文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (5): 943-953  
0
引用本文
侯贺晟, 张金昌, 张交东, 王稳石, 杨立伟, 肖光武, 符伟, 苗慧心, 徐盛林, 曾秋楠, 刘旭锋, 王丹丹, 张文浩. 2019. 松科二井轻烃组分垂向分布特征及其对深部油气的指示[J]. 中国地质, 46(5): 943-953.  
Hou Hesheng, Zhang Jinchang, Zhang Jiaodong, Wang Wenshi, Yang Liwei, Xiao Guangwu, Fu Wei, Miao Huixin, Xu Shenglin, Zeng Qiunan, Liu Xufeng, Wang Dandan, Zhang Wenhao. 2019. Vertical distribution characteristics of light hydrocarbon components in Well SK-2 and its implications for deep oil and gas[J]. Geology in China, 46(5): 943-953. (in Chinese with English abstract).  

松科二井轻烃组分垂向分布特征及其对深部油气的指示
侯贺晟1, 张金昌2, 张交东3,4, 王稳石2, 杨立伟5, 肖光武5, 符伟1, 苗慧心1, 徐盛林1, 曾秋楠3,4, 刘旭锋3,4, 王丹丹3,4, 张文浩3,4    
1. 中国地质科学院, 北京 100037;
2. 中国地质科学院勘探技术研究所, 河北 廊坊 065000;
3. 中国地质调查局油气资源调查中心, 北京 100083;
4. 中国地质调查局非常规油气地质重点实验室, 北京 100083;
5. 大庆钻探工程公司地质录井一公司, 黑龙江 大庆 163000
摘要: 松辽盆地深部油气已成为今后油气战略性接替领域的一个重要方向,松科二井连续取样的6042组103种单体的轻烃组分数据显示,轻烃组分垂向分布特征呈现明显的分段性,整体可划分为6个区段:Ⅰ段(井段470~1000 m)罐顶气峰面积小,出峰个数少,主要以甲烷为主,重烃较低,为浅层低熟油气段。Ⅱ段(井段1000~2800 m)罐顶气峰面积小,出峰个数多;甲烷含量中等,重烃含量普遍较高;有机质类型以Ⅰ型为主,处于成熟阶段,为常规油气段。Ⅲ段(井段2800~3320 m)罐顶气峰面积小,出峰个数较少、零散;甲烷含量整体较高,重烃含量与Ⅳ段相似,表明该段气源可能来源于Ⅳ段。Ⅳ段(井段3320~5940 m)罐顶气峰面积大,集中分布在3400~3800 m和5200~5400 m井段,明显高于Ⅲ段和Ⅴ段;为Ⅲ型烃源岩,处于高成熟-过成熟阶段。Ⅴ段(井段5940~6200 m)罐顶气峰面积、出峰个数低;甲烷和重烃含量较低。Ⅵ型(井段6200~7018 m)出峰个数、罐顶气峰面积低;甲烷含量较高,重烃含量中等,其总体特征与Ⅳ和Ⅴ段不同,推测深部可能存在气源。上述垂向分布特征反映了白垩系、侏罗系和前侏罗系在油气成因类型、成熟度和含气性及其油气来源等具有不同的特征,为松辽盆地深部非常规天然气探索拓展提供了重要依据。
关键词: 深地探测工程    松科二井    轻烃组分    垂向分布    油气调查工程    
中图分类号:P618.13            文献标志码:A             文章编号:1000-3657(2019)05-0943-11
Vertical distribution characteristics of light hydrocarbon components in Well SK-2 and its implications for deep oil and gas
HOU Hesheng1, ZHANG Jinchang2, ZHANG Jiaodong3,4, WANG Wenshi2, YANG Liwei5, XIAO Guangwu5, FU Wei1, MIAO Huixin1, XU Shenglin1, ZENG Qiunan3,4, LIU Xufeng3,4, WANG Dandan3,4, ZHANG Wenhao3,4    
1. Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Institute of Exploration Technology, Chinese Academy of Geological Sciences, Langfang 065000, Hebei, China;
3. Oil and Gas Survey Center of China Geological Survey, Beijing 100083, China;
4. Key Laboratory of Unconventional Oil and Gas Geology, China Geological Survey, Beijing 100083, China;
5. No.1 Logging Company, Daqing Drilling Engineering Co., Ltd., Daqing 163000, Heilongjiang, China
Abstract: With the maturation of oil and gas exploration and development in Songliao basin, it is urgent to expand strategic replacement areas for oil and gas storage and production. In this task, deep oil and gas seem to be an important direction. Roof gas logging with continuous sampling in the whole well section of Well SK-2 obtained 6042 groups of light hydrocarbon composition data containing 103 monomers, and fully demonstrated vertical variation characteristics of light hydrocarbon components in the deep part of Well SK-2, which shows obvious segmentation. As a whole, it can be divided into 6 sections:section Ⅰ (470-1000 m in well section), which has a small peak area, a small number of peak outfalls, and a low heavy hydrocarbon content, showing the characteristics of shallow and low-mature oil and gas; Section Ⅱ (well section 1000-2800 m) has a large peak area, a large number of peaks and a high heavy hydrocarbon content. It is a mature type Ⅰ source rock and a conventional oil and gas section dominated by oil generation; Section Ⅲ (2800-3320 m in well section) has fewer and scattered peaks, low content of heavy hydrocarbon and no hydrocarbon source rocks, which are characteristic of reservoirs; Section Ⅳ (3320-5940 m in well section) is the upper unconventional gas section of Shahezi Formation, with a large peak area and a large number of peak outputs, high content of heavy hydrocarbon, being Type Ⅲ source rocks with large thickness in the maturation-over-maturation stage, and sandstone interbeds can form various types of unconventional natural gas, suggesting an important section for future exploration; Section Ⅴ (5940-6200 m in well section) is the lower part of Shahezi Formation and Huoshiling Formation, and the peak area and peak number of roof gas are scattered within the section which is considered to be in the stage of over-maturation; Section Ⅵ (6200-7108 m in well section) is volcanic rock and basement segment, and the peak area and number of peaks are generally low. However, the peak area of top gas in 7000-7100 m well segment shows that the light hydrocarbon parameters are different from those of section Ⅴ, and it is inferred that there may be gas sources of type Ⅱ-Ⅲ organic matter in the deep part. These characteristics show that the vertical distribution of light hydrocarbon components reflects the different characteristics among Jurassic, Cretaceous and the basal formations in oil and gas formation, maturation, gas content and oil and gas sources. The results obtained by the authors reveal the potential of deep unconventional gas resource, and provide an important foundation for Songliao Basin's exploration shift from conventional oil and gas exploration and tight conglomerate gas exploration at the edge of fault depression to deep trough zone for the exploration and expansion of unconventional natural gas.
Key words: deep exploration engineering    Well SK-2    light hydrocarbon component    vertical distribution    oil and gas survey engineering    

