长期存在争议。为探讨这一问题,文章选择区内东锡勒克组一套层状分布的糜棱岩化英安岩作为研究对象,对其进行锆石LA-ICPMS U-Pb同位素定年,得到2件样品的206Pb/238U年龄分别为(445.4±3.1)Ma和(445.7±3.7)Ma,代表火山岩结晶年龄为晚奥陶世。这表明东锡勒克组地层形成于晚奥陶世。糜棱岩化英安岩SiO2含量为53.99%~71.04%,具有富铝(Al2O3=13.83%~16.27%),贫镁(MgO=1.09%~3.53%),K2O介于1.11%~3.83%,平均为2.84%,属于高钾质火山岩系列的特征;轻稀土富集,Eu负异常(δEu=0.65~0.82);富集大离子亲石元素(Rb、Th、Ce)和亏损高场强元素(K、Nb、Ta),具有岛弧火山岩特征。结合区域地质特征,笔者认为该套火山岩形成于活动大陆边缘洋壳俯冲消减后期同碰撞的环境。晚奥陶世末古亚洲洋由南向北向西伯利亚板块之下俯冲形成具有活动大陆边缘弧性质的喀纳斯地区晚奥陶世火山岩。
关键词: 阿尔泰山    喀纳斯地区    LA-MC-ICP-MS锆石U-Pb年龄    地球化学    活动大陆边缘    
中图分类号:P597+.3;P595;P588.14+2            文献标志码:A             文章编号:1000-3657(2018)03-0469-14
Zircon U-Pb age and geochemical characteristics of Ordovician volcanic rocks from Kanasi area in Western Altay Mountains, Xinjiang
ZHU Yanfei1,2, MU Hetaer·zhari1, ZHAO Tongyang2, HAN Qiong2, ZHENG Jiaxing2    
1. Xinjiang University, Urimqi, 830000, Xinjiang, China;
2. Xinjiang Institute of Geological Survey, Urimiqi 830000, Xinjiang, China
Abstract: There is a suite of volcanic-sedimentary strata comprising Dongxileke Formation in Kanasi area; nevertheless, there is no accurate ages and geochemical study for these rocks. The genesis and geodynamical background are in controversy for a long time. To tackle these problems, the authors chose a layered mylonitic dacite in this area as the study object. LA-ICP-MS zircon U-Pb ages of(445.4±3.1)Ma and(445.7±3.7)Ma from two mylonitic dacite samples suggest that these volcanic rocks erupted in late Ordovician and that Dongxileke Formation was formed in late Ordovician. The mylonitic dacite is characterized by SiO2 content from 53.99% to 71.04%, high Al2O3 (13.83%-16.27%) and low MgO (1.09%-3.53%), with K2O between 1.11% and 3.83%, 2.84% on average, suggesting high alkline volcanic rock series. The mylonitic dacite forms a LREE-enriched distribution pattern with the existence of negative Eu anomaly (δEu=0.65-0.82). Geochemical characteristics of mylonitic dacite suggest island-arc volcanic features characterized by enrichment of LILE such as Rb, Th and Ce and depletion of HFSE such as K, Nb and Ta. Combined with regional data and the results obtained by this study, the authors consider that the volcanic rocks were generated during syn-collision of the late stage subduction in an active continental margin arc. The background was the conversion from the northward subduction of Paleo-Asia Ocean under the Siberia plate to Altay micro landmass land, which resulted in the formation of late Ordovician volcanic rocks in an active continental margin arc of Kanasi area.
Key words: Altay Mountains    Kanasi area    LA-ICP-MS zircon U-Pb age    geochemical characteristics        

1 引言

阿尔泰造山带是中亚造山带的重要组成部分,一直得到国内外专家学者的关注。中亚造山带是消减-增生地体拼贴而成的(Coleman,1989;Sengör,1993;Jahn et al., 2000Heihorst et al., 2000Badarch et al., 2002Jahn et al., 2004)。阿尔泰造山带形成机制的研究对于阐明中亚造山带的形成和演化具有重要意义。对于阿尔泰造山带构造演化不同学者存在争议。何国琦等(2001)指出中国阿尔泰北部和俄罗斯阿尔泰—萨彦岭等地于早古生代晚期作为太古宙陆壳的增生区拼贴在西伯利亚古陆之上。李天德等(2001)认为中寒武世—早奥陶世阿尔泰古陆东北边缘为被动大陆边缘,中奥陶世阿尔泰古陆与西伯利亚古陆碰撞造山,形成阿尔泰早古生代褶皱系,拼贴在西伯利亚板块的西南边缘,成为增生陆壳。陈哲夫(1995)认为阿尔泰地区古生代经历了加里东和海西两大开合旋回,加里东后期(晚奥陶世—志留纪)形成被动大陆边缘。然而,何国琦(2001)则认为阿尔泰下、中奥陶统为被动大陆边缘巨厚的复理石沉积,上奥陶统由东锡勒克组的造山后火山岩、火山碎屑岩组成。阿尔泰造山带古生代构造演化模式一直存在被动大陆边缘环境和活动大陆边缘环境的争议(童英等,2007韩宝福等,1991陈毓川等,1996杨富全等,2008刘锋等,2009)。近年来,通过对阿尔泰造山带内花岗岩的研究,提出阿尔泰造山带为早古生代造山带而非晚古生代造山带的观点(童英等,2007韩宝福等,1991陈毓川等,1996杨富全等,2008刘锋等,2009Wang et al., 2006童英等,2006曾乔松等,2007张遵忠等,2011)。本文针对喀纳斯地区进行火山岩锆石U-Pb年代学和地球化学研究,对其形成时代和构造背景进行讨论,为阿尔泰造山带的构造演化研究提供新的依据。

