文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (1): 140-154  
0
引用本文
白国典, 琚根社, 何凯, 翟文建, 王坤, 李伟. 2019. 太行山南段丰峪蚀变正长花岗岩LA-ICP-MS锆石U-Pb年龄及构造意义[J]. 中国地质, 46(1): 140-154.  
BAI Guodian, JU Genshe, HE Kai, ZHAI Wenjian, WANG Kun, LI Wei. 2019. Zircon U-Pb age of the altered syenogranite in Fengyu area of southern Taihang Mountain and its significance[J]. Geology in China, 46(1): 140-154. (in Chinese with English abstract).  

太行山南段丰峪蚀变正长花岗岩LA-ICP-MS锆石U-Pb年龄及构造意义
白国典1, 琚根社2, 何凯1, 翟文建1, 王坤1, 李伟1    
1. 河南省地质调查院, 河南 郑州, 450007;
2. 河南省地质科学研究所, 河南 郑州, 450007
摘要: 在华北克拉通中东部的太行山南段丰峪一带,发现一处不整合于长城系大河组之下的蚀变正长花岗岩体。岩石类型为黑云母正长花岗岩,钾化、绢云母化蚀变明显。岩体低硅(SiO2=67.46%~68.89%)、富碱(K2O+Na2O=8.09~9.62,K2O/Na2O远大于1),铝指数A/CNK=1.20~1.57,属过铝质、钙碱性A型花岗岩。岩石富集大离子亲石元素,显著亏损Nb、Ba、Ta、Sr、P、Ti元素,稀土元素含量高(192~774 μg/g,平均483 μg/g)。用LA-ICPMS技术测得锆石的207Pb/206Pb年龄为(1790±22)Ma(n=22,MSWD=0.80),这是迄今为止太行山南段长城系底界直接的控制年龄。岩石主、微量元素地球化学以及同位素年代学表明,丰峪蚀变正长花岗岩形成于板内伸展构造环境,为熊耳期三叉裂谷东北一支的存在提供了重要的岩浆岩石学证据,其所处的太行山区与熊耳群火山岩所处的豫西地区均为熊耳期三叉裂谷的组成部分,进而为太行山区与豫西地区的长城系对比提供了重要支撑。
关键词: 蚀变正长花岗岩    LA-ICP-MS锆石U-Pb定年    三岔裂谷    长城系    地层对比    太行山南段         
中图分类号:P588.12+1;P597+.3            文献标志码:A             文章编号:1000-3657(2019)-0140-15
Zircon U-Pb age of the altered syenogranite in Fengyu area of southern Taihang Mountain and its significance
BAI Guodian1, JU Genshe2, HE Kai1, ZHAI Wenjian1, WANG Kun1, LI Wei1    
1. Henan Institute of Geological Survey, Zhengzhou 450007, Henan, China;
2. Henan Institute of Geological Sciences, Zhengzhou 450007, Henan, China
Abstract: An altered syenogranite pluton was found in Fengyu area, southern Taihang Mountain of central-eastern North China Craton, which unconformably underlies the Changcheng System. The rock type is biotite granite, which has undergone obvious Kfeldspar alteration and sericitization. The rocks are characterized by low SiO2 (SiO2=67.46%-68.89%) and high K2O + Na2O (K2O + Na2O=8.09-9.62, K2O/Na2O >> 1) content, with aluminum index A/CNK being 1.20-1.57, showing features of peraluminous, calc-alkaline A-type granite. The pluton is also characterized by enrichment of LILE and depletion of Ba, Nb, Ta, Sr, P, Ti, as well as high ∑REE values (192-774 μg/g, 483 ug/g om average). LA-ICP-MS zircon U-Pb dating of Fengyu altered syenogranite pluton yielded an 207Pb/206Pb age of(1790±22) Ma (n=22, MSWD=0.80), which is by far the most direct control of the lower limit age of Changcheng System in southern Taihang Mountain. Petrochemistry, rare earth elements, trace element geochemistry and isotopic geochronology all prove that Fengyu altered syenogranite pluton was formed in an intraplate extensional environment in the Paleoproterozoic period, thus providing an important magmatism evidence for the existence of northeast Xiongerrian trident continental rift; they also show that the Taihang Mountain area where Fengyu altered syenogranite pluton was formed and the western Henan Province where Xiong'er Group volcanic rocks were developed constitute part of the Xiongerrian trident continental rift, which thus provides an important support for the stratigraphic correlation of the Changcheng System between Taihang Mountain area and western Henan Province.
Key words: altered syenogranite    zircon U-Pb    LA-ICP-MS    trident continental rift    Changcheng System    stratigraphic correlation    southern Taihang Mountain    

1 引言

近年来,华北克拉通北缘和南缘长城系底界研究均取得了进展:一系列侵入岩锆石U-Pb测年成果的获得,使得华北克拉通北缘长城系底界(常州沟组底界)由原来的1800 Ma限定为1650 Ma左右((1685±15)Ma,高维等,2008;(1673±10)Ma,李怀坤等,2011;(1682±20)Ma,和政军等,2011;(1731± 1)Ma,澎澎等, 2011);在华北克拉通南缘,苏文博等(2012)李承东等(2017)在河南汝州云梦山组的上覆层位——洛峪口组中部(沉)凝灰岩中获得了(1611±8)Ma、(1634±10)Ma和(1638±9)Ma的锆石U-Pb年龄,从而将洛峪群及下伏汝阳群的时代归属长城纪,并长城系底界(汝阳群底界)的形成时限置于1750 Ma左右。太行山南段位居华北克拉通中间地带(图 1a),是华北克拉通的重要组成部分,也是连接华北克拉通南部和北部的纽带, 由于长城系底部缺少可定年的岩层或地质体,其底界年龄一直难以确定。

图 1 太行山南段丰峪一带地质简图 a—华北克拉通构造划分;b、c—丰峪中元古代蚀变正长花岗岩地质简图;1—第四系;2—寒武系;3—寒武系—奥陶系;4—长城系大诃组;5—新太古代;6—早白垩世石英闪长岩;7—丰峪花岗岩;8—平行不整合界线/角度不整合界线;9—断层;10—实测剖面位置及编号;11—锆石UPb采集位置 Fig. 1 Geological sketch map of Fengyu area and its adjacent areas, south of Taihang Mountain a-Tectonic subdivision of the North China Craton; b, c-Simplified geological map showing the distribution of Paleoproterozoic altered syenogranite in Fengyu area; 1-Quaternary; 2- Cambrian; 3- Cambrian-Ordovician; 4- Changcheng System Dahe Formation; 5- Neoarchean; 6- Early Cretaceous quartz diorite; 7- Fengyu syenogranite pluton; 8- Parallel unconformity/ angular unconformity; 9- Fault; 10- The measured section position and its serial number; 11- Zircon U-Pb sampling location

