文章快速检索    
 
  中国地质 2018, Vol. 45 Issue (4): 706-719  
0
引用本文
王金芳, 李英杰, 李红阳, 董培培. 2018. 内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用[J]. 中国地质, 45(4): 706-719.  
WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2018. The discovery of the Early Permian high-Mg diorite in Meilaotewula SSZ ophiolite of Inner Mongolia and and its Intra-oceanic Subduction[J]. Geology in China, 45(4): 706-719. (in Chinese with English abstract).  

内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用
王金芳, 李英杰, 李红阳, 董培培    
河北地质大学资源学院, 河北 石家庄 050031
摘要: 内蒙古梅劳特乌拉SSZ型蛇绿岩中,新发现了早二叠世巴嘎哈尔高镁闪长岩。该闪长岩位于贺根山缝合带内。锆石LA-ICP-MS U-Pb测年表明,巴嘎哈尔闪长岩的侵位年龄为(282±2)Ma,其形成时代为早二叠世。该岩石高镁,MgO含量5.00%~10.94%,Mg#值54~74;SiO2含量53.52%~58.64%,Al2O3含量13.48%~14.98%,Na2O含量1.36%~3.59%;贫钾,K2O含量0.48%~1.61%;贫TiO2(0.28%~0.76%)和P2O5(0.080%~0.160%);富Cr(75.00×10-6~555.90×10-6)和Ni(26.20×10-6~228.40×10-6);富集K、Rb和Sr等大离子亲石元素,亏损Nb、Ta、Zr、Ti和P等高场强元素;稀土元素总量较低(25.16×10-6~83.57×10-6),稀土曲线为略右倾的平坦型。该岩石具有高镁闪长岩的地球化学特征,与赞岐岩相类似,属于俯冲带岛弧型岩浆岩。结合其与梅劳特乌拉SSZ型蛇绿岩中玻安岩和埃达克岩的岩石组合时空分布特征,表明古亚洲洋贺根山洋盆在早二叠世可能仍然处于大洋俯冲消减状态。该高镁闪长岩可能为俯冲洋壳+俯冲深积物来源的硅质熔体交代上覆地幔楔使其部分熔融的产物。
关键词: 高镁闪长岩    洋内俯冲作用    锆石U-Pb定年    早二叠世    梅劳特乌拉SSZ型蛇绿岩    
中图分类号:P588.12+.2            文献标志码:A             文章编号:1000-3657(2018)04-0706-13
The discovery of the Early Permian high-Mg diorite in Meilaotewula SSZ ophiolite of Inner Mongolia and and its Intra-oceanic Subduction
WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei    
School of Nature Resources, Hebei GeoUniversity, Shijiazhuang 050031, Hebei, China
Abstract: This paper reports a new discovery of the Early Permian Bagahaer high-Mg diorite in the Meilaotewula SSZ ophiolite in Xi Ujimqin Banner of Inner Mongolia. The Bagahaer diorite occurs along the Hegenshan suture zone. The zircon U-Pb LA-ICPMS dating shows that the age of the diorite is 282±2Ma, suggesting Early Permian. The rock has high MgO (5.00%-10.94%, Mg# 54-74), Cr (75.00×10-6-555.90×10-6) and Ni (26.20×10-6-228.40×10-6) values and low Al2O3 (13.48%-14.98%), K2O (0.48%-1.61%), TiO2 (0.28-0.76%) and P2O5 (0.080%-0.160%) values. The diorite is enriched in K, Rb and Sr large ion lithophile elements, and depleted in Nb, Ta, Zr, Ti and P high field strength elements. The total REE is low (25.16×10-6-83.57×10-6). Rare earth curve is of flat slightly right pattern. All of the geochemical characteristics indicate that the Bagahaer pluton belongs to high-Mg dioritoids and island-arc magmatite generated along a subduction zone, similar to features of sanukitoid. Combined with the temporal and spatial distribution characteristics of the boninite and adakite within the Meilaotewula SSZ ophiolite, it is suggested that, in Early Permian, the Paleo-Asian Ocean was not closed in the study area but was at its subduction stage. It is inferred that the high-Mg diorite might have been derived from partial melting of the mantle wedge metasomatised by subducted oceanic crust+sedimentderived siliceous melts during the Paleo-Asian Ocean subduction.
Key words: high-Mg diorite    Intra-oceanic Subduction    zircon U-Pb dating    Early Permian    Meilaotewula SSZ ophiolite    

1 引言

高镁安山岩/高镁闪长岩类(HMA)是地质学研究领域的重要课题之一,是指与典型岛弧安山岩/闪长岩类相对比,具有更高的MgO含量或高Mg#值的安山岩和闪长岩类,以SiO2含量53%~60%、MgO>5%、Mg#>45、Al2O3<16%、CaO<10%、更富Cr和Ni,以及更低的FeO/MgO(<1.5)为特征(Tatsumi et al., 1982Yogodzinski,1995Furukawa et al., 1999Tatsumi, 2001Tsuchiya et al., 2005张旗等, 2005唐功建等, 2010)。高镁安山岩/高镁闪长岩类(HMA)主要发育于日本岛弧Setouchi火山岩带、美国阿留申群岛等现代大洋俯冲带和古代大洋俯冲(造山)带,是形成于大洋俯冲带岛弧环境的典型火成岩类,可为判别俯冲带岛弧环境,揭示大洋俯冲作用与过程中岩石圈地幔演化,提供岩石学证据与地球化学约束(Kamei et al., 2004; 张旗等,2005王强等,2006; 唐功建等,2010; 邓晋福等,2010; Ishizuka et al., 2014)。因此,内蒙古西乌旗巴嘎哈尔早二叠世高镁闪长岩的识别与研究, 对于了解古亚洲洋二连—贺根山洋盆晚古生代大洋俯冲作用及其有关的典型火成岩类,特别是对于识别在大洋俯冲带上面形成的SSZ型蛇绿岩和洋内弧岩石组合序列,具有重要意义。