2 地质背景

新疆阿尔泰山可划分为北阿尔泰、中阿尔泰和南阿尔泰(图 1)。北阿尔泰主要由中晚泥盆世—早石炭世火山-沉积岩组成,位于红山嘴—诺尔特断裂以北。中阿尔泰是喀纳斯—可可托海一带,出露地层主要有震旦纪至中奥陶世的浅变质巨厚陆源复理石建造、晚奥陶世的火山-磨拉石及陆源碎屑岩建造,中—晚志留世变砂岩。南阿尔泰北以阿巴宫断裂为界,南以克兹加尔断裂为界与额尔齐斯构造带相邻。主要由康布铁堡组和阿勒泰镇组变质火山-沉积岩系,其次是石炭纪火山-沉积岩系和中—上志留统片岩、片麻岩、变粒岩组成(杨富全等,2011)。研究区南距布尔津县城约120 km,属于天山—兴蒙造山系,阿尔泰弧盆系,阿尔泰古生代陆缘弧。区内岩层主要由震旦—寒武系喀纳斯岩群变质复理石建造和上奥陶统东锡勒克组变质火山碎屑岩组成。后期被中酸性英云闪长岩、石英闪长岩、花岗闪长岩、二云母花岗岩、二长花岗岩及基性角闪辉长岩侵入(图 2)。研究区(图 2)上奥陶统东锡勒克组(O3d)主要分布于中西部,南北呈条带状展布,南北出露长约11 km。东西宽约7 km。该套地层为一套变质火山岩夹变质碎屑岩建造,主要岩性为变质英安岩、变质流纹斑岩、变质凝灰岩、变质砂岩、变质砾岩等,不整合于下伏喀纳斯群(Z)之上,其上为白哈巴组(O3hb)整合或假整合所覆。其中,位于布尔津林场附近,发育一套层状变质英安岩,野外为灰绿色,糜棱结构,眼球定向构造,本研究的样品即采于该套火山岩之中。

图 1 阿尔泰地区地质简图(据杨富全等,2011;董连慧等,2013修改) Figure 1 Geological sketch map of the Altay area(after Yang Fuquan et al., 2011; Dong Lianhui et al., 2013)
图 2 喀纳斯地质简图及采样位置(据赵同阳等,2016❷) 1—第四系;2—上奥陶统东锡勒克组;3—震旦系—下寒武统喀纳斯群;4—二长花岗岩;5—二云母花岗岩;6—奥陶纪二云母花岗岩;7—花岗闪长岩;8—志留纪花岗闪长岩;9—石英闪长岩;10—英云闪长岩;11—角闪辉长岩;12—不整合界线;13—剖面及编号;14—采样位置 Figure 2 Geological sketch map of Kanasi area and sampling sites (after Zhao Tongyang et al., 2016) 1-Quaternary; 2-Upper Ordovician Dongxileke Formation; 3-Sinian-Lower Cambrian Kanasi Group; 4-Monzonitic granite; 5-Two-mica granite; 6-Ordovician two-mica granite; 7-Granodiorite; 8-Silurian Granodiorite; 9-Quartz diorite; 10-Tonalite; 11-Homblende gabbro; 12-Unconformity boundary; 13-Location and serial number of profile; 14-Sampling position
3 样品描述及分析方法 3.1 样品描述

本研究在剖面(图 3)两处糜棱岩化英安岩中共采集了12件样品,其中2件同位素样品进行测年,采样位置分别为:87° 11′ 10.7″ N、48° 27′ 49.5″ E(15TW-4034);87°10′3.0″N、48°24′0.7″E(15TW- 4039);10件糜棱岩化英安岩样品(15YQ-4030~ 15YQ-4039)用于岩石化学测试,分析项目包括主量元素、稀土元素和微量元素。糜棱岩化英安岩,碎斑-糜棱结构, 眼球定向构造, 岩石由碎斑和碎基组成,碎斑主要由斜长石组成,分布少量石英,碎斑都已呈眼球状平行定向分布,并具碎裂化,具波状消光。石英碎斑沿裂隙分布亚颗粒。碎基主要由微晶粒状长英质组成,并串珠状平行定向分布,在长英质之间分布鳞片状绢云母、黑云母,黑云母也呈串珠状平行定向分布。磁铁矿也呈眼球状定向分布碎基中,少见有他形粒状磷灰石分布碎基中,原岩为英安岩(图 4)。

