文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (1): 115-125  
0
引用本文
赵慧, 杨经绥, 刘飞, 熊发挥, 连东洋, 姚虎, 董玉飞. 2019. 雅鲁藏布江缝合带西段错不扎铬铁矿特征及形成环境[J]. 中国地质, 46(1): 115-125.  
ZHAO Hui, YANG JingSui, LIU Fei, XIONG Fahui, LIAN Dongyang, YAO Hu, DONG Yufei. 2019. Features of the Cuobuzha podiform chromitite along western Yarlung Zangbo suture zone in Tibet:Implications for its tectonic setting[J]. Geology in China, 46(1): 115-125. (in Chinese with English abstract).  

雅鲁藏布江缝合带西段错不扎铬铁矿特征及形成环境
赵慧1,2,3, 杨经绥3, 刘飞3, 熊发挥3, 连东洋4, 姚虎5, 董玉飞3    
1. 哈尔滨工业大学, 黑龙江 哈尔滨 150001;
2. 南方科技大学 地球与空间科学系, 广东 深圳 518055;
3. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
4. 南京大学 地球科学与工程学院, 江苏 南京 210046;
5. 中国科学院地球化学研究所, 贵州 贵阳 550081
摘要: 雅鲁藏布江蛇绿岩带是国内铬铁矿床出露点最多,且铬铁矿石储量、产量最大的一个蛇绿岩带。根据空间展布规律,该岩带被划分为东段(曲水—墨脱)、中段(昂仁—仁布)和西段(萨嘎至中印边境)3部分。其中,西段自萨嘎以西分为南、北两支亚带。长期以来的研究工作主要集中在东段和中段,西段的研究程度非常薄弱,尤其是北亚带。不同区段研究程度的不平衡十分不利于雅鲁藏布江蛇绿岩带内铬铁矿找矿工作的开展。错不扎蛇绿岩体位于雅鲁藏布江缝合带西段的北亚带,呈北西-南东向带状产出,主要由方辉橄榄岩组成,并普遍发育基性岩脉。野外地质调查在该蛇绿岩体中发现了多个铬铁矿化点,矿化体呈透镜状产于方辉橄榄岩中,出露地表的长度为0.5~1m,厚为0.2~0.5 m,矿石均为致密块状。电子探针分析结果表明,错不扎铬铁矿属于高铬型铬铁矿,铬尖晶石的Cr#[=100×Cr/(Cr+Al)]为75~78,Mg#[=100×Mg/(Mg+Fe2+)]为66~69。计算结果表明,母岩浆的FeO/MgO比值为0.51~0.65,Al2O3和TiO2含量分别为11.27%~12.1%和0.19%~0.4%,与玻安质岩浆的化学成分相当。然而,针状单斜辉石出溶体的发现指示错不扎铬铁矿可能还经历了一个深部作用过程。
关键词: 雅鲁藏布江缝合带    错不扎铬铁矿    铬尖晶石    玻安质岩浆    单斜辉石出溶体    
中图分类号:P618.33            文献标志码:A             文章编号:1000-3657(2019)01-0115-11
Features of the Cuobuzha podiform chromitite along western Yarlung Zangbo suture zone in Tibet:Implications for its tectonic setting
ZHAO Hui1,2,3, YANG JingSui3, LIU Fei3, XIONG Fahui3, LIAN Dongyang4, YAO Hu5, DONG Yufei3    
1. Harbin Institute of Technology, Harbin 150001, Heilongjiang, China;
2. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China;
3. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 201123, Jiangsu, China;
5. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
Abstract: Most of chromitite ores produced in China are from the Yarlung Zangbo ophiolite belt (YZSZ), which is divided into three parts:the eastern part (Qu Shui to Mo Tuo), the middle part (Ang Ren to Ren Bu) and the western part (Saga to the Sino-Indian border). Furthermore, the western part contains north sub-belt and south sub-belt. For a long time, most of studies have focused on the eastern part and middle part, with very insufficient studies conducted on the western part, especially on the north subbelt, which inhibits mineral exploration along the YZSZ. Cuobuzha ophiolite is located in the north sub-belt, which occurs along a NW-SE trending belt and is mainly composed of harzburgite with diabase dykes. The field investigation discovered several chromite orebodies 0.5-1 m long and 0.2-0.5 m thick within the ophiolite. All of the ores are massive. The analytical results by electron-probe micro-analyzer (EPMA) show that the Cuobuzha chromitite is of typical high-Cr variety with Cr number[Cr#=100×Cr/(Cr + Al)] ranging from 75 to 78, and Mg number[Mg#=100×Mg/(Mg + Fe2+)] ranging from 66 to 69. Calculated results show that the ratio of FeO/MgO ranges from 0.51 to 0.65, and that the values of Al2O3 and TiO2 are 11.27%-12.1% and 0.19%-0.4%, respectively, revealing that the Cuobuzha chromitite has boninitic affinities. However, the occurrence of clinopyroxene exsolution indicates that it should have experienced a deep process.
Key words: Yarlung Zangbo Suture Zone    Cuobuzha chromitite    Cr-spinel    Boninitic magma    clinopyroxene exsolution    