中亚造山带东段内蒙古二连—贺根山缝合带,广泛发育有近东西向的古生代蛇绿岩(带)和俯冲岛弧型-后造山型岩浆岩(梁日暄,1994Miao et al., 2008刘建峰等,2009Xiao et al., 2009;Liu et al., 2013;石玉若等,2014李英杰等, 2012, 2013, 2015, 2018;康健丽等,2016王金芳等, 2017a, 2017b, 2018a, 2018b;Li et al., 2018a, 2018b),特别是发育早石炭世—晚石炭世SSZ型蛇绿岩与石炭纪—二叠纪岛弧型岩浆岩,识别与研究岛弧型岩浆岩与SSZ型蛇绿岩等地质体之间的时空分布与内在成因关系,可能为古亚洲洋二连—贺根山晚古生代洋盆扩张时限和大洋俯冲作用与过程提供某些岩石学证据与时间约束。内蒙古中部西乌旗地区为二连—贺根山缝合带出露较广和发育较好的典型地区(图 1),有关岛弧型岩浆岩形成时代的报道主要为早石炭世—晚二叠世(陈斌等,2001刘建峰等,2009张玉清,2009康健丽等,2016),而侵位于贺根山缝合带蛇绿岩之中的早二叠世岛弧型高镁闪长岩体尚未见有报道。二连—贺根山洋盆大洋扩张起止时间和大洋俯冲作用与过程等尚缺乏进一步的岩石学和年代学证据与约束。

图 1 内蒙古巴嘎哈尔高镁闪长岩区域构造简图(Miao et al., 2008李英杰等,2015 Figure 1 Sketch tectonic map of the Bagahaer high-Mg diorite, Inner Mongolia(after Miao et al., 2008; Li et al., 2015)

近年来,作者在内蒙古中部西乌旗地区进行1:5万区域地质调查时,新识别出早二叠世高镁闪长岩体出露。前人在1:20万罕乌拉幅中将其划为华力西晚期蚀变辉长岩,缺少年代学等资料。本文最新的锆石LA-ICP-MS U-Pb测定结果表明,该闪长岩的形成时代为早二叠世。本文通过岩石地球化学和锆石LA-ICP-MS U-Pb年代学以及与梅劳特乌拉SSZ型蛇绿岩的对比研究,结合该区和国内外岛弧型岩浆岩与高镁闪长岩等相关研究成果,初步明确了晚石炭世梅劳特乌拉SSZ型蛇绿岩中存在早二叠世高镁闪长岩体, 并探讨其岩石成因、构造环境和地质意义,以期能够为识别和研究二连—贺根山洋盆扩张时限和俯冲消亡过程提供某些岩石地球化学约束与参考。

2 地质背景和岩石学特征

巴嘎哈尔闪长岩体位于内蒙古西乌旗东北部梅劳特乌拉一带,区域构造属于二连—贺根山缝合带,为贺根山缝合带蛇绿岩和岛弧型岩浆岩典型发育区(图 1图 2)。巴嘎哈尔闪长岩岩性为细粒-中粒闪长岩,岩体呈小岩株状产出,出露面积约1.7 km2。岩体侵入于晚石炭世梅劳特乌拉SSZ型蛇绿岩之中(图 2),内接触带岩石为细粒闪长岩,岩体中心为中粒闪长岩(图 3)。细粒闪长岩与中粒闪长岩之间为渐变接触关系,由老到新侵位顺序为细粒闪长岩至中粒闪长岩。

图 2 巴嘎哈尔高镁闪长岩区域地质图 Figure 2 Regional geological map of the Bagahaer high-Mg diorite
图 3 巴嘎哈尔高镁闪长岩地质简图 Figure 3 Sketch geological map of the Bagahaer high-Mg diorite

梅劳特乌拉SSZ型蛇绿岩(图 2),岩石组合层序较为完整连续,主要有蛇纹石化方辉橄榄岩、层状-块状辉长岩、枕状拉斑玄武岩、玻安岩(高镁安山岩)、埃达克质安山岩、埃达克岩(花岗闪长岩)富Nb玄武岩、镁安山岩和高镁闪长岩等,表现出洋内初始俯冲作用的洋内弧岩石组合序列特征(图 2),并可与马里亚纳洋内弧相对比(王金芳等,2017a)。其中,枕状拉斑玄武岩具有MORB-Like玄武岩或前弧玄武岩枕状拉斑玄武岩的地球化学特征,可能代表了梅劳特乌拉洋内初始俯冲作用产生的首次岩浆作用产物,为洋内弧前弧初始俯冲岩石组合序列中不可缺少的基本组成单元和标志性岩石类型。在梅劳特乌拉洋内弧前弧玄武岩(枕状拉斑玄武岩)形成之后,玻安岩(高镁安山岩315 Ma)和埃达克岩(294.7 Ma)相继产出。玻安岩(高镁安山岩)上覆于前弧玄武岩(枕状拉斑玄武岩)之上,可能为初始俯冲洋壳的富含不相容元素的富水流体作用于上覆地幔楔中高度亏损的残余难熔地幔橄榄岩,并在低压高温条件下导致残余难熔地幔橄榄岩发生部分熔融的产物。在玻安岩(高镁安山岩)形成之后,俯冲洋壳部分熔融产生埃达克岩(埃达克质安山岩、花岗闪长岩等)。伴随洋内初始俯冲作用的不断加强,梅劳特乌拉洋内弧火山喷发和深成岩浆侵入活动强烈,进而演化出梅劳特乌拉洋内弧镁安山岩和高镁闪长岩(282 Ma)等,构成梅劳特乌拉洋内弧主体(王金芳等,2017a)。

