文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (4): 850-860  
0
引用本文
吴美仁, 陈祺, 王先广, 陈国华, 万浩章, 严加永, 欧阳永棚. 2019. 赣东北枣林碧玄岩地球化学特征及成因[J]. 中国地质, 46(4): 850-860.  
Wu Meiren, Chen Qi, Wang Xianguang, Chen Guohua, Wan Haozhang, Yan Jiayong, Ouyang Yongpeng. 2019. Geochemistry and petrogenesis of the Zaolin basanite in the northeastern Jiangxi Province[J]. Geology in China, 46(4): 850-860. (in Chinese with English abstract).  

赣东北枣林碧玄岩地球化学特征及成因
吴美仁1, 陈祺1, 王先广2, 陈国华1, 万浩章1, 严加永3, 欧阳永棚1    
1. 江西省地质矿产勘查开发局九一二大队, 江西 鹰潭 335001;
2. 江西省地质勘查基金管理中心, 江西 南昌 330025;
3. 中国地质科学院深部探测中心, 北京 100037
摘要: 在中国东部赣东北朱溪矿集区枣林地段发现两条新生代碧玄岩岩脉。地球化学研究表明该碧玄岩具有低SiO2(41.08%~42.94%), 高Mg#(0.61~0.65), 高TiO2(2.19%~2.43%), 高Na2O+K2O(4.95%~6.30%)的特点。∑REE为299.16×10-6~375.00×10-6, LREE/HREE比值为5.45~6.71, 表明轻稀土富集, δEu为0.88~0.94, 具微弱Eu负异常。微量元素特征表现出较高Ni、Cr、Sc含量, 蛛网图显示明显富集Nb、Ta、Th、Zr等元素, 亏损Ba、Ti、K、P等。主量元素相关图解和不相容元素比值显示岩石在演化过程中未遭受地壳混染。综合分析岩石微量元素数据及相关图解, 文章认为由于太平洋板块俯冲, 导致软流圈地幔携带碳酸盐熔体上涌与岩石圈地幔相互作用, 使得0.2%~0.5%石榴石相二辉橄榄岩与0.5%~1%尖晶石相二辉橄榄岩发生部分熔融, 生成碧玄岩原始岩浆。
关键词: 碧玄岩    地球化学特征    岩石成因    朱溪矿集区    枣林地区    
中图分类号:P588.14            文献标志码:A             文章编号:1000-3657(2019)04-0850-11
Geochemistry and petrogenesis of the Zaolin basanite in the northeastern Jiangxi Province
WU Meiren1, CHEN Qi1, WANG Xianguang2, CHEN Guohua1, WAN Haozhang1, YAN Jiayong3, OUYANG Yongpeng1    
1. No. 912 Geological Surveying Party, Jiangxi Bureau of Geology and Mineral Exploration and Development, Yingtan 335001, Jiangxi, China;
2. Administration of Geological Exploration of Jiangxi Province, Nanchang 330025, Jiangxi, China;
3. China Deep Exploration Center-SinoProbe Center, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Two Cenozoic basanite dykes were newly discovered in the Zhuxi ore-concentration area, northeastern Jiangxi Province, eastern China. They have high SiO2 (41.08%-42.94%), Na2O+K2O (4.95%-6.30%), TiO2 (2.19%-2.43%) contents, and high Mg# (0.61 -0.65). Geochemistry characteristics of these basanite dykes show they are enriched in Nb, Ta, Th, Zr, Ni, Cr, Sc, while depleted in Ba, Ti, K, and P. Their ∑REE values are from 299.16×10-6 to 375.00×10-6% with LREE/HREE ratios of 5.45-6.71 and δEu values of 0.88 to 0.94. According to the geochemical discrimination diagrams and the ratios of incompatible elements, we suggest that the basanite dykes were derived from partial melting of garnet forsterite (0.2%-0.5%) and herzolite (0.5%-1%), which may be caused by upwelling of carbonate melt in the asthenosphere mantle in response of the subduction of the Paleo-Pacific Ocean.
Key words: basanite    geochemistry    petrogenesis    Zhuxi ore-concentration area    Zaolin area    