1 引言

铬由于具有质硬、耐磨、耐高温、抗腐蚀等特性,被广泛运用于冶金工业、耐火材料以及化学工业中,是生产不锈钢不可替代的原料。铬铁矿是自然界中提炼铬的主要矿物原料,而中国的铬铁矿储量仅占世界的千分之一,每年消费量的90%以上均依靠进口(张建等, 2009)。中国的超基性岩体大约有9000多个,然而目前已发现的铬铁矿床却很少(鲍佩声等, 1999)。中国的蛇绿岩型铬铁矿主要沿着显生宙造山带分布,如特提斯—喜马拉雅造山带(西藏罗布莎和东巧)、中亚造山带(新疆萨尔托海、鲸鱼,内蒙古贺根山和索伦山)和秦岭—祁连—昆仑造山带(玉石沟、大道尔吉)(王希斌等, 1992)。其中,雅鲁藏布江蛇绿岩带是国内铬铁矿床出露点最多,且铬铁矿石储量、产量最大的一个蛇绿岩带,国产80%以上的铬铁矿石均来自该岩带(黄圭成等, 2007)。

根据空间分布特点,雅鲁藏布江蛇绿岩带被划分为东段(曲水—朗县)、中段(昂仁—仁布)和西段(萨嘎以西至中印边境)3部分。西段自萨嘎向西又分为南亚带(达巴—休古嘎布蛇绿岩带)和北亚带(达机翁—萨嘎蛇绿岩带)(潘桂棠等, 1997; 张万平等, 2011)。由于地质研究和勘查程度不同,雅鲁藏布江蛇绿岩带内已发现的铬铁矿床规模和分布极不均衡(黄圭成等, 2006)。东段的铬铁矿床规模最大,且数量也是最多,中国唯一的大型铬铁矿床——罗布莎铬铁矿床便位于此区段(鲍佩声等, 1999; 章奇志等, 2017);而中段虽然蛇绿岩数量最多、规模最大,但发现的铬铁矿体数量较少,规模也不大。西段南亚带的蛇绿岩规模较大,目前已在拉昂错、东波、当穷和休古嘎布等岩体中发现了大量的铬铁矿矿化点。西段北亚带的蛇绿岩规模小、数量少,目前仅在达机翁、巴尔和日康巴岩体中发现了铬铁矿矿化点。长期以来的研究主要集中在东段和中段,尽管近年来也出现了一些关于西段南亚带蛇绿岩型铬铁矿的研究报道(黄圭成等, 2007; 熊发挥等, 2013, 2015, 2016),但西段的研究程度还非常薄弱,尤其是北亚带。不同区段研究程度的不平衡十分不利于雅鲁藏布江蛇绿岩带内铬铁矿找矿工作的开展。

野外地质调查在北亚带的错不扎蛇绿岩体中发现了多个铬铁矿化点,但目前还鲜有关于它的报道。本论文将以错不扎铬铁矿为研究对象,对其进行详细的矿物学研究,试图在此基础上探讨其形成环境,为青藏高原铬铁矿的找矿勘查工作提供新的成果资料。

2 地质背景

雅鲁藏布江缝合带西起阿里地区的狮泉河,向东经日喀则、罗布莎至南迦巴瓦大拐弯,全长近2000 km;以北为拉萨地块,以南为喜马拉雅地体,是青藏高原最南端的一条缝合带(Yin et al., 2000; 图 1a)。带内广泛发育蛇绿岩,代表印度板块和亚欧板块之间消失的新特提斯洋(潘桂棠等, 1997)。

图 1 研究区区域地质简图(a)和雅鲁藏布江缝合带主要蛇绿岩分布图(b)(据刘飞等, 2015 Fig. 1 Simplified geological map of the Tibetan Plateau and surrounding areas (a) and distribution of the ophiolites along the YZSZ and BNS in southern Tibet (b) (modified after Liu et al., 2015)