图 3 喀纳斯地区东锡勒克组剖面图 1—变质砂岩;2—二云母石英片岩;3—黑云母长石片岩;4—二云母长英质片岩;5—二云母长英质糜棱岩;6—片理化英安岩;7—糜棱岩化英安岩;8—产状;9—采样位置及编号 Figure 3 Geological section of Dongxileke Formation in Kanasi area 1-Metasandstone; 2-Two-mica quartz schist; 3-Biotite feldspar schist; 4-Two-mica feldspar-quartz schist; 5-Two-mica feldspar-quartz mylonite; 6-Foliated dacite; 7-Mylonitic dacite; 8-Attitude; 9-Sampling position and its serial number
图 4 糜棱岩化英安岩野外和镜下照片 a—糜棱岩化英安岩野外露头;b—糜棱岩化英安岩显微照片(Qz—石英;Bi—黑云母;Pl—长石) Figure 4 Field and microscopic photo of the mylonitic dacite in Kanasi area a-Outcrop of the mylonitic dacite; b-Microphotograph of the mylonitic dacite(Qz-Quartz; Bi-Biotite; Pl- Plagioclase)
3.2 分析方法

全岩分析在新疆维吾尔自治区矿产实验研究所完成。将测试样品粉碎,研磨至200目以下的粉末备用,样品前处理采用酸溶法,主量元素测试方法为熔片发X-射线荧光光谱法(XRF),微量元素测试方法为ICP-MS法。氧化物相对标准样品的偏差低于2%,微量元素分析数据相对标准样品的偏差低于5%。

用于测年的锆石在河北省区域地质矿产调查研究所实验室完成分选,样品采用常规方法进行破碎,粉碎至80目,经浮选和磁选后,再在双目镜下挑选裂纹少,透明度较好、干净的锆石用以制靶。锆石制靶和U-Pb同位素测定均在南京大学内生金属矿床成矿机制研究国家重点实验室完成,采用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)进行锆石微区原位U-Pb同位素测定,测试使用与New Wave 213 nm激光取样系统连接起来的Agilent 7500a ICP-MS完成。分析过程中,激光束斑直径采用20~30 μm,频率5 Hz。样品经剥蚀后,由He气作为载气,再和Ar气混合后进入ICP-MS进行分析,U-Pb分馏根据澳大利亚锆石标样GEMOC GJ-1(207Pb/206 Pb age of(608 ± 1.5)Ma)(Jackson et al., 2004)来校正,锆石标样Mud Tank(Inercept age of(732±5)Ma)(Black et al., 1978)为内标,控制分析精度。每个测试流程的开头和结尾分别测试2个GJ标样,另外测试1个MT标样和20个待测样品点。U- Pb年龄和U、Th、Pb的的计算由GLITTER软件(ver. 4.4)获得,普通Pb的校正和及谐和图的绘制运用Isoplot(Andersen et al., 2002)完成。

4 火山岩地球化学特征 4.1 主量元素特征

喀纳斯地区火山岩样品的主量元素分析结果(表 1)显示:SiO2含量介于53.99%~71.04%,具有富铝(Al2O3=13.83% ~16.27%),贫镁(MgO=1.09% ~ 3.53%)的特征,K2O介于1.11% ~3.83%,平均为2.84%,属于高钾质火山岩系列。Na2O/K2O比值介于0.55~3.48。区内火山岩均发生后期蚀变和变质作用的改造,岩石变形较强。不活动微量元素Ti、Zr、Nb和Y较少受到蚀变和变质作用的影响,可以有效地区分变质/蚀变火山岩系列(Winchester et al., 1977)。在Nb/Y- Zr/TiO2图(图 5)中,样品除15YQ-4033外,均落于英安岩区;在SiO2-K2O图(图 6)中样品基本落于高钾钙碱性系列区内;A/ CNK-A/NK判别图(图 7)中样品均落在过铝质区域。说明研究区糜棱岩化英安岩为一套过铝质,高钾钙碱性系列火山岩。

表 1 喀纳斯地区糜棱岩化英安岩主量元素组成(%) Table 1 Major element (%) composition of mylonitic dacite in Kanasi area
图 5 喀纳斯地区糜棱岩化英安岩Nb/Y-Zr/TiO2图解(据Winchester et al., 1977 Figure 5 Nb/Y-Zr/TiO2 diagram of mylonitic dacite in Kanasi area(after Winchester et al., 1977)
图 6 喀纳斯地区糜棱岩化英安岩SiO2-K2O图解(据Peccerillo et al., 1976 Figure 6 SiO2-K2O diagram of mylonitic dacite in Kanasi area(after Peccerillo et al., 1976)
图 7 喀纳斯地区糜棱岩化英安岩A/CNK-A/NK图解(据Maniar et al., 1989 Figure 7 A/CNK-A/NK diagram of mylonitic dacite in Kanasi area(after Maniar et al., 1989)
4.2 稀土元素特征