1 引言

自华北板块与扬子板块拼接以后, 由于古太平洋板块与欧亚板块碰撞导致中国东部地区成为活动大陆边缘; 随后燕山早期到中期, 发生了一系列地壳转换和岩石圈减薄事件; 新生代中国东部进入大陆裂谷阶段(Molan et al., 1987; Hsü et al., 1990; Menzies et al., 1993; Charvet et al., 1994; 胡受奚等, 1994; Zhou et al., 2000; 徐夕生等, 2005; 张建芳等, 2017; 蔡逸涛等, 2018; 王帅等, 2018; 刘伟等, 2018)。

在中国东部广泛分布有大量新生代碱性玄武岩, 其具有类似OIB型玄武岩微量元素特征(Zhou et., 1982; Tang et al., 2006; Liu et al., 2008; Chen et al., 2009; Zhang et al., 2009; Zeng et al., 2010, 2011; Xu et al., 2012; Zhang et al., 2017)。大陆碱性玄武岩在岩石圈中运移速度快, 成分可接近于原始岩浆成分, 因而大陆碱性玄武岩是研究大陆岩石圈的主要研究对象(Farmer, 2007)。

在江西省, 除了在抚州广昌、萍乡安源等地发现了少量新生代基性岩脉外, 新生代玄武岩鲜有报道。此次, 在朱溪矿集区枣林地段发现了两条基性岩脉。前人在塔前幅1:5万地质图说明书中将其定名为苦橄玢岩; 江西省地质矿产勘查开发局九一二大队在2017年所编写的《朱溪铜钨矿成矿模式与成矿预测示范研究成果报告》中将其定名为碱性玄武玢岩; Pan et al. (2019)对其重新开展矿物学研究, 发现基质中有霞石的存在, 将其重新定名为碧玄岩, 且对其进行Ar−Ar测年, 获得其成岩年龄为(44.05±0.52) Ma。因此, 本文认为在朱溪矿集区枣林地段发现的两条基性岩脉为新生代碧玄岩脉。目前, 前人对江西省新生代岩浆活动的研究相对欠缺。本文拟通过研究枣林碧玄岩岩石地球化学特征, 探讨江西省新生代地幔源区特征及碧玄岩成因。

2 区域地质背景

枣林位于江西省景德镇市南部, 该区主要出露有新元古代浅变质岩, 部分地区出露呈NE向展布的晚古生代—中生代海陆交互相-浅海碳酸盐台地相碳酸盐岩和含煤碎屑岩; 断裂构造主要呈NE向展布; 晚侏罗世—早白垩世花岗岩侵入于二叠纪灰岩、白云岩中(图 1)。枣林地区见有2条碧玄岩岩脉, 一条呈NE 45°展布, 倾向315°, 倾角46°; 另一条受构造控制明显, 在两组断裂交汇处, 脉体明显膨大, 宽达20~30 m, 与围岩接触界线清晰, 脉壁平直, 未见明显围岩蚀变。野外可见后期褶皱变形将其错断发生位移(图 2a), 在岩脉中还见有较多围岩捕掳体。碧玄岩岩脉侵位于石炭—二叠纪含炭灰岩, 且与围岩接触部位发育构造角砾岩, 局部烘烤现象明显。

图 1 枣林地区区域地质简图 1—第四系;2—白垩系;3—侏罗系;4—三叠系;5—二叠系;6—石炭系;7—新元古界;8—白垩纪花岗细晶岩;9—白垩纪细粒花岗岩;10—白垩纪花岗斑岩;11—白垩纪花岗闪长斑岩;12—白垩纪辉绿岩;13—白垩纪辉长岩;14—石英脉;15—流纹斑岩;16—闪长(玢)岩二长岩;17—煌斑岩;18—碧玄岩;19—不整合接触界线;20—地质界线;21—逆冲推覆断层;22—实(推)测断层;23—岩层产状;24—倒转岩层产状;25—采样点 Fig. 1 Regional geological and mineral resources map of the Zaolin area 1-Quaternary; 2-Cretaceous; 3-Jurassic; 4-Triassic; 5-Permian; 6-Carboniferous; 7-Neoproterozoic Wannian Group; 8-Cretaceous fine-grained rock; 9-Cretaceous fine-grained granite; 10-Cretaceous granite porphyry; 11-Cretaceous granite diorite porphyry; 12-Cretaceous diabase; 13-Cretaceous gabbro; 14-Quartz vein; 15-Rhyolitic porphyry; 16-Porphyrite monzonite; 17-Lamprophyre; 18-Basanite; 19-Unconformity boundary; 20-Geological boundary; 21-Thrust nappe fracture; 22-Measured/inferred fracture; 23-Stratigraphic attitude; 24-Attitude of overturned strata; 25-Sampling point
图 2 枣林碧玄岩的野外特征 Fig. 2 Outcrop characteristics of Zaolin basanite
3 岩相学特征与测试方法