1 引言

松辽盆地是中国最重要的含油气盆地之一,自1955年油气勘探以来,已经发现常规油气、页岩油、煤层气、油页岩、油砂、深层致密气和浅层生物气等多种油气类型,其中常规油气是主要产量来源,曾经连续30年实现年产5000×104 t油气当量;近年来随着常规油气和致密气等资源勘探日趋成熟和开采强度不断深化,松辽盆地急需拓展油气增储上产的战略性接替领域,其中深部油气是其中一个重要方向(张君峰等,2018陈海峰等,2018);但以往钻井主要针对中浅层常规油气和断陷边部致密砂砾岩气,深部洼槽带油气工作调查程度较低,制约了深部油气资源评价和勘探战略导向(郭巍等,2004)。松科二井作为大陆钻探计划在松辽盆地实施的科学探井,不同于石油企业的常规油气钻井,对深部油气目的层系进行全取心,各类测钻录井和分析化验项目齐全(邹长春等, 2016, 2018),其中采用的罐顶气录井是目前油气录井常用的成熟技术方法之一(李玉桓等,2010梁前勇等,2015),获得了全井段、连续采样的100多种轻烃组分数据,完整揭示了深部洼槽带白垩系、侏罗系和基底的轻烃组分特征,蕴含了丰富的油气成因类型、成熟度和含气性及其油气来源等信息,展示了中浅层常规油气和深层非常规天然气的共性和差异,彰显了深部非常规天然气资源潜力,为深部油气资源研究提供了重要依据。

2 地质简况

松辽盆地是中国东部大型含油气沉积盆地,呈北东向展布的似菱形,长约750 km,宽330~370 km,面积约2.6×105 km2图 1);盆地四周由区域性控盆断裂所围限、内部由多组深大断裂所分隔,受断裂活动差异性影响,在盆地断陷发育期形成了近南北向的断凹、断隆相间的区域构造格局,主要包括西部断陷带、中央断陷带、中央隆起带和东部断陷带(葛荣峰等,2010)。盆地基底主要由古生代地层和古生代—中生代花岗岩组成,沉积盖层由上侏罗统、白垩系、古近系、新近系和第四系组成(黄志龙等,2013吴真玮等,2015王璞珺等,2017侯贺晟等,2018)。

图 1 松辽盆地大陆深部科学钻探工程钻孔分布图(据王璞珺等, 2017, 侯贺晟等,2018 Fig. 1 Borehole distribution of deep continental scientific drilling engineering in Songliao Basin (modified after Wang et al., 2017; Hou et al., 2018)

松科二井于2014年4月13日开钻,于2018年5月26日完井,实际完钻井深7018 m,完整揭示了松辽盆地的第四系、白垩系、上侏罗统和前侏罗系基底地层序列(图 2),其中前侏罗系基底岩性主要以火山岩、千枚岩和变质砂砾岩为主;上侏罗统由火石岭组构成,岩性主要为中、酸性火山岩和凝灰岩及砂泥岩互层;白垩系分为上、下统,下白垩统由沙河子组、营城组和登娄库组组成,代表盆地主要断陷发育阶段的沉积特征,主要为火山碎屑岩、砂砾岩及灰色泥岩夹煤层建造;上白垩统由泉头组、青山口组、姚家组、嫩江组、四方台组和明水组组成,代表盆地主要坳陷发育阶段的沉积特征,主要为泥岩、油页岩及砂岩建造;第四系为一套松散砂泥堆积(高有峰等,2017高翔等,2017李宁等,2017李宏浩等,2018)。

图 2 松科二井岩性综合柱状图(侯贺晟等,2018) Fig. 2 Integrated core histogram of Well SK-2 (after Hou et al., 2018)
3 轻烃数据获取

轻烃是石油、天然气中重要的组成部分,由于测试方法和应用范围等差异,不同学者对轻烃的定义有所不同(丁洪生等,2004段毅等,2014),本文采用Mango(1997)的定义,轻烃包括石油、天然气中的C1~C9的各种化合物;采用气相色谱分析技术对岩屑罐顶气进行轻烃组分分析(蒋启贵等,2005刘文汇等,2013)。罐顶气样品现场采集和测试由中国地质科学院勘探技术研究所和大庆钻探工程公司地质录井一公司按照“岩屑罐顶气轻烃的气相色谱分析方法(SY/T 5259~2013)”和“气相色谱录井仪(SY/T 5191~2011)”等技术规范完成。

样品采取:在泥浆槽内或振动筛下取一定量岩屑样品,快速清洗表面黏附的泥浆,减少泥浆的干扰,装至干净的取样瓶1/2~2/3的位置立即压盖密封,防止轻烃散失。

样品分布:深度为470~1644 m采样间隔2 m,1645~7018 m采样间隔1 m,累计有效样品数量6042个,取样间隔均匀、连续、密集,能够满足深部油气研究的需求。

测试仪器:采用目前通用的Agilent 6890N气相色谱仪进行轻烃分析,使用HP-PONA毛细柱,规格为内径0.2 mm、长度50 m、膜厚0.5 μm,其固定相为100%-聚二甲基硅氧烷,该色谱柱主要用来分析链烷烃、链烯烃、环烷烃和芳香化合物(Agilent气相色谱手册分析仪用户手册,2001)。

