文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (5): 1039-1051  
0
引用本文
熊小松, 高锐, 酆少英, 李英康, 黄兴富, 陈宣华, 常玉举. 2019. 榆木山构造带深部结构及隆升成因[J]. 中国地质, 46(5): 1039-1051.  
Xiong Xiaosong, Gao Rui, Feng Shaoying, Li Yingkang, Huang Xinfu, Chen Xuanhua, Chang Yuju. 2019. Deep structure of Yumushan tectonic zone and genesis of the uplift[J]. Geology in China, 46(5): 1039-1051. (in Chinese with English abstract).  

榆木山构造带深部结构及隆升成因
熊小松1, 高锐2,3, 酆少英4, 李英康5, 黄兴富3, 陈宣华1, 常玉举6    
1. 中国地质调查局-中国地质科学院地球深部探测中心, 北京 100037;
2. 中国地质科学院地质研究所, 北京 100037;
3. 中山大学地球科学与工程学院, 广东 广州 510275;
4. 中国地震局地球物理勘探中心, 河南 郑州 450002;
5. 国土资源实物地质资料中心, 河北 三河 065201;
6. 中石化石油工程地球物理有限公司华北分公司, 河南 郑州 450016
摘要: 新生代以来,欧亚与印度两大板块间的碰撞拼合及后续的汇聚挤压塑造了现今青藏高原的高海拔地形地貌和巨厚地壳。位于青藏高原最北缘的榆木山构造带,其内部构造变形的几何学和运动学特征记录了地球最新演化历史过程中,构造、剥蚀和气候变化之间的复杂关系。长期以来,其构造成因和属性一直存在争议。本文通过对最近完成的深地震反射剖面的初步处理,其反射剖面初步揭示了榆木山构造带的深部地壳结构:榆木山构造带之下莫霍面深度为45~48 km,整体由北向南加深;同时,深部反射和地表层析速度成像结果显示榆木山下方存在明显的反射透明区、高速异常体,结合地表地质调查,推测其可能为花岗岩体,同早古生代祁连洋的闭合有关;在榆木山构造带之下存在明显的壳内滑脱面,推测其隆升受控于两条背向逆冲断裂带的控制。本文同时结合其他地质地球物理资料,初步提出了青藏高原北缘的演化模型,为青藏高原北缘的向北扩展、盆山耦合及块体间关系提供了新的思路。
关键词: 祁连造山带    榆木山构造带    深部结构    隆升成因    深地勘查工程    
中图分类号:P54            文献标志码:A             文章编号:1000-3657(2019)05-1039-13
Deep structure of Yumushan tectonic zone and genesis of the uplift
XIONG Xiaosong1, GAO Rui2,3, FENG Shaoying4, LI Yingkang5, HUANG Xinfu3, CHEN Xuanhua1, CHANG Yuju6    
1. Sinoprobe Center, Chinese Academy of Geological Sciences and China Geological Survey, Beijing 100037, China;
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China;
3. School of Earth Science and Geological Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China;
4. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, Henan, China;
5. Geological Information Center, Ministry of Land and Resources, Yanjiao, 065201, Hebei, China;
6. North China Branch, Petroleum Engineering Geophysics Co., Ltd., SINOPEC, Zhengzhou 450016, Henan, China
Abstract: Since early Cenozoic, the collision and ongoing continuous convergence of the Indian and Eurasian plates have resulted in the high elevation and thick crust of the Tibetan Plateau. Yumushan thrust belt is located at the north front of the Qilian Mountain, and is the newest joined part of the Tibetan Plateau. Its geometry and kinematics of the crustal deformation recorded the complex relationship between the tectonics, erosion and climate change of the newest evolution of the earth. The deep structure and uplift mechanism have been controversial for a long time. In this paper, the authors unraveled the crustal structure of the Yumushan thrust belt by the newest acquired deep seismic reflection profile. The Moho depth beneath the Yumushan belt is 45-48 km with a shallower trend to the north; the deep reflection structure and subsurface tomography velocity structure show the apparent transparent zone and high velocity zone beneath the Yumushan, which may represent the intrusion of a large amount of granitoids beneath the Yumushan related to the closure of the Qilian Ocean in early Paleozoic, and the uplift was driven by two back-back thrust faults. Combined with other geological and geophysical data, the authors propose a new growth pattern in the northmost Tibetan Plateau, which may shed some light on the northward growth as well as the basin-range coupling relation.
Key words: Qilian orogeny    Yumushan thrust belt    deep structure    uplift mechanism    deep exploration engineering    

1 引言

新生代以来,欧亚与印度两大板块间的碰撞拼合及后续的汇聚挤压塑造了现今青藏高原的高海拔地形地貌和巨厚地壳。一直以来,青藏高原地壳变形、地壳增厚和隆升机制问题,是全球地球科学界研究和争论的焦点(Molnar et al., 1975, 1993, 2009; Tapponnier et al., 1982, 2001; Harrison et al., 1992; 钟大赉等, 1996; 许志琴等, 1999; Yin et al., 2000; Molnar, 2005; Clark et al., 2010; Clark, 2012; Yuan et al., 2013; Gao et al., 2016; Zuza et al., 2016, 2018)。地质地球物理研究均表明,目前青藏高原仍然处在持续向外扩张生长之中(Métivier et al., 1998; 王成善等, 2004; 张培震等, 2006; Wang et al., 2011, 郑文俊等, 2016; Wang et al., 2018; Zhang et al., 2018)。青藏高原的周缘地区是高原向外扩展的最前线,是研究青藏高原隆升和地壳加厚变形的关键地带。北祁连和河西走廊是印度和欧亚两大板块南北向碰撞挤压应力在高原北缘最易集中的区域,其内部构造变形的几何学和运动学特征记录了地球最新演化历史过程中,构造、剥蚀和气候变化之间的复杂关系,是研究青藏高原隆升、高原向北扩展,进而理解正在进行中的印度与欧亚大陆碰撞的大陆内部构造作用的关键部位(图 1)。

图 1 青藏高原东北缘及周缘构造位置图(修改自Duvall et al., 2013; Yuan et al., 2013; Gao et al., 2013; Zuza and Yin, 2016;红线为2016年采集的深地震反射剖面位置) Fig. 1 Tectonic sketch map of the northeastern Tibet and adjacent regions (modified from Duvall et al., 2013; Yuan et al., 2013; Gao et al., 2013; Zuza and Yin, 2016; Red line represents the deep seismic reflection profile acquired in 2016)