喀纳斯地区糜棱岩化英安岩稀土元素配分模式变化规律比较一致,稀土元素总量较低,稀土总量在67.30 × 10-6~181.35 × 10-6,LREE介于54.40 × 10-6~ 153.40 × 10-6,HREE介于12.90 × 10-6~27.95 × 10-6,LREE/HREE介于4.22~6.67,(La/Yb)N比值介于3.29~6.13,稀土元素配分曲线呈明显右倾,轻重稀土元素分馏明显,富集轻稀土(图 8a),样品δEu介于0.65~0.82(表 2),具有铕负异常,表明它们经历了斜长石分离结晶作用。与典型的俯冲成因的中酸性火山岩稀土元素分布形式相似(Takagi et al., 1999)。

图 8 喀纳斯地区糜棱岩化英安岩稀土元素配分图(a)及微量元素蛛网图(b)(球粒陨石标准化值及原始地幔标准化值据Sun et al., 1989 Figure 8 REE patterns (a) and trace element spider diagram (b) of mylonitic dacite in Kanasi area(values of chondrite and primitive for normalization after Sun et al., 1989)
表 2 喀纳斯地区糜棱岩化英安岩稀土、微量元素组成(10-6 Table 2 Trace element (10-6) composition of mylonitic dacite in Kanasi area
4.3 微量元素特征

从原始地幔标准化的微量元素蛛网图解可以看出,喀纳斯地区火山岩以相对富集Rb、Th、Ce等大离子亲石元素(LILE),而亏损K、Ba、Nb、Ta、Y等高场强元素(HFSE)(图 8b)。(Rb/Yb)N均大于1,总体形态与典型的活动大陆边缘构造环境形成的火山岩特征相一致(Pearce et al., 1984)。

5 锆石U-Pb年龄

喀纳斯地区火山岩研究程度较低,由于研究区火山岩地层缺乏化石及同位素年龄数据,前人主要通过区域地层对比对该组时代做出了推断,所以其时代归属一直存在较大的争议,新疆地质矿产局区域地质调查大队的1:20万地质图琼库尔幅确定本套地层为下泥盆统下组,并命名为下—中库勒塔巴尔亚岩系。王宝瑜(1985)将这套地层划归喀纳斯群,阎永奎等(1989)则认为该套地层应划归早志留世。李天德等(2001)将这套火山岩地层划归奥陶系,命名为东锡勒克组,但东锡勒克组中未发现化石,确定该地层时代的依据是它与白哈巴组共生而暂定为奥陶纪。

喀纳斯地区糜棱岩化英安岩中分选的锆石,多为无色透明,自形-半自形,多呈粒状,长宽比在1~2之间,粒径在50~130 μm。锆石内部有少量包裹体和裂纹,在LA-ICP-MS分析时,为了不受这些因素的影像,选择内部纯净,没有包裹体和裂隙的部位测定。锆石CL图像显示其具有岩浆的震荡环带(图 9)。本次测定的2个样品(15TW-4034、TW-4039)的U-Pb同位素数据列于表 3,样品15TW-4034中锆石共测试了35个点,锆石U-Pb面年龄为431~459 Ma,其中有27个测点在谐和线上构成年龄集中区,其206Th/238U年龄加权平均值为(445.4± 3.1)Ma(图 10a);样品15TW-4039中锆石共测试了35个点,锆石U-Pb表面年龄为431~458 Ma,其中有33个测点在谐和线上构成年龄集中区,其206Th/238U年龄加权平均值为(445.7±3.7)Ma(图 10 b),这两个年龄代表喀纳斯地区糜棱岩化英安岩的喷发年龄,即糜棱岩化英安岩喷发年龄为晚奥陶世。据此可以认为该套地层形成于晚奥陶世。

表 3 糜棱岩化英安岩LA-ICP-MS锆石U-Pb同位素数据 Table 3 LA-ICP-MS zircon U-Pb isotopic data of mylonitic dacite in Kanasi area
图 9 喀纳斯地区糜棱岩化英安岩锆石阴极发光图 Figure 9 Zircon cathodoluminescences (CL) image from mylonitic dacite in Kanasi area
图 10 喀纳斯地区糜棱岩化英安岩锆石U-Pb谐和图 Figure 10 U-Pb concordia diagrams of zircon in the mylonitic dacite from Kanasi area
6 讨论 6.1 火山岩形成的构造环境

微量元素地球化学行为在岩浆演化过程中具有很强的规律性,且受后期热事件影响较小,其丰度组合,元素比值及演化特征对探讨岩浆成因、恢复和重塑古火山事件发生的构造环境及动力机制具有重要意义(赵振华等,2004)。喀纳斯地区糜棱岩化英安岩以高钾钙碱性系列火山岩为主(图 6),富集轻稀土元素,亏损重稀土元素和高场强元素,尤其亏损Nb、Ta元素,具有岛弧火山岩的特征。Zr/ Nb值在16.33~19.65,落于岛弧火山岩范围内(Zr/ Nb=0~60), Th/Ta值在8.37~16.00,与活动大陆边缘火山岩特征一致(Th/Ta=6~20)(Michael et al., 2000)。在(Yb+Nb)-Rb和(Yb+Ta)-Rb图解中,样品均落于火山弧环境区内(图 11),而且均有向同碰撞花岗岩演化的趋势。在R1-R2图解(图 12)中除一个样品(15YQ-4033)外,其余均落于同碰撞花岗岩区域。通常认为研究区这种高钾钙碱性特征的火山岩出现是大洋岩石圈俯冲结束,陆内汇聚开始的岩石学标志(邓晋福等,1996),是弧后岩石圈局部伸展减薄机制下,下部热的软流圈地幔上升至岩石圈地幔或角闪-榴辉岩岩相下地壳并诱发其发生部分熔融的结果(Muller et al., 1992邓晋福等,1996),一般分布于弧后靠近大陆板内方向。综上表明,喀纳斯地区糜棱岩化英安岩形成于同碰撞构造环境。