梅劳特乌拉SSZ型蛇绿岩或洋内弧岩石组合,总体呈透镜状沿北东东向韧性剪切带构造就位于下二叠统寿山沟组半深海-深海复理石建造之中。沿韧性剪切带发育菱形网格状强变形带和弱变形域。其中,强变形带中的蛇绿岩普遍糜棱岩化和片理化;远离韧性剪切带,为未变形的块状蛇绿岩。巴嘎哈尔闪长岩侵入于未变形的块状蛇绿岩之中,闪长岩体较为新鲜,为块状构造,岩体内部未见明显的韧性变形,仅在其与梅劳特乌拉蛇绿岩侵入接触带附近可见密集劈理化和碎裂岩化(李英杰等,2015王金芳等2017a)。

巴嘎哈尔闪长岩为细粒-中粒半自形粒状结构,块状构造(图 4),矿物成分主要为斜长石(60%±)、角闪石(32%±),少量单斜辉石(3%±)、石英(2%±)、碱性长石(2%±)和黑云母(1%~2%)等。斜长石主要为中长石,呈自形-半自形板状,环带结构发育,均已不同程度绢云母化;角闪石半自形柱状,部分颗粒可见黝帘石化和绿泥石化;斜方辉石呈粒状分布于斜长石间隙中,多蚀变为绿泥石;石英和碱性长石呈他形颗粒充填于斜长石间隙中。黑云母自形片状,可见绿泥石化和绿帘石化。

图 4 巴嘎哈尔高镁闪长岩野外露头(a)和正交偏光显微照片(b) a—中粒闪长岩野外露头;b—细粒半自形粒状结构;Pl—斜长石;Hb—角闪石;Opx—斜方辉石 Figure 4 Outcrop(a) and transmitted light photomicrograph (b) of the Bagahaer high-Mg diorite a-Outcrop of the medium grained diorite; b-Fine-grained subhedral granular texture; Pl-Plagioclase, Hb-Hornblende; Opx-Orthopyroxene
3 锆石U-Pb年代学

本次研究对巴嘎哈尔闪长岩体采集了1件锆石U-Pb同位素年龄样品,样品编号为S18,采样位置见图 2,采样点地理位置为44°52′58.6″N、118°18′ 47.4″E。

3.1 测试方法

同位素年龄样品锆石的分选,由河北省区域地质矿产调查研究所实验室完成,经重液浮选和电磁分离分选后,在双目镜下挑选出晶形完好、透明度高、无包裹体和无裂纹的锆石颗粒作为测定对象(图 4)。挑选好的锆石与标样一起固定在环氧树脂中抛光制靶,进行阴极发光、透射光和单偏光照相。锆石阴极发光(CL)图像分析在北京锆年领航科技有限公司高分辨热场发射能谱阴极发光室进行,锆石原位LA-ICP-MS U-Pb同位素年龄分析在中国地质调查局天津地质调查中心实验测试室LA-ICP-MS仪器上进行,对测试数据进行了普通铅校正(Andersen,2002),年龄计算和谐和图绘制采用ISOPLOT程序(3.0版)。

3.2 测试结果

巴嘎哈尔岩体样品(S18)共选取25粒锆石进行测定,所选锆石阴极发光图像(CL)显示岩石中的锆石结构均一,呈自形—半自形双锥状,长宽比为1:1~ 2:1,具明显的条带环状结构,为中性岩浆成因锆石的特征(Claesson et al., 2000)。25粒锆石的U与Pb含量分别介于234×10-6~1219×10-6和11×10-6~61× 10-6,Th/U比值在0.06~0.72(表 1),平均值为0.49,具有岩浆成因锆石特征(Koschek,1993Claesson et al., 2000Corfu,2003)。该样品25粒锆石的测点位于震荡环带发育部位,测定数据点均落在谐和线上或附近,206Pb/238U年龄值为279~290 Ma,其加权平均值为(282±2)Ma(MSWD=2.3),代表了闪长岩的成岩年龄(表 1图 5图 6)。

表 1 巴嘎哈尔高镁闪长岩(S18)LA-ICP-MS锆石U-Pb测试结果 Table 1 LA-ICP-MS U-Pb dating results of zircons from the Bagahaer high-Mg diorite
图 5 巴嘎哈尔高镁闪长岩(S18)锆石阴极发光图像及其LA-ICP-MS U-Pb年龄 Figure 5 Cathodoluminescent images and LA-ICP-MS U-Pb ages of zircons from the Bagahaer high-Mg diorite
图 6 巴嘎哈尔高镁闪长岩(S18)锆石LA-ICP-MS U-Pb年龄谐和图和直方图 Figure 6 U-Pb concordia diagram and histograms of zircons from the Bagahaer high-Mg diorite
4 地球化学特征

巴嘎哈尔闪长岩的主量元素、微量元素和稀土元素分析测试,均在河北省区域地质矿产调查研究所实验室完成,主量元素分析采用Axios max X射线荧光光谱仪测定,精度在1%以内,微量元素和稀土元素采用X-Series 2离子质谱仪测定,测试精度在5%以内。本文对巴嘎哈尔闪长岩5件样品进行了元素地球化学分析(表 2)。

表 2 巴嘎哈尔高镁闪长岩和梅劳特乌拉蛇绿岩中玻安岩和埃达克岩主量、微量和稀土元素分析结果 Table 2 Major element, trace element and REE analyses of the Bagahaer high-Mg diorite and the boninite, adakite in the Meilaote ophiolite

在主量元素特征上,闪长岩的SiO2含量53.52% ~58.64%,MgO含量5.00%~10.94%,Mg#值54~74,Al2O3含量13.48% ~14.98%,Na2O含量1.36%~ 3.59%,K2O含量0.48%~1.61%,Na2O/K2O为1.04~ 7.31,TiO2含量0.28%~0.76%和P2O5含量0.080%~ 0.16%,明显高镁、贫钾、低钛和磷。其A/CNK为0.66~0.87,A/NK为2.14~5.13,属准铝质。在SiO2- K2O分类图解(图 7)中,5个样品中有2个样品落在低钾(拉斑)系列,3个样品分布在中钾钙碱性系列区域内,可能反映该闪长岩具有低钾(拉斑)系列与中钾钙碱性系列的过渡型岩石特征(图 7)。