榆木山构造带位于祁连山最北缘,自南向北由榆木山前到北侧前陆盆地—河西走廊盆地群海拔从3 km骤降到1.5~2 km。介于河西走廊前陆盆地系中酒东、民乐盆地之间,总体走向北北西向, 长约70 km, 宽20~40 km。主体由古生代奥陶纪和志留纪低绿片岩相地层组成,零星出露中生代地层,在西北端为新生代地层,地层之间多以角度不整合或断层接触(甘肃地调局,1971;图 2图 3)。东缘和北缘受断裂控制,南侧为祁连山北缘断裂。长期以来,榆木山构造带的成因和构造属性一直存在争议(王多杰, 1990; 潘宏勋等,2000Tappnnier et al., 1990; Palumbo et al., 2009a, 2009b; Seong et al., 2011; Fang et al., 2012; Wang et al., 2018)。有学者根据榆木山周缘地层间的接触关系、褶皱变形样式、地形地貌以及对周缘沉积盆地的特征开展研究,认为其是燕山运动晚期形成的北北西向分割酒东、民乐盆地的断隆(王多杰等,1990),后有学者通过对边缘断裂带的识别,并结合对地块的构造属性及相邻两侧盆地中、新生代沉积演化特征的分析,认为其是古近纪—新近纪逆冲推覆到中新生代盆地之上的1个推覆体(李玉龙等,1988潘宏勋等,2000)。陈宣华等(2019)通过地球物理和野外地质调查,认为榆木山北缘山系构成飞来峰,榆木山之下是被掩盖的白垩纪酒泉盆地的一个分支。对于榆木山的抬升和扩展过程,不同学者也有不同的认识。Tapponnier et al.(1990)通过对榆木山及其北缘的逆冲断层陡坎的研究认为榆木山整体是一个底部为壳内解耦面的断坡相关背斜;边庆凯等(2001)发现榆木山卷入褶皱变形的地层由西向东逐渐变老,认为这是活动构造由东向西逐渐发展的反映。Palumbo et al.(2010)通过地形剖面、断层滑动速率、古流域以及风口的研究,认为榆木山的抬升是1个侧向和垂向生长的过程。Jeong et al.(2011)通过地貌学的研究认为榆木山受向东传播的隐伏断层的驱动,从而垂向抬升和横向褶皱生长。对于上述关键问题的认识亟需高分辨率的地球物理探测资料来进行揭示。

图 2 祁连造山带及周缘地质简图 Fig. 2 Geological sketch map of the Qilian orogeny and adjacent regions
图 3 榆木山构造带地质简图(修改自陈宣华等,2019 Q4—全新统; Q3—上更新统; Q2—中更新统; Q1—下更新统; N2—上新统; N1—中新统; E—古近系; K1—下白垩统; J—侏罗系; T—三叠系; P—二叠系; C2—上石炭统; C1—下石炭统; D—泥盆系; S3—上志留统; S2—中志留统; S1—下志留统; O3—上奥陶统; O2—中奥陶统; O1—下奥陶统; Є—寒武系; Pt1—古元古界; NQLF—祁连山北缘断裂; NYMF—榆木山北缘断裂; SYMF—榆山南缘断裂; LSF—龙首山断裂; LYF—梨园堡断裂; SNF—肃南断裂; DGF—大更子断裂; XGF—小更子断裂 Fig. 3 Geological sketch map of the Yumushan thrust belt (modified from Chen et al., 2019) Q4-Holocene; Q3-Upper Pleistocene; Q2-Middle Pleistocene; Q1-Lower Pleistocene; N2-Pliocene; N1-Miocene; E-Paleogene; K1-Lower Cretaceous; J-Jurassic; T-Triassic; P-Permian; C2-Upper Carboniferous; C1-Lower Carboniferous; D-Devonian; S3-Upper Silurian; S2-Middle Silurian; S1-Lower Silurian; O3-Upper Ordovician; O2-Middle Ordovician; O1-Lower Ordovician; Є-Cambrian; Pt1-Paleoproterozoic; NQLF-North Qilian Mountain fault; NYMF-North Yumushan Mountain fault; SYMF-SouthYumushan Mountain Fault; LSF-Longshoushan Mountain fault; LYF-Liyuanpu Fault; SNF-Sunan Fault; DGF-Dagengzi Fault; XGF-Xiaogengzi Fault

2016年,中国地质科学院在中国地质调查项目的支持下,完成了一条从野牛沟—肃南—高台—喇叭井(戈壁—沙漠)近南北向长200 km的深地震反射剖面,横跨北祁连造山带、河西走廊盆地和阿拉善地块南缘,横穿了整个榆木山构造带(图 2)。本文通过地震反射获取的初步成果和单炮初至层析反演获取的浅部速度结构,获得了榆木山构造带的深部结构,并通过综合地球物理和地质相结合的方法,探讨了榆木山构造带的深部结构和抬升成因。

2 地质背景

榆木山构造带位于青藏高原北缘,是组成北祁连造山带的最外侧部分,向北以榆木山北缘断裂分割了河西走廊坳陷盆地群(图 2图 3)。

北祁连造山带位于青藏高原北缘,呈北西西-南东东向展布,夹持于祁连地块和河西走廊之间,向西止于阿尔金走滑断裂带,向东与西秦岭构造带相接,其长近1000 km(图 2)。作为青藏高原构造变形和向北推挤的最前缘,北祁连是青藏高原北部边缘新构造和活动构造的变形特征记录最为敏感的部位(Tapponnier et al., 1990)。同时,北祁连作为一条多旋回造山带,记录了北祁连自新元古代裂解以来多次的地块拼合的演化历史(任纪舜等, 1981)。其经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆(古祁连洋)、奥陶纪中晚期北祁连活动大陆边缘、志留纪—早、中泥盆世碰撞造山而形成(王荃等, 1981; 左国朝等, 1987;肖序常等, 1988; 许志琴等, 1994; 宋述光等, 1997; 夏林圻等, 1998, 2001; Yin et al., 2000; Gehrels et al., 2003a, 2003b, 2011; 吴才来等, 2004, 2006Song et al., 2006, 2013; Yin et al., 2007; Xiao et al., 2009; Xu et al., 2014);在中生代侏罗纪和白垩纪处于稳定的伸展环境(Horton et al., 2004);随后在新生代伴随印度—欧亚板块之间的碰撞又逐渐复活成为褶皱逆冲造山带,内部广泛发育新生代褶皱、逆冲和走滑断裂(Tapponnier et al., 1990, 2001; Burchfiel et al., 1991; 国家地震局地质研究所, 1993; Yin et al., 2000; Zheng et al., 2010)。北祁连出露地层主要有寒武系、下奥陶统、下志留统、石炭系,零星出露二叠系和三叠系(表 1)。区内主要发育古生代地层。下古生界为一套海相碎屑岩及中、基性火山岩建造,是典型的地槽沉积。上古生界以后,主要沉积陆相碎屑岩。