根据空间展布规律,雅鲁藏布江蛇绿岩带被划分为东段(曲水—墨脱)、中段(昂仁—仁布)和西段(萨嘎至中印边境)3部分(潘桂棠等, 1997; 张万平等, 2011)。其中,西段自萨嘎以西分为南北两支,即萨嘎—达机翁蛇绿岩带(北亚带)和达巴—休古嘎布蛇绿岩带(南亚带),其间被NWW向的仲巴微地体分隔(潘桂棠, 1997; 徐德明等, 2006, 2008; 黄圭成等, 2006, 2007; 李祥辉等, 2014)。北亚带主要由三叠纪修康群构造混杂岩和晚侏罗世—早白垩世蛇绿混杂岩组成,韧性剪切带十分发育且具有分带的特点。修康群为一套晚三叠世的复理石沉积,代表巨大的俯冲增生楔(王成善等, 1999)。北亚带蛇绿岩体规模不大,多呈长条状、透镜状平行区域构造线或沿断裂产出,长约10 km,宽1~2 km;岩石普遍发生了蛇纹石化,塑性及脆性变形强烈,以构造岩片形式与地层混杂产出,结构单元不全,保存较完好的蛇绿岩体主要有萨嘎、巴尔、错不扎、达机翁和加纳崩等岩体(夏斌等, 1995, 1997; 李源等, 2011; 刘飞等, 2013, 2015; 连东洋等, 2015; 冯光英等, 2015, 2016)。南亚带发育大量混杂岩,基质时代为三叠—白垩纪,以泥砂岩为主;岩块的岩性十分复杂,时代为二叠—白垩纪。南亚带蛇绿岩体的规模较大,主要的岩体有休古嘎布、普兰、东波等岩体(王成善等, 1999; 黄圭成等, 2006, 2007; 徐德明等, 2006, 2008; Bédard et al., 2009; 张万平等, 2011; 杨经绥等, 2011; 熊发挥等, 2011; 徐向珍等, 2011; 刘飞等, 2013)。由于受到后期构造运动的影响,除了东段罗布莎和中段日喀则蛇绿岩层序出露比较齐全,其他蛇绿岩均被肢解成了构造岩片。雅鲁藏布江蛇绿岩的形成时代从中三叠世到早白垩世均有分布,但主要集中在晚侏罗世—早白垩世(王成善等, 1999; Aitchison et al., 2007)。仲巴微地体位于南、北亚带之间,南东起于萨嘎县北部查藏一带,向西延续进入克什米尔,全长近1000 km,北东-南西宽度一般不超过50 km,平均20~30 km,北部边界为穷果—门士断裂,南部边界为札达—仲巴—查藏断裂(郭建慈等, 2006; 李祥辉等, 2014)。仲巴微陆块主要包含两套地层:一套是震旦—寒武系齐吾贡巴群,以绿片岩相的浅变质岩为主,该套岩石构成了该区的构造基底;另一套是奥陶系—三叠系海相稳定型沉积,岩性以滨浅海相砂板岩、碳酸盐岩沉积为主,共同构成了沉积盖层,除缺失下石炭统地层外,其余地层较为连续,呈北西西向至近东西向展布,并发育巨型多穹隆复式背斜构造(张振利等, 2007)。

错不扎蛇绿岩体位于雅鲁藏布江缝合带西段的北亚带(图 1b),呈北西-南东向带状产出,与北侧冈底斯岩基(岩性主要为花岗岩和闪长岩)呈断层接触(图 2)。接触部位的闪长岩普遍发生了片理化,矿物具有明显的定向排列。岩体主要由地幔橄榄岩组成,上部被石英菱镁岩覆盖,两者呈断层接触,普遍可见基性岩脉侵入到地幔橄榄岩中。地幔橄榄岩主要为方辉橄榄岩和含单辉方辉橄榄岩,具有少量的纯橄岩透镜体,岩体内部发育大量的蛇纹石脉。野外地质调查过程中,在错不扎蛇绿岩体中发现了多个铬铁矿化点,矿化体呈透镜状产于方辉橄榄岩中,出露地表的长度为0.5~1 m,厚为0.2~ 0.5 m,矿石均为致密块状(图 3)。采样点为31° 22′ 13 ″ N,80° 34′ 30″ E。

图 2 雅鲁藏布江缝合带北亚带错不扎岩体区域地质简图(据冯光英等, 2015 Fig. 2 Detailed geological map of the Cuobuzha area in southern Tibet (modified after Feng et al., 2015)
图 3 雅鲁藏布江缝合带北亚带错不扎铬铁矿野外照片 Fig. 3 Field relations and outcrops of the Cuobuzha chromitite.
3 分析测试方法

对采集的样品磨制光薄片共60片。薄片的镜下观察和拍照在自然资源部深地动力学重点实验室完成,仪器为仪器为Zeiss公司产的偏光显微镜Axio。

铬尖晶石的电子探针测试实验在东华理工大学核资源与环境教育部重点实验室完成,仪器为日本电子公司JXA-8100、能谱仪Inca Energy型,分析过程按照国家电子探针定量分析标准(GB/T15617- 2002)进行。仪器工作条件:加速电压15 kV,探针束流20 nA,束斑直径5 μm,峰值计数时间设定为20 s,背景计数时间设定为10 s。

4 矿石镜下特征

错不扎铬铁矿石均为致密块状,主要金属矿物为铬尖晶石,含量大于90%(图 4a, b)。铬尖晶石多为半自形—他形,以中粗粒为主,呈紧密镶嵌结构。矿石内部裂隙普遍发育,铬尖晶石颗粒常呈碎裂结构(图 4c, d)。颗粒之间的脉石矿物主要为绿泥石,很少见到新鲜的硅酸盐脉石矿物产出(图 4a, c, d)。

图 4 错不扎铬铁矿铬尖晶石反光镜下照片 a、b—新鲜的块状铬铁矿,分不清单矿物颗粒,脉石矿物主要为绿泥石;c、d—发育碎裂结构的铬尖晶石,矿物颗粒之间偶见硫化物;Chr—铬铁矿, Chl—绿泥石 Fig. 4 Microphotographs of the Cuobuzha chromitite deposit (a) and (b) Massive chromitite composed of more than 90 modal% chromites; (c) and (d) Cataclastic chromitite ore with the space between cracked chromite grains filled with chlorite and sulfide; Chr-Chromite, Chl-Chlorite

研究表明流体的后期交代作用会导致铬尖晶石的成分发生改变,尤其在超高压变质作用或者退变质作用过程中并且伴随有流体参与,铬尖晶石会与基质中的硅酸盐矿物(橄榄石或蛇纹石)发生反应形成绿泥石以及富铬、富铁(Fe2+)的铬尖晶石(Merlini et al., 2009)。因此,为了获得真实可靠的数据,选择新鲜的样品进行矿物成分分析。

