文章快速检索    
 
  中国地质 2019, Vol. 46 Issue (5): 1105-1115  
0
引用本文
尹滔, 李威, 尹显科, 张伟, 袁华云, 裴亚伦. 2019. 西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据[J]. 中国地质, 46(5): 1105-1115.  
Yin Tao, Li Wei, Yin Xianke, Zhang Wei, Yuan Huayun, Pei Yalun. 2019. The Early Cretaceous granodiorites in the Aweng Co area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic crust to the south[J]. Geology in China, 46(5): 1105-1115. (in Chinese with English abstract).  

西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据
尹滔, 李威, 尹显科, 张伟, 袁华云, 裴亚伦    
四川省地质调查院 稀有稀土战略资源评价与利用四川省重点实验室, 四川 成都 610081
摘要: 对拉萨地块北部阿翁错地区花岗闪长岩进行了年龄分析、岩石地球化学研究。锆石LA-ICP-MS定年测得花岗闪长岩U-Pb年龄为(114.4±1.9)Ma,属于早白垩世晚期岩浆活动的产物。花岗闪长岩地球化学特征表明,其具有典型镁安山岩/闪长岩(MA)的地球化学特征,所有样品均具有较高Mg#值(45.42~54.29),低的TFeO*/MgO值(1.58~2.26);所有样品都显示轻稀土元素富集,富集大离子亲石元素,亏损高场强元素的特征。研究表明,阿翁错花岗闪长岩是班公湖-怒江洋壳在俯冲消减背景下,由俯冲洋壳脱水熔融产生的溶体与地幔橄榄岩发生交代作用的产物,为晚中生代班公湖-怒江洋盆的南向俯冲消减提供了直接的岩石学、地球化学、年代学证据。
关键词: 班公湖-怒江    镁安山岩/闪长岩    俯冲消减    锆石U-Pb测年    地质调查工程    拉萨地块    西藏    
中图分类号:P588.12+1            文献标志码:A             文章编号:1000-3657(2019)05-1105-11
The Early Cretaceous granodiorites in the Aweng Co area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic crust to the south
YIN Tao, LI Wei, YIN Xianke, ZHANG Wei, YUAN Huayun, PEI Yalun    
Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Sichuan Geological Survey, Chengdu 610081, Sichuan, China
Abstract: This paper reports zircon U-Pb data of major and trace elements for the granodiorites from the Aweng Co area in northern Lhasa block. Zircon LA-ICP-MS U-Pb dating of granodiorite yielded an age of 163.3 ±1.7 Ma, suggesting that the intruded rocks were formed in late Early Cretaceous period. Geochemical studies show that Aweng Co granodiorites have typical geochemical characteristics similar to the magnesian andesite/diorite (MA). They are characterized by high Mg# values (45.42~54.29) and low TFeO*/MgO ratios (1.58~2.26). They are enriched in LREE in the chondrite-normalized REE patterns, and are enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs). Geochemical features of the Aweng Co magnesian granodiorites are considered to have been generated by the southward subduction of Bangong Co-Nujiang River oceanic lithosphere, and can be genetically regarded as resulting from partial melting of dewatered and subducted oceanic crust melts, which had been metasomatized by mantle peridotite under the condition of oceanic crust subduction. These results provide direct petrologic evidence of the intruded rocks for the southward subduction of the Bangong Co-Nujiang River Ocean.
Key words: Bangong Co-Nujiang River    magnesian andesite/diorite    subduction    zircon U-Pb chronology    geological survey engineering    Lhasa Block    Tbbet    