中元古代华北陆块存在着以崤山地区为中心的熊耳期三岔裂谷系(赵太平等, 2001, 2002, 2007乔秀夫等,2014),分别向西、东和北3个方向发展,北经西阳河至山西太原吕梁地区(山西省地质矿产局,1989), 西至陕西宝鸡千阳(陕西省地质矿产局,1989),东至京广线以东(被显生宙地层覆盖)(河南省地质矿产局,1989)。熊耳群火山岩、包括石秤岩体在内的熊耳期嵩山A型花岗岩、嵩山基性岩墙群以及太行山北缘中元古界泥火山群则是反映这次裂解事件的岩浆喷出与侵入活动的重要地质记录(薛良伟等,1996万渝生等,2009胡国辉等,2010苏德辰等,2017)。

包括研究区在内的太行山南段广泛出露大河组、赵家庄组及常州沟组等前寒武纪地层,这3套岩石组合可以很好地与豫西汝阳群的云梦山、白草坪及北大尖3个组对应(赵太平,2015)。武铁山(1979)王启超等(1980)认为太行山的上前寒武系属于蓟县型与豫西型的过渡类型,太行山长城系要比蓟县长城系层位更低,存在与豫西对比的可能。在实际工作中,对于太行山南段相对于蓟县长城系底部多出来的岩石地层单位的命名,河南省与山西省采用了不同的方案:“河南省岩石地层”(河南省地质矿产局,1997)对这3套地层采用了豫西型命名,由下到上分别称之为云梦山组、白草坪组和北大尖组;“山西省岩石地层”(山西省地质矿产局,1997)在这一较敏感的地层对比面前,为了避免把学术观点强加于人,既不用蓟县型,也不用豫西型,而另创了群、组的划分和命名,将常州沟组及其之下的地层厘定为长城系,分别称为大河组、赵家庄组和常州沟组(表 1)。

表 1 太行山南段及周边长城系划分简表(据山西省岩石地层,1997,修改) Table 1 Simplified map showing stratigraphic subdivision of Changcheng System, southern Taihang Mountain (modified from Lithostratigraphy of Shanxi Province, 1997)

新的一些地球物理(地震)研究成果证实了熊耳期三叉裂谷可能还存在向北东方向延伸的一支(王同和,1992),豫西上前寒武系可能自垣曲、济源一带通过沁水盆地与太行山区的上前寒武系相连(山西省地质矿产局,1997)。但熊耳期三叉裂谷向北东的一支是否存在,以及太行山区的上前寒武系与地处熊耳期三叉裂谷上的豫西上前寒武系是否属于同一个裂谷盆地,目前尚缺少岩浆岩石学方面的证据,这也一直是妨碍太行山区与豫西地区地层进行对比的重要原因。

丰峪蚀变正长花岗岩岩体是我们在开展“河南1:5万东姚集等4幅区调”工作过程中发现的,本文是在该项调查基础上完成的。通过与嵩山石秤A型花岗岩对比,对其岩石学、岩石地球化学进行总结,分析其形成的构造背景,并借助锆石U-Pb同位素测年,以期对解决以下问题有所帮助:

(1)对太行山区的长城系底界进行精确年龄控制;(2)熊耳期三叉裂谷北东一支是否存在,即丰峪蚀变正长花岗岩能否为东北一支裂谷的存在提供岩浆活动方面的证据?(3)太行山区的长城系与豫西的长城系是否处于同一个裂谷盆地,即二者能否进行对比?

2 地质特征

研究区为寒武—奥陶系碳酸盐岩台地沉积区,寒武—奥陶系分布广泛,与下伏长城系大河组为平行不整合接触关系(图 1b, c)。基底为新太古代片麻岩,其上被长城系大河组角度不整合覆盖,或直接被寒武系超覆(图 1b)。在寒武—奥陶系中还发育早白垩世中酸性侵入体(图 1b❶❷

丰峪蚀变正长花岗岩体位于河南省林州市临淇镇东南约10 km的丰峪一带,呈倒扣的锅底状近南北向断续出露于丰峪—新庄一线的深切沟谷中,断续出露长度约2 km,平均宽度不足300 m,出露面积不足0.5 km2,其上被长城系大河组砂砾岩或寒武系馒头组钙质砂岩不整合覆盖(图 1c图 2a~d),接触面呈波状起伏,局部可见蚀变正长花岗岩中的白色石英脉被长城系截切的现象(图 2d)。其岩性较为单一,为黑云母正长花岗岩,岩石内部较为均匀,偶见新太古代暗色变质岩捕掳体,捕掳体呈椭圆形,长轴一般5~10 cm,个别达30 cm,与寄主岩呈突变关系(图 2e)。岩体中普遍发育钾化和绢云母化。

图 2 丰峪蚀变正长花岗岩出露形态 a—实测地质剖面图;b—大河组与花岗岩接触关系;c—寒武系与花岗岩接触关系;d—花岗岩中的石英脉被大河组砾岩截切;e—花岗岩中的捕掳体;1—长城系大河组;2—寒武系;3—砾岩、含砾石英砂岩;4—正长花岗岩;5—平行不整合界线;6—产状;7—稀土、微量、硅酸岩样品采集地;8—锆石U-Pb采集位置;9—捕掳体 Fig. 2 The outcrop of Fengyu altered syenogranite pluton a- Measured geological section; b- The contact relationship between the Dahe Formation and the Fengyu syenogranite pluton; c- The contact relationship between the Cambrian and the Fengyu syenogranite pluton; d- The quartz vein in syenogranite truncated by the Dahe Formation conglomerate; e-The xenolith in the granite; 1- the Changcheng System Dahe Formation; 2- Cambrian; 3-Conglomerate, slightly conglomeratic quartz arenite; 4- Syenogranite; 5-Parallel unconformity; 6- Attitude; 7- Major and trace element sampling location; 8- Zircon U-Pb sampling location; 9- Xenolith