图 7 巴嘎哈尔高镁闪长岩SiO2-K2O分类图解(Peccerillo et al., 1976王金芳等,2017a Figure 7 SiO2-K2O classification diagrams of the Bagahaer high-Mg diorite(after Peccerillo et al., 1976; Wang et al., 2017a)

在稀土元素特征上,该闪长岩的稀土元素含量较低,∑REE为25.16×10-6~83.57×10-6,平均值为56.54×10-6;铕异常不明显,δEu=0.85~1.24,轻重稀土元素分异不明显,(La/Yb)N为1.87~3.12,稀土配分曲线为略右倾的平坦型(图 8)。该闪长岩的稀土元素配分曲线与梅劳特乌拉蛇绿岩的玻安岩(高镁安山岩)和埃达克岩(花岗闪长岩)配分曲线相类似,表现出亏损地幔源区的特征。

图 8 巴嘎哈尔高镁闪长岩稀土元素球粒陨石标准化配分模式(Boynton, 1984 Figure 8 Chondrite-normalized REE patterns of the Bagahaer high-Mg diorite(after Boynton, 1984)

在微量元素特征上,该闪长岩明显富集K、Rb和Sr等大离子亲石元素(LILE),强烈亏损Nb、Ta、Zr、Ti和P等高场强元素(HFSE)。在原始地幔标准化蛛网图上,具有明显的Rb、Sr、K等正异常“峰”和Nb、Ta、Ti、P负异常“槽”(图 9),显示出与俯冲作用有关的地球化学特征。相容元素Cr和Ni等含量明显较高,Cr为75.00×10-6~555.90×10-6,平均值为245.40×10-6;Ni为26.20×10-6~228.40×10-6,平均值为92.91×10-6;相对贫Sr(253.70×10-6~504.80×10-6)、Y(8.23×10-6~25.22×10-6)和Yb(1.23×10-6~3.11×10-6),Sr/Y为10~61。

图 9 巴嘎哈尔高镁闪长岩微量元素原始地幔标准化蛛网图(Sun et al., 1989 Figure 9 Primitive mantle-normalized trace element spider diagram of the Bagahaer high-Mg diorite(after Sun et al., 1989)

图 9中,该岩石与梅劳特乌拉蛇绿岩的玻安岩(高镁安山岩)和埃达克岩(花岗闪长岩)微量元素曲线总体一致,均表现出明显的富集K、Rb和Sr等大离子亲石元素(LILE),亏损Nb、Ta、Zr、Ti和P等高场强元素(HFSE)。

总之,地球化学属性表明,巴嘎哈尔闪长岩为高镁闪长岩,可与日本Setouchi火山带的岛弧高镁安山岩/高镁闪长岩(HMA)相对比(图 10图 11)(Shimoda et al., 1998Tatsumi et al., 2003Kamei et al., 2004张旗等,2005王强等,2006唐功建等,2010邓晋福等,2010赵少卿等,2015)。例如,在SiO2-MgO和FeO*/MgO-SiO2图解中,样品投点基本位于日本Setouchi火山带的岛弧高镁安山岩/高镁闪长岩(HMA)范围和实验给出的高镁安山岩/高镁闪长岩HMA范围内(图 10图 11)(Viruete et al., 2007邓晋福等,2010)。

图 10 高镁闪长岩(HMA)的SiO2-MgO图(岩性符号同图 6)(Deng et al., 20092017 Figure 10 SiO2 versus MgO diagrams of the Bagahaer high-Mg diorites (symbols as for Fig. 6) (after Deng et al., 2009; 2017)
图 11 高镁闪长岩(HMA)的FeO*/MgO-SiO2图(岩性符号同图 6)(Deng et al., 20092017 Figure 11 FeO*/MgO versus SiO2 diagrams of the Bagahaer high-Mg diorites (symbols as for Fig. 6() after Deng et al., 2009; 2017)
5 讨论 5.1 岩石成因和构造环境

关于高镁闪长岩类的成因主要有两种观点,其一,俯冲洋壳部分熔融产生的熔体与地幔楔反应形成(Smithies et al., 2007);其二,俯冲洋壳+俯冲沉积物的脱水流体与俯冲沉积物部分熔融产生的硅质熔体与地幔楔反应形成(Tatsumi,2001Tatsumi et al., 2003Reagan et al., 2008肖庆辉等,2016)。

巴嘎哈尔闪长岩较高的Mg#值(平均值63.40)和Cr(平均值245.40×10-6)、Ni(平均值92.91×10-6)含量,显示地幔楔橄榄岩源区特征。岩体明显富集K、Rb和Sr等大离子亲石元素,亏损Nb、Ta、Zr、Ti和P等高场强元素,具有典型俯冲带组分(SZC)特征,表明其岩浆源区可能主要为俯冲带岛弧环境下的岩石圈地幔。

该闪长岩与梅劳特乌拉蛇绿岩的玻安岩(高镁安山岩)和埃达克岩(花岗闪长岩)均具有较低的La/Yb(2.39~6.38)比值(表 2),与俯冲洋壳部分熔融成因的岩石多具较高La/Yb(>30)比值明显不同(Yogodzinski,1995)。因此,巴嘎哈尔闪长岩不具有俯冲洋壳部分熔融产生的熔体与地幔楔反应成因的特征。