5 铬尖晶石化学成分

本次研究共分析了7个样品,共15个点,数据见表 1。矿石中铬尖晶石的成分比较均一,Cr2O3含量为56.01% ~58.43%,MgO含量为14.41% ~ 16.32 %,FeO(全铁)含量为11.75%~13.31 %,Al2O3含量为11.28% ~12.25%,TiO2含量为0.11% ~ 0.28 %,NiO含量为0.09%~0.29 %,MnO含量为0.15%~0.38 %,几乎不含SiO2、Na2O、K2O、CaO。铬尖晶石的Cr# [= 100 × Cr/(Cr + Al)]在75~78之间变化,Mg# [=100 × Mg/(Mg + Fe2+)]在66~69之间变化,Fe2+# [=100 × Fe2+/( Mg + Fe2+)]变化于31~ 34。根据成分分类,错不扎铬铁矿属于高铬型铬铁矿(Thayer et al., 1964, 1970)。铬尖晶石的MgO与FeO成反比,Al2O3与Cr2O3成反比(图 5)。

表 1 错不扎铬铁矿铬尖晶石电子探针数据(%) Table 1 Compositions of chromites from the Cuobuzha chromitite (wt.%)
图 5 错不扎铬铁矿和方辉橄榄岩中铬尖晶石化学成分图解 Fig. 5 Inter-elemental relationships of chromites from the Cuobuzha ophiolite (see the text for detailed discussion)

与之相比,围岩方辉橄榄岩中的铬尖晶石成分变化较大,Cr2O3、MgO含量较低,分别为19.84%~ 32.23 %和15.47%~17.78 %,而Al2O3和FeO(全铁)含量较高,分别为33.31%~ 47.02 %和13.85%~ 18.22 %,TiO2含量相当(0.07%~0.35 %),Cr#较低,变化于22~39,Mg#较高,变化于60~70(数据引自冯光英, 2015)。由此看出,铬铁矿石与围岩方辉橄榄岩中铬尖晶石的成分有较大差别(图 5)。

6 单斜辉石出溶体

错不扎铬铁矿中有少量单斜辉石针状出溶体产出(图 6)。出溶体长度约为2~10 μm,宽度小于1 μm。在成分的线扫描图像上可以看出,出溶体具有较高的Ca、Si含量,低Cr、Al含量的特点。据此,本文初步推测这些出溶体为单斜辉石。

图 6 错不扎铬铁矿铬尖晶石中单斜辉石出溶体成分扫描图 Fig. 6 Compositional images of clinopyroxene exsolutions in chromites from the Cuobuzha chromitite
7 讨论

铬尖晶石中的三价阳离子Cr3+、Al3+和四价阳离子Ti4+扩散速率较低,在后期的冷却再平衡过程中几乎不会进入到矿物颗粒中,因此它们的氧化物可以用来示踪铬尖晶石形成的大地构造环境(Scowen et al., 1991; Barnes et al., 1998; Arai and Matsukage, 1998)。在Cr#- TiO2和Al2O3- TiO2图解上(图 7),大部分的方辉橄榄岩落入到了大洋中脊玄武岩(MORB)区域,而错不扎铬铁矿全部都落入到了玻安岩或者岛弧火山岩区域,表明其母岩浆可能具有玻安质岩浆的地球化学亲缘性。

图 7 错不扎铬铁矿和方辉橄榄岩中尖晶石的Cr#-TiO2(据Pagé and Barnes, 2009)和Al2O3-TiO2图解(据Kamenetsky et al., 2001 Fig. 7 Cr#-TiO2(after Pagé and Barnes, 2009)and Al2O3- TiO2diagrams(after Kamenetsky et al., 2001)of the Cuobuzha chromitite and harzburgite

对于块状铬铁矿,由于橄榄石和铬铁矿之间的Fe-Mg交换比较弱,因此可以根据铬铁矿的成分来估算母岩浆的FeO/MgO比值。Maurel et al.(1982)提出了铬铁矿母岩浆FeO/ MgO比值的计算公式:

根据这一计算公式,获得错不扎铬铁矿母岩浆的FeO/MgO比值为0.51~0.65,接近或略低于玻安质岩浆的FeO/MgO比值(0.7~1.4;Wilson, 1989)。

对于高铬型铬铁矿,Rollinson et al.(2008)提出了母岩浆Al2O3和TiO2含量的计算公式:

计算结果表明,错不扎铬铁矿的母岩浆Al2O3和TiO2含量分别为11.27%~12.1%和0.19%~0.4%,与阿曼、罗布莎等地高铬型铬铁矿计算出来的母岩浆含量相当(Rollinson, 2008; Zhou et al., 2014)。