枣林碧玄岩呈铁灰色, 风化后为灰黑色, 斑状结构, 块状构造。岩石主要由斑晶橄榄石(15%)、辉石(5%)和基质(80%)组成。橄榄石斑晶呈短柱状, 自形, 粒径0.2~0.8 mm, 裂纹发育, 沿裂纹可见有蛇纹石化; 辉石斑晶呈柱状, 自形, 粒径0.2~0.8 mm, 具辉石式解理; 基质具显微粒状、显微柱状结构, 由大量微晶斜长石、辉石、橄榄石及基质等组成(图 3)。副矿物有磁铁矿、白钨矿和黄铜矿等。

图 3 枣林碧玄岩显微照片 a—正交偏光;b—单偏光;Ol—橄榄石;Px—辉石;Py—黄铁矿 Fig. 3 Microphotograph of Zaolin basanite a-Crossed nicols; b-Plainlight; Ol-Olivine; Px-Pyroxene; Py-Pyrite

样品较为新鲜, 测试工作在江西省地质矿产开发局九一二大队实验室完成, 主量、微量元素分别在美国PerKinELmer电感耦合等离子体发射光谱仪(ICP-OES)和美国赛默飞电感耦合等离子体质谱仪(ICP-MS)上进行分析, 分析精度优于2%~5%。分析方法和过程详见刘颖等(1996)论述。

4 岩石学地球化学特征

本次研究共采集了10个碧玄岩样品, 主量元素和微量元素测试结果详见表 1。岩石中SiO2含量为41.08%~42.94% (平均为42.07%); MgO含量为9.77%~11.46%(平均10.94%); Na2O含量为3.27%~4.45%(平均4.06%), K2O含量为1.00%~1.90%(平均1.44%), Na2O + K2O含量为4.95%~6.30% (平均5.50%); Al2O3含量为11.44%~12.28%(平均11.81%); TiO2含量相对较均匀为2.19%~2.43%(平均2.30%); P2O5含量为0.36%~0.80%(平均0.62%); A/CNK值为0.688~0.797, A/NK值为1.92~2.36, Mg#为0.61~0.65。SiO2-(Na2O+K2O)分类图解上岩石主要落入碧玄岩区(图 4)。岩石总体上呈现出高碱、高铝、高钛、高磷的特点。随着MgO含量增加, CaO、P2O5含量逐渐升高, Al2O3含量呈现升高趋势, K2O+Na2O含量逐渐降低, TiO2含量变化不明显(图 5)。

表 1 枣林碧玄岩全岩主量(%)、微量元素含量(10−6)分析结果 Table 1 Whole rock analyses of major (%) and trace (10−6) elements of Zaolin basanite
图 4 枣林碧玄岩SiO2-K2O+Na2O图解 Fig. 4 SiO2-(K2O+Na2O) plots of Zaolin basanite
图 5 枣林碧玄岩的哈克图解 Fig. 5 Harker diagrams of Zaolin basanite

样品稀土总量∑REE为299.16×10-6~375.00×10-6(平均为346.08×10-6), (La/Yb)N比值为25.42~37.01(平均为32.08), LREE/HREE比值为5.45~6.71 (平均为6.10), 属于轻稀土富集。δEu为0.88~0.94, 具微弱Eu负异常(图 6a)。微量元素特征表明该类岩石中具有较高的Ni(309.8×10-6~378.7×10-6)、Cr (285×10-6~467×10-6)、Sc(16.33×10-6~19.41×10-6); 微量元素原始地幔分布蛛网图(图 6b)显示岩石明显富集Nb、Ta、Th、Zr等元素, 亏损Ba、Ti、K、P等元素。

图 6 枣林碧玄岩的球粒陨石标准化稀土配分曲线(a)和微量元素原始地幔标准化图解(b) (标准化数据来源Sun et al., 1989) Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) of Zaolin basanite (normalized data from Sun et al., 1989)
5 讨论 5.1 地壳混染