巴嘎哈尔岩体具有较高的Ba含量(平均值259.62×10-6)和Ba/Th比值>170(平均值181);同时,具有明显的较高Th含量(平均值2.04×10-6)和较高Th/La(0.11~0.33)、Th/Sm(0.28~1.17)、Th/Yb(0.38~ 1.54)和Th/Ce(0.05~0.16)比值(表 2),以及Th/Sm与Th/Yb比值呈正相关关系(图 12)。而且,该岩体与梅劳特乌拉蛇绿岩的玻安岩(高镁安山岩)和埃达克岩(花岗闪长岩)均具有较低的La/Yb(2.39~ 6.38)比值。这些特征反映巴嘎哈尔高镁闪长岩的成因可能为俯冲洋壳+俯冲深积物的脱水流体与俯冲沉积物部分熔融形成的硅质熔体,交代上覆地幔楔并使其部分熔融形成(Hawkesworth et al., 1997Shimoda et al., 1998Woodhead et al., 2001Tatsumi,20012003Elburg et al., 2002Plank,2005Reagan et al., 2008; 2010;2013肖庆辉等,2016董学发等,2016)。

图 12 巴嘎哈尔高镁闪长岩Th/Yb-Th/Sm(赞岐岩据Tatsumi,2003;马里纳亚前弧玄武岩据Reagan et al., 2010;玻安岩和埃达克岩据王金芳等,2017a Figure 12 Th/Yb-Th/Sm diagrams of the Bagahaer high-Mg diorite(Sanukite after Tatsumi, 2003); (Mariana fore-arc basalts after Reagan et al., 2010); (boninite and adakite after Wang et al., 2017a))

在Th-La/Yb构造判别图解中(图 13)(李奋其等,2016),巴嘎哈尔高镁闪长岩5个样品投点均落入演化的大洋弧区内,与梅劳特乌拉SSZ型蛇绿岩的玻安岩(高镁安山岩)和埃达克岩(花岗闪长岩)投点区相吻合,与赞岐岩投点相对应(Tatsumi et al., 2003)。梅劳特乌拉SSZ型蛇绿岩的枕状低钾拉斑玄武岩与马里亚纳前弧玄武岩(FAB)投点重叠于原始大洋弧区内(图 13)(Reagan et al., 2010)。这些特征表明该闪长岩可能产于洋内弧环境,为梅劳特乌拉SSZ型蛇绿岩的枕状低钾拉斑玄武岩和玻安岩岩浆演变稍晚侵位的深成侵入岩。

图 13 巴嘎哈尔高镁闪长岩Th-La/Yb构造判别图解(赞岐岩据文献Tatsumi et al., 2003;马里纳亚前弧玄武岩据文献Reagan et al., 2010;玻安岩、埃达克岩、富Nb玄武岩和拉斑玄武岩据文献王金芳等,2017a)(Condie, 1986) Figure 13 Th-La/Ybtectonic discriminant diagrams of the Bagahaer high-Mg diorite(Sanukite after Tatsumi et al., 2003; Mariana fore-arc basalts after Reagan et al., 2010; boninite, adakite, Nb-enriched basalt and tholeiite after Wang et al., 2017a) Condie, 1986)

该高镁闪长岩与梅劳特乌拉SSZ型蛇绿岩的蛇纹石化方辉橄榄岩、层状-块状辉长岩、枕状拉斑玄武岩、玻安岩(高镁安山岩)、埃达克岩(花岗闪长岩等)、埃达克质安山岩、富Nb玄武岩和镁安山岩等岩石组合序列,可能反映了统一的洋内俯冲作用的亏损地幔楔源区。洋内俯冲洋壳+俯冲深积物的脱水流体与俯冲深积物部分熔融形成的硅质熔体,交代上覆地幔楔使其发生部分熔融,可能构成了巴嘎哈尔高镁闪长岩的成因机制。

5.2 形成时代和地质意义

在内蒙古中部二连—贺根山缝合带及其外围区域内,与古亚洲洋大洋俯冲作用有关的二叠纪岛弧型岩浆岩形成年龄数据较多,但是,侵入于贺根山缝合带蛇绿岩之中的早二叠世岛弧型高镁闪长岩体形成年龄的报道,本文可能尚属首次。

巴嘎哈尔闪长岩体为笔者近年进行1:5万区域地质调查时新识别的侵入岩体。该闪长岩体侵入于晚石炭世梅劳特乌拉SSZ型蛇绿岩(315~308 Ma)之中,本次对该闪长岩体进行了LA-ICP-MS锆石U-Pb定年,获得了(282±2)Ma年龄。该岩石样品的锆石颗粒呈自形-半自形柱状,振荡环带宽缓,为中性岩浆锆石的特征,锆石U-Pb年龄应代表闪长岩岩浆结晶侵位年龄。而且,该闪长岩的形成时代与内蒙古中部地区二叠纪俯冲带岛弧型岩浆岩形成年龄相吻合(曾俊杰等,2008张玉清,2009郝百武,2012刘军等,2014;Wang et al., 2017c),与梅劳特乌拉SSZ型蛇绿岩中埃达克岩体(294.7± 1.7)Ma LA-ICP-MS锆石U-Pb年龄相近(王金芳,2017a),表明梅劳特乌拉SSZ型蛇绿岩中存在早二叠世高镁闪长岩侵入岩体。

笔者本次在梅劳特乌拉晚石炭世SSZ型蛇绿岩中新识别的俯冲带岛弧型高镁闪长岩,与该地区下二叠统寿山沟组半深海—深海复理石建造反映的大洋俯冲带构造环境相对应(李英杰等,201220132015公繁浩等,2013王金芳等,2017a),也与内蒙古中东部地区中二叠统哲斯组泥岩中发现放射虫化石所反映的古洋盆环境相吻合(Shang,2004),可能揭示了古亚洲洋二连—贺根山洋盆在早二叠世并没有消失,而是正处于洋壳俯冲消减阶段(Miao et al., 2008Xiao et al., 2009张玉清,2009;Liu et al., 2013;刘建峰等,2016;李钢柱等,2017;Wang et al., 2017c),或者早二叠世仅仅为二连—贺根山洋盆洋内俯冲阶段,早二叠世之后的一段时间可能为古亚洲洋二连—贺根山洋盆的洋壳俯冲期。