表 1 采集参数表 Table 1 Acquisition parameters

河西走廊位于祁连造山带以北和阿拉善地块以南,近NWW-SEE走向,延伸超过1000 km,是青藏高原边缘主要的汇聚构造带之一。其与以南平均海拔达4500 km的北祁连形成了将近3000 km的海拔落差。其形成演化与北祁连造山带的构造演化息息相关,大致经历了早古生代活动陆缘、晚古生代—早中生代前陆盆地、中生代中晚期伸展断陷和新生代挤压变形和前陆盆地演化4个阶段(戴霜, 2003; 杜远生等, 2004)。尤其是新生代以来印度板块和欧亚板块持续的碰撞和向北推挤所导致的高原隆升和大规模的走滑断裂作用,形成了典型的新生代压陷盆地(国家地震局阿尔金活动断裂带课题组, 1992国家地震局地质研究所等, 1993;葛肖虹等, 2006;郑文俊等, 2016)。同时,其内部又被一组活动性很强的NNW-NW向断裂所控制的隆起分割成几个次级盆地,包括酒西盆地、酒东盆地、潮水盆地等。其基底具双层性质,下部基底为早古生代寒武纪、奥陶纪、志留纪火山-沉积岩系。寒武系出露中统黑茨沟群和上统香毛山群;奥陶系主要出露下同阴沟组和肮脏沟组;志留系出露中统脑沟组和上统旱峡组;上部基底为泥盆系下中统雪山群和上统沙流水组;石炭系下统臭牛沟组和上统太原组;下二叠统大黄沟组和上统窑沟组。盖层则由中新生代地层组成,中生代地层三叠系发育不全,侏罗系和白垩系下统仅仅零星出露。新生代地层广泛发育,尤其是第四纪以来,受控于青藏高原的隆升剥蚀和向北扩展生长,河西走廊盆地普遍接受沉积。

3 深地震反射剖面 3.1 数据采集

野外地震数据采集过程中,采用大中小炮不同药量进行深井激发兼顾地壳的上中下反射信息获取。三种药量(500 kg、96 kg和36 kg,分别称为大炮、中炮和小炮)的炸药震源激发并同时接收,以获得高分辨率的地震数据。野外采用法国SERCEL428XL数字地震仪进行数据采集。小炮炮间距240 m,井深25 m,接收道数720道;中炮炮间距5000 m,井深25 m,双井组合激发,接收道数720道。最小偏移距为140 m,最大偏移距为14500 m。采样间隔为2 ms;采用SM-24超级检波器进行接收,其组合方式为单串12个检波器,沿测线线性组合方式埋置,组内距1 m,道间距40 m。全剖面记录长度30 s,具体观测系统和采集参数见表 1

3.2 数据处理

本次处理采用CGG、OMEGA和GRISYS多个处理软件相结合的手段,在对地表地质条件分析、静校正分析、原始单炮品质分析和能量分析等详细分析的基础上,对处理方法和参数进行了大量的测试工作,确定了处理流程,其中关键处理技术包括地表一致性静校正、子波一致性处理和叠前去噪等。经过精细的数据处理,最终获得了叠加和偏移剖面。本文的研究采用了叠加剖面。由于本文仅探讨榆木山的深部结构特征,因此仅展示该段的深部反射剖面(图 4a)。

图 4 榆木山构造带地震反射剖面及解释(a:未解释的叠加地震剖面; b:地震剖面的反射特征) Fig. 4 The deep seismic reflection across the Yumushan thrust belt (a: un-interpreted profile; b: Preliminary interpretation of the profile)
3.3 深地震反射剖面特征

图 4a的剖面上可见一些显著的强反射同向轴。纵轴表示双程走时(TWT)。本文采用6 km/s的地壳平均速度来进行时-深转换,剖面的浮动基准面为4 km。

剖面显示,榆木山构造带之下,在上地壳(0~8 s)内,介于CDP号100~2100,在CDP号1000最深可达6 s(18 km)存在一明显的反射透明体;在CDP号100附近,存在一条向北倾斜的反射体,而在CDP号2600附近,存在另外一条明显的向南倾斜的反射体。

在中下地壳(8 s之下),在剖面最北端8 s存在一条向南倾斜的反射,向南可延伸到16 s,推测其可能为上地壳同中下地壳的滑脱面;在剖面北段10 s TWT往南存在一条明显的自下地壳到上地幔的一条反射;在剖面中北段,8 s滑脱层之下,可见中下地壳有弧形反射叠置;而在剖面南段,滑脱面之上,也存在弧形反射。

莫霍面显示从北向南逐渐从14 s TWT加深到16.6 s TWT,但是莫霍面并非连续的,而是被南倾的下地壳-上地幔反射体切割,其中在榆木山构造带中心之下,显示有局部隆起。

3.4 浅层速度结构模型

根据大炮初至进行层析反演表层初始模型,用计算的初至波和实际拾取的初至波进行比较,计算地表模型的修正量,经过几次迭代反演得到比较精确的地表模型(图 5)。模型显示在剖面的南段和北段,榆木山之下均发育有高速体,速度可达4.0 km/s以上。

图 5 层析静校正获得的浅部速度结构模型 Fig. 5 The shallow velocity structure model obtained by tomographic static correction
4 讨论 4.1 榆木山的深部结构