枣林碧玄岩元素具有如下特征:低SiO2(41.08% ~42.94%), 高Mg#(0.61~0.65)、Ni(309.8×10-6~378.7×10-6)、Cr(285×10-6~467×10-6)、Co(59.63×10-6~67.86×10-6)、Sc(16.33×10-6~19.41×10-6), 表明碧玄岩岩浆具有原生幔源岩浆性质。显微镜下观察, 可发现岩石样品中具有大量火山玻璃。因此, 本文认为枣林碧玄岩是原始岩浆固结的产物。

原始岩浆在源区产生后, 向上运移过程中, 不可避免地会与地壳岩石发生接触, 导致玄武岩岩浆的成分变化, 这种经历混染作用的岩石并不能够反映原始岩浆的成分。样品中Nb/U值为26.73~33.31 (平均为30.67), 接近于原始地幔(Nb/U值为30), 明显高于陆壳(Nb/U值为10); Zr元素(736×10-6~1075×10-6)和Nb元素(90.51×10-6~123.3×10-6)明显高于地壳值(Gao et al., 2002); 在Ba/Th-Nb/U和Nb/La-Nb/U图解中, 可以看出样品远离大陆地壳(图 7); 同时, 在显微镜下观察, 并未发现任何地壳捕虏晶。以上特征均表明枣林地区碧玄岩并没有受到地壳混染。

图 7 枣林碧玄岩Ba/Th−Nb/U(a)和Nb/La−Nb/U(b)图解(CC−大陆地壳,数据来源Rudnick et al., 1995) Fig. 7 Diagram of Ba/Th−Nb/U (a) and Nb/La−Nb/U(b) for Zaolin basanite (CC−Continental Crust, data from Rudnick et al., 1995)
5.2 源区特征

实验岩石学研究表明, 贫硅辉石岩或榴辉岩、碳酸盐化橄榄岩、角闪岩部分熔融可以形成碱性玄武岩(Hirschmann et al., 2003; Kogiso et al., 2006; Dasgupta et al., 2007)。对于中国东部大陆新生代碱性玄武岩的源区, 目前主要有两种观点:一是低硅玄武岩的地幔源区为贫硅辉石岩与富含角闪石的岩石部分熔融, 高硅玄武岩形成于富硅辉石岩和橄榄岩部分熔融(钱生平等, 2015); 二是源区为碳酸盐化橄榄岩部分熔融(Zeng, 2010; 陈立辉等, 2012)。

枣林地区碧玄岩样品具有较高的CaO含量(9.06%~11.67%), 显示源区为橄榄岩, 而不是辉石岩。样品富集LREE, 原始地幔标准化图上具有Rb、Ba、K、P、Ti负异常, Nb、Ta、Th、Zr正异常, 显示源区富集地幔特征。样品中高Sm/Yb比值表明原岩具有残余石榴子石, 橄榄岩无法部分熔融出低SiO2、高FeO, 但是在Sm/Yb-La/Yb相关图解上(图 8)样品拟和出的熔融曲线, 支持了源区碳酸盐化的观点。微量元素原始地幔分布蛛网图显示具有明显K、Ti负异常, 表明了源区碳酸盐化(Nelson et al., 1988; Zeng et al., 2010)。在岩浆演化过程中, Zr/Hf比值保持不变, 本文较高的Zr/Hf比值表明源区受到了小体积碳酸盐的交代富集作用(Dupuy et al., 1992; Rudnick et al., 1995; Furman et al., 1999)。Pan et al. (2019)对枣林碧玄岩矿物学研究表明基质中存在大量碳酸盐岩矿物, 也支持了源区为碳酸盐化橄榄岩部分熔融的观点。(La/Yb)N-(Dy/Yb)N图解(图 9)表明枣林地区碧玄岩原始岩浆是在地幔0.2%~0.5%石榴石相二辉橄榄岩与0.5%~1%尖晶石相二辉橄榄岩按不同比例混合而形成的产物。因此, 本文认为枣林玄武岩的源区为富集地幔碳酸盐化橄榄岩的部分熔融。

图 8 枣林碧玄岩在La/Yb−Sm/Yb相关图解上的熔融曲线(部分熔融曲线计算方法见Zeng et al., 2010) Fig. 8 Melting curve for the Zaolin basanite in the plot of La/Yb versus Sm/Yb (the calculations for the partial melting curve from Zeng et al., 2010)
图 9 枣林碧玄岩(Dy/Yb)N−(La/Yb)N图解(标准化数据来源Sun et al., 1989) Fig. 9 Diagram of (Dy/Yb)N−(La/Yb)N for Zaolin basanite (normalized data from Sun et al., 1989)
5.3 岩石成因