巴嘎哈尔早二叠世高镁闪长岩体侵位于梅劳特乌拉晚石炭世SSZ型蛇绿岩之中,表明早二叠世高镁闪长岩岩浆侵入活动紧随晚石炭世梅劳特乌拉SSZ型蛇绿岩形成之后的有序产出,可能较好反映了梅劳特乌拉SSZ型蛇绿岩的蛇纹石化方辉橄榄岩、层状-块状辉长岩、枕状拉斑玄武岩、玻安岩(高镁安山岩)、埃达克岩(花岗闪长岩)、埃达克质安山岩、富Nb玄武岩、镁安山岩和高镁闪长岩等岩石组合序列的时空分布与演化特征,揭示贺根山缝合带在晚石炭世—早二叠世可能存在洋内俯冲作用。

6 结论

(1) 巴嘎哈尔闪长岩SiO2含量>53%,MgO含量>5%,Mg#值>45,Al2O3含量<16%,TiO2和P2O5含量低,Na2O/K2O为1.04~7.31, Cr含量75.00×10-6~555.90×10-6和Ni含量26.20×10-6~228.40×10-6,富集大离子亲石元素K、Rb和Sr等,亏损高场强元素Nb、Ta、Zr、Ti和P等;稀土曲线为略右倾的平坦型,地球化学特征表明该闪长岩为高镁闪长岩。

(2) 巴嘎哈尔高镁闪长岩侵位于晚石炭世梅劳特乌拉SSZ型蛇绿岩中,LA-ICP-MS锆石U-Pb年龄为(282±2)Ma,形成于早二叠世,提供了贺根山缝合带西乌旗地区存在早二叠世高镁闪长岩的年代学证据与约束,表明早二叠世可能是古亚洲洋贺根山洋盆洋内俯冲消减时期。

致谢: 本文在野外调查中得到中国地质调查局天津地质调查中心谷永昌、辛后田、刘永顺等专家的热情指导和帮助,审稿专家和责任编辑为本文提供了宝贵的修改意见与建议, 在此一并表示衷心的感谢!