1 引言

班公湖—怒江缝合带位于青藏高原中部,是青藏高原三条重要的缝合带之一。近年来,随着对班公湖—怒江结合带调查研究的深入,关于结合带南侧拉萨地块中北部白垩纪时期的地球动力学背景还存在相对大的争议(隋清霖,2014)。虽然越来越多的学者认为,班公湖—怒江结合带存在南向的俯冲作用(朱弟成等, 2006, 2008康志强等,2009;杜德道等,2011)。他们分别通过对结合带南侧花岗岩和多尼组、则弄群火山岩进行了地球化学以及年代学分析,研究表明这些岩石具有典型的岛弧火山岩特征,可能是特提斯班公湖—怒江洋盆沿拉萨地块北缘南向俯冲消减的产物。而朱弟成等(2006)研究也认为,由于雅江俯冲带与该火山弧位置距离太远而不支持该结论,但始终还缺少与南向俯冲作用更加密切相关的岩石学证据,并不能完全排除雅江新特提斯洋壳向冈底斯北向俯冲的可能。

众所周知,花岗岩是大陆地壳的主要组成物质之一,它的成因研究可以提供探索大陆结构、生长及演化的信息,花岗岩的形成演化也可以揭示大陆动力学演化及壳幔相互作用过程的信息。而(高)镁安山岩/闪长岩作为俯冲带岩石类型的一种,对于研究俯冲带深部动力学过程,具有非常重要的意义(唐功建等,2010钱兵等,2018)。笔者依托西藏阿里地区江玛—赛登地区1:5万矿产地质调查项目,在阿翁错地区的复式花岗岩中首次发现高镁花岗闪长岩,本文拟在详细的野外地质考察基础上,对该套高镁花岗闪长岩进行岩石地球化学和LAICP-MS锆石U-Pb定年研究,结合区域地质资料及近期研究成果,讨论阿翁错高镁花岗闪长岩的岩石成因及其形成的构造背景,以期为班怒结合带的南向俯冲消减提供重要的证据。

2 地质概况

拉萨地块在大地构造位置上处于班公湖—怒江缝合带(BNSZ)和印度—雅鲁藏布缝合带(IYZSZ)之间(图 1a)。根据沉积盖层和基底性质的不同,以狮泉河—纳木错蛇绿混杂岩带(SNMZ)和洛巴堆—米拉山断裂带(LMF)为界,又可将拉萨地块由北向南进一步划分为北部、中部、南部亚地块(Zhu et al., 2011a, b2013)。

图 1 阿翁错—盐湖地区地质图及采样位置 a—青藏高原构造单元划分(JSSZ,金沙江缝合带;LSSZ,龙木错—双湖缝合带;BNSZ,班公湖—怒江缝合带;SNMZ,狮泉河—纳木错蛇绿混杂岩带;LMF,洛巴堆—米拉山断裂带;IYZSZ,印度河—雅鲁藏布缝合带.据Zhu et al., 2013修改);b—研究区地质图 Fig. 1 Simplified geological map of the Aweng Co-Yanhu region, Tibet and sampling locations a- Geological sketch map of tectonic outline of the Tibetan Plateau(JSSZ = Jinsha jiang suture zone; LSSZ = Longmu Co-Shuanghu suture zone; BNSZ = Bangong Co -Nujiang River Suture Zone; SNMZ =Shiquan River-Nam Co mélange zone; LMF = Luobadui-Milashan fault; IYZSZ = Indus-Yarlung Zangbo suture zone, after Zhu et al., 2013); b-Geological map of the study area

研究区位于拉萨地块北部地区的西段,其基底总体上以新生地壳为主,上覆为中三叠统到白垩系沉积盖层,主要出露下白垩统多尼组和去申拉组、沙木罗组等地层,部分地区可能存在前寒武纪结晶基底(朱弟成等,2012)。区内构造活动强烈,发育大量断裂、褶皱构造。断裂构造主要以近东西向、北西西—北东东向为主,少量呈北西向,褶皱构造主要发育于区内老地层如去申拉组、沙木罗组地层中。

阿翁错复式岩体位于研究区中部,大地构造位置处于拉萨地块北缘,岩体呈北西西-南东东向展布,岩性较复杂,出露面积约800 km2。岩体总体上由中酸性-酸性的石英闪长岩、花岗闪长岩、石英二长闪长岩、二长花岗岩、钾长花岗岩等组成,局部夹少量中基性的辉长岩、闪长玢岩脉。在区域上复式岩体与去申拉组、沙木罗组地层呈侵入接触关系。