样品预处理:将样品先放到进样加热转盘上预加热一个周期,然后放入转盘内加热一个周期后再进行分析,保证样品的温度一致。

分析方法:抽取密封罐顶部气体注入Agilent 6890N气相色谱仪中进行分析,起始温度35 ℃,恒温5 min,然后以3 ℃/min的升温速率,将温度程序升温至95 ℃;用FID检测器检测包括从C1到C9的单体烃组分的色谱峰。进样器、管路温度为100 ℃;FID检测器温度为300 ℃;柱前压力为20 kPa。

4 轻烃组分垂向分布特征及其分段性

松科二井连续采样的6042组样品轻烃组分数据,包含了从C1到C9的烷烃、环烃、芳烃等103个单体烃组分数据,数据量大、类型多,为方便研究分析,按照碳原子个数对烃组分进行了分类统计和分析,主要分为甲烷、乙烷、丙烷、丁烷(正丁烷和异丁烷)、C5(正戊烷及其同分异构体等)、C6(己烷及其同分异构体等)、C7(庚烷及其同分异构体等)、C8(辛烷及其同分异构体等)、C9(壬烷及其同分异构体等),完整揭示了深部白垩系、侏罗系和前侏罗系的轻烃组分垂向变化特征,呈现明显的分段性,结合松科二井钻探成果和松辽盆地徐家围子断陷已有成果认识(冯子辉等,2013赵泽辉等,2016),松科二井轻烃参数垂向特征可划分为6个段(图 3),其特征如下:

图 3 松科二井轻烃组分垂向分布图 Fig. 3 Vertical distribution of light hydrocarbon components in Well Sk-2

Ⅰ段:井段470~1000 m,以嫩江组5段砂泥岩为主(侯贺晟等,2018),罐顶气峰面积小,出峰个数少,主要以甲烷为主,C2以上重烃较低,为浅层低熟油气段(胡国艺等,2010夏永江等,2012)。其中470~600 m井段出峰个数高,甲烷含量低,有一定的重烃含量,推测为测试分析时未熟-低熟干酪根加热所致,与Ⅱ段的轻烃特征具有明显区别,前人认为与生物活动具有较大关系(帅燕华等,2011),具备生物气形成的地质条件,可作为盖层。

Ⅱ段:井段1000~2800 m,以青山口组和嫩江组下部黑色泥页岩为主(侯贺晟等,2018);罐顶气峰面积小,出峰个数多;甲烷含量中等,C2以上重烃含量普遍较高;已有资料显示(刘波等,2014),该段发育在白垩纪海侵事件背景下的分布广泛、富含有机质、巨厚的烃源岩,有机质类型以Ⅰ型和Ⅱ型为主,处于成熟阶段,以生油为主,为常规油气段(连承波等,2011张智礼等,2014)。

Ⅲ段:井段2800~3320 m,以营城组砂砾岩、火山岩为主(侯贺晟等,2018);罐顶气峰面积小,出峰个数较少、零散;甲烷含量变化较大,整体比Ⅱ段较高;不同碳数的重烃含量差别较大,但总体趋势与Ⅳ段相似,上述特征表明该段不发育烃源岩,可作为储集层,主要气源可能来源于Ⅳ段;结合徐深气田主要产层为营城组火山岩、少部分为砂砾岩(贺电等,2008陈欢庆等,2011),认为该段为致密气段。

Ⅳ段:井段3320~5940 m,以沙河子组灰黑色泥岩和砂砾岩互层为主(侯贺晟等,2018);罐顶气峰面积大,集中分布在3400~3800 m和5200~5400 m井段,明显高于Ⅲ段和Ⅴ段;出峰个数存在多个较高井段,总体较零散;出峰个数多处较高;甲烷含量整体高,在3400~3800 m和5200~5400 m井段甲烷含量普遍在90%以上;3800~5200 m区段甲烷含量变化较大,有一定重烃含量;该段泥岩累计厚度大、发育煤层或煤线(侯贺晟等,2018),为Ⅲ型烃源岩,处于高成熟—过成熟阶段,砂泥岩互层,可形成多种的非常规天然气类型(王志宏等,2014),是松辽盆地深层非常规天然气勘探的重要领域和方向之一,为今后工作加强关注的区段。

Ⅴ段:井段5940~6200 m,以火石岭组火山岩和火山碎屑岩为主(侯贺晟等,2018);罐顶气峰面积、出峰个数低;甲烷含量较低,且变化大,个别点含量高但分布零散;重烃总体含量低;其总体特征与Ⅴ段和Ⅵ型明显不同。

Ⅵ型:井段6200~7018 m。主要为火石岭组以下的砂砾岩、火山岩和千枚岩,属于前侏罗系基底;出峰个数较低、罐顶气峰面积很低;甲烷含量较高,重烃含量中等,其总体特征与Ⅳ和Ⅴ段不同,值得关注的是本段为基底千枚岩和糜棱岩等,但罐顶气峰面积和甲烷含量及部分重烃依然有一定显示,由于推测深部可能存在上古生界气源(任收麦等,2011),为今后工作有待深入研究的区段。

5 轻烃参数与油气的关系讨论

轻烃组分数据蕴含了丰富的油气成因类型、成熟度和含气性及其油气来源等信息(高丽丽等,2011),通过轻烃组分出峰个数、面积、异构烷烃、正构烷烃、环烷烃、芳烃、甲基环烷指数、甲基环己烷指数、环己烷指数、环烷指数Ⅰ、环烷指数Ⅱ、庚烷值等主要参数计算和分析,结合已有烃烃地球化学相关认识和成果(吴长金等,2012祁帅等,2017),探索了中浅层常规油气和深层非常规天然气的共性和差异。

5.1 出峰面积与含气性

以往研究成果表明(吴长金等,2012祁帅等,2017),出峰面积与含气性具有明显的正相关。松科二井轻烃出峰面积具有3个明显的高值区段(图 3),结合以往研究成果(张晓东等,2014), 井深1000~ 2800 m井段为常规油气产层,主要为石油的溶解气;深部3400~3800 m、5200~5400 m井段轻烃富集,出峰面积大,比较集中,表明松科二井深部沙河子组含气性较好,是今后重要的天然气评价层段。