蚀变正长花岗岩:手标本上多为肉红色细中粒花岗结构(图 3a),块状构造,主要由钾长石(55%~ 69%)、斜长石(6%~20%)、石英(约20%)、黑云母(约5%)组成,含锆石、磷灰石、磁铁矿等副矿物。斜长石呈半自形板状—他形粒状,发育聚片双晶,多被钾长石和显微鳞片状绢云母交代(图 3bc),局部碳酸盐化;钾长石呈半自形板状—他形粒状,以条纹长石为主,少量微斜长石(图 3cd),钾长石大量交代斜长石,交代后的斜长石多呈孤岛状残存于钾长石中(图 3b左上角及左下角),局部二者接触界线呈指状交叉(图 3b右),钾长石晶体内局部嵌布少量他形粒状石英和半自形板状斜长石,具高岭土化,局部绿泥石化、碳酸盐化;石英呈他形粒状或集合体状,填隙状分布于长石颗粒间,少数被钾长石包裹(图 3b),局部颗粒内波状消光;黑云母呈片状,零散分布在粒状矿物颗粒间,被白云母、碳酸盐、铁质等交代,呈假象,多数晶体已蚀变沿其解理缝析出铁质向白云母转变(图 3b)。

图 3 元古代丰峪蚀变正长花岗岩镜下特征 a—正长花岗岩手标本;b—钾长石交代斜长石;c—斜长石强烈蚀变成微晶绢云母、碳酸盐集合体;d—钾长石交代斜长石; Q—石英;Kf—钾长石;Mic—微斜长石;Pl—斜长石;Se—绢云母;Bi—黑云母 Fig. 3 The hand specimens and photomicrographs of altered syenogranite in Fengyu area, southern Taihang Mountain a- The hand specimens of syenogranite; b-Plagioclase replaced by K-feldspar; c-Plagioclase strongly altered into aggregates of sericite and carbonate microlite; d- Plagioclase replaced by K-feldspar; Q- Quartz; Kf-K-feldspar; Mic-Microcline feldspar; Pl-Plagioclase; Se-Sericite; Bi-Biotite
3 测试方法

蚀变正长花岗岩的3个常量元素和微量元素分析样品(G108/东1、G108/东2、G108/东3)采自岩体不同部位,锆石U-Pb样品(U-Pb108/东1)采自岩体中心部位(图 2a)。所有这些样品的采样点均远离裂隙,岩石较新鲜。样品的常量元素和微量元素分析由国土资源部武汉矿产资源监督检测中心完成。主要检测仪器有电感耦合等离子体质谱仪(X7)、X荧光光谱仪(XRF-1800)以及等离子直读光谱仪(ICAP6300)。锆石U-Pb样品原岩由河北省区域地质调查研究院岩矿鉴定室分选锆石,然后制作成锆石样品靶,挑选自形程度高、透明、无裂纹、无包体的锆石晶体作为测定对象,原岩质量为30 kg。锆石制靶与阴极发光(CL)照相在北京锆年领航科技有限公司进行。锆石LA-ICP-MS U-Pb年龄分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,测试仪器为准分子激光剥蚀系统(GeoLas200M),仪器型号为Agilent7700型ICP-MS,激光剥蚀斑束直径为32 μm,频率为8 Hz,激光剥蚀样品的深度为20~40 μm。实验采用He、Ar作为剥蚀物质的载气。锆石年龄计算采用国际标准锆石91500(平均测试年龄为1064.5 Ma)作为外标(Wiedenbeck et al., 1995),元素含量校正用美国国家标准物质局研制的人工合成硅酸盐玻璃NIST SRM610为外标(Pearce et al., 1997),29Si为内标。每完成4~5个测点的样品测定,加测标样一次。在15~20个锆石样品分析点前后各测2次NIST SRM610。锆石的同位素比值和元素含量数据处理采用ICPMSDataCal程序计算(Liu et al., 2010),普通Pb采用Andersen的3D坐标法进行校正(Andersen,2002),加权平均年龄及谐和图的绘制采用ISOPLOT3.23完成(Ludwig,1991)。

4 岩石地球化学特征

本文研究的3件蚀变正长花岗岩样品的主量元素和微量元素分析结果及相关参数列于表 2。钾化与绢云母化使得正长花岗岩岩石地球化学成分发生了变化,为更好地还原其原有的岩石地球化学特征,本次将未蚀变的中元古代嵩山石秤A型花岗岩的地球化学参数(万渝生等,2009)也列于表 2中,以方便对比。

表 2 丰峪蚀变正长花岗岩主量元素(%)和微量元素(μg/g)地球化学分析数据 Table 2 Major(%)and trace element (μg/g) compositions of granites of Fengyu syenogranite
4.1 主量元素

丰峪蚀变正长花岗岩总体上显示高SiO2、强富碱、强富钾、过铝质的特点。

(1)SiO2

由于钾化会造成SiO2值降低(曾茜等,2016),丰峪蚀变正长花岗岩的SiO2值(平均68.07 %)低于石秤花岗岩的SiO2值(76.69 %),使得样品在SiO2-(K2O+ Na2O)图解上落入“石英二长岩”区靠近“花岗岩”区边部,且样品多落在虚线之下,少数落在虚线之上,显示为碱性-亚碱性岩石系列(图 4)。

图 4 丰峪正长花岗岩SiO2-(Na2O+K2O)图解(据Middlemost,1994) ●—丰峪岩体,▲—石秤A型花岗岩体 Fig. 4 SiO2-(Na2O+K2O) diagram of Fengyu syenogranite (after Middlemost, 1994)

(2)A/CNK值

丰峪蚀变正长花岗岩的铝饱和指数(A/CNK)变化范围在1.20~1.57,平均1.53,大于石秤花岗岩的(A/CNK)值(1.02)。在A/CNK-A/NK图解上,丰峪蚀变正长花岗岩与石秤花岗岩样品均落入“过铝质”区(图 5)。

图 5 丰峪正长花岗岩A/CNK-A/NK图解(据Rickwood,1989) Fig. 5 A/CNK-A/NK diagram of Fengyu syenogranite(after Rickwood, 1989)