图 11 喀纳斯地区糜棱岩化英安岩(Yb+Nb)-Rb(a)和(Yb+Ta)-Rb图解(b)(据Pearce et al., 1984 Figure 11 (Yb+Nb)-Rb(a)and(Yb+Ta)-Rb(b)diagrams of mylonitic dacite in Kanasi area(after Pearce et al., 1984)
图 12 喀纳斯地区糜棱岩化英安岩R1-R2图解(据Batchelor et al., 1985 (图例同图 10a Figure 12 R1-R2 diagrams of mylonitic dacite in Kanasi area (after Batchelor et al., 1985) (legends as for Fig. 10a)
6.2 岩浆来源

Nb/Ta和Nd/Th值分别为8.93~17.72和2.31~ 2.70,接近壳源岩石(Nb/Ta=12,Nd/Th=3),说明样品可能主要来自壳源岩石的部分熔融。而低的Ba/ Th(29.04~58.05,< 100),说明俯冲带流体对岩浆源区的影响很不显著(Devine,1995)。Ti/Zr和Ti/Y值分别为13.35~42.89和71.40~256.10,较低的Ti/Zr和Ti/Y值表明研究区糜棱岩化英安岩既不可能由地幔橄榄岩部分熔融而产生,也不可能是玄武质岩浆分离结晶的结果(张遵忠等,2011)。

结合研究区糜棱岩化英安岩的岩石学、岩石地球化学特征,笔者认为该区早古生代奥陶纪火山岩形成于活动大陆边缘环境,可能是俯冲的玄武质大洋壳(含部分大洋沉积物)在榴辉岩岩相变质条件下部分熔融的产物或者是在碰撞过程中陆壳加厚,俯冲板块快速折返的短暂应力释放,引起陆缘弧下部岩石圈伸展减薄,软流圈地幔上升(或幔源岩浆底侵),巨大热能使得上覆玄武质-含石榴子石角闪-麻粒岩相下地壳发生部分熔融,形成过铝质钙碱性闪长质-花岗闪长质岩浆,石榴子石为残留相,斜长石少量残留,因此形成研究区轻重稀土分异明显,重稀土和Y亏损,高C/MF,Eu负异常不显著的弧型英安岩。

6.3 地质意义

本次研究的火山岩锆石U-Pb年龄结果和地球化学特征表明,在中-晚奥陶世时阿尔泰古陆缘具有活动大陆边缘性质,沿该活动带存在一条陆缘弧。该陆缘弧是亚洲古陆裂解导致古亚洲洋形成并向西伯利亚板块之下俯冲所致。阿尔泰造山带在震旦纪-寒武纪时是处于西伯利亚陆壳板块和哈萨克斯坦—准噶尔大洋板块之间的被动陆缘,其上被含化石的上奥陶统不整合覆盖(陈哲夫等,1991),中奥陶世以后,古亚洲洋由扩张转为聚合,导致在岛弧带发育典型的中—晚奥陶世钙碱性系列火山岩和I型花岗闪长岩(徐新,1998)。阿尔泰造山带西北部发育的早古生代喀纳斯群为以火成岩为主要物源的、活动大陆边缘碎屑沉积(龙晓平,2007)。而与本次获得U-Pb年龄非常接近于新疆北部早古生代((444±27)Ma,张弛等,1992;(479± 27)Ma,刘伟等,1993;(456±1)Ma,何国琦等,2001)蛇绿岩残留碎片,有力地说明了中—晚奥陶世西伯利亚板块南部古亚洲洋的存在。同时,阿尔泰造山带由南向北,发育奥陶纪(435~500 Ma)TTG侵入岩组合和中志留世—早泥盆世(390~415 Ma)GG侵入岩组合(董连慧等,2012),表明古亚洲洋由南向北俯冲于西伯利亚板块之下。本次所研究的糜棱岩化英安岩具高钾钙碱性特征火山岩,通常认为此种特征的火山岩出现是大洋岩石圈俯冲结束、陆内汇聚开始的岩石学标志(邓晋福等,1996)。由此也指示了阿尔泰造山带,早古生代已经开始碰撞造山,喀纳斯地区早古生代酸性火山岩形成于活动大陆边缘环境,是这一时期阿尔泰南缘地区洋壳俯冲消减,洋盆闭合过程中同碰撞的产物。综上说明,早古生代古亚洲洋由南向北向西伯利亚板块之下俯冲,形成阿尔泰南缘陆缘弧,晚奥陶世随着活动陆缘的进一步发育,区内发生了强烈的构造岩浆事件,此时形成具有活动大陆边缘弧性质的喀纳斯地区晚奥陶世火山岩。