松科二井深部6240~7108 m井段轻烃出峰面积总体较低,但在7000 m左右具有一定的轻烃面积,表明基底依然具有一定含气性。该段主要为千枚岩、火山岩和砂砾岩,烃源岩不发育,而且该井位于徐家围子断陷中心附近的构造低部位(张淑霞等,2018),上部油气难以往下运移至该层,结合该井段轻烃组分各参数与上部地层具有明显的差异(图 3),初步认为深部曾经发生过生烃过程(李艳等,2013),暗示深部可能存在含有机质的晚古生代地层。

5.2 正庚烷等组分含量与有机质类型

已有成果表明,烃源岩有机质母质类型是决定烃类及轻烃特征的主要因素之一;C7轻烃系列中正庚烷、甲基环己烷和二甲基环戊烷生源不同,与天然气成因关系密切,其中二甲基环戊烷主要起源于水生生物,其大量出现是腐泥型有机质标志;正庚烷主要来自藻类和细菌;甲基环己烷来自高等植物的木质纤维素和糖类,反映了腐殖型有机质特征(Mango,1997丁洪生等,2004蒋启贵等,2005刘文汇等,2013段毅等,2014)。

松科二井轻烃组分中,甲基环己烷、正庚烷和二甲基环戊烷质量分数垂向分布特征清晰显示了有机质类型随深度变化趋势(图 4),结合以往划分有机质类型指标和相关研究成果(Mango,1997蒋启贵等,2005王培荣等,2010王民等,2014段毅等,2014),总体分为3段,其特征如下:1000~2800 m井段的正庚烷和二甲基环戊烷质量分数之和明显高于甲基环己烷,整体较高,连续分布,表现为富含有机质的Ⅰ型干酪根的生气特征,其中正庚烷比二甲基环戊烷的质量百分数较小,暗示该段有机质主要以水生生物为主。2800~5940 m井段的甲基环己烷、正庚烷和二甲基环戊烷质量分数大致相当,总体较低,分布零散,表现为砂泥岩互层的湖相Ⅲ型干酪根特征的生气。5940~7108 m井段的甲基环己烷、正庚烷和二甲基环戊烷质量分数大致相当,总体含量中等,正庚烷比二甲基环戊烷的质量百分数略高,暗示藻类和细菌生长发育,推测可能为Ⅱ~Ⅲ型干酪根的生气特征。

图 4 有机质类型的轻烃组分指标垂向分布图 Fig. 4 Vertical distribution map of light hydrocarbon component Indexes of organic matter types
5.3 环烷指数等参数与油气成熟度

对轻烃组分与油气成熟度的关系研究,前人已进行了许多研究和探索,主要采用环烷指数Ⅰ、环烷指数Ⅱ、庚烷值等反映了轻烃的演化阶段(Mango,1997丁洪生等,2004蒋启贵等,2005王培荣等,2010段毅等,2014)。参考前人的成熟度划分指标(张敏等,1998;李玉桓等,2012;段毅等,2014),松科二井的环烷指数Ⅰ、环烷指数Ⅱ、庚烷值随深度变化趋势明显(图 5),总体分为3段:1000~2800 m井段为成熟阶段,环烷指数Ⅰ、环烷指数Ⅱ普遍在5%~ 20%,庚烷值小于30%。2800~7108 m井段为高—过成熟阶段(任战利等,2011王民等,2014),环烷指数Ⅰ、环烷指数Ⅱ普遍小于5%,庚烷值大于30%。

图 5 有机质成熟度的轻烃组分指标垂向分布特征 Fig. 5 Vertical distribution characteristics of light hydrocarbon component indexes of organic maturity

根据前人研究(帅燕华等,2011),470~1000 m井段为低熟油或浅层生物气,环烷指数Ⅰ、环烷指数Ⅱ普遍小于5%,庚烷值在30%~60%,与前人研究的生物气轻烃特征不同(胡国艺等,2010夏永江等,2012);此外井深3000 m左右井段庚烷值出现明显跳跃式增加,是不同的热演化过程还是有机质类型差异所致?具体原因有待深入研究。

6 结论

松科二井东孔作为大陆钻探计划在松辽盆地实施的科学探井,全井段、连续取样的罐顶气录井获得的6042组轻烃数据,蕴含着丰富的油气成因类型、成熟度和含气性及其油气来源等信息,通过103个单体烃组分含量计算和分析,松科二井垂向油气分布特征呈现明显的分段性,整体可划分为6个区段,完整揭示了白垩系、侏罗系和前侏罗系的轻烃分布特征,为深部油气资源评价和勘探战略导向提供了参考。

Ⅰ段(井段470~1000 m)罐顶气峰面积小,出峰个数少,主要以甲烷为主,C2以上重烃较低,为浅层低熟油气段。

Ⅱ段(井段1000~2800 m)罐顶气峰面积小,出峰个数多;甲烷含量中等,C2以上重烃含量普遍较高;有机质类型以Ⅰ型为主,处于成熟阶段,以生油为主,为常规油气段。

Ⅲ段(井段2800~3320 m)罐顶气峰面积小,出峰个数较少、零散;甲烷含量变化较大,整体比Ⅱ段较高;不同碳数的重烃含量差别较大,但总体趋势与Ⅳ段相似,表明该段主要气源可能来源于Ⅳ段,为营城组致密气段。

Ⅳ段(井段3320~5940 m)罐顶气峰面积大,集中分布在3400~3800 m和5200~5400 m井段,明显高于Ⅲ段和Ⅴ段;出峰个数存在多个较高井段,总体较零散;出峰个数多处较高;甲烷含量整体高,在3400~3800 m和5200~5400 m井段甲烷含量普遍在90%以上;3800~5200 m区段甲烷含量变化较大,有一定重烃含量,为Ⅲ型烃源岩,处于高成熟—过成熟阶段,为沙河子组和火石岭组非常规天然气段,是松辽盆地深层非常规天然气勘探的重要领域和方向之一。