(3)K2O、Na2O含量

丰峪蚀变正长花岗岩K2O含量(平均8.59%)明显高于石秤花岗岩(4.68%),Na2O含量(平均0.17%)远低于石秤花岗岩(3.12 %),其(K2O + Na2O)含量(平均8.76%)与石秤花岗岩(7.80%)较为接近。这是由于钾长石强烈交代斜长石造成K2O含量增高,斜长石含量减少,但二者的总量(K2O+ Na2O)变化不大,斜长石与钾长石的此消彼长造成了其极高的K2O / Na2O比值(平均50.71,是石秤花岗岩的30.81倍)。表现在SiO2-K2O图解上,与落入“高钾钙碱性”区的石秤花岗岩不同,丰峪蚀变正长花岗岩因K2O显著增加,致使所有样品均落入“钾玄岩”区(图 6)。

图 6 丰峪正长花岗岩SiO2-K2O图解(据Maniar et al., 1989) Fig. 6 SiO2-K2O diagram of Fengyu syenogranite (after Maniar et al., 1989)

(4)F/FM值

丰峪蚀变正长花岗岩的含铁指数F/FM,即TFeO/(TFeO+Mg)为0.52~0.66,小于石秤花岗岩的(0.87)。究其原因,可能是蚀变造成丰峪蚀变正长花岗岩中性质不稳定的FeO急剧降低,从而降低了其F/FM值。

总的来看,丰峪蚀变正长花岗岩随着SiO2的增加,K2O、Na2O均呈增加趋势,Fe2O3、FeO、MgO、A/CNK呈降低趋势。

造成丰峪岩体与石秤岩体化学成分差异的主要原因可能是由于前者普遍遭受了强烈的蚀变(主要为钾化)。对丰峪蚀变正长花岗岩与石秤A型花岗岩主要常量组分比值作柱状图分析(图 7),丰峪蚀变花岗岩增加的常量组分(由多到少)有P2O5、MgO、TiO2、Fe2O3、K2O,减少的有Na2O、MnO、CaO,变化较小的有SiO2、Al2O3

图 7 丰峪蚀变正长花岗岩/石秤未蚀变正长花岗岩主要常量组分柱状图 Fig. 7 Histogram for major elements content of Fengyu altered granite /unaltered granite in Shicheng area

曾茜等(2016)依据钾化花岗岩常量组分的增减,推测其在钾化过程中存在以下化学反应:

NaAlSi3O8+K+→KAlSi3O8+Na+

在钾长石化过程中,热液流体中的K+大量交代斜长石中的Na+,生成大量钾长石。热液携带K2O进入斜长石,而带出大量Na2O,这与岩石中Na2O含量低相吻合。钾化花岗岩中矿物成分的增减除了与钾化有关外,还可能与岩石中普遍存在的绢云母化、绿泥石化以及白云母化等蚀变有关,这也与镜下观察的事实相符。

鉴于丰峪蚀变花岗岩普遍遭受蚀变(主要为钾化)的客观事实,不难看出其原始岩石化学成分应与未蚀变的石秤A型花岗岩一致,表现为拉张环境下花岗岩的化学成分特征。

4.2 稀土元素

丰峪蚀变正长花岗岩REE总量较高(192.37~ 774.26 μg/g,平均483.47 μg/g),高于I型(114.7 μg/ g)与S型(173. 1 μg/g)花岗岩的稀土总量,而与国内A型花岗岩的REE总量(219. 03 μg/g)接近(吴锁平等,2007)。其稀土配分曲线与石秤A型花岗岩较为一致,均呈明显的右倾海鸥型(图 8a),Eu负异常明显(δEu=0.45~0.59),在Eu处出现波谷,呈V字形,反映早期岩浆活动中已有斜长石的晶出,晚期岩浆结晶中钾长石更富集,轻、重稀土元素分异明显,Eu呈明显负异常,具伸展机制下晚期富碱岩浆活动稀土元素的特征(陆松年等,2003)。

图 8 丰峪正长花岗岩的稀土元素球粒陨石标准化配分曲线图(a)及微量元素原始地幔标准化蛛网图(b) (标准化数值据Sun et al., 1989) Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for Fengyu syenogranite in western Yunnan (normalized data after Sun et al., 1989)
4.3 微量元素

丰峪蚀变正长花岗岩富集K、Rb、Th等元素,亏损Nb、Ta、Ba、Ti、Sr和P等元素。从图 8b中可看出,丰峪蚀变正长花岗岩因蚀变程度不同,不同样品数值有波动,但总的趋势与石秤A型花岗岩的微量元素蛛网图也较为一致。丰峪蚀变正长花岗岩Rb/Sr值很高, 为2.40~3.05,平均2.79,远大于I型或S型花岗质岩石(分别为0.61和1.81),而与A型花岗质岩石的Rb /Sr比值(3.52)比较接近(Whalen et al.,1987),并具有高的Y/Yb值(平均1.70)和低的Nb/Ta值(平均11.45)、Zr/Hf值(平均25.84),这也与刘昌实等(2003)总结的铝质A型花岗岩的Y/Yb值(2.26)、Nb/Ta值(8.81)、Zr/Hf值(22.13)一致。

5 锆石U-Pb年龄

丰裕蚀变正长花岗岩体被长城系大河组或寒武系不整合覆盖,地质接触关系难以给丰峪蚀变正长花岗岩精确的形成时代提供有用证据,为获得丰峪蚀变正长花岗岩的侵入时代,采用LA-ICP-MS技术对其中的锆石进行了U-Pb同位素测定。取样点位于丰峪南近南北走向的河谷中,即北纬35°42′、东经113°57'(图 1)。

本文所研究锆石主要呈无色透明,以柱状为主, 少量为短柱状,长度变化于100~220 μm,长宽比1.5~3.5,大部分形态较完整,晶体棱角分明,这些锆石未受后期改造。锆石Th/U比值为0.58~1.1,应为岩浆锆石(表 3图 9),CL图像多数显示清晰的岩浆成因振荡环带,环带窄而密,具备酸性岩低温条件下形成的振荡环带的特征,锆石呈四方柱或四方双锥状,锥面{111}发育,呈现出碱性或偏碱性花岗岩中的锆石晶形特征,属典型的岩浆成因(李长民,2009)。

表 3 元古代蚀变正长花岗岩(U-Pb108/东1)锆石U-Pb同位素测定结果 Table 3 Zircon U-Pb dating result of Paleoproterozoic altered syenogranite in F
图 9 丰峪正长花岗岩锆石CL图像及测点编号、207Pb/206Pb年龄 Fig. 9 CL images, test number and 207Pb/206Pb ages of zircons from Fengyu syenogranite pluton