前已述及, 枣林碧玄岩原始岩浆来源于富集地幔源区。引起岩石圈地幔发生交代富集作用主要有三种情况: (1)软流圈上升的熔体或流体使岩石圈地幔发生富集(Meen et al., 1989); (2)地幔小比例的部分熔融造成地幔成分的变化(Roden et al., 1985; Arai et al., 1989); (3)俯冲过程中富含碱、轻稀土元素及不相容元素的洋壳进入地幔发生脱水作用与深部地幔发生交代(Holm et al., 1982)。

样品中Rb/Sr值为0.029~0.042, 接近于原始地幔0.03(Thompson, 1982); Ba/Rb值为7.89~11.78, 接近于原始地幔约11(Thompson, 1982), 说明源区的富集与流体相矿物金云母和角闪石无关。前人在对中国东部碱性玄武岩大量地幔捕虏体研究表明, 中国东部地区由于软流圈上涌交代岩石圈地幔而导致岩石圈地幔富集(吴福元等, 1999; Xu et al., 2000; 支霞臣等, 2004; Zheng et al., 2004; 马振东等, 2013)。发生熔体有关的交代富集作用Th/Zr比值相对比较稳定, 而发生流体有关的Nb/Zr比值相对比较稳定, 因此熔体和流体的交代富集作用可以用Th/Zr-Nb/Zr比值判别图进行区分(Ma et al., 2014)。根据图 10可以看出枣林地区碧玄岩地幔源区的交代富集与软流圈上涌的熔体有关。

图 10 枣林碧玄岩Th/Zr−Nb/Zr图解 Fig. 10 Diagram of Th/Zr−Nb/Zr for Zaolin basanite

Li et al.(2017)近些年发现中国东部新生代碱性玄武岩具有轻Mg同位素组成, 表明中国东部新生代碱性玄武岩是地幔过渡带滞留的西太平洋俯冲板片携带碳酸盐熔体交代对流上地幔的产物。出露于中国东部的江西省枣林碧玄岩, 与其他中国东部新生代碱性玄武岩具有类似的OIB型玄武岩特征。结合前一章节论证的枣林碧玄岩源区为石榴石相橄榄岩与尖晶石相橄榄岩的部分熔融, 这意味着原始岩浆熔融深度在逐渐变浅, 而软流圈与地幔柱的相互作用可以导致岩石圈减薄, 岩浆熔融深度变浅。因此, 笔者认为枣林碧玄岩原始岩浆是在新生代, 由于太平洋板块俯冲, 导致软流圈地幔携带碳酸盐熔体上涌, 与岩石圈地幔相互作用下产生的。

6 结论

(1) 岩石地球化学特征表明, 枣林碧玄岩总体具有低硅、高镁、高钛、高碱等特点; 稀土元素数据显示轻稀土富集, 微弱负Eu异常; 微量元素显示其具有较高Ni、Cr、Sc含量, 明显富集Nb、Ta、Th、Zr等元素, 亏损Ba、Ti、K、P等特点。

(2) 在太平洋板块俯冲作用下, 软流圈携带碳酸盐熔体上涌, 与岩石圈地幔相互作用, 在碳酸盐化地幔中0.2%~0.5%石榴石相二辉橄榄岩与0.5%~1%尖晶石相二辉橄榄岩按不同比例经过部分熔融而形成枣林碧玄岩原始岩浆。

注释

❶江西省地质矿产勘查开发局九一二大队. 2017.朱溪铜钨矿成矿模式与成矿预测示范研究成果报告[R].