前人研究认为榆木山主体部分为古生界及岩体组成,下古生界以奥陶纪—志留纪低绿片岩相变质岩系为主;上古生界是一套陆源碎屑岩和海相地层。不同时代的地层间主要以不整合或断层接触。此外,局部出露有下、中三叠统,下、中侏罗统,下白垩统和新生界,南北两侧以及西北角出露新生代以来地层,包括白杨河组、疏勒河组、玉门砾岩层、酒泉砾岩层、戈壁砾岩层(刘栋梁等,2012)。他们之间多以不整合或断层接触(甘肃省地调局,1971;潘宏勋等, 2000图 3)。传统认为,榆木山岩体出露较少,主要为侵位于奥陶纪地层中的早古生代晚期的3个二长花岗岩岩体出露,规模不大,包括红崖子西北部金佛寺地区、大力巴东部和榆木山之南的金窑寺(陈宣华等,2019)。3个岩体长轴方向均为北西西向,岩体内北东向陡斜节理发育,多被方解石脉和石英脉填充,显示岩体在新生代以来受强烈的区域挤压作用。

深地震反射剖面表层结构速度模型显示(图 5),沿测线地表到地下1.2 km深在测线的南段、中段和北段均显示显著的高速体存在,其地震波速度最高可达6 km/s,由测线出露的基岩可以对比得知,在测线南段和北段出露有大面积的花岗岩体,其中南段以走廊南山出露的早奥陶世二长花岗岩为主(吴才来等, 2004; 2010),在河西走廊以北在合黎山和大青山地区则出露石炭纪和二叠纪斜长花岗岩和花岗闪长岩(赖新荣等, 2007),因此笔者推测在榆木山之下的高速体也应代表侵位的大面积花岗岩。同时,深地震反射剖面也清晰地显示在榆木山构造带之下有透明反射区,根据前人对于深地震反射剖面透明区的构造解释,一般认为其应代表侵入的花岗岩体。但榆木山之下的花岗岩因为两侧边缘的逆冲断层对中部的物质的仰冲运移影响较两侧低,未大面积出露于地表,其时代根据榆木山构造带零星出露的志留纪花岗岩体,推测该区出露的花岗岩应该为早古生代侵位岩体,可能与加里东期祁连洋的向北闭合相关,在北祁连造山带发育的铜铁矿床,可能在榆木山构造带之下也有发育。另据陈宣华等(2019)研究表明,推覆的基底岩石之下还存在白垩纪沉积的可能,说明该推覆作用应该晚于白垩纪。

4.2 榆木山构造带隆升成因

前人曾推测榆木山构造带整体是由于冲断背斜作用(Tapponnier et al., 1990),但缺乏明显的深部地球物理数据支持。榆木山深部结构特征显示,榆木山构造带受控于两条背向的逆冲断裂带,北为榆木山北缘断裂带,南为祁连—肃南断裂带。其中,榆木山北缘断裂带研究较为详细,地表地质研究表明,该断裂带由多条次级断裂组成,总体产状为275°~300°SW∠45°~61°(国家地震局地质研究所等,1993边庆凯等,2001金卿,2011陈干等,2017)。野外露头可见泥盆纪地层逆冲于白垩纪地层之上(图 6e)。榆木山南缘断裂带为一条向南仰冲的逆冲断裂带,其分割了北祁连和榆木山两个构造块体。前人研究表明榆木山的垂直抬升速率在0.4~ 0.8 mm/a(Palumbo et al., 2009; 郑文俊,2009Seong et al., 2011)。其中,Palumbo et al.(2009b)利用原地宇宙成因核素10Be测年方法,认为榆木山中部的隆升速率在770 mm/ka,而边部的隆升速率在500 mm/ka,中部隆升速率明显高于两侧,也说明了中部的隆升叠加了南北两侧背向逆冲的结果。根据地质反射剖面特征并结合地表地质,笔者推测在榆木山内部同时发育有多条次级的逆冲断裂带,且最终都收敛于壳内的滑脱面上。但在榆木山之下,北侧的滑脱面是主滑脱面,且该滑脱面向南倾并最终切割莫霍,应该同阿拉善地块的向南被动楔入有关。泊松比是了解地球内部物质组成的重要参数,榆木山构造带的泊松比较低(李永华等,2014王兴臣等,2017)说明该区中上地壳长英质含量较高,该区的地壳增厚方式以中上地壳的逆冲褶皱为主。

图 6 榆木山构造带及邻区地表露头(详细位置见图 3 a—酒东盆地内发育的逆冲断层;b—白垩纪逆冲于Q1之上;c—Q3不整合覆盖于K之上;d—Q1与Q3角度不整合;e—泥盆系逆冲于白垩系之上;f—榆木山反冲断裂 Fig. 6 The outcropped thrust deformation in the Yumushan tectonic belt (the locations shown in Fig. 3) a-Thrust faults in Jiudong basin; b- Cretaceous strata overthrusted on the Q1 strata; c-Q3 unconformably covering Cretaceous strata; d- Angular unconformity between the Q1 and Q3; e- Devonian strata overthrusted on the Cretaceous strata; f- The Yumushan back thrust faults

在榆木山构造带最北缘,邻近酒东盆地可见多条逆冲断层,包括白垩纪地层逆冲于第四纪地层之上(图 6b),在盆地内部,也发育有条逆冲断裂(图 6a),说明青藏高原的北缘物质已经越过榆木山北缘断裂带继续向北以逆冲的方式进行扩展。前人通过平衡剖面恢复技术估算河西走廊盆地群在早白垩世的原始边界位于现今边界的30~50 km(何光玉等, 2004),也证实了榆木山构造带在一直向北扩展。

5 结论

结合前人在榆木山北缘断裂和酒泉盆地等地开展的热年代学、地貌学等研究工作,笔者通过对榆木山构造带深地震反射剖面的详细解释,认为:

(1) 榆木山构造带之下莫霍面深度在45~48 km;在上地壳存在大面积分布的花岗岩体,可能与早古生代祁连洋的闭合有关。

(2) 榆木山构造带的抬升受控于两条主要的背向的逆冲断裂带,上地壳和中下地壳之间存在明显的滑脱面,上地壳以逆冲褶皱变形为主,而在中下地壳,阿拉善地块的向南楔入致使中下地壳叠瓦状逆冲为主(图 7),上地壳的逆冲褶皱在整个地壳抬升过程中起到主要作用。

图 7 青藏高原东北缘深部结构及扩展抬升初步模式图 Fig. 7 The deep structure and preliminary uplift model of northeast Tibetan Plateau