本次共测定了U-Pb108/东1样品中的22颗锆石,得到22个数据(表 3),在U-Pb谐和图中的投影点落于谐和线及其附近,拟合的不一致线与谐和线的上交点年龄为(1784±42)Ma,MSWD=0.19(图 10a);在剔除明显离群的4个年龄值(4、10、12、14号点)后,剩余18个测点207Pb/206Pb年龄加权平均值为(1790 ± 22)Ma(MSWD=0.80,95%置信度)(图 10b)。这两个年龄大致相同,笔者取207Pb/206Pb年龄加权平均值(1790±22)Ma作为岩体的形成年龄,加权平均值的误差应为95%置信度误差。

图 10 样品U-Pb108/东1锆石U-Pb谐和图(a)与207Pb/206Pb年龄图(b) Fig. 10 U-Pb concordia diagrams (a) and 207Pb/206Pb age diagram (b) for zircons from sample numbered U-Pb108/Dong 1 in Fengyu syenogranite pluto

按照最新国际地质年表的划分方案,其时代属于中元古代早期。该年龄代表了蚀变正长花岗岩的岩浆结晶年龄。因此,丰峪蚀变正长花岗岩形成于中元古代早期。

6 讨论 6.1 岩石成因及源区

丰峪岩体岩石类型为黑云母正长花岗岩,主要矿物组合为Q+Kf+Pl(石英+钾长石+斜长石),副矿物为锆石、磷灰石、磁铁矿等,铁镁矿物为黑云母,符合铝质A型花岗岩的岩石学与矿物组成特征(吴锁平等,2007刘昌实等,2003;吴才来等,2016)。

前已述及,丰峪花岗岩由于蚀变(主要为钾化)的影响,造成其K2O显著增高、SiO2含量降低。总的来看,丰峪蚀变花岗岩具有富SiO2, 贫Al2O3、Sr、Ba、Eu、Ti、P以及REE分布具有明显的负铕异常等特点,具A型花岗岩的地球化学特征(张旗等,2012)。

稀土元素球粒陨石标准化配分曲线图和微量元素原始地幔标准化蛛网图基本上概括了A型花岗岩最重要的地球化学特征,用它们来判别A型花岗岩基本上不会失误(张旗等,2012)。丰峪蚀变花岗岩在稀土元素球粒陨石标准化配分曲线图(图 8a)上表现为右倾海鸥型,具明显的亏损Eu,而在微量元素原始地幔标准化蛛网图(图 8b)上,Sr、Ba、Ti、P是强烈亏损的,这些均显示其为A型花岗岩(张旗等,2012),并与石秤A型花岗岩一致。

高104Ga/AI和富HFSE元素(Zr+Ce+Nb+Y)是A型花岗岩主要判别标志,对A型花岗岩研究起了重要的推动作用(Collins et al., 1982Walen et al., 1987)。在(Zr+Nb+Ce+Y)-FeO#/MgO、(Zr+Nb+Ce+ Y)- (K2O+Na2O)/CaO图解上,丰峪蚀变正长花岗岩所有样品均落于A型花岗岩区域,表明其与石秤花岗岩一样,同为A型花岗岩(图 11)。

图 11 丰峪A型花岗岩的(Zr+Nb+Ce+Y)对FeO#/MgO、(K2O+Na2O)/CaO的图解(据Whalen, 1987) FG—分异的长英质花岗岩; NG—正常(未分异)的M,I和S型花岗岩 Fig. 11 Diagram of (Zr+Nb+Ce+Y) versus FeO#/MgO and (K2O+Na2O)/CaO (after Whalen, 1987) in A-type granite in Fengyu area FG-Fractional granitoids; NG-Normal M-, I-and S-type granitoids (nonfractionated)

Eby(1992)洪大卫等(1995)提出将A型岩套分为A1亚型和A2亚型两亚类型,前者是地幔成因,后者是壳-幔混源的,它们在地球化学特征上和形成构造环境上都有很大区别。

在原始地幔标准化微量元素蛛网图上,A1亚型无Nb亏损或亏损极不明显,而A2亚型普遍具较强的Nb亏损,说明后者有地壳组分混染。在稀土配分模式图上,两者也有显著差异。A1亚型相对富轻稀土,Eu负异常不明显,δEu=0.30~1.00。A2亚型轻—重稀土分镏不明显,同时Eu亏损极为显著,δEu= 0.03~0.61,说明富Ca斜长石(或作为残留相或作为结晶分离相)在A2亚型岩浆成因中起着重要作用(刘昌实等,2003)。丰峪蚀变正长花岗岩具较强的Nb亏损,同时Eu亏损极为显著,具备A2花岗岩的稀土和微量元素特征。其具有高的Y/Nb值和低的Nb/Ta值、Zr/Hf值等特点也与刘昌实等(2003)总结的铝质A型花岗岩(A2)一致。在R1-R2图解上,丰峪蚀变正长花岗岩与石秤花岗岩一样,所有样品均落入A2花岗岩区(图 12),与上述推断一致。

图 12 A型岩套R1-R2图解(仿Batchelor et al., 1985) Fig. 12 The diagram for A type suites (after Batchelor et al., 1985)

丰峪蚀变正长花岗岩个别样品Eu亏损不明显,说明富Ca斜长石,无论是作为残留相或作为结晶分离相都没有或很少参与进来,其稀土配分特点显示应是富集地幔低度熔融形成的(刘昌实等,2003)。从地壳与地幔一般性的物质组成特点推测,丰峪蚀变正长花岗岩高的Zr含量和强烈亏损的Ti值反映其可能源自地壳物质,产于地壳减薄的构造背景(Whalen et al., 1987Eby,1990张旗,2013)。Nb/Ta比值也与地壳比值相近,暗示其源自地壳物质;P和Ti亏损说明岩浆经历了磷灰石以及钛铁矿等矿物的分离结晶作用,Nb、Ta的亏损可能与岩浆源区岩石中陆壳组分的参与有关(Kalsbeek at al.,2001)。由此可看出,丰峪蚀变正长花岗岩可能为富集地幔低度熔融并与下地壳物质混合的产物,形成于拉张的构造背景。包含研究区在内的太行山南段发育同时期拉张背景环境下生成的基性岩墙(廖超林等,2003),这些基性岩墙与丰峪A型花岗岩构成了熊耳期裂谷作用下形成的双峰式岩浆岩组合。