Ⅴ段(井段5940~6200 m)罐顶气峰面积、出峰个数低;甲烷含量较低,且变化大,个别点含量高但分布零散;重烃总体含量低;其总体特征与Ⅴ段和Ⅵ型明显不同。

Ⅵ型(井段6200~7018 m)出峰个数较低、罐顶气峰面积很低;甲烷含量较高,重烃含量中等,其总体特征与Ⅳ和Ⅴ段不同,初步认为前侏罗系可能具有Ⅱ~Ⅲ型干酪根的生气特征;值得关注的是本段千枚岩和糜棱岩等罐顶气峰面积和甲烷含量及部分重烃依然有一定显示,并有一定含气性,初步认为深部发生过生烃过程,暗示可能存在上古生界的深部气源,为今后工作有待深入研究的区段。

致谢: 本项研究得到二级项目所属的工程首席科学院吕庆田研究员大力支持并提出了富有建设性建议,深部中心首席科学家董树文研究员、乔德武研究员和朱永宜教授级高级工程师提供了不可或缺的指导和帮助,郝梓国、王学明两位老师给予了精心指导和大力帮助,在此一并表示衷心的感谢。

参考文献
Chen Haifeng, Wang Fengqi, Wang Min. 2018. Characteristic and resource potential of tight sandy conglomerate gas reservoir in Shahezi formation of Xujiaweizi Depression[J]. Journal of Central South University (Science and Technology), 49(1): 141-149 (in Chinese with English abstract).
Chen Huanqing, Hu Yongle, JinJiuqiang, Ran Qiquan. 2011. Researches on flow unit of the volcanic reservoir in 1st Member of lower Cretaceous Yingcheng Formation, Xudong area, Songliao Basin[J]. Geology in China, 38(6): 1430-1439 (in Chinese with English abstract).
Ding Hongsheng, Sun Zhaolin, ZhangXiaotong. 2004. Analysis of hydrocarbon group composition of light crude oil by capillary gas chromatography[J]. Journal of Petrochemical Universities, 4: 9-11, 98-99 (in Chinese with English abstract).
Duan Yi, Zhao Yang, YaoJingli, Zhang Boxiang, Wu Yingzhong, Cao Xixi, Xu Li. 2014. Research advance and tendency of light hydrocarbon geochemistry[J]. Natural Gas Geoscience, 25(12): 1875-1887 (in Chinese with English abstract).
Feng Zihui, Yin Changhai, Lu Jiamin, Zhu Yingkang. 2013. Formation and accumulation of tight sandy conglomerate gas:A case from the Lower Cretaceous Yingcheng Formation of Xujiaweizi fault depression, Songliao Basin[J]. Petroleum Exploration and Development, 40(6): 650-656 (in Chinese with English abstract).
Gao Lili, Zhang Min, Zhao Hongjing. 2011. Geochemical characteristics of light hydrocarbon in natural gas from Lishu Fault Depression in Songliao Basin[J]. Natural Gas Geoscience, 22(4): 709-714 (in Chinese with English abstract).
Gao Youfeng, Qu Xuejiao, Jiang Lijun, Wang Shuxue, Wang Pujun. 2017. Lithology and stratigraphic interfaces prediction of the Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK2)[J]. Earth Science Frontiers, 24(1): 242-256 (in Chinese with English abstract).
Gao Xiang, Gao Youfeng, Qu Xuejiao, Li Honghao, Chen Tong, Wang Pujun. 2017. Volcanic-sedimentary succession description of the Lower Cretaceous Yingcheng Formation based on the ICDP scientific drilling borehole in the Songliao Basin (SK-2)[J]. Earth Science Frontiers, 24(1): 265-275 (in Chinese with English abstract).
Ge Rongfeng, Zhang Qinglong, Wang Liangshu, XieAiguo, Xu Shiyin, Chen Juan, Wang Xiyong. 2010. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China[J]. Geological Review, 56(2): 180-195 (in Chinese with English abstract).
Guo Wei, Liu Zhaojun, Dong Huimin, Zhao Yujun. 2004. The sequence stratigraphic features and hydrocarbon accumulation of Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 34(2): 216-221 (in Chinese with English abstract).
He Dian, LiJianghai, Liu Shoujie, Han Liang. 2008. Discovery of a giant caldera in the Yingcheng Formation in the Xujiaweizi fault depression, northern Songliao basin[J]. Geology in China, 35(3): 463-471 (in Chinese with English abstract).
Hou Hesheng, Wang Chengshan, Zhang Jiaodong, Ma Feng, Fu Wei, Wang Pujun, Huang Yongjian, Zou Changchun, Gao Youfeng, Gao Yuan, Zhang Laiming, Yang Jin, Guo Rui. 2018. Deep continental scientific drilling engineering in Songliao Basin:Resource discovery and progress in earth science research[J]. Geology in China, 45(4): 641-657 (in Chinese with English abstract).
Hu Guoyi, Luo Xia, Li Zhisheng, Zhang Ying, Yang Chun, Li Jin, Ni Yunyan, Tao Xiaowan. 2010. The geochemical characteristics and origin of light hydrocarbons in biogenic gas[J]. Science China Earth Science, 40(4): 426-438 (in Chinese with English abstract).
Huang Zhilong, Wang Bin, Zhang Xiuxin, Tang Zhenxing, He Junlin, Lu Xiaoyu. 2013. Evaluation on gas generation potential of Upper Paleozoic source rock in Songliao Basin[J]. Journal of Earth Sciences and Environment, 35(3): 55-65 (in Chinese with English abstract).