7 结论

(1)喀纳斯地区糜棱岩化英安岩为一套过铝质,高钾钙碱性系列火山岩。岩石地球化学特征表现出典型的活动大陆边缘弧火山岩的特征。原始岩浆是由遭受消减板块流体交代的地幔楔源区部分熔融的产物。

(2)在喀纳斯地区火山岩组合中糜棱岩化英安岩中获得LA- ICP- MS锆石U- Pb年龄分别为(445.4±3.1)Ma和(445.7±3.7)Ma,表明糜棱岩化英安岩喷发的年龄为晚奥陶世,即东锡勒克组地层年代为晚奥陶世。

(3)早古生代古亚洲洋由南向北向西伯利亚板块之下俯冲,形成阿尔泰南缘陆缘弧,晚奥陶世随着活动陆缘的进一步发育,区内发生了强烈的构造岩浆事件,此时形成具有活动大陆边缘弧性质的喀纳斯地区晚奥陶世火山岩。

注释

❶董连慧,冯京,屈迅. 2013.新疆资源潜力评价报告[R].

❷赵同阳,唐志. 2016.新疆阿尔泰1:5万M45E021013、M45E- 021014、M45E022013、M45E022014四幅区调报告[R].新疆地质调查院.

参考文献
Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X
Badarch G, Cunningham W D, Windley B F. 2002. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J]. J. Asian Earth Sci., 21(1): 87-10. DOI:10.1016/S1367-9120(02)00017-2
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43-55.
Black L P, Gulson B L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory[J]. Journal of Australian Geology and Geophysica, 3: 227-232.
Chen Yuchuan, Ye Qingtong, Feng Jing. 1996. The Ashele Copper Zinc Ore Metallogenic Conditions and Metallogenic Prediction[M]. Beijing: Geological Publishing House, 1-85.
Chen Zhefu, Liang Yunhai. 1991. Polycyclic tectogenesis and plate movement of Xinjaing[J]. Xinjaing Geology, (2): 95-107.
Chen Zhefu. 1995. Some knowledge on policycle opening-closing tectonics and regional mineralization[J]. Xinjiang Geology, 13(1): 1-12.
Coleman R G. 1989. Continental growth of northern China[J]. Tectonic, 8(3): 621-635. DOI:10.1029/TC008i003p00621
Deng Jinfu, Zhao Hailing, Mo Xuanxue, Wu Zongxu, Luo Zhaohua. 1996. Continental Roots-Plume Tectonics of China-Key to the Continental Dynamics[M]. Beijing: Geological Publishing House.
Devine J D. 1995. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited[J]. Journal of Volcanology and Geothermal Research, 69: 1-33. DOI:10.1016/0377-0273(95)00024-0
Dong Lianhui, Qu Xun, Zhao Tongyang, Xu Shiqi, Zhou Ruhong, Wang Kezhuo, Zhu Zhixin. 2012. Magmatic sequence of Early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogen, Xinjiang[J]. Acta Geologica Sinica, 28(8): 2307-2316.
Han Baofu, He Guoqi. 1991. The tectonic nature of Devonian volcano rocks of the southern Taishanal belt[J]. Xinjiang Geological Science, (3): 89-100.
Han Qiong, Zhao Tongyang, Tang Zhi, Zheng Jiaxing, Wang Tuo, Li Chongbo, Sun Yaofeng, Zhu Yanfei. 2016. Zircon U-Pb age and its geological significance of Biliewutixi rock body in western Altay mountains[J]. Xinjiang Geology, 34(1): 46-53.
Heihorst J, Lehmann B, Ermolov P, Serykh V, Zhurutin S. 2000. Paleozoic crustal growth and metallogeny of Central Asia:Evidence from magmatic-hydrothermal ore system of Central Kazakhstan[J]. Tectonophysics, 328(1/2): 69-87.
He Guoqi, Li Maosong, Jia Jin, Zhou Hui. 2001. A discussion on age and tectonic significance of ophiolite in eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 825-858.
He Guoqi, Li Maosong. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in Northern Xinjiang, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(1): 99-110 (in Chinese with English abstract).
Jahn B M, Griffin W L, Windley B F. 2000. Continental growth in the Phanerozoic:Evidence from Central Asia[J]. Tectonophysics, 328(1/2): 7-10.
Jahn B M, Windley B, Natal' in B, N Dobretsow. 2004. Phanerozoic continental growth in Central Asia[J]. J. Asian Earth Sci., 23(5): 599-603. DOI:10.1016/S1367-9120(03)00124-X
Jackson S E, Pearson N J, Griffin W L. 2004. The implication of Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry(LAM-ICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211: 47-69. DOI:10.1016/j.chemgeo.2004.06.017