6.2 太行山长城系与豫西长城系的对比

豫西长城系汝阳群底部的云梦山组多不整合覆于熊耳群之上,局部不整合于包括石秤、白家寨和摩天寨等岩体在内的嵩山A型花岗岩体之上(薛良伟等,1996)。研究区长城系底部的大河组不整合覆于丰峪A型蚀变正长花岗岩之上,后者与石秤等嵩山A型花岗岩体一样,同为拉张背景下的产物,其(1790±22)Ma的LA-ICP-MS锆石U-Pb岩浆结晶年龄也与石秤A型花岗岩((1775±9)Ma,万渝生等,2009;(1776±6)Ma;Zhang et al,2013)以及熊耳群火山岩的年龄(1.75~1.95 Ga, 赵太平,2001崔敏利等,2010)一致。

如前所述,长期以来,对于熊耳期三叉裂谷北东一支的存在一直缺少岩浆活动的证据,从而影响了太行山长城系与豫西长城系的对比。如今的岩石学、岩石化学、地球化学以及同位素年代学表明,太行山南段丰峪蚀变正长花岗岩与豫西石秤A型花岗岩一样,同为熊耳期裂谷环境下岩浆侵入活动的产物,它的发现为熊耳期三叉裂谷北东一支的存在提供了重要支撑,证实了大河组所处的太行山区与云梦山组所处的豫西地区处于同一个大地构造单元——熊耳群“晋豫陕三叉裂谷”当中,即二者处于同一个裂谷盆地,使得太行山长城系(底部为大河组)与豫西长城系(底部为云梦山组)的对比成为可能。

6.3 太行山区长城系底界研究

前已述及,近年来华北克拉通南缘和北缘长城系底界研究均取得了进展,但作为连接华北克拉通南部和北部关系的纽带——位居华北克拉通中间地带的太行山南段,由于缺少可定年的岩层或地质体,长城系底界年龄一直难以确定。此次在新发现的丰峪蚀变正长花岗岩中获得了(1790±22)Ma的岩浆锆石结晶年龄,由此推测太行山区长城系的底界(也即大河组底界)年龄应小于(1790±22)Ma,接近于1750 Ma,这是迄今为止太行山南段长城系底界直接的控制年龄。这个年龄与华北克拉通南缘长城系底界(云梦山组底界)年龄一致,比华北克拉通北缘长城系底界(常州沟组底界)年龄(1650 Ma)要老,考虑到太行山地区的大河组为常州沟组下部地层,显示华北克拉通长城系底部由南向北在逐步抬高,这是太行山区长城系底界比北京密云一带长城系底界老的又一佐证。

7 结论

(1)丰峪正长花岗岩普遍遭受钾化、绢云母化蚀变,总体上显示富SiO2、强富碱、强富钾、过铝质的特点。K2O、K2O+ Na2O、K2O/ Na2O、Rb、(Zr+Nb+Ce+Y)、∑REE高,Na2O、MnO、CaO、Ba、Nb、Sr、Ti和P低,δEu=0.45~0.59,铝指数大于1.1,属过铝质A型花岗岩。

(2)对丰峪蚀变正长花岗岩体所含锆石进行的LA-MC-ICPMS测定,获得了(1790±22)Ma年龄值,代表了该岩体的侵位时代,据此将太行山区长城系地界厘定在1750 Ma,这是迄今为止太行山南段长城系底界最直接的控制年龄。

(3)丰峪蚀变正长花岗岩的发现为熊耳期三叉裂谷北东一支的存在且经过太行山区提供了岩浆岩石学方面的证据,即太行山区与豫西地区同为熊耳期晋豫陕裂谷盆地,进而为长城系对比提供了重要支撑。

注释

❶河南省地质调查院. 2015.河南1:5万东姚集、临淇镇、鹤壁、庙口幅区域地质调查报告.

❷山西省地质调查院. 2007. 1:25万新乡市幅区域地质调查报告.

致谢: 成文过程中,河南省地质调查院王世炎教授级高工提出了建设性的修改意见; 锆石年龄测定得到了中国地质大学(武汉)地质过程与矿产资源国家重点实验室胡兆初老师的帮助; 匿名审稿人给予细致入微的评审并提出宝贵的修改意见和建议,在此一并表示衷心感谢!