致谢: 中石化石油工程地球物理有限公司华北分公司承担了本次野外地震数据采集任务,谨向他们在野外工作中付出的辛苦表示感谢。

参考文献
Bian Qingkai, Zhang Peizhen, Su Xiangzhou. 2001. The tectonic topography feature of the faults in north Yumushan Mountain and its faulting activity[J]. North China Earthquake Sciences, 19(3): 41-49 (in Chinese with English abstract).
Burchfiel B C, Zhang Peizhen, Wang Yipeng, Zhang Weiqi, Song Fangmin, Deng Qidong, Molnar Peter, Royden Leigh. 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics, 10(6): 1091-1110. DOI:10.1029/90TC02685
Chen Bailin, Wang Chunyu, Gong Hongliang, Liu Jianming, Zhang Shuangshuang, Liu Jiansheng. 2007. A new understanding of the characteristics of Late Quaternary activity of the northern Yumushan marginal fault in the Hexi corridor, northwestern China[J]. Geological Bulletin of China, 26(8): 976-983 (in Chinese with English abstract).
Chen Gan, Zheng Wenjun, Wang Xulong, Zhang Peizhen, Xiong Jianguo, Yu Jingxing, Liu Xingwang, Bi Haiyun, Liu Jinrui, Ai Ming. 2017. Present kinematics characteristics of the northern Yu Mushan active fault and its response to the northeastward growth of the Tibetan plateau[J]. Seismology and Geology, 39(5): 871-888 (in Chinese with English abstract).
Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, Gao Rui, Xu Shenglin, Zhang Yiping, Li Bing, Wang Ye. 2019. Early Cretaceous overthrusting of Yumu Mountain and Hydrocarbon Prospect on the northern margin of the Qilian Orgenic Belt[J]. Acta Geologica Sinica, 40(3): 377-392 (in Chinese with English abstract).
Clark Marin K, Farley Kenneth A, Zheng Dewen, Wang Zhicai, Duvall Alison R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 296(1/2): 78-88.
Clark Marin Kristen. 2012. Continental collision slowing due to viscous mantle lithosphere rather than topography[J]. Nature, 483(7387): 74-77. DOI:10.1038/nature10848
Dai Shuang, Fang Xiaomin, Zhang Xiang, Fangcheng Wang. 2003. The origin and tectonic settings of diorite granitoid in the centre of Beishan Region of Gansu[J]. Journal of Lanzhou University(Natural Sciences), 39(1): 86-92 (in Chinese with English abstract).
Du Yuan sheng, Zhu Jie, Han Xing, Gu Songzhu. 2004. From the back-arc basin to foreland basin-Ordovician-Devonian sedimentary basin and tectonic evolution in the North Qilian orogenic belt[J]. Geological Bulletin of China, 23(9/10): 911-917 (in Chinese with English abstract).
Duvall Alison R, Clark Marin K, Kirby Eric, Farley Kenneth A, Craddock William H, Li Chuanyou, Yuan Daoyang. 2013. Lowtemperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 32(5): 1190-1211. DOI:10.1002/tect.20072
Fang Xiaomin, Liu Dongliang, Song Chunhui, Dai Shuang, Meng Qingquan. 2013. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan:evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 373(1): 149. DOI:10.1144/SP373.5
Gao Li'e, Zeng Lingsen, Gao Jiahao, Shang Zhen, Hou Kejun, Wang Qian. 2016. Oligocene crustal anatexis in the Tethyan Himalaya, southern Tibet[J]. Lithos, 264: 201-209. DOI:10.1016/j.lithos.2016.08.038
Ge Xiaohong, Zhang Meisheng, Liu Yongjiang, Ye Huiwen, Shi Caidong. 1998. Scientific problems and research ideas of Altun Fault research[J]. Geoscience, 12(3): 295-301 (in Chinese with English abstract).
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding Lin, Guynn J, Martin A, McQuarrie N. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 30(5): TC5016.
Gehrels George E, Yin An, Wang Xiaofeng. 2003. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 115(7): 881-896. DOI:10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
Gehrels George E, Yin An, Wang Xiaofeng. 2003. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 108(B9): 2423.
Harrison T Mark, Copeland Peter, Kidd W S F, Yin An. 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670. DOI:10.1126/science.255.5052.1663
He Guangyu, Yang Shufeng, Chen Hanlin, Xian Ancheng, Chen Xiaogan. 2004. New ideas about the Early Cretaceous basins in western Gansu Corridor and nearby regions[J]. Acta Petrolei Sinica, 25(6): 18-22 (in Chinese with English abstract).
Horton B K, Dupont-Nivet Guillaume, Zhou J, Waanders G L, Butler Robert F, Wang J. 2004. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau:Magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research:Solid Earth, 109(B4): B04402.
Institute of Geology China Earthquake Adiministration, Province Earthquake Adiministration of Gansu. 1993. Active Fault System in Qilian Mountain-Hexi Corridor[M]. Beijing: Seismological Press (in Chinese with English abstract).
Jing Qing. 2011. Late Quaternary Tectonic Activities and Risk Assessment of Large Earthquakes in the Yumushan Fault Zone[D]. China Earthquake Administration Earthquake Administration of Gansu Province (in Chinese with English abstract).
Lai Xingrong, Jiang Sihong, Qiu Xiaoping, Liu Yan, Hu Peng, Zhang Wanyi. 2007. 40Ar-39Ar age and geochemical features of Hercynian intermediate a cidity rock in Beidashan rock belt, Alxa[J]. Acta Geologica Sinica, 81(3): 370-380 (in Chinese with English abstract).