豆荚状铬铁矿床赋存在蛇绿岩中,关于其形成环境的探讨必然涉及到蛇绿岩。研究表明,雅鲁藏布江缝合带中存在两种类型的蛇绿岩。第一种形成于典型的俯冲带(SSZ)环境,这种类型的蛇绿岩主要发育在雅鲁藏布江缝合带中段,包括日喀则蛇绿岩(Dupuis et al., 2005; Guilmette et al., 2009)、萨嘎和桑桑蛇绿岩(Bédard et al., 2009)。第二种经历了两个阶段的形成过程,首先地幔橄榄岩形成于大洋中脊(MOR)环境,后期又普遍遭受了不同程度俯冲带(SSZ)环境的改造,这种类型的地幔橄榄岩主要位于雅鲁藏布江缝合带的东段和西段,包括罗布莎、普兰和东波等岩体(徐向珍, 2011; 熊发挥等, 2015, 2016)。前人研究表明,错不扎方辉橄榄岩属于第二种类型,经历了两个阶段的形成过程(冯光英等, 2015, 2016)。此外,侵入地幔橄榄岩中的基性岩脉具有俯冲带火山岩的地球化学特征,被认为形成于弧前或弧后环境(刘飞等, 2015)。根据前文所述,错不扎铬铁矿与方辉橄榄岩的矿物化学成分具有显著的差异(图 5图 7),这表明它们经历了不同的形成过程。与此同时,错不扎铬铁矿具有玻安质岩浆的地球化学亲缘性。因此,本文推测错不扎铬铁矿形成于俯冲带(SSZ)环境。

Yamamoto et al.(2008)在罗布莎铬铁矿中首次发现了出溶的单斜辉石和柯石英,并认为它们是铬铁矿高压成因的标志。实验岩石学研究表明:铬铁矿在12.5 GPa条件下会转变为CF相的铬铁矿(CaFe2O4);当压力大于20 GPa时,其会进一步转变为CT相的铬铁矿(CaTi2O4)(Chen et al., 2003);并且,CF相和CT相的铬铁矿含有Ca、Si、Ti、Fe等元素,构成了固溶体系列(Chen et al., 2003)。单斜辉石出溶体的形成过程分为两个阶段:(1)当压力低于12.5 GPa时,具有CaO和SiO2组分的CF相铬铁矿分解为硅酸盐矿物和尖晶石型铬铁矿;(2)当压力继续下降时,残留在铬铁矿晶体中少量的CaO和SiO2组分会以针状单斜辉石的形式析出(Yamamoto et al., 2008)。因此,错不扎铬铁矿中的针状单斜辉石出溶体指示其可能经历了一个深部作用过程,但这还有待进一步的研究证明。

8 结论

(1)错不扎蛇绿岩型铬铁矿属于高铬型铬铁矿,铬尖晶石的Cr#(=100× Cr/(Cr + Al))在75~78之间变化,Mg#(= 100 × Mg/(Mg + Fe2+)(在66~69之间变化。

(2)错不扎铬铁矿的母岩浆具有玻安质熔体的亲缘性。计算结果表明,母岩浆的FeO/MgO比值为0.51~0.65,Al2O3和TiO2含量分别为11.27%~12.1%和0.19%~0.4%,与玻安质岩浆的化学成分相当。

(3)错不扎铬铁矿形成于俯冲带环境,但针状单斜辉石出溶体的发现指示其可能还经历了一个深部作用过程。

致谢: 野外工作得到西藏矿业公司教授级高工巴登珠的大力帮助;论文得到了中国地质大学(北京)罗照华教授的指导;论文撰写过程中与田亚洲、吴巍伟、陈艳虹博士进行了有益的讨论, 在此一并致以诚挚的谢意!