Li Tiande, Borrijanski B H. 2001. Tectonics and crustal evolution of altai in China and KazakHstan[J]. Xinjiang Geology, 19(1): 27-32.
Liu Wei, Zhang Xiangbing. 1993. The tectonic complex characteristics and geological significance of rock belt in Ulungur-Zaysan[C]//Tu Guangzhi. New Progress of Solid Earth Sciences in Northern Xinjiang. Beijing: Science Press, 217-228 (in Chinese with English abstract).
Liu Feng, Yang Fuquan, Mao Jingwen, Chai Fengmei, Geng Xinxia. 2009. Study on chronology and geochemistry for Abagong granite in Altay orogen[J]. Acta Petrologica Sinica, 25(6): 1416-1425.
Long Xiaoping. 2007. The Sedimentary Timing, Source Provenance and Tectonic Setting of Paleozoic Clastic Sedimentary Rocks in the Altai Orogen, Xinjiang[D]. Beijing: Chinese Academy of Sciences, 60-70 (in Chinese with English abstract).
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Michael P G, Eva S S. 2000. From continents to island arcs:A geochemical index of tetonic setting for arc-related and withinplate felsic to intermediate volcanic rocks[J]. Canada Mineralogy, 38: 1065-1073. DOI:10.2113/gscanmin.38.5.1065
Muller D, Rock N M S, Groves D L. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic setting:A pilot study[J]. Mineralogy and Petrology, 46: 259-289. DOI:10.1007/BF01173568
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58(1): 63-81.
Sengör A M C, Natal' in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[M]. London: Geological Society, Special Publications, 313-345.
Takagi T, Orihashi Y, Naito K, Watanabe Y. 1999. Petrology of a mantle-derived rhyolite, Hokkaidom Japan[J]. Chemical Geology, 160: 425-445. DOI:10.1016/S0009-2541(99)00111-4
Tong Ying, Gong Tao, Hong Dawei, Dai Yajian, Han Baofu, Liu Xiaoming. 2007. Ages and origin of the Early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications[J]. Acta Petrologica Sinica, 23(8): 1933-1944.
Tong Ying, Gong Tao, Hong Dawei, Han Baofu. 2006. Pb isotopic composition of granitoids from the Altay orogen(China):Evidence for mantle-derived origin and continental growth[J]. Acta Geologica Sinica, 80(4): 517-528.
Wang Baoyu. 1986. Division of northern Xinjiang Devonian tabulate coral assemblages of the lower and Middle Devonian[J]. Journal of Stratigraphy, 10(1): 34-40.
Wang Tao, Hong Dawei, Jahn B E Tong Ying, Han Baofu. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Aletai mountains, northwest China:Implications for the tectonic evolution of an accrecionary ogogen[J]. Journal of Geology, 114: 735-751. DOI:10.1086/507617
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20(77): 325-343.
Xu Xin. 1998. On opening-closing tectonics of Xinjiang[J]. Xinjaing Geology, (1): 1-12.
Yan Yongkui, Zhang Quanzhong, Qin Yuanxi, Zhang Liangchou, Dong Zhiyuan, Zhang Fuzhen, Zuo Xianzhang. 1989. Discovery and geological significance of micropaleoflora from the metamorphic rocks in Altay region of Xinjaing[J]. Xinjiang Geology, (02): 49-54.
Yang Fuquan, Liu Feng, Chai Fengmei, Zhang Zhixin, Geng Xinxia, Lü Shujun, Jiang Liping, Ouyang Liujin. 2011. Iron deposits in Altay, Xinjiang:Geological characteristics, time-space distribution and metallogenesis[J]. Mineral Deposits, 30(4): 575-598.