Li Yonghua, Xu Xiaoming, Zhang Enhui, Gao Jiayi. 2014. ThreeDimensional crust structure beneath SE Tibetan Plateau and its seismotectonic implications for the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 36(4): 1204-1216.
Li Youli, Yang Jingchun, Li Baojun, Tan Lihua. 1997. On the tectonic land form of the Yumu Mountain, Hexi Corridor, Gansu province[J]. Journal of Geomechanics, 3(4): 20-26 (in Chinese with English abstract).
Li Yulong, Xing Chengqi. 1988. Researc on the Fundamental Characteristics of the geological structures of the Hexi Corridor and the active faults of the northern and eastern fkank of the Yumushan Mountin[J]. Northwestern Seismological Journal, 10(2): 35-47 (in Chinese with English abstract).
Lui Dongliang, Song Chunhui, Fang Xiaomin, Dai Shuang, Li Haibing. 2012. Magneteostratigraphy of Yumen conglomerate in the Yumushan Region and its implication for deformation and uplift of the NE Tibetan Plateau[J]. Acta Geologica Sinica, 86(6): 898-905 (in Chinese with English abstract).
Métivier Francois, Gaudemer Yves, Tapponnier Paul, Meyer Bertrand. 1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 17(6): 823-842. DOI:10.1029/98TC02764
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 189(4201): 419-426. DOI:10.1126/science.189.4201.419
Molnar Peter, Stock Joann M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 28(3): TC002271.
Molnar Peter. 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Palaeontologia Electronica, 8(1): 1-23.
Palumbo L, Hetzel R, Minxing T, Li X, Guo J. 2009. Uplift and denudation rates of an actively growing mountain range inferred from in-situ produced cosmogenic 10Be: the Yumu Shan (NE Tibetan Plateau)[C]//EGU General Assembly Conference Abstracts, 2789.
Palumbo Luigi, Hetzel Ralf, Tao M, Li X. 2010. Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet[J]. Geomorphology, 117(1/2): 130-142.
Palumbo Luigi, Hetzel Ralf, Tao Mingxin, Li Xiaobin, Guo Jianming. 2009. Deciphering the rate of mountain growth during topographic presteady state:An example from the NE margin of the Tibetan Plateau[J]. Tectonics, 28(4). DOI:10.1029/2009TC002455.2009
Pan Hongxun, Ge Xiaohong, Liu Junlai.Query To The Yumushan uplift on The north margin of Qilian Mountain[J]. Journal of Changchun Univers ty of Science and Technology, 30(1): 9-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200001002.htm
Ren Jishun, Jiang Chunfa.1981. Deep fault in China[C]//A Collection of Theses on Geotectonics in China and Its Neighbouring Areas.Beijing: Geological Publishing House, 32 (in Chinese).
Gansu Provincial Bureau of Geology and Mineral Resources. 1989b. Gansu Province Regional Geology[M]. Beijing: Geological Publishing House, 224 (in Chinese).
Seong Yeong Bae, Kang Hee-Cheol, Ree Jin-Han, Choi JeongHeon, Lai Zhonping, Long Hao, Yoon Hye On. 2011. Geomorphic constraints on active mountain growth by the lateral propagation of fault-related folding:A case study on Yumu Shan, NE Tibet[J]. Journal of Asian Earth Sciences, 41(2): 184-194. DOI:10.1016/j.jseaes.2011.01.015
Song Shuguang, Niu Yaoling, Su Li, Xia Xiaohong. 2013. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378-1401. DOI:10.1016/j.gr.2012.02.004
Song Shuguang, Zhang Lifei, Niu Yaoling, Su Li, Song Biao, Liu Dunyi. 2006. Evolution from oceanic subduction to continental collision:a case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology, 47(3): 435-455. DOI:10.1093/petrology/egi080
Song Shuguang. 1997. Tectonic evolution of subductive complex belts in the north Qilain mountains[J]. Advance in Earth Sciences, 12(4): 351-365 (in Chinese with English abstract).
Tapponnier P, Meyer B, Avouac J Ph, Peltzer G, Gaudemer Y, Shunmin Guo, Hongfa Xiang, Kelun Yin, Zhitai Chen, Shuahua Cai. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3/4): 382-403.
Tapponnier P, Meyer B, Avouac J P, Peltzer G, Gaudemer Y, Guo Shunmin, Xiang Hongfa, Yin Kelun, Chen Zhitai, Cai Shuahua, Dai Huagang. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3): 382-403.
Tapponnier Paul, Peltzer GLDAY, Le Dain A Y, Armijo Roland, Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier Paul, Zhiqin Xu, Roger Francoise, Meyer Bertrand, Arnaud Nicolas, Wittlinger Gérard, Jingsui Yang. 2001. Oblique Stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978
Team China Earthquake Administration "Altyn active fault zone" studying. 1992. Altyn Active Fault Zone[M]. Beijing: Seismological Press (in Chinese).
Wang Chengshan, Gao Rui, Yin An, Wang Haiyan, Zhang Yuxiu, Guo Tonglou, Li Qusheng, Li Yalin. 2011. A mid-crustal straintransfer model for continental deformation:A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet[J]. Earth & Planetary Science Letters, 306(3): 279-288.
Wang Duojie. 1989. Geomorphology features of the Minle Basin Gansu Province[J]. Gansu Geology, 10: 88-99.