参考文献
Aitchison J C, Ali J R, Davis A M. 2007. When and where did India and Asia collide[J]. Journal of Geophysical Research, 112: 1-19.
Arai S, Matsukage K. 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific:A comparison between abyssal and alpine-type podiform chromitites[J]. Lithos, 43(1): 1-14.
Bao Peisheng, Wang Xibin, Peng Genyong. 1999. The Chromite Deposite in China[M]. Beijing: Science Press, 98-142.
Barnes S J. 1998. Chromite in Komatiites, 1. Magmatic Controls on Crystallization and Composition[J]. Journal of Petrology, 39(10): 1689-1720. DOI:10.1093/petroj/39.10.1689
Bédard É, Hébert R, Guilmette C, Lesage G, Wang C S, Dostal J. 2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet:Evidence for an arc-back-arc origin[J]. Lithos, 113: 48-67. DOI:10.1016/j.lithos.2009.01.011
Chen Ming, Shu Jinfu, Mao Hokwang, Xie Xiande, Russell J, Hemley. 2003. Natural occurrence and synthesis of two new postspinel polymorphs of chromite[J]. Proceedings of the National Academy of Sciences, 100: 14651-14654. DOI:10.1073/pnas.2136599100
Dupuis C, Hèbert R, Dubois-Côtè V, Guilmette C, Wang C S, Li Y L, Li Z J. 2005. The Yarlung Zangbo Suture Zone ophiolitic melange(southern Tibet):New insights from geochemistry of ultra-mafic rocks[J]. Journal of Asian Earth Sciences, 25: 937-960. DOI:10.1016/j.jseaes.2004.09.004
Feng Guangying, Yang Jingsui, Liu Shen, Niu Xiaolu, Xiong Fahui, Liu Fei. 2016. Latinum-Group Element Features of Cuobuzha Peridotite from Western Yarlung Zangbo Suture Zone[J]. Acta Mineralogica Sinica, 36(3): 309-317 (in Chinese with English abstract).
Feng Guangying, Yang Jingsui, Xiong Fahui, Liu Fei, Niu Xiaolu, Lian Dongyang, Wang Yunpeng, Zhao Yijue. 2015. Petrology, geochemistry and genesis of the Cuobuzha peridotite in the western Yarlung Zangbo suture zone[J]. Geology in China, 42(5): 1337-1353 (in Chinese with English abstract).
Guilmette C, Hébert R, Wang Chengshan, Villeneuve Mike. 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo Suture Zone, south Tibet[J]. Lithos, 112(1): 149-162.
Guo Jianci, Duo Ji, Wen Chunqi, Chen Huiqiang, Fan Xiaoping, Li Xiaowen. 2006. Mineralization background and stages of the Mayum gold deposit, Xizang[J]. Sedimentary Geology and Tethyan Geology, 26(1): 60-66 (in Chinese with English abstract).
Huang Guicheng, Mo Xuanxue, Xu Deming, Lei Yijun, Li Lijuan. 2006. Origination and Evolution of Daba-Xiugugabu Ophiolite Belt in the Southwestern Tibet[J]. Geology and Mineral Resources of South China, (3): 1-8 (in Chinese with English abstract).
Huang Guicheng, Xu Deming, Lei Yijun, Li Lijuan. 2007. Chromite prospects in the Daba-Xiugugabu ophiolite zone southwestern Tibet[J]. Geology in China, 34(4): 668-674 (in Chinese with English abstract).
Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel:An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology, 42: 655-671. DOI:10.1093/petrology/42.4.655
Lian Dongyang, Yang Jingsui, Xiong Fahui, Liu Fei, Wang Yunpeng. 2015. Platinum-group element characteristics of the peridotite and podiform chromitite from Dajiweng ophiolite of the western segment of Yarlung-Zangbo suture zone, Tibet[J]. Geology in China, 42(2): 525-546 (in Chinese with English abstract).
Liu Fei, Yang Jingsui, Chen Songyong, Li Zhaoli, Lian Dongyang, Zhou Wenda, Zhang Lan. 2013. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone:Evidence for intra-oceanicsupra-subduction within the Neo-Tethys[J]. Geology in China, 40(3): 742-755 (in Chinese with English abstract).
Liu Fei, Yang Jingsui, Lian Dongyang, Zhao Hui, Zhao Yijue, Zhang Lan. 2015. The genesis and tectonic significance of mafic dikes in the Western part of the Yarlung Zangbo suture zone, Tibet[J]. Acta Geoscientica Sinica, 36(4): 441-454 (in Chinese with English abstract).
Li Xianghui, Wang Chengshan, Li Yalin, Wei Yushuai, Chen Xi. 2014. Definition and composition of the Zhongba Microterrane in southwest Tibet[J]. Acta Geologica Sinica, 88(8): 1372-1381 (in Chinese with English abstract).
Li Yuan, Yang Jingsui, Liu Zhao, Jia Yi, Xu Xiangzhen. 2011. The origins of Baer ophiolitic peridotite and its implication in the Yarlung Zangbo suture zone, southern Tibet[J]. Acta Petrologica Sinica, 27(11): 3239-3254 (in Chinese with English abstract).
Maurel C, Maurel P. 1982. Etude experimentale de la distribution de l'aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques:Teneur en chrome des spinelles[J]. Bulletin de Mineralogie, 105: 197-202.