Jiang Qigui, Zhang Zhirong, Song Xiaoying, Rao Dan. 2005. Analysis of light hydrocarbon fingerprints and its application[J]. Geological Science and Technology Information, 24(1): 61-64 (in Chinese with English abstract).
Li Honghao, GaoYoufeng, WangPujun, Qu Xuejiao, Gao Xiang, Chen Haichao. 2018. Characteristics of top boundary of Shahezi Formation in Xujiaweizi fault depression, northern Songliao Basin:Illustrated by continental scientific drilling borehole SK2[J]. Global Geology, 37(3): 838-849 (in Chinese with English abstract).
Li Ning, Zou Changchun, Peng Cheng, Zhao Jinhuan, Niu Yixiong. 2017. Core spatial Position restoring of the CCSD-SK-2 east borehole in the Songliao Basin of Northeast China[J]. Geological Science and Technology Information, 36(4): 271-276 (in Chinese with English abstract).
Li Yan, Zhang Xiuqi, Lu Xiaoyu, Cui Yang, Tang Zhenxing, Wang Bin, He Junlin, Huang Zhilong. 2013. Characteristics and validity analysis of hydrocarbon source rocks of Upper Paleozoic in Songliao Basin[J]. Journal of Earth Sciences and Environment, 35(4): 39-48 (in Chinese with English abstract).
Li Yuhuan, Liu Jianying, Liu Huiying. 2010. The theoretic basis and the application principle for light hydrocarbon technology[J]. Mud Logging Engineering, 21(1): 1-5 (in Chinese with English abstract).
Lian Chengbo, Zhang Jianhua, Qu Fang, Wang Zhikun, Yang Jun. 2011. Main factors controlling hydrocarbon accumulation mode of Quan4 Formation in Longxi area, Songliao Basin[J]. Geology in China, 38(1): 161-169 (in Chinese with English abstract).
Liang Qianyong, Xiong Yongqiang, Fang Chenqhen, Li Yun. 2015. Geochemical feature of head-space gas components of drill well and its application to petroleum reservoir identification[J]. Geophysical and Geochemical Exploration, 39(4): 704-714 (in Chinese with English abstract).
Liu Bo, LüYanfang, Ran Qingchang, Dai Chunlei, Li Mei, Wang Meng. 2014. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology, 35(2): 280-285 (in Chinese with English abstract).
Liu Wenhui, Wang Xiaofeng, Tenger, Zhang Dianwei, Wang Jie, Tao Cheng, Zhang Zhongning, Zhang Zhongyu, Lu Longfei. 2013. Research progress of gas geochemistry during the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 279-289 (in Chinese with English abstract).
Mango F D. 1997. The light hydrocarbons in petroleum:A critical review[J]. Organic Geochemistry, 26(7): 417-440.
Qi Shuai, Li Xianqing, He Kun, Zhang Guangwu, Chen Jinming, Gao Wenjie, Liang Wanle. 2017. Comparativeresearch on the yields and chemical compositions of light hydrocarbons derived from pyrolysis of organic matters with different types[J]. Natural Gas Geoscience, 28(6): 975-986 (in Chinese with English abstract).
Ren Shoumai, QiaoDewu, Zhang Xingzhou, Liu Yongjiang, Wang Nan, Sun Yuewu, Tang Zhenxing, Cui Yongqian. 2011. The present situation of oil & gas resources exploration and strategic selection of potential area in the Upper Paleozoic of Songliao Basin and surrounding area, NE China[J]. Geological Bulletin of China, 30(2): 197-204 (in Chinese with English abstract).
Ren Zhanli, Xiao Deming, Chi Yuanlin, Ren Yanguang, Liang Yu. 2011. Restoration of thermal history of the Permo-Carboniferous basement in the Songliao Basin[J]. Oil & Gas Geology, 32(3): 430-439 (in Chinese with English abstract).
Shuai Yanhua, Song Nana, Zhang Shuichang, Feng Zihui, Zhu Guangyou, Wang Xue, Huang Haiping. 2011. Gas of biodegradation origin and their pooling characteristics in northern Songliao Basin[J]. Oil & Gas Geology, 32(5): 659-670 (in Chinese with English abstract).
Wang Min, Sun Yefeng, Wang Wenguang, Wang Yan, Shi Lei. 2014. Gas generation characteristics and resource potential of the deep source rock in Xujiaweizi Fault Depression, northern Songliao Basin[J]. Natural Gas Geoscience, 25(7): 1011-1018 (in Chinese with English abstract).
Wang Peirong, Xu Guanjun, Zhang Dajiang, Xiao Tingrong, Ren Donglin. 2010. Problems with application of heptane and isoheptane values as light hydrocarbon parameters[J]. Petroleum Exploration and Development, 37(1): 121-128 (in Chinese with English abstract).