参考文献
Arai S, Takahashi N. 1989. Formation and compositional variation of phlogopites in the horoman peridotite complex, hokkaido, northern japan:Implications for origin and fractionation of metasomatic fluids in the upper mantle[J]. Contributions to Mineralogy & Petrology, 101(2): 165-175.
Cai Yitao, Zhang Jie, Dong Zhongdou, Cao Zhengqi, Xiao Shuyue, Li Shuai, Li Chenkai, Chen Lezhu, Fan Feipeng. 2018. Neoproterozoic basic magmatism in the north of Anhui Province:Evidence from whole-rock geochemistry and U-Pb geochronology of Diabase in Langan area[J]. Geology in China, 45(2): 351-366 (in Chinese with English abstract).
Charvet J, Lapierre H, Yu Y. 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China[J]. Journal of Asian Earth Sciences, 9(4): 387-396. DOI:10.1016/0743-9547(94)90050-7
Chen L H, Zeng G, Jiang S Y, Hofmann A W, Xu X S, Pan M B. 2009. Sources of Anfengshan basalts:Subducted lower crust in the Sulu UHP belt, China[J]. Earth & Planetary Science Letters, 286(3/4): 426-435.
Chen Lihui, Zeng Gang, Hu Senlin, Yu Xun, Chen Xiayu. 2012. Crustal recycling and genesis of continental aline basalts:Case study of the Cenozoic alkaline basalts from Shandong Province, eastern China[J]. Geological Journal of China Universities, 18(1): 16-27 (in Chinese with English abstract).
Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts[J]. Journal of Petrology, 48(11): 2093-2124. DOI:10.1093/petrology/egm053
Dupuy C, Liotard J M, Dostal J. 1992. Zr/Hf fractionation in intraplate basaltic rocks:Carbonate metasomatism in the mantle source[J]. Geochimica et Cosmochimica Acta, 56(6): 2417-2423. DOI:10.1016/0016-7037(92)90198-R
Farmer G L. 2007. Continental Basaltic Rocks[J]. Treatise on Geochemistry, 3: 1-39.
Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the east african rift system:Geochemical evidence from the Kivu volcanic province[J]. Developments in Geotectonics, 24: 237-262. DOI:10.1016/S0419-0254(99)80014-7
Gao S, Rudnick R L, Carlson R W, Mcdonough W F, Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the north china craton[J]. Earth & Planetary Science Letters, 198(3/4): 307-322.
Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite[J]. Geology, 31(6): 481. DOI:10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
Holm P M, Munksgaard N C. 1982. Evidence for mantle metasomatism:An oxygen and strontium isotope study of the vulsinian district, central Italy[J]. Earth & Planetary Science Letters, 60(3): 376-388.
Hsü K J, Li J L, Chen H H, Wang Q C, Sun S, Şengörc A M C. 1990. Tectonics of south China:Key to understanding west Pacific geology[J]. Tectonophysics, 183(1/4): 9-39.
Hu Shouxin, Zao Yiying, Hu Zhihong, Guo Jichun, Xu Bing. 1994. Evolution and development of tectonics and magmatism at the active continental margin of the east China during Mesozoic and Cenozoic[J]. Acta Petrologica Sinica, 10(4): 370-381 (in Chinese with English abstract).
Kogiso T, Hirschmann M M. 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts[J]. Earth & Planetary Science Letters, 249(3): 188-199.
Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 4: 111-120.
Liu Wei, Yang Xiaoyong, Ma Zhixing, Sun Zhiming, Liao Zhongli. 2018. Genesis of monzonitic granite in the northern margin of Yangtze Block:zircon U-Pb chronology, Hf isotope and geochemical constraint[J]. Acta Geologica Sinica, 92(1): 65-76 (in Chinese with English abstract).
Liu Y, Gao S, Kelemen P B, Xu W. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the north China craton[J]. Geochimica et Cosmochimica Acta, 72(9): 2349-2376. DOI:10.1016/j.gca.2008.02.018