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X
Bureau of Geology and Mineral Resources of Henan Provinece. 1989. Regional Geology of Henan Provice[M]. Beijing: Geological Publishing House, 1-772 (in Chinese with English abstract).
Bureau of Geology and Mineral Resources of Henan Provinece. 1997. Lithostratigraphy of Henan[M]. Wuhan: China University of Geosciences Press, 1-229 (in Chinese with English abstract).
Bureau of Geology and Mineral Resources of Shanxi Provinece. 1989. Regional Geology of Shanxi Provice[M]. Beijing: Geological Publishing House, 1-780 (in Chinese with English abstract).
Bureau of Geology and Mineral Resources of Shanxi Provinece. 1997. Lithostratigraphy of Shanxi[M]. Wuhan: Press of China University of Geosciences, 1-353 (in Chinese with English abstract).
Bureau of Geology and Mineral Resources of Shanxi Provinece. 1989. Regional Geology of Shanxi Provice[M]. Beijing: Geological Publishing House, 1-698 (in Chinese with English abstract).
Collins W J, Beams S D, White A J R. 1982. Nature and origin of Atype granites with particular reference to south-eastern Australia[J]. Contr.Minera1.Petrol., 80: 189-200. DOI:10.1007/BF00374895
Cui Minli, Zhang Baolin, Peng Peng, Zang Lianchang, Shen Xiaoli, Guo Zhihua, Huang Xuefei. 2010. Zircon/baddeleyite U-Pb dating for the Paleo-proterozoic intermediate-acid intrusive in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province[J]. Acta Petrologica Sinica, 26(5): 1541-1549 (in Chinese with English abstract).
Eby G N. 1990. The A-type granitoids:A review of their occurrence andchemicial characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134. DOI:10.1016/0024-4937(90)90043-Z
Eby G N. 1992. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 20: 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Gao Wei, Zhang Chuanheng, Liu Xiaoming, Gao Linzhi, Shi Xiaoying, Liu Yaoming, Song Biao. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectonostratigraphic implications[J]. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract).
He ZhengJun, Niu Baogui, Zhang Xinyuan, Zhao Lei, Liu Renyan. 2011. Discovery of the paleoweathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating[J]. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract).
Hu Guohui, Hu Junliang, Chen Wei, Zhao Taiping. 2010. Geochemistry and tectonic setting of the 1.78 Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton[J]. Acta Petrologica Sinica, 26(5): 1563-1576 (in Chinese with English abstract).
Hong Dawei, Wang Guangguang, Han Baofu, Jin Manyuan. 1995. Tectonic setting classifications and disrimination criteria for alkaline granites[J]. Science in China(B), 25(4): 418-426 (in Chinese with English abstract).
Kalsbeek F, Jepsen H, Nutman A. 2001. From source migmatites toplutons:Tracking the origin of ca.435 Ma S-type granites in the East Greenland Caledonian orogen[J]. Lithos, 57(1): 1-21.
Li Huaikun, Su Wenbo, Zhou Hongying, Geng Jianzhen, Xiang Zhenqun, Cui Yurong, Liu Wencan, Lu Songyian. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing[J]. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract).
Li Changmin. 2009. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 33(3): 161-174 (in Chinese with English abstract).
Li Chengdong, Zhao Ligang, Chang Qingsong, Xu Yawen, Wang Shiyan, Xu Teng. 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its dtratigraphic attribution discussion[J]. Geology in China, 44(3): 511-525 (in Chinese with English abstract).
Lu Songnian, Li Huaikun, Li Huimin, Song Biao, Wang Shiyan, Zhou Hongying, Chen Zhihong. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton[J]. Geological Bulletin of China, 22(12): 762-768 (in Chinese with English abstract).
Liao Chaolin, Wang Yuejin, Peng Touping. 2003. 40Ar-39Ar Geochronology of paleoproterozoic mafic dykes from southern Taihang mountains and its gellogical significance[J]. Geotectonica et Metallogenia, 27(4): 354-361 (in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, Discrim ination criteria and genesis for a type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract).
Liu Y, Gao S, Hu Z. 2010. Continental and oceanic crust recy-clinginduced melt-peridotite interactions in the trans-North China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
Ludwig K R. 1991. Isoplot-A plotting and regression program for radio-genic-isotope data[A]. US Geological Survey Open-File Report, 39: 91-445.
Peng Peng, Liu Fu, Zhai Mingguo, Guo Jinghui. 2012. Age of the Miyun dyke swarm:Constraints on the maximum depositional age of the Changcheng System[J]. Chinese Science Bulletin: 57 (in Chinese).
Pearce N J G, Perkins W T, Westgate J A. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards Newletters, 21: 115-144. DOI:10.1111/ggr.1997.21.issue-1
Qiao Xiufu, Wang Yanbin. 2014. Discussions on the lower boundary age of the Mesoproterozoic and basin tectonic evolution of the Mesoproterozoic in North China Craton[J]. Acta Geologica Sinica, 88(9): 1623-1637.
Su Dechen, Li Chunwang, Sun Aiping, Qiao Xiufu. 2017. Mesoproterozoic mud volcanoes discovered in North Taihang Mountain:Preliminary results[J]. Geology in China, 44(2): 399-400 (in Chinese with English abstract).
Su Wenbo, Li Huaikun, Xu Li, Jia Songhai, Geng Jianzhen, Zhou Hongying, Wang Zhihong, Pu Hanyong. 2012. Luoyu and Ruyang Group at the south margin of the North China Craton(NCC) should belong in the Mesoproterozoic Changchengian System:Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 35(2): 96-108 (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotope systematics of ocean baslt:Implications for mantle composition and processes[J]. In:Saunders A D and Norry M J (eds.). Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313-345.
Wu Tieshan. 1979. The Sinian Department of Shanxi Province, Summary of the 1: 20 Fault Zone Formation in Shanxi Province[R]. Geological Survey Team of Shanxi Provincial Bureau of Geology and Mineral Resources(in Chinese).
Wang Qichao, Wu Tieshang, Xu Chaolei. 1980. Taihang-Wutai district of Sinian subkingdom and its relationship with the chaotuo supergroup[C]//Tianjin Institute of Geology and Mineral Resources'CAGS(ed.).Research on Precambrian Geology. Tianjin: Tianjin Science and Technology Press (in Chinese with English abstract).