Wang Quan, Liu Xueya. 1981. Ophiolite belt and platetectonics in China[J]. Journal of Changchun University of Earth Science: 72-81 (in Chinese with English abstract).
Wang Xingchen, Ding Zhifeng, Wu Yan, Zhu Lupei. 2017. Crustal thicknesses and Poisson's ratios beneath the northern section of the northsouth seismic belt and surrounding areas in China[J]. Chinese Journal of Geophysics, 60(6): 2080-2090 (in Chinese with English abstract).
Wang Xingchen, Ding Zhifeng, Wu Yan, Zhu Lupei. 2017. Crustal thicknesses and Poisson's ratios beneath the northern section of the northsouth seismic belt and surrounding areas in China[J]. Chinese Journal of Geophysics, 60(6): 2080-2090 (in Chinese with English abstract).
Wang Yizhou, Zheng Dewen, Pang Jianzhang, Zhang Huiping, Wang Weitao, Yu Jingxing, Zhang Zhuqi, Zheng Wenjun, Zhang Peizhen, Li Youjuan. 2018b. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan:New insights into the growth of the NE Tibetan Plateau[J]. Geomorphology, 308: 118-128. DOI:10.1016/j.geomorph.2018.02.006
Wu Cailai, Xu Xueyi, Gao Qianming, Li Xiangmin, Lei Min, Gao Yuanhong, B Frost R, Wooden JL. 2010. Early Palaezoic grranitoid magmation and tectonic evolution in North Qilian, NW China.[J]. Acta Petrologica Sinica, 26(4): 1027-1044 (in Chinese with English abstract).
Wu Cailai, Yang Jingsui, Yang Hungyi, Wooden Joseph L, Shi Rendeng, Chen Songyoung, Zheng Qiuguang. 2004. Dating of two types of granite from north Qilian, China[J]. Acta Petrologica Sinica, 20(3): 425-432 (in Chinese with English abstract).
Wu Cailai, Yao Shangzhi, Yang Jingsui, Zeng Lingseng, Chen Songyong, Li Haibing, Wei Xuexiang, Wooden Joseph L, Mazdab Frank K. 2006. Granite evidence of two-year subduction of the Early Paleozoic in the North Qilian Ocean[J]. Geology in China, 33(6): 1197-1208.
Xia Linqi, Xia Zuchun, Xu Xueyi. 1998. Early Palaeozoic mid-ocean ridge-ocean islan and back-arc basin volcanism in the North Qilian Mountains[J]. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).
Xia Linqi, Xia Zuchun, Ren Youxiang, Xu Xueyi, Yang Hequn, Li Zhipei, Yang Jianguo, Li Wenyuan, Zhao Donghun, Song Zhongbao. 2001. The Structure-Volcanic Magma Metallogenic Dynamics in the North Qilian Mountain[M]. Beijing: China Land Press (in Chinese).
Xiao Wenjiao, Windley Brian F, Yong Yong, Yan Zhen, Yuan Chao, Liu Chuanzhou, Li Jiliang. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3/4): 323-333.
Xiao Xuchang, Li Yandong, Li Guangcen, Chang Chengfa, Yuan Xuecheng. 1988. Himalayan Lithospheric Tectonic Evolution[M]. Beijing: Geological Publishing House (in Chinese).
Xu Xiangke, Yi Chaolu. 2014. Little ice age on the Tibetan Plateau and its bordering mountains:Evidence from moraine chronologies[J]. Global and Planetary Change, 116: 41-53. DOI:10.1016/j.gloplacha.2014.02.003
Xu Zhiqin, Xu Huifeng, Zhang Jianxin, Li Haibing, Zhu Zhizhi, Qu Jiangchuan, Chen Daizhang, Chen Jinlu, Yang Kaichun. 1994. The Zhoulangnanshan Caledonian subductive complex in the Northern Qilian Mountains and its dynamics[J]. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract).
Xu Zhiqin, Yang Jingsui, Jiang Mei, Li Haibing. 1999. Continental subduction and uplifting of the orogenic belts at the margin of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 6(3): 139-151 (in Chinese with English abstract).
Yin An, Harrison T. Mark. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. DOI:10.1146/annurev.earth.28.1.211
Yin An, Manning Craig E, Lovera Oscar, Menold Carrie A, Chen Xuanhua, Gehrels George E. 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 49(8): 681-716. DOI:10.2747/0020-6814.49.8.681
Yuan Daoyang, Ge Weipeng, Chen Zhenwei, Li Chuanyou, Wang Zhicai, Zhang Huiping, Zhang Peizhen, Zheng Dewen, Zheng Wenjun, Craddock William H. 2013. The growth of northeastern Tibet and Its relevance to large-scale continental geodynamics:A review of recent studies[J]. Tectonics, 32(5): 1358-1370. DOI:10.1002/tect.20081
Zhang Huiping, Zhang Peizhen, Zheng Dewen, Zheng Wenjun, Chen Zhengwei, Wang Weitao. 2012. Structural features of the Qilian Mountains:implications for Late Cenozoic tectonic deformation and geomorphic evolution in the northeastern margin of the Qinghai-Xizang Plateau[J]. Quaternary Geology, 32(5): 907-920 (in Chinese with English abstract).
Zhang Peizhen, Zheng Dewen, Yin Gongming, Yuan Daoyang, Zhang Guangliang, Li Chuanyou, Wang Zhicai. 2006. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan plateau[J]. Quaternary Sciences, 26(1): 5-9 (in Chinese with English abstract).
Zhang Z, Liang Y, Mei Y, Sun W, Wang W, Gong X, Li Z, Tang J. 2018. Prevalence of osteoarthritis in high altitude area of Tibet[J]. Osteoarthritis and Cartilage, 26: S222.
Zheng Dewen, Clark Marin K, Zhang Peizhen, Zheng Wenjun, Farley Kenneth A. 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 6(6): 937-941. DOI:10.1130/GES00523.1