Liu Ying, Liu Haichen, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace element in rock samples using ICPMS[J]. Geochimica, 25(6): 552-558 (in Chinese with English abstract).
Ma L, Jiang S Y, Hou M L, Dai B Z, Jiang Y H, Yang T, Zhao K D, Wei P, Zhu Z Y, Xu B. 2014. Geochemistry of early Cretaceous calc-alkaline lamprophyres in the Jiaodong peninsula:Implication for lithospheric evolution of the eastern north China craton[J]. Gondwana Research, 25(2): 859-872. DOI:10.1016/j.gr.2013.05.012
Ma Zhendong, Fang Junjie, Liu Xiaoquan. 2019. Constraints of the lead isotope geochemical field of the Upper Mantle in China on diagenetic and ore-forming materials exemplified by porphyry copper deposit and copper-nickel sulfide deposit[J]. Geology in China, 46(1): 32-42 (in Chinese with English abstract).
Meen J K, Eggler D H, Ayers J C. 1989. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions[J]. Nature, 340(6231): 301-303. DOI:10.1038/340301a0
Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, SinoKorean craton, China[J]. Geological Society, Special Publications, 76(1): 71-81. DOI:10.1144/GSL.SP.1993.076.01.04
Molan E, Zhao D S. 1987. Cenozoic Basalts of Eastern China and their Deep Sourced Xenoliths[M]. Beijing: Science Press.
Nelson D R, Chivas A R, Chappell B W, Mcculloch M T. 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources[J]. Geochimica et Cosmochimica Acta, 52(1): 1-17. DOI:10.1016/0016-7037(88)90051-8
Pan X F, Ren Y F, Li Y, Ouyang Y P, Gong X J, Li Q Y, Yang Y S. 2019. A new discovered basanite dike in Zaolin, Jingdezhen, northeast Jiangxi Province, South China and its petrologic significance[J]. Mineralogy and Petrology, in press.
Qian Shenping, Ren Zhongyuan, Zhang Yinhui, Hong Lubing, Zhang Le, Zhang Yan, Liu Jiangqiang, Song Maoshuang. 2015. Mantle source characteristics of Cenozoic basalts in eastern China[J]. Geotectonica et Metallogenia, 39(6): 1119-1140 (in Chinese with English abstract).
Roden M F, Murthy V R, Gaspar J C. 1985. Sr and Nd isotopic composition of the jacupiranga carbonatite[J]. Journal of Geology, 93(2): 212-220.
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267-309.
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tang Y J, Zhang H F, Ying J F. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime:Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, north China craton[J]. Chemical Geology, 233(3): 309-327.
Thompson R N. 1982. Magmatism of the British Tertiary Volcanic Province[J]. Scottish Journal of Geology, 18(1): 49-107. DOI:10.1144/sjg18010049
Wang Shuai, Tao Jihua, Li Wuxian, Wang Andong, Lv Puliang. 2018. Zircon U-Pb geochronology, geochemistry, and Sr-Nd isotopic characteristics of the Maixie biotite-granodiorite pluton in Northwestern Jiangxi Province and their implications for petrogenesis[J]. Acta Geologica Sinica, 92(4): 747-768 (in Chinese with English abstract).
Wu Fuyuan, Sun Deyou. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China[J]. Journal of Jinlin University, 29(4): 313-318 (in Chinese with English abstract).
Xu X, O'Reilly S Y, Griffin W L, Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China:An LAM-ICP-MS trace element study[J]. Journal of Petrology, 41(1): 111-148. DOI:10.1093/petrology/41.1.111
Xu Xisheng, Xie Xin. 2005. Late Mesozoic-Cenozoic basaltic rocks and crust mantle interaction, SE China[J]. Geological Journal of China Universities, 11(3): 318-334 (in Chinese with English abstract).
Xu Z, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in north China:Geochemical evidence from Cenozoic continental basalts in central Shandong[J]. Lithos, 146-147(5): 202-217.