参考文献
Andersen T. 2002. Correction of commen lead U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X
Boynton W V. 1984. Geochemistry of the rare earth elements:meteorite studies/Henderson P. Rare earth element geochemistry[J]. Elsevier: 63-114.
Chen Bin, Zhao Guochun, Wilde Simon. 2001. Subduction and collision-related granitoids from southern Sonidzuoqi, Inner Mongolia:Isotopic ages and tectonic implications[J]. Geological Review, 47(4): 361-367 (in Chinese with English abstract).
Claesson S, Vetrin V, Bayanova T. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51: 95-108. DOI:10.1016/S0024-4937(99)00076-6
Condie K C. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwest united states[J]. Journal of Geology, 94: 845-864. DOI:10.1086/629091
Corfu F. 2003. Atlas of Zircon Textures[J]. Rev. Mineral, 53(1): 469-500. DOI:10.2113/0530469
Deng JF, Flower MFJ, Liu C. 2009. Nomeuclature, diagnosis an origin of high-magnesian andesites(HMA) and magnesian andesites(MA):A review from petrographic and experimental data[J]. Geochimica et Cosmochimica Acta, 73(13): A279.
Deng J F, Flower M F J, Liu C. 2017. A review of experimental constraints on boninitic magma genesis[J]. AOGS 4th Aunual Meeting, Baugkok 31 Jul-4 Aug, Abstract, www. asiaoceania. org, .
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guo Chun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA):two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4): 1112-1118 (in Chinese with English abstract).
Dong Xuefa, Yu Shengqiang, Tang Zengcai, Xiao Qinghui, Yuan Qiang, Chen Zhongda, Zhou Zongyao, Wu Xiaoyong. 2016. Geochemical characteristics of the intra-oceanic arc type metabasic-volcanics in Chencai accretion complex of Zhejiang Province and their geological significance[J]. Geology in China, 43(3): 817-828 (in Chinese with English abstract).
Elburg M A, Bergen M V, Hoogewerff J. 2002. Geochcmical trends across an Arc-Continent Collision Zone:Magma Sources and Slab-Wedge transfer Processes below the Pantar Strait Volcanoes, lndonesia[J]. Geochimicaet Cosmochimica Acta, 66(15): 2771-2789. DOI:10.1016/S0016-7037(02)00868-2
Furukawa Y, Tatsumi Y. 1999. Melting of a subducting slab and production of high-Mg andesite magmas; Unusual magmatism in SW Japan at 13-15Ma[J]. Geophysical Research Letters, 26: 2271-2274. DOI:10.1029/1999GL900512
Gong Fanhao, Huang Xin, Zheng Yuejuan, Chen Shuwang. 2013. Significance of the submarine fan of Lower Permian Shoushangou Formation in West Ujimqin-Qi, Inner Mongolia[J]. Geology and Resources, 22(6): 478-483 (in Chinese with English abstract).
Hao baiwu. 2012. Discovery of adakite granitein Narenwula, Inner Mongolia:its genesis, zircon U-Pb ages and tectonic significance[J]. Mineral. Petrol., 32(1): 28-39 (in Chinese with English abstract).
Hawkesworth C J, Turner S P, Mcdermott F. 1997. U-Th isotopes in Arc Magmas:Implications for element transfer from the Subducted Crust[J]. Science, 276(5312): 551-555. DOI:10.1126/science.276.5312.551
Ishizuka O, Tani K, Reagan M. 2014. Izu-Bonin-Mariana forearc Crust as a modern ophiolite analogue[J]. Elements, 10: 115-120. DOI:10.2113/gselements.10.2.115
Kamei A, Owada M, Nagao T. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75: 359-371. DOI:10.1016/j.lithos.2004.03.006
Kang Jianli, Xiao Zhibin, Wang Huichu, Chu Hang, Ren Yunwei, Liu Huan, Gao Zhirui, Sun Yiwei. 2016. Late Paleozoic Subduction of the Paleo-Asian Ocean:Geochronological and Geochemical Evidence from the Meta-basic Volcanics of Xilinhot, Inner Mongolia[J]. Acta Geologica Sinica, 90(2): 383-397.
Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 171(3): 223-232. DOI:10.1111/jmi.1993.171.issue-3
Li Fenqi, Li Yiduo, Zhang Shizheng, Li Yong. 2016. The 90 Ma island-arc type plutonism in the subduction-accretionary complex in Langxian County area, Tibe[J]. Geology in China, 43(1): 142-152 (in Chinese with English abstract).
Li G Z, Wang Y J, Li C Y. 2017. Discovery of Early Permian radiolarian fauna in the Solon Obo ophiolite belt, Inner Mongolia and its geological significance[J]. Chin. Sci. Bull., 62: 400-406 (in Chinese). DOI:10.1360/N972016-00703
Li Yingjie, Wang Jinfang, Wang Genhou, Dong Peipei, Li Hongyang, Hu Xiaojia. 2018a. Discovery of the plagiogranites in the Diyanmiao ophiolite, southeastern Central Asian Orogenic Belt, Inner Mongolia, China and its tectonic significance[J]. Acta Geologica Sinica, 92(02): 568-585. DOI:10.1111/acgs.2018.92.issue-2
Li Yingjie, Wang Genhou, Santosh M, Wang Jinfang, Dong Peipei, Li Hongyang. 2018b. Supra-subduction zone ophiolites from Inner Mongolia, North China:Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126-143. DOI:10.1016/j.gr.2018.02.018
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei, Liu Yucui, Liu Dewu, Bai Hui. 2012. Recognition of Diyanmiao ophiolite in XiUjimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 28(4): 1282-1290 (in Chinese with English abstract).
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei. 2015. Recognition of Meilaotewula ophiolite in XiUjimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 31(5): 1461-1470 (in Chinese with English abstract).
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei. 2013. Geochemical characteristics of Baiyinbulage ophiolite in XiUjimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 29(8): 2719-2730 (in Chinese with English abstract).
Liang Rixuan. 1994. The features of ophiolites in the central sector of Inner Mongolia and its geological significance[J]. Regional Geology of China, 1: 37-45 (in Chinese with English abstract).
Liu Jianfeng, Chi Xiaoguo, Zhang Xingzhou, Ma Zhihong, Zhao Zhi, Wang Tiefu, Hu Zhaochu, Zhao Xiuyu. 2009. Geochemical characteristic of carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 83(3): 365-376 (in Chinese with English abstract).
Liu Jianfeng, Li Jinyi, Sun Lixin, Yin Dongfang, Zheng Peixi. 2016. Zircon U-Pb dating of the Jiujingzi ophiolite in Bairin Left Banner, Inner Mongolia:Constraints on the formation and evolution of the Xar Moron River suture zone[J]. Geology in China, 43(06): 1947-1962 (in Chinese with English abstract).
Liu Jun, Wu Guang, Li Tiegang, Wang Guorui, Wu Hao. 2014. SHRIMP zircon U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the Late Paleozoic intermediate-acidic intrusive rocks in the Hadamiao area, Xianghuang Banner, Inner Mongolia and its geological significances[J]. Acta Petrologica Sinica, 30(1): 95-108 (in Chinese with English abstract).
Miao L, Shi Y, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(4): 404-415.
Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society of London Special Publication, 16(1): 77-94. DOI:10.1144/GSL.SP.1984.016.01.06
Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 58: 63-81. DOI:10.1007/BF00384745
Plank T. 2005. Constraints from thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 16(5): 921-944.
Reagan M K, Hanan B B, Heizler M T. 2008. Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for the evolution of nascent island arcs[J]. Journal of Petrology, 49(3): 441-464. DOI:10.1093/petrology/egm087
Reagan M K, Ishizuka Osamu, Sterner R J. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 11(3): 1-17.
Reagan. 2013. The geology of the southern Mariana fore-arc crust:implications for the scale of Eocene volcanism in the western pacific[J]. Earth and planetary science Letters, 380: 41-51. DOI:10.1016/j.epsl.2013.08.013