Yang Fuquan, Mao Jingwen, Yan Shenghao, Liu Feng, Chai Fengmei, Zhou Gang, Liu Guoren, He Lixin, Geng Xinxia, Dai Junzhi. 2008. Geochronology, Geochemistry and Geological implications of the Menku sysnorogenic plagiogranite plume in Altay, Xinjiang[J]. Acta Geologica Sinica, 82(4): 485-499.
Zeng Qiaosong, Chen Guanghao, Wang He, Shan Qiang. 2007. Geochemical characteristic, SHRIMP zircon dating and tectonic implication for grannitoids in Chonghuer basin, Altai, Xinjiang[J]. Acta Geologica Sinica, 23(8): 1921-1932.
Zhang Chi, Huang Xuan. 1992. The ophiolite formation of era and environment in West Junggar, Xinjiang[J]. Geological Review, 38(6): 507-524.
Zhang Zunzhong, Shao Yi, Gu Lianxing, Wu Changzhi, Zhu Chuansheng, Tang Junhua. 2011. Early-Middle indosinian weiya quartz diorite, Eastern segment of the Middle Tianshan Mountains, NW China:Implications for intra-continent subduction and partial melting of juvenile lower crust[J]. Acata Geologica Snica, 85(9): 1420-1434.
Zhao Zhenhua, Wang Qianf, Xiong Xiaolin. 2004. Complex mantlecrust interaction in subduction zone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 23(4): 277-284.
Zheng Jiaxing, Zhao Tongyang, Tang Zhi, Han Qiong, Wang Tuo, Li Chongbo, Liu Jingwen, Sun Yaofeng. 2016. Geochemical characters LA-ICP -MS zircon U-Pb dating of Tielielike rock in western Altay Mountains of Xinjiang and its geological significance[J]. Xinjiang Geology, 34(1): 54-61.
陈毓川, 叶庆同, 冯京. 1996. 阿舍勒铜锌矿带成矿条件和成矿预测[M]. 北京: 地质出版社, 1-85.
陈哲夫, 梁云海. 1991. 新疆多旋回构造与板块运动[J]. 新疆地质, (2): 95-107.
陈哲夫. 1995. 关于多旋回开合构造及区域成矿若干观点的认识[J]. 新疆地质, 13(1): 1-12.
邓晋福, 赵海玲, 莫宣学, 吴宗絮, 罗照华. 1996. 中国大陆根柱构造:大陆动力学的钥匙[M]. 北京: 地质出版社, 50-120.
董连慧, 屈迅, 赵同阳, 徐仕琪, 周汝洪, 王克卓, 朱志新. 2012. 新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义[J]. 岩石学报, 28(8): 2307-2316.
韩宝福, 何国琦. 1991. 阿尔泰山南缘泥盆纪火山岩带的大地构造性质[J]. 新疆地质科学, 3: 89-100.
韩琼, 赵同阳, 唐志, 郑加行, 王拓, 李崇博, 孙耀锋, 朱彦菲. 2016. 阿尔泰山西段比列乌提溪岩体锆石U-Pb年龄及地质意义[J]. 新疆地质, 34(1): 46-53.
何国琦, 李茂松. 2001. 中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义[J]. 北京大学学报:自然科学版, 37(1): 99-110.
何国琦, 李茂松, 贾进斗, 周辉. 2001. 论新疆东准噶尔蛇绿岩的时代及其意义[J]. 北京大学学报(自然科学版), 37(6): 825-858.
李天德, 波里扬斯基 B H. 2001. 中国和哈萨克斯坦阿尔泰大地构造及地壳演化[J]. 新疆地质, 19(1): 27-32.
刘锋, 杨富全, 毛景文, 柴凤梅, 耿新霞. 2009. 阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究[J]. 岩石学报, 25(6): 1416-1425.
刘伟, 张湘炳. 1993. 乌伦古-斋桑泊构造杂岩带特征及其地质意义[C]//涂光炽. 新疆北部固体地球科学新进展. 北京: 科学出版社, 217-228.
龙晓平. 2007. 新疆阿尔泰古生代碎屑沉积岩的沉积时代、物质来源及其构造背景[D]. 中国科学院研究生院(广州地球化学研究所), 60-70.
童英, 工涛, 洪大卫, 韩宝福. 2006. 中国阿尔泰造山带花岗岩Pb同位索组成特征:幔源成因佐证及陆壳生长意义[J]. 地质学报, 80(4): 517-528.
童英, 工涛, 洪大卫, 代雅建, 韩宝福, 柳晓明. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J]. 岩石学报, 23(8): 1933-1944.
王宝瑜. 1986. 新疆北部泥盆纪床板珊瑚组合特征兼论下、中泥盆统的划分[J]. 地层学杂志, 10(1): 34-40.
徐新. 1998. 概论新疆开合构造[J]. 新疆地质, (1): 1-12.
阎永奎, 张全忠, 秦元喜, 张良筹, 董志远, 张福振, 左宪章. 1989. 新疆阿勒泰地区变质岩中微古植物群的发现及其地质意义[J]. 新疆地质, (02): 49-54.
杨福全, 刘锋, 柴凤梅, 张志欣, 耿新霞, 吕书君, 姜丽萍, 欧阳刘进. 2011. 新疆阿尔泰铁矿: 地质特征、时空分布及成矿作用[J]. 矿床地质, (30)4: 575-598.
杨富全, 毛景文, 闫升好, 刘锋, 柴凤梅, 周刚, 刘国仁, 何立新, 耿新霞, 代军治. 2008. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J]. 地质学报, 82(4): 485-499.
张弛, 黄萱. 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨[J]. 地质论评, 38(6): 507-524.
张遵忠, 邵毅, 顾连兴, 吴昌志, 注传胜, 唐俊华. 2011. 中天山东段尾亚印支早中期石英闪长岩-陆内俯冲与原生下地壳部分熔融[J]. 地质学报, 85(9): 1420-1434.
赵振华, 王强, 熊小林. 2004. 俯冲带复杂的壳幔相互作用[J]. 矿物岩石地球化学通报, 23(4): 277-284.
曾乔松, 陈广浩, 王核, 单强. 2007. 阿尔泰冲乎尔盆地花岗岩类的锆石SHRIMP U-Pb定年及其构造意义[J]. 岩石学报, 23(8): 1921-1932.
郑加行, 赵同阳, 唐志, 韩琼, 王拓, 李崇博, 刘静雯, 孙耀锋. 2016. 新疆阿尔泰山西段铁列里克岩体地球化学特征LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 新疆地质, 34(1): 54-61.