Merlini A, Grieco G, Diella V. 2009. Ferritchromite and Cr-chlorite formation in Kalkan serpentinitic melange (Southern Urals, Russia)[J]. American Mineralogist, 94: 1459-1467. DOI:10.2138/am.2009.3082
Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Quebec, Canada[J]. Economic Geology, 104(104): 997-1018.
Pan Guitang, Chen Zhiliang, Li Xinzhen. 1997. The Formation and Evolution of the East Tethyan[M]. Beijing: Geological Publishing House, 1-100 (in Chinese with English abstract).
Rollinson H. 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite:Inferred parental melt compositions[J]. Contributions to Mineralogy and Petrology, 156(3): 273-288. DOI:10.1007/s00410-008-0284-2
Scowen P A H, Roeder P L, Helz R T. 1991. Reequilibration of chromite within Kilauea Iki lava lake, Hawaii[J]. Contributions to Mineralogy & Petrology, 107(1): 8-20.
Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Gulemen-Soridag district, Turkey[J]. Economic Geology, 59(8): 1497-1524. DOI:10.2113/gsecongeo.59.8.1497
Thayer T P. 1970. Chromite segregation as petrogenetic indicators[J]. Geological Society of South Africa Special Publication, 1: 380-390.
Wang Chengshan, Liu Zhifei, Li Zhaoxiang, Wan Xiaoqiao. 1999. Xigaze Fore-arc Basin and Yarlung Zangbo Suture Zone[M]. Beijing: Geological Publishing House, 1-237 (in Chinese with English abstract).
Wang Xibin, Hao Ziguo, Bao Peisheng. 1992. Genetic types and some metallogenic characteristics of chromite deposits in ophiolites within phanerozoic orogenic belts of China[J]. Mineral Deposits, 11(1): 23-36 (in Chinese with English abstract).
Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman, 1-466.
Xia Bin, He Pengyou. 1995. Petro geochemistry and genetic significance of the Jianapeng ophiolite, Tibet[J]. Acta Mineralogica Sinica, 15(2): 236-242 (in Chinese with English abstract).
Xia Bin, Hong Yurong. 1997. The lithogeochemical characteristics and origin of Dajiweng ophiolite in Xizang(Tibet)[J]. GeologyGeochemistry, 1: 46-52 (in Chinese with English abstract).
Xiong Fahui, Yang Jingsui, Guo Guolin, Liu Zhao, Xu Xiangzhen, Tian Yazhou, Lai Shengmin, Chen Yanhong, Zhang Lan. 2016. Exsolutions in Olivine from the Lower Cr# Dunite in the Purang Ophiolite, the western portion of the Yarlung-Zangbo suture zone in Tibet[J]. Earth Science, 37(1): 79-89 (in Chinese with English abstract).
Xiong Fahui, Yang Jingsui, Robinson P T, Xu Xiangzhen. 2015. Origin of podiformchromitite, a new model based on the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2): 525-542. DOI:10.1016/j.gr.2014.04.008
Xiong Fahui, Yang Jingsui, Li Yuan, Liu Zhao, Guo Guolin, Zhou Wenda, Chen Songyong, Li Yibing, Xu Xiangzhen, Niu Xiaolu. 2015. Tectonic setting of Dongbo ophiolite in the western portion of the Yarlung Zangbo suture zone, Tibet[J]. Earth Science, 36(1): 31-40 (in Chinese with English abstract).
Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-satge formation of the podiform chromitite[J]. Geology in China, 40(3): 820-839 (in Chinese with English abstract).
Xiong Fahui, Yang Jingsui, Liang Fenghua, Ba Dengzhu, Zhang Jian, Xu Xiangzhen, Li Yuan, Liu Zhao. 2011. Zircon U-Pbages of the Dongbo ophiolite in the western Yarlung Zangbo Suture zone and their geological significance[J]. Acta Petrologica Sinica, 27(11): 3223-3238.
Xu Deming, Huang Guicheng, Huang Lingqin, Lei Yijun, Li Lijuan. 2006. The origin of mantle peridotites in the Daba-Xiugugabu ophiolite belt, SW Tibet[J]. Geology and Mineral Resources of South China, (3): 10-18 (in Chinese with English abstract).
Xu Deming, Huang Guicheng, Lei Yijun. 2007. Origin of the Xiugugabu ophiolite massif, SW Tibet:Evidence from petrology and geochemistry[J]. Geotrctonica et Metallogenia, 31(4): 490-501 (in Chinese with English abstract).
Xu Xiangzhen, Yang Jingsui, Guo Guolin, Li Jinyang. 2011. Lithological research on the Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet[J]. Acta Petrologica Sinica, 27(11): 3179-3196 (in Chinese with English abstract).
Yamamoto S, Komiya T, Hirose K, Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahighpressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3): 314-322.
Yang Jingsui, Xiong Fahui, Guo Guolin, Liu fei, Liang Fenghua, Chen Songyong, Li Zhaoli, Zhang Liwen. 2011. The Dongbo ultramafic massif:A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for amajor chromite deposit[J]. Acta Petrologica Sinica, 27(11): 3207-3222 (in Chinese with English abstract).