Wang Tonghe. 1992. Characteristics and Evolution of Mid-latitude zonal structural belt in North China Craton[J]. Geology of Shanxi, 7(3): 301-312 (in Chinese with English abstract).
Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Von quadt A, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19: 1-23.
Wu Cailai, Dong Shuwen, Wang Lutai, et al. 2016. The discovery of the syenogranite with an age of 126 Ma in the depth of Tongling:Evidence from 3000meters scientific drilling[J]. Geology in China, 43(5): 1495-1513 (in Chinese with English abstract).
Wu Suoping, Wang Meiying, Qi Kaijing. 2007. Present situation of researches on A-type granites:Areview[J]. Acta petrologica et mineralogica, 26(1): 57-66 (in Chinese with English abstract).
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:Geochemical characteristics, discriminations and petrogenesis[J]. Contrib.Mineral.Petrol., 95: 407-419. DOI:10.1007/BF00402202
Wan Yusheng, Liu Dunyi, Wang Shiyan, Zhao Xun, Dong Chunyan, Zhou Hongying, Yin Xiaoyan, Yang Changxiu, Gao Linzhi. 2009. Early Precambrian crustal evolution in the Dengfeng area, Henan Province (eastern China):Constraints from geochemistry and SHRIMP U-Pb zircon dating[J]. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract).
Xue Liangwei, Yu Xangdong, Zhao Taiping. 1996. The geochemical characteristics of A-type granite in Songshan aera and its structural environment[J]. Acta Petrologica Sinica, 12(1): 137-144 (in Chinese with English abstract).
Zeng Xi, Chen Shouyu, Zhao Jiangnan. 2016. Geochemical characteristics of Kafang altered granitein Gejiu City and its relationship with mineralization[J]. Contributions to Geology and Mineral Resources Research, 31(2): 163-171 (in Chinese with English abstract).
Zhang J, Zhang H F, Lu X X. 2013. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton[J]. Precambrian Research, 226: 1-20. DOI:10.1016/j.precamres.2012.11.015
Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
Zhang Qi. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granite:what is the essence?"[J]. Acta Petrologica et Mineralogica, 32(2): 267-272 (in Chinese with English abstract).
Zhao Tiaping, Deng Xiaoqin, Hu Guohui, Zhou Yanyan, Peng Peng, Zhai Mingguo. 2015. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues:A review[J]. Acta Petrologica Sinica, 31(6): 1495-1508 (in Chinese with English abstract).
Zhao Taiping, Zhou Meifu, Jin Chengwei, Guan Hong, Li Huimin. 2001. Discussion on age of the xiong'er group in southern margin of north China craton[J]. Chinese Journal of Geology, 36(3): 326-334 (in Chinese with English abstract).
Zhao Taiping, Jin Chengwei, zhai Mingguo, Xia Bin, Zhou Meifu. 2002. Geoehemistry and Petrogenesis of the Xiong'er Group in the southern regions of the North China Craton[J]. Acta Petrologica Sinica, 18(1): 59-69 (in Chinese with English abstract).
Zhao Taiping, Xu Yonghang, Zhai Mingguo. 2007. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong'er Group in the Southern Part of the North China Craton:A review[J]. Geological Journal of China Universities, 13(2): 191-206 (in Chinese with English abstract).
河南省地质矿产局. 1989. 河南省区域地质志[M]. 北京: 地质出版社, 1-772.
河南省地质矿产局. 1997. 河南省岩石地层[M]. 武汉: 中国地质大学出版社, 1-299.
山西省地质矿产局. 1989. 山西省区域地质志[M]. 北京: 地质出版社, 1-780.
山西省地质矿产局. 1997. 山西省岩石地层[M]. 武汉: 中国地质大学出版社, 1-353.
陕西省地质矿产局. 1989. 陕西省区域地质志[M]. 北京: 地质出版社, 1-698.
崔敏利, 张宝林, 彭澎, 张连昌, 沈晓丽, 郭志华, 黄雪飞. 2010. 豫西崤山早元古代中酸性侵入岩锆石/斜锆石U-Pb测年及其对熊耳火山岩系时限的约束[J]. 岩石学报, 26(5): 1541-1549.
高维, 张传恒, 柳晓明, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质通报, 27(6): 793-798. DOI:10.3969/j.issn.1671-2552.2008.06.007
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄[J]. 地质通报, 30(5): 798-802. DOI:10.3969/j.issn.1671-2552.2011.05.020
胡国辉, 胡俊良, 陈伟, 赵太平.华北克拉通南缘中条山-嵩山地区1.78 Ga基性岩墙群的地球化学特征及构造环境[J].岩石学报, 2010, 26 (6): 1563-1576.
洪大卫, 王光洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 25(4): 418-426.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670 Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束[J]. 地学前缘, 18(3): 108-120.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. DOI:10.3969/j.issn.1006-7493.2003.04.011
陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王石童碱性花岗岩U-Pb年龄及其地质意义[J]. 地质通报, 22(12): 762-768.
李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 33(3): 161-174. DOI:10.3969/j.issn.1672-4135.2009.03.001
李承东, 赵利刚, 常青松, 许雅雯, 王世炎, 许腾. 2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J]. 中国地质, 44(3): 511-525.
廖超林, 王岳军, 彭头平. 2003. 太行山南段早元古代基性脉岩的40Ar-39Ar年代学及其构造意义[J]. 大地构造与成矿学, 27(4): 354-361. DOI:10.3969/j.issn.1001-1552.2003.04.006
澎澎, 刘富, 翟明国, 郭敬辉. 2011. 密云岩墙群的时代对长城系底界年龄的制约[J]. 科学通报, 56(35): 2975-2980.
乔秀夫, 王彦斌. 2014. 华北克拉通中元古界底界年龄与盆地性质讨论[J]. 地质学报, 88(9): 1623-1637.
苏德辰, 李春旺, 孙爱萍, 乔秀夫. 2017. 太行山北缘中元古界发现泥火山群[J]. 中国地质, 44(2): 399-400.
苏文博, 李怀坤, 徐莉, 贾松海, 耿建珍, 周红英, 王志宏, 蒲含勇. 2012. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J]. 地质调查与研究, 35(2): 96-108. DOI:10.3969/j.issn.1672-4135.2012.02.003
万渝生, 刘敦一, 王世炎, 赵逊, 董春艳, 周红英, 殷小艳, 杨长秀, 高林志. 2009. 登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb年代学制约[J]. 地质学报, 83(7): 982-999. DOI:10.3321/j.issn:0001-5717.2009.07.007
武铁山, 1979.山西的震旦系, 山西省1: 20万断代地层总结[R].山西省地矿局区调队.
王启超, 武铁山, 徐朝雷. 1980.太行-五台区震旦亚界及其与滹沱超群的关系[C]//中国地质科学院天津地质矿产研究所编.中国震旦亚界.天津: 天津科学技术出版社.
王同和. 1992. 华北克拉通中腰纬向构造带的特征及演化[J]. 山西地质, 7(3): 301-312.
吴才来, 董树文, 王陆太, 王次松, 雷敏, 吴迪. 2015. 铜陵矿集区深部发现126 Ma的正长花岗岩:来自3000 m科学钻探的证据[J]. 中国地质, 2016, 43(5): 1495-1513.
吴锁平, 王梅英, 戚开静. 2007. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 26(1): 57-66. DOI:10.3969/j.issn.1000-6524.2007.01.009
薛良伟, 尉向东, 赵太平. 1996. 嵩山A型花岗岩的地质地球化学特征和构造环境[J]. 岩石学报, 12(1): 137-144. DOI:10.3321/j.issn:1000-0569.1996.01.012
曾茜, 陈守余, 赵江南. 2016. 个旧卡房蚀变花岗岩地球化学特征及其与成矿的关系[J]. 地质找矿论丛, 31(2): 163-171.
赵太平, 邓小芹, 胡国辉, 周艳艳, 彭澎, 翟明国. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论[J]. 岩石学报, 31(6): 1495-1508.
赵太平, 周美夫, 金成伟, 关鸿, 李惠民. 2001. 华北陆块南缘熊耳群形成时代讨论[J]. 地质科学, 36(3): 326-334. DOI:10.3321/j.issn:0563-5020.2001.03.007
赵太平, 金成伟, 翟明国, 夏斌, 周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与成因[J]. 岩石学报, 18(1): 59-69.
赵太平, 徐勇航, 翟明国. 2007. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境:事实与争议[J]. 高校地质学报, 13(2): 191-206. DOI:10.3969/j.issn.1006-7493.2007.02.005
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621-626. DOI:10.3969/j.issn.1000-6524.2012.04.014
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J]. 岩石矿物学杂志, 32(2): 267-272. DOI:10.3969/j.issn.1000-6524.2013.02.014