Shang Q H. 2004. The discovery and significance of Permian radiolarians Northern Orogenic belt in the northern and middle lnner Mongolia[J]. Chinese Science Bulletin, 49: 2574-2579.
Shi Yuruo, Liu Cui, Deng Jinfu, Jian Ping. 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution[J]. Acta Petrologica Sinica, 30(11): 3155-3171 (in Chinese with English abstract).
Shimoda G, Tatsumi Y, Nohda S. 1998. Setouchi high-Mg andesites revisited:Geochemical evidence for melting of subducted sediments[J]. Earth and Planetary Science Letters, 160: 479-492. DOI:10.1016/S0012-821X(98)00105-8
Smithies R H, Kranendonk M J, Champion D C. 2007. The Mesoarchean Emergence of Modern-Style subduction[J]. Gondwana Research, 11(1/2): 50-68.
Sun S S, McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society of London. Special Publication, 42: 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tang Gongjian, Wang Qiang. 2010. High Mg andesite and their geodynamic implications[J]. Acta Petrologica Sinica, 26: 2495-2512 (in Chinese with English abstract).
Tatsumi Y, Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere:Toward a comprehensive understanding of high-Mg andesite formation in the setouchi volcanic be1t, SW Japan[J]. Geochemistry Geophysics Geosystems, 4(9): 643-651.
Tatsumi Y, Ishizaka K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan:Ⅰ. Petrgraphical and chemical characteristics[J]. Earth and Planetary Science Letters, 60: 293-304. DOI:10.1016/0012-821X(82)90008-5
Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt mantle interaction:generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan[J]. Geology, 29(4): 323-326. DOI:10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2
Tsuchiya N, Suzuki S, Kimura JI. 2005. Evidence for slab melt/mantle reaction:Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan[J]. Lithos, 79: 179-206. DOI:10.1016/j.lithos.2004.04.053
Viruete JE, Contreras F, Stein C. 2007. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hipaniola:record of a major change in the Caribbean island arc magma sources[J]. Lithos, 99(3/4): 151-177.
Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2017a. Discovery of Early Permian intra-oceanic arc adakite in the Meilaotewula ophiolite, Inner Mongolia and its evolution model[J]. Acta Geologica Sinica, 91(08): 1776-1795 (in Chinese with English abstract).
Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2017b. LAICP-MS zircon U-Pb dating of the Nuhete Early Cretaceous Atype granite in XiUjimqin Banner of Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 36(8): 1343-1358 (in Chinese with English abstract).
Wang Qiang, Zhao Zhenhua, Xu Jifeng, DEerekA WYMAN, Xiong Xiaolin, Zi Feng, Bai Zhenghua. 2006. Carboniferous adakite-high Mg andesite-Nb-enriched basaltic rock suties in the Northern Tianshan area:Implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization[J]. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract).
Woodhead J D, Hergt J M, Davidson J P. 2001. Hafnium isotope evidence for conservative element mobility during subduction zone processes[J]. Earth and Planetary Science letters, 192(3): 331-346. DOI:10.1016/S0012-821X(01)00453-8
Xiao Qinghui, Li Tingdong, Pan Guitang, Lu Songnian, Ding Xiaozhong, Deng Jinfu, Feng Yimin, Liu Yong, Kou Caihua, Yang Linlin. 2016. Petrologic ideas for identification of ocean-continent transition:Recognition of intra-oceanic arc and initial subduction[J]. Geology in China, 43(3): 721-737 (in Chinese with English abstract).
Yogodzinski G M. 1995. Magnesian andesite in the western Aleutian Komandorsky Region; implications for Slab melting and processes in the mantle wedge[J]. Geological Society of Amerzca Bulletin, 107(5): 505-519. DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
Zhang Qi, Qian Qing, Zhai Mingguo, Jin Weijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochcmitry, Petrogenesis and geodynamic implications of sanukite[J]. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract).
Zeng Junjie, Zheng Youye, Qi Jianhong, Dai Fanghua, Zhang Gangyang, Pang Yingchun, Wu Bin. 2008. Foundation and geological significance of adakitic granite at Guyang of Inner Mongolia[J]. Earth Science——Journal of China University of Geosciences, 33(6): 755-762 (in Chinese with English abstract). DOI:10.3799/dqkx.2008.091
Zhang Yuqing. 2009. Geochemical characteristics of Permian adakitic granodiorite in Bayinwula of Sonid Left Banner, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 28(4): 329-338 (in Chinese with English abstract).
Zhao Shaoqing, Fu Lebing, Wei Junhao. 2015. Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province[J]. Earth Science——Journal of China University of Geosciences, 40(1): 61-76. DOI:10.3799/dqkx.2015.005
陈斌, 赵国春, Simon Wilde. 2001. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 47(4): 361-367.
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 37(4): 1112-1118.
董学发, 余盛强, 唐增才, 肖庆辉, 袁强, 陈忠大, 周宗尧, 吴小勇. 2016. 浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J]. 中国地质, 43(3): 817-828. DOI:10.12029/gc20160309
公繁浩, 黄欣, 郑月娟, 陈树旺. 2013. 内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J]. 地质与资源, 22(6): 478-483.
郝百武. 2012. 内蒙古那仁乌拉埃达克质花岗岩的发现、成因、锆石U-Pb年龄及其构造意义[J]. 矿物岩石, 32(1): 28-39.
康健丽, 肖志斌, 王惠初, 初航, 任云伟, 刘欢, 高知睿, 孙义伟. 2016. 内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据[J]. 地质学报, 90(2): 383-397.
李奋其, 李益多, 张士贞, 李勇. 2016. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质, 43(1): 142-152. DOI:10.12029/gc20160111
李英杰, 王金芳, 李红阳, 董培培, 刘玉翠, 刘德武, 白卉. 2012. 内蒙古西乌旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 28(4): 1282-1290.
李英杰, 王金芳, 李红阳, 董培培. 2015. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 31(5): 1461-1470.
李英杰, 王金芳, 李红阳, 董培培. 2013. 内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J]. 岩石学报, 29(8): 2719-2730.
梁日暄. 1994. 内蒙古中段蛇绿岩特征及地质意义[J]. 中国区域地质, (1): 37-45.
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 83(3): 365-376.
刘建峰, 李锦轶, 孙立新, 殷东方, 郑培玺. 2016. 内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年:对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 43(06): 1947-1962.
刘军, 武广, 李铁刚, 王国瑞, 吴昊. 2014. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 30(1): 95-108.
石玉若, 刘翠, 邓晋福, 简平. 2014. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J]. 岩石学报, 30(11): 3155-3171.
唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义[J]. 岩石学报, 26: 2495-2512.
王金芳, 李英杰, 李红阳, 董培培. 2017a. 内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J]. 地质学报, 91(08): 1776-1795.
王金芳, 李英杰, 李红阳, 董培培. 2017b. 内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICPMS锆石U-Pb年龄及其地质意义[J]. 地质通报, 36(8): 1343-1358.
王强, 赵振华, 许继峰, Derek A.WYMAN, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报, 22(1): 11-30.
肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016. 洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J]. 中国地质, 43(3): 721-737. DOI:10.12029/gc20160303
曾俊杰, 郑有业, 齐建宏, 代芳华, 张刚阳, 庞迎春, 武彬. 2008. 内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J]. 地球科学——中国地质大学学报, 33(6): 755-762.
张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J]. 岩石矿物学杂志, 24(2): 117-125.
张玉清. 2009. 内蒙古苏尼特左旗巴音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义[J]. 岩石矿物学杂志, 28(4): 329-338.
赵少卿, 付乐兵, 魏俊浩, 谭俊, 王旭春, 赵志新, 李翔. 2015. 青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景[J]. 地球科学——中国地质大学学报, 40(1): 61-76.