Wang Pujun, Liu Haibo, Ren Yanguang, Wang Xiaoqiao, Wang Shuxue, ZhaiXuejiao, Meng Qi'an, Huang Yongjian, Huang Qinghua, Gao Youfeng. 2017. How to choose a right drilling site for the ICDP Cretaceous Continental Scientific Drilling in the Songliao Basin (SK2), Northeast China[J]. Earth Science Frontiers, 24(1): 216-228 (in Chinese with English abstract).
Wang Zhihong, Li Jian, Xia Li. 2014. Distribution forecast of source rocks and gas generation potential of Shahezi Formation in deep fault depressions of Songliao Basin[J]. Global Geology, 33(3): 630-639 (in Chinese with English abstract).
Wu Changjin, Ma Changwei, Zhang Kecao. 2012. Application of light hydrocarbon analysis logging in Hailar Basin[J]. Engineering Sciences, 14(4): 49-57 (in Chinese with English abstract).
Wu Zhenwei, Zeng Zhaofa, Li Jing, Zhao Xueyu, Xu Tianfu. 2015. Distribution of basement lithology in the Songliao Basin derived from gravity and magnetic anomalies[J]. Geology and Exploration, 51(5): 939-945 (in Chinese with English abstract).
Xia Yongjiang, Wang Yanbin, Wang Xiaobo, Zhang Ying, Wang Dongliang, Li Zhisheng, Yang Chunxia. 2012. Main controlling factors in the shallow-gas reservoir formation and its favorable exploration area in the northern Songliao Basin[J]. Acta PetroleiSinica, 33(6): 961-969 (in Chinese with English abstract).
Zhang Junfeng, Xu Hao, Zhao Junlong, Ren Pengfei. 2018. Geological characteristics and exploration potential of oil and gas in the northeast area of China[J]. Geology in China, 45(2): 260-273 (in Chinese with English abstract).
Zhang Min, Zhang Jun. 1998. Development and application of Mango's light hydrocarbon parameters[J]. Petroleum Exploration and Development, 25(6): 43-45, 5-6, 12 (in Chinese with English abstract).
Zhang Shuxia, Zou Changchun, Peng Cheng, Zhao Jinhuan, Li Ning, Zhang Xiaohuan, Ma Huolin, NiuYixiong. 2018. Abnormally high natural radioactivity zones in the main borehole of the Continental Scientific Drilling Project of Cretaceous Songliao Basin:Geophysical log responses and genesis analysis[J]. Chinese Journal of Geophysics, 61(11): 4712-4728 (in Chinese with English abstract).
Zhang Xiaodong, Yu Jing, Zhang Dazhi, Lu Jiamin, Xiao Limei, Li Guozheng. 2014. Accumulation conditions and exploration prosopects for Shahezi-Formation tight sandstone gas in Xujiaweizi fault depression[J]. Petroleum Geology & Oilfield Development in Daqing, 33(5): 86-91 (in Chinese with English abstract).
Zang Zhili, Cai Xiyao, Zang Ming, Li Jingchang, Zhang Ying. 2014. An analysis of the relationship between types of ostracoda shell ornaments and shell shapes and the environment from Late Cretaceous Qingshankou Formation to 1st Member of Nenjiang Formation in Songliao Basin[J]. Geology in China, 41(1): 135-147 (in Chinese with English abstract).
Zhao Zehui, Xu Shujuan, Jiang Xiaohua, Lin Changsong, Cheng Honggang, Cui Junfeng, Jia Li. 2016. Deep strata geologic structure and tight sandy conglomerate gas exploration in Songliao Basin, East China[J]. Petroleum Exploration & Development Online, 43(1): 13-23 (in Chinese with English abstract).
Zou Changchun, Xiao Liang, NiuYixiong, HouJie, Peng Cheng. 2016. General design of geophysical logging of the CCSD-SK-2 East Borehole in the Songliao Basin of Northeast China[J]. Earth Science Frontiers, 23(3): 279-287 (in Chinese with English abstract).
Zou Changchun, Zhang Xiaohuan, Zhao Jinhuan, Peng Cheng, Zhang Shuxia, Li Ning, Xiao Liang, NiuYixiong, Ding Yujiao, Qin Yuxing, Lin Feng. 2018. Scientific results of geophysical logging in the Upper Cretaceous strata, CCSD SK-2 east borehole in the Songliao Basin of Northeast China[J]. Acta Geoscientica Sinica, 39(6): 679-690 (in Chinese with English abstract).
陈海峰, 王凤启, 王民. 2018. 徐家围子断陷沙河子组致密砂砾岩气藏特征与资源潜力[J]. 中南大学学报(自然科学版), 49(1): 141-149.
陈欢庆, 胡永乐, 靳久强, 冉启全. 2011. 松辽盆地徐东地区下白垩统火山岩储层流动单元研究[J]. 中国地质, 38(6): 1430-1439. DOI:10.3969/j.issn.1000-3657.2011.06.003