Yang Minggui, Mei Yongwen. 1997. Characteristics of geology and metatillization in the QinZhou-HangZhou Paleoplate Juncture[J]. Geology and Mineral Resourse of South China, 9(3): 52-59 (in Chinese with English abstract).
Yang Minggui, Wang Guanghui, Xu Meigui, Hu Qinghua. 2016. Basic characteristics of the Marina Pacific tectonic activities in Jiangxi Province and its adjacent areas[J]. East China Geology, 37(1): 10-18 (in Chinese with English abstract).
Zeng G, Chen L H, Hofmann A W, Jiang S Y, Xu X S. 2011. Crust recycling in the sources of two parallel volcanic chains in Shandong, north China[J]. Earth & Planetary Science Letters, 302(3): 359-368.
Zeng G, Chen L H, Xu X S, Jiang S Y, Hofmann A W. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, north China[J]. Chemical Geology, 273(1): 35-45.
Zhang J B, Liu Y S, Ling W L, Gao S. 2017. Pressure-dependent compatibility of iron in garnet:Insights into the origin of ferropicritic melt[J]. Geochimica et Cosmochimica Acta, 197: 356-377. DOI:10.1016/j.gca.2016.10.047
Zhang Jianfang, Gong Ruijun, Wang Longwu, Cai Xiaoliang, Xu Shuanghui, Chen Jinhua, Chen Xiaoyou, Wang Jianguo. 2017. Zircon U-Pb geochronology and geochemistry of the Late Mesozoic Xianxia rock in Zhejiang and Anhui Provinces and diagenetic geological significance[J]. Acta Geologica Sinica, 91(1): 198-212 (in Chinese with English abstract).
Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China[J]. Lithos, 110(1): 305-326.
Zheng J, O'Reilly S Y, Griffin W L, Ming Z, Lu F, Liu G. 2004. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 74(1): 41-65.
Zhi Xiacheng, Qin X. 2004. Re-Os isotope geochemistry of mantlederived peridotite xenoliths from eastern China:Constraints on the age and thinning of lithosphere mantle[J]. Acta Petrologica Sinica, 20(5): 989-998 (in Chinese with English abstract).
Zhou X M, Li W X. 2000. Origin of late Mesozoic igneous rocks in southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326: 269-287. DOI:10.1016/S0040-1951(00)00120-7
Zhou X, Armstrong R L. 1982. Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition[J]. Earth & Planetary Science Letters, 58(3): 301-329.
蔡逸涛, 张洁, 董钟斗, 曹正琦, 肖书阅, 李帅, 李成凯, 陈乐柱, 范飞鹏. 2018. 皖北栏杆地区新元古代岩浆活动:含金刚石母岩U-Pb年代学及地球化学制约[J]. 中国地质, 45(2): 351-366.
陈立辉, 曾罡, 胡森林, 俞恂, 陈霞玉. 2012. 地壳再循环与大陆碱性玄武岩的成因:以山东新生代碱性玄武岩为例[J]. 高校地质学报, 18(1): 16-27. DOI:10.3969/j.issn.1006-7493.2012.01.002
胡受奚, 赵乙英, 胡志宏, 郭继春, 徐兵. 1994. 中国东部中-新生代活动大陆边缘构造-岩浆作用演化和发展[J]. 岩石学报, 10(4): 370-381. DOI:10.3321/j.issn:1000-0569.1994.04.003
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 25(6): 552-558. DOI:10.3321/j.issn:0379-1726.1996.06.004
刘伟, 杨晓勇, 马志鑫, 孙志明, 廖忠礼. 2018. 扬子陆块北缘上两地区二长花岗岩成因:锆石U-Pb年代学、Hf同位素及地球化学制约[J]. 地质学报, 92(1): 65-76.
马振东, 方俊杰, 刘小权. 2019. 中国新生代上地幔铅同位素地球化学场对成岩、成矿物质来源的制约——以斑岩铜矿床及铜镍硫化物矿床为例[J]. 中国地质, 46(1): 32-42. DOI:10.3969/j.issn.1006-9372.2019.01.009
钱生平, 任钟元, 张银慧, 洪路兵, 张乐, 张艳, 刘建强, 宋茂双. 2015. 中国东部新生代玄武岩的地幔源区特征[J]. 大地构造与成矿学, 39(6): 1119-1140.
王帅, 陶继华, 李武显, 王安东, 吕璞良. 2018. 赣西北麦斜岩体锆石UPb年代学、地球化学以及Sr-Nd同位素研究及其岩石成因[J]. 地质学报, 92(4): 747-768. DOI:10.3969/j.issn.0001-5717.2018.04.007
吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 29(4): 313-318.
徐夕生, 谢昕. 2005. 中国东南部晚中生代-新生代玄武岩与壳幔作用[J]. 高校地质学报, 11(3): 318-344. DOI:10.3969/j.issn.1006-7493.2005.03.004
杨明桂, 梅勇文. 1997. 钦杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产, 9(3): 52-59.
杨明桂, 王光辉, 徐梅桂, 胡青华. 2016. 江西省及邻区滨太平洋构造活动的基本特征[J]. 华东地质, 37(1): 10-18. DOI:10.3969/j.issn.1674-3504.2016.01.002
张建芳, 龚瑞君, 汪隆武, 蔡晓亮, 徐双辉, 陈津华, 陈小友, 汪建国. 2017. 浙皖晚中生代仙霞岩体锆石U-Pb年代学、地球化学及成岩地质意义[J]. 地质学报, 91(1): 198-212. DOI:10.3969/j.issn.0001-5717.2017.01.012
支霞臣, 秦协. 2004. 中国东部地幔橄榄岩捕虏体的Re-Os同位素地球化学:岩石圈地幔的形成年龄和减薄作用的制约[J]. 岩石学报, 20(5): 989-998.