Zheng Wenjun, Yuan Daoyang, Zhang Peizhen, Yu Jingxing, Lei Qiyun, Wang Weitao, Zheng Dewen, Zhang Huiping, Li Xinnan, Li Chuanyou, Liu Xingwang. 2016. Techtonic geometry and kinematic dissipation of active faults in the northeastern Tibetan plateau and their implications for understanding northeastward geowth of the plateau[J]. Quaternary Sciences, 36(4): 775-788 (in Chinese with English abstract).
Zheng Wenjun, Zhang Peizhen, Ai Daoyang, Zheng Dewen. 2009. Deformation on the nothern of the Tibetan plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics, 52(10): 2491-2508 (in Chinese with English abstract).
Zheng Wenjun, Zhang Zhuqi, Zhang Peizhen, Liu Xingwang, Guo Xiao, Pang Jianzhang, Ge Weipeng, Yu Jingxing. 2013. Seismogenic structure and mechanism of the 1954 M 71 (1/4) Shandan Earthquake, Gansu Province, Western China[J]. Chinese Journal of Geophysics, 56(3): 916-928.
Zhong Dalai, Ding Lin. 1996. Discussion on the uplift process and its mechanism of the Qinghai-Tibet Plateau[J]. Science in China(Series D), 26(4): 289-295 (in Chinese with English abstract).
Zuo Guochao, Liu Jichen. 1987. The evolution of tectonic of Early Paleozoic in North Qilian range, China[J]. Scientia Geologica Sinca, (1): 14-24.
Zuza Andrew V, Cheng Xiaogan, Yin An. 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan-Nan Shan thrust belt[J]. Geosphere, 12(2): 501-532. DOI:10.1130/GES01254.1
Zuza Andrew, Wu Chen, Reith Robin, Yin An, Li Jianhua, Zhang Jinyu, Zhang Yuxiu, Wu Long, Liu Wencan. 2018. Tectonic evolution of the Qilian Shan:An early Paleozoic orogen reactivated in the Cenozoic[J]. Geological Society of America Bulletin, 130(5/6): 881-925.
边庆凯, 张培震, 苏向洲. 2001. 榆木山北缘断裂的构造地貌特征与断层活动性[J]. 华北地震科学, 19(3): 41-49. DOI:10.3969/j.issn.1003-1375.2001.03.005
陈柏林, 王春宇, 宫红良, 刘建民, 张永双, 刘建生. 2007. 关于河西走廊盆地榆木山北缘断裂晚第四纪活动特征的新认识[J]. 地质通报, 8: 976-983. DOI:10.3969/j.issn.1671-2552.2007.08.009
陈干, 郑文俊, 王旭龙, 张培震, 熊建国, 俞晶星, 刘兴旺, 毕海芸, 刘金瑞, 艾明. 2017. 榆木山北缘断裂现今构造活动特征及其对青藏高原北东扩展的构造地貌响应[J]. 地震地质, 39(5): 871-888. DOI:10.3969/j.issn.0253-4967.2017.05.001
陈宣华, 邵兆刚, 熊小松, 高锐, 徐盛林, 张义平, 李冰, 王叶. 2019. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J]. 地球学报, 40(3): 377-392.
戴霜, 方小敏, 张翔, 王方成. 2003. 北山中部地区闪长岩花岗岩类成因及构造背景[J]. 兰州大学学报(自然科学版), 39(1): 86-92. DOI:10.3321/j.issn:0455-2059.2003.01.019
杜远生, 朱杰, 韩欣, 顾松竹. 2004. 从弧后盆地到前陆盆地——北祁连造山带奥陶纪-泥盆纪的沉积盆地与构造演化[J]. 地质通报, 23(9/10): 911-917.
甘肃省地质矿产局. 1989. 甘肃省区域地质志[M]. 北京: 地质出版社, 224.
葛肖虹, 张梅生, 刘永江, 叶慧文, 石采东. 1998. 阿尔金断裂研究的科学问题与研究思路[J]. 现代地质, 12(3): 295-301.
国家地震地质研究所, 国家地震局兰州地质研究所. 1993. 祁连山-河西走廊活动断裂系[M]. 北京: 地震出版社.
国家地震局《阿尔金活动断裂带》课题组. 1992. 阿尔金活动断裂带[M]. 北京: 地震出版社.
何光玉, 杨树锋, 陈汉林, 肖安成, 程晓敢. 2004. 河西走廊西段及邻区早白垩世盆地的重新厘定[J]. 石油学报, 25(6): 18-22. DOI:10.3321/j.issn:0253-2697.2004.06.004
金卿.2011.榆木山断裂带晚第四纪构造活动与大震危险性评价[D], 兰州: 中国地震局兰州地震研究所. http://cdmd.cnki.com.cn/Article/CDMD-85403-1014240178.htm
赖新荣, 江思宏, 邱小平, 刘妍, 胡朋, 张万益. 2007. 阿拉善北大山岩带海西期中酸性岩40Ar-39Ar年龄及其地球化学特征[J]. 地质学报, 81(3): 370-380.
李有利, 杨景春. 1997. 河西走廊榆木山边缘断层构造地貌研究[J]. 地质力学学报, 3(4): 20-26.
李玉龙, 邢成起. 1988. 河西走廊地质构造基本特征以及榆木山北麓与黑河口上龙王活断层研究[J]. 地震工程学报, (2): 37-49.
刘栋梁, 宋春晖, 方小敏, 戴霜, 李海兵. 2012. 榆木山地区玉门砾岩磁性地层及其对青藏高原东北部变形隆升意义[J]. 地质学报, 86(6): 898-905. DOI:10.3969/j.issn.0001-5717.2012.06.005
潘宏勋, 葛肖虹, 刘俊来. 2000. 对祁连山北缘榆木山隆起的质疑[J]. 长春科技大学学报, 30(1): 9-13. DOI:10.3969/j.issn.1671-5888.2000.01.002
任纪舜, 姜春发. 1981.中国的深断裂[C]//中国及其邻区大地构造论文集.北京: 地质出版社.
宋述光. 1997. 北祁连山俯冲杂岩带的构造演化[J]. 地球物理学进展, 12(3): 351-365.
王成善, 朱利东, 刘志飞. 2004. 青藏高原北部盆地构造沉积演化与高原向北生长过程[J]. 地球科学进展, 19(3): 373-381. DOI:10.3321/j.issn:1001-8166.2004.03.005
王多杰. 1989. 民乐盆地及邻区构造地貌特征[J]. 甘肃地质, (10): 88-99.
王荃, 刘雪亚. 1981. 中国的蛇绿岩带与板块构造[J]. 长春地质学院学报, (1): 72-81.
王兴臣, 丁志峰, 武岩, 朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报, 60(6): 2080-2090.
吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, Frost R B, Wooden Joseph L. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 26(4): 1027-1044.
吴才来, 杨经绥, 杨宏仪, Wooden Joseph L, 史仁灯, 陈松永, 郑秋光. 2004. 北祁连东部两类Ⅰ型花岗岩定年及其地质意义[J]. 岩石学报, 20(3): 425-432.
夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群, 李智佩, 杨建国, 李文渊, 赵东宏, 宋忠宝. 2001. 北祁连山构造-火山岩浆-成矿动力学[M]. 北京: 中国大地出版社.
夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用[J]. 地质学报, 72(4): 301-312. DOI:10.3321/j.issn:0001-5717.1998.04.002
肖序常, 李廷栋, 李光岑. 1988. 喜马拉雅岩石圈演化总论[M]. 北京: 地质出版社.
许志琴, 徐惠芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J]. 地质学报, 68(1): 1-15.
许志琴, 杨经绥, 姜枚, 李海兵. 1999. 大陆俯冲作用及青藏高原周缘造山带的崛起[J]. 地学前缘, 6(3): 139-151. DOI:10.3321/j.issn:1005-2321.1999.03.014
张会平, 张培震, 郑德文, 郑文俊, 陈正位, 王伟涛. 2012. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 32(5): 907-920. DOI:10.3969/j.issn.1001-7410.2012.05.08
张培震, 郑德文, 尹功明, 袁道阳, 张广良, 李传友, 王志才. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. DOI:10.3321/j.issn:1001-7410.2006.01.002
郑文俊, 袁道阳, 张培震, 俞晶星, 雷启云, 王伟涛, 郑德文, 张会平, 李新男, 李传友. 2016. 青藏高原东北缘活动构造几何图像, 运动转换与高原扩展[J]. 第四纪研究, 36(4): 775-788.
郑文俊, 张培震, 袁道阳, 郑德文. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报, 52(10): 2491-2508. DOI:10.3969/j.issn.0001-5733.2009.10.008
钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4): 289-295. DOI:10.3321/j.issn:1006-9267.1996.04.001