丁洪生, 孙兆林, 张晓彤. 2004. 毛细管气相色谱法分析轻烃族组成[J]. 石油化工高等学校学报, 17(4): 9-11, 98-99. DOI:10.3969/j.issn.1006-396X.2004.04.003
段毅, 赵阳, 姚泾利, 张伯祥, 吴应忠, 曹喜喜, 徐丽. 2014. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 25(12): 1875-1887. DOI:10.11764/j.issn.1672-1926.2014.12.1875
冯子辉, 印长海, 陆加敏, 朱映康. 2013. 致密砂砾岩气形成主控因素与富集规律——以松辽盆地徐家围子断陷下白垩统营城组为例[J]. 石油勘探与开发, 40(6): 650-656.
高丽丽, 张敏, 赵红静. 2011. 松辽盆地南部梨树断陷天然气轻烃地球化学研究[J]. 天然气地球科学, 22(4): 709-714.
高有峰, 瞿雪姣, 蒋丽君, 王树学, 王璞珺. 2017. 松辽盆地白垩系大陆科学钻探松科二井钻遇地层界面及岩性剖面预测[J]. 地学前缘, 24(1): 242-256.
高翔, 高有峰, 瞿雪姣, 李宏浩, 陈桐, 王璞珺. 2017. 松辽盆地松科二井下白垩统营城组火山-沉积序列精细刻画[J]. 地学前缘, 24(1): 265-275.
葛荣峰, 张庆龙, 王良书, 解国爱, 徐士银, 陈娟, 王锡勇. 2010. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 56(2): 180-195.
郭巍, 刘招君, 董惠民, 赵羽君. 2004. 松辽盆地层序地层特征及油气聚集规律[J]. 吉林大学学报(地球科学版), 34(2): 216-221.
贺电, 李江海, 刘守偈, 韩亮. 2008. 松辽盆地北部徐家围子断陷营城组大型破火山口的发现[J]. 中国地质, 35(3): 463-471. DOI:10.3969/j.issn.1000-3657.2008.03.010
侯贺晟, 王成善, 张交东, 马峰, 符伟, 王璞珺, 黄永建, 邹长春, 高有峰, 高远, 张来明, 杨瑨, 国瑞. 2018. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 45(4): 641-657.
胡国艺, 罗霞, 李志生, 张英, 杨春, 李瑾, 倪云燕, 陶小晚. 2010. 生物气中轻烃分布特征及其成因[J]. 中国科学:地球科学, 40(4): 426-438.
黄志龙, 王斌, 张秀颀, 唐振兴, 贺君玲, 逯晓喻. 2013. 松辽盆地上古生界烃源岩生气潜力评价[J]. 地球科学与环境学报, 35(3): 55-65. DOI:10.3969/j.issn.1672-6561.2013.03.005
蒋启贵, 张志荣, 宋晓莹, 饶丹. 2005. 轻烃指纹分析及其应用[J]. 地质科技情报, 24(1): 61-64. DOI:10.3969/j.issn.1000-7849.2005.01.012
李宏浩, 高有峰, 王璞珺, 瞿雪姣, 高翔, 陈海潮. 2018. 松辽盆地徐家围子断陷沙河子组顶界面特征研究——基于松辽盆地大陆科学钻探松科二井[J]. 世界地质, 37(3): 838-849. DOI:10.3969/j.issn.1004-5589.2018.03.015
李宁, 邹长春, 彭诚, 赵金环, 牛一雄. 2017. 松辽盆地科学钻探工程松科二井东孔岩心空间归位[J]. 地质科技情报, 36(4): 271-276.
李艳, 张秀颀, 逯晓喻, 崔洋, 唐振兴, 王斌, 贺君玲, 黄志龙. 2013. 松辽盆地上古生界烃源岩特征及有效性分析[J]. 地球科学与环境学报, 35(4): 39-48. DOI:10.3969/j.issn.1672-6561.2013.04.005
李玉桓, 刘建英, 刘慧英. 2010. 轻烃录井技术的理论基础和应用原理[J]. 录井工程, 21(1): 1-5. DOI:10.3969/j.issn.1672-9803.2010.01.001
连承波, 钟建华, 渠芳, 王志坤, 杨军. 2011. 松辽盆地龙西地区泉四段油气成藏主控因素及模式[J]. 中国地质, 38(1): 161-169. DOI:10.3969/j.issn.1000-3657.2011.01.017
梁前勇, 熊永强, 房忱琛, 李芸. 2015. 钻井罐顶气组分地球化学特征及其在储层辨识中的应用[J]. 物探与化探, 39(4): 704-714.
刘波, 吕延防, 冉清昌, 戴春雷, 李梅, 王猛. 2014. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 35(2): 280-285.
刘文汇, 王晓锋, 腾格尔, 张殿伟, 王杰, 陶成, 张中宁, 卢龙飞. 2013. 中国近十年天然气示踪地球化学研究进展[J]. 矿物岩石地球化学通报, 32(3): 279-289. DOI:10.3969/j.issn.1007-2802.2013.03.001
祁帅, 李贤庆, 何坤, 张光武, 陈金明, 高文杰, 梁万乐. 2017. 不同类型有机质热演化轻烃产率及组成特征对比[J]. 天然气地球科学, 28(6): 975-986.
任收麦, 乔德武, 张兴洲, 刘永江, 王楠, 孙跃武, 唐振兴, 崔永谦. 2011. 松辽盆地及外围上古生界油气资源战略选区研究进展[J]. 地质通报, 30(2): 197-204. DOI:10.3969/j.issn.1671-2552.2011.02.003
任战利, 萧德铭, 迟元林, 任延广, 梁宇. 2011. 松辽盆地基底石炭-二叠系热演化史[J]. 石油与天然气地质, 32(3): 430-439.
帅燕华, 宋娜娜, 张水昌, 冯子辉, 朱光有, 王雪, 黄海平. 2011. 松辽盆地北部生物降解成因气及其成藏特征[J]. 石油与天然气地质, 32(5): 659-670.
王民, 孙业峰, 王文广, 王岩, 石蕾. 2014. 松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力[J]. 天然气地球科学, 25(7): 1011-1018.
王培荣, 徐冠军, 张大江, 肖廷荣, 任冬苓. 2010. 常用轻烃参数正、异庚烷值应用中的问题[J]. 石油勘探与开发, 37(1): 121-128.
王璞珺, 刘海波, 任延广, 万晓樵, 王树学, 瞿雪姣, 蒙启安, 黄永建, 黄清华, 高有峰. 2017. 松辽盆地白垩系大陆科学钻探"松科二井"选址[J]. 地学前缘, 24(1): 216-228.
王志宏, 李剑, 夏利. 2014. 松辽盆地深层断陷沙河子组烃源岩分布预测与生气潜力[J]. 世界地质, 33(3): 630-639.
吴长金, 马昌伟, 张可操. 2012. 轻烃分析录井技术在海拉尔盆地的应用[J]. 中国工程科学, 14(4): 49-57. DOI:10.3969/j.issn.1009-1742.2012.04.011
吴真玮, 曾昭发, 李静, 赵雪宇, 许天福. 2015. 基于重磁场特征的松辽盆地基底岩性研究[J]. 地质与勘探, 51(5): 939-945.
夏永江, 王延斌, 王晓波, 张英, 王东良, 李志生, 杨春霞. 2012. 松辽盆地北部浅层气成藏主控因素及勘探有利区[J]. 石油学报, 33(6): 961-969.
张君峰, 许浩, 赵俊龙, 任鹏飞. 2018. 中国东北地区油气地质特征与勘探潜力展望[J]. 中国地质, 45(2): 260-273.
张敏, 张俊. 1998. Mango轻烃参数的开发与应用[J]. 石油勘探与开发, 25(6): 43-45, 5-6, 12.
张淑霞, 邹长春, 彭诚, 赵金环, 李宁, 张小环, 马火林, 牛一雄. 2018. 松科二井东孔营城组高放射性异常层测井响应特征及成因初探[J]. 地球物理学报, 61(11): 4712-4728. DOI:10.6038/cjg2018L0210
张晓东, 于晶, 张大智, 陆加敏, 肖利梅, 李国政. 2014. 徐家围子断陷沙河子组致密气成藏条件及勘探前景[J]. 大庆石油地质与开发, 33(5): 86-91. DOI:10.3969/J.ISSN.1000-3754.2014.05.014
张智礼, 蔡习尧, 张铭, 李京昌, 张莹. 2014. 松辽盆地晚白垩世青山口组-嫩江组一段介形类壳饰、壳形类型与环境关系分析[J]. 中国地质, 41(1): 135-147. DOI:10.3969/j.issn.1000-3657.2014.01.010
赵泽辉, 徐淑娟, 姜晓华, 林畅松, 程宏岗, 崔俊峰, 贾丽. 2016. 松辽盆地深层地质结构及致密砂砾岩气勘探[J]. 石油勘探与开发, 43(1): 12-23.
邹长春, 肖亮, 牛一雄, 侯颉, 彭诚. 2016. 松辽盆地科学钻探工程松科二井东孔测井设计[J]. 地学前缘, 23(3): 279-287.
邹长春, 张小环, 赵金环, 彭诚, 张淑霞, 李宁, 肖亮, 牛一雄, 丁娱娇, 秦宇星, 林峰. 2018. 松辽盆地科学钻探工程松科二井东孔上白垩统地球物理测井科学成果[J]. 地球学报, 39(6): 679-690.