Yang Jingsui, Ba Dengzhu, Xu Xiangzhen, Li Zhaoli. 2010. A restudy of podiform chromite deposits and theirore-prospecting vista in China[J]. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract).
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan Tibetan orogen[J]. Annu. Rev. Earth Planet, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211
Zhang Jian, Wang Denghong, Fu Ping. 2009. The present situation of chromium resources and prospecting direction in China[J]. Northwestern Geology, 42(1): 69-76.
Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. 2017. Discussion on genesis process and deep prospecting breakthrough of Luobusa chromitite, Tibet[J]. Geology in China, 44(2): 224-241 (in Chinese with English abstract).
Zhang Wanping, Yuan Sihua, Liu Wei. 2011. Distribution and Research significance of ophiolite in Brahmaputra suture zone, southern Tibet[J]. Northwestern Geology, 44(1): 1-9 (in Chinese with English abstract).
Zhang Zhenli, Zhuan Shaopeng, Li Guangdong, Zhang Jidong, Sun Xiao, Li Xian, Wang Lijun, Liu Hongzhang. 2007. Discovery of metabasaltic rocks in the Caibalong Formation in the Zhongba stratigraphic area, southern Tibet, China and their significance[J]. Geological Bulletin of China, 26(4): 410-416 (in Chinese with English abstract).
Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas John. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1): 262-283. DOI:10.1016/j.gr.2013.12.011
鲍佩声, 王希斌, 彭根永. 1999. 中国铬铁矿矿床[M]. 北京: 科学出版社, 98-142.
冯光英, 杨经绥, 熊发挥, 刘飞, 牛晓露, 连东洋, 王云鹏, 赵一珏. 2015. 雅鲁藏布江蛇绿岩带西段错不扎地幔橄榄岩组成特征及岩石成因[J]. 中国地质, 42(5): 1337-1353. DOI:10.3969/j.issn.1000-3657.2015.05.012
冯光英, 杨经绥, 刘燊, 牛晓露, 熊发挥, 刘飞. 2016. 雅鲁藏布江缝合带西段错不扎地幔橄榄岩铂族元素特征[J]. 矿物学报, 36(3): 309-317.
郭建慈, 多吉, 温春齐, 陈惠强, 范小平, 李小文. 2006. 西藏马攸木金矿成矿背景与成矿阶段[J]. 沉积与特提斯地质, 26(1): 60-66. DOI:10.3969/j.issn.1009-3850.2006.01.010
黄圭成, 莫宣学, 徐德明, 雷义均, 李丽娟. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带的形成与演化[J]. 华南地质与矿产, (3): 1-8. DOI:10.3969/j.issn.1007-3701.2006.03.001
黄圭成, 徐德明, 雷义均, 李丽娟. 2007. 西藏西南部达巴-休古嘎布绿岩带铬铁矿的找矿前景[J]. 中国地质, 34(4): 668-674. DOI:10.3969/j.issn.1000-3657.2007.04.016
连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏. 2015. 雅鲁藏布江缝合带西段达机翁地幔橄榄岩及铬铁矿的铂族元素特征[J]. 中国地质, 42(2): 525-546. DOI:10.3969/j.issn.1000-3657.2015.02.013
刘飞, 杨经绥, 陈松永, 李兆丽, 连东洋, 周文达, 张岚. 2013. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征:新特提斯洋内俯冲的证据[J]. 中国地质, 40(3): 742-755. DOI:10.3969/j.issn.1000-3657.2013.03.007
刘飞, 杨经绥, 连东洋, 赵慧, 赵一珏, 张岚. 2015. 雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义[J]. 地球学报, 36(4): 441-454.
李祥辉, 王成善, 李亚林, 魏玉帅, 陈曦. 2014. 仲巴微地体之定义及构成[J]. 地质学报, 88(8): 1372-1381.
李源, 杨经绥, 刘钊, 贾毅, 徐向珍. 2011. 西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义[J]. 岩石学报, 27(11): 3239-3254.
潘桂棠, 王培生. 1997. 东特提斯地质构造与形成演化[M]. 北京: 地质出版社, 1-100.
王成善, 刘志飞, 李祥辉, 万晓樵. 1999. 日喀则弧前盆地和雅鲁藏布江缝合带[M]. 北京: 地质出版社, 1-237.
王希斌, 郝梓国, 鲍佩声. 1992. 中国造山带蛇绿岩中铬铁矿的成因类型及其成矿的若干特征[J]. 矿床地质, 11(1): 23-36.
夏斌, 何朋友. 1995. 西藏加纳朋岩石地球化学与成因意义[J]. 矿物学报, 15(2): 236-242. DOI:10.3321/j.issn:1000-4734.1995.02.019
夏斌, 洪裕荣. 1997. 西藏达机翁蛇绿岩的岩石地球化学特征及其构造环境[J]. 地质地球化学, 1: 46-52.
熊发挥, 杨经绥, 郭国林, 刘钊, 徐向珍, 田亚洲, 来盛民, 陈艳红, 张岚. 2016. 西藏雅鲁藏布江缝合带西段普兰纯橄岩中橄榄石的出溶特征及指示意义[J]. 地球学报, 37(1): 79-89.
熊发挥, 杨经绥, 李源, 刘钊, 郭国林, 周文达, 陈松永, 李毅兵, 徐向珍, 牛晓露. 2015. 西藏雅鲁藏布江缝合带西段东波蛇绿岩的构造背景特征[J]. 地球学报, 36(1): 31-40.
熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 40(3): 820-839. DOI:10.3969/j.issn.1000-3657.2013.03.014
熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义[J]. 岩石学报, 27(11): 3223-3238.
徐德明, 黄圭成, 黄陵勤, 雷义均, 李丽娟. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带中地幔橄榄岩的成因[J]. 华南地质与矿产, (3): 10-18. DOI:10.3969/j.issn.1007-3701.2006.03.002
徐德明, 黄圭成, 雷义均. 2007. 西藏西南部休古嘎布蛇绿岩的成因:岩石学和地球化学证据[J]. 大地构造与成矿学, 31(4): 490-501. DOI:10.3969/j.issn.1001-1552.2007.04.014
徐向珍, 杨经绥, 郭国林, 李金阳. 2011. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究[J]. 岩石学报, 27(11): 3179-3196.
杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体:西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体[J]. 岩石学报, 27(11): 3207-3222.
杨经绥, 巴登珠, 徐向珍, 李兆丽. 2010. 中国铬铁矿床的再研究及找矿前景[J]. 中国地质, 37(4): 1141-1150. DOI:10.3969/j.issn.1000-3657.2010.04.028
张建, 王登红, 付平. 2009. 中国铬矿资源形势及其找矿方向[J]. 西北地质, 42(1): 69-76.
章奇志, 巴登珠, 熊发挥, 杨经绥. 2017. 西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论[J]. 中国地质, 44(2): 224-241.
张万平, 袁四化, 刘伟. 2011. 青藏高原南部雅鲁藏布江蛇绿岩带的时空分布特征及地质意义[J]. 西北地质, 44(1): 1-9. DOI:10.3969/j.issn.1009-6248.2011.01.001
张振利, 专少鹏, 李广栋, 张计东, 孙肖, 李先, 汪立军, 刘鸿章. 2007. 藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J]. 地质通报, 26(4): 410-416. DOI:10.3969/j.issn.1671-2552.2007.04.006