本次新发现的高镁花岗闪长岩位于阿翁错复式岩体中部,其规模相对较大,采集的岩石样品靠近阿翁错东南角。岩体呈灰白-黄灰色、细—中粒花岗结构,块状构造。主要矿物组合为斜长石(55% ~70%)、钾长石(3%~10%)、石英(20%~25%)、黑云母(4%~10%),角闪石少见,副矿物主要为磷灰石、榍石,少量金属矿物等,局部偶见暗色包体。

3 实验方法 3.1 LA-ICP-MS锆石U-Pb定年

本次共采集了8件阿翁错东南侧花岗闪长岩样品(图 1b)进行锆石U-Pb测年。锆石挑选在河北省廊坊区域地质矿产调查研究所实验室完成,先将新鲜的样品粉碎至120目以下,用磁法和重力方法挑选,再在双目镜下挑选出用于定年的锆石。采用环氧树脂固定待测试的锆石颗粒之后,将其抛磨至露出锆石的核部,然后对待测锆石进行透射光反射光和阴极发光照相。锆石制靶、阴极发光照相及UPb同位素测年均在中国地质大学武汉地质过程与矿产资源国家重点实验室完成。锆石阴极发光检测在电子探针实验室MonoCL3系统上完成检测时其电子束加速电压为10 kV。锆石U-Pb同位素测年在Agilent 7500a电感耦合等离子体质谱仪与Geolas 2005准分子激光剥蚀系统联机上完成。

LA-ICP-MS锆石U-Pb同位素测年激光束斑直径为32 μm,用He作为剥蚀物质的载气,Ar为补偿气以调节灵敏度,锆石U-Pb同位素测定采用标准锆石91500作为外标标准矿物,以GJ-1作为内标标准矿物,用NISTSRM 610来校正微量元素的含量。原始数据处理和年龄计算分别用ICPMSDataCal 8.0(Liu et al., 2008, 2010a, 2010b)和ISOPLOT(Ludwig,2003)完成并采用Anderson(2002)方法对普通铅进行较正。

3.2 岩石地球化学分析测试

本文针对性的选取了8件花岗闪长岩体样品进行岩石地球化学分析测试。主量和微量元素的配套分析在四川省地质矿产勘查开发局成都综合岩矿测试中心所完成。所挑选的样品新鲜基本无蚀变。主量元素采用重量法、容量法、ICP-AES法等测定,分析精度小于1%;微量元素采用ICP-MS法测定。

4 测试结果 4.1 LA-ICP-MS锆石U-Th-Pb同位素

花岗闪长岩样品PM202TW2的锆石均高度透明,无色至淡黄色,以自形的长棱柱状或短柱状为主,长度一般为120~400 μm,长宽比为1.2:1~3:1。锆石的Th/U比值为0.48~4.32,大于0.1(表 1),均显示清晰的岩浆振荡环带结构(图 2),是典型的岩浆成因锆石。

表 1 阿翁错花岗闪长岩LA-ICP-MS锆石U-Pb定年结果 Table 1 LA-ICP-MS zircon U-Pb dating results of the Aweng Co granodiorites
图 2 阿翁错花岗闪长岩锆石阴极发光图像(含U-Pb年龄值) Fig. 2 Zircon CL images for microbeam analyzed spot with apparent U-Pb ages of the Aweng Co granodiorites

本次共测定了23个锆石的24个测点,其中成功测定了20个测点(测点谐和度高于90%),它们的加权平均年龄为(114.4±1.9)Ma(MSWD=3.7)(图 3),206Pb/238U年龄变化于107~122 Ma,在206Pb/238U - 207Pb/235U谐和图上分析数据均落在谐和线或其附近。因此,阿翁错花岗闪长岩的形成年龄为(114.4± 1.9)Ma,属于早白垩世晚期。

图 3 阿翁错花岗闪长岩锆石U-Pb谐和图 Fig. 3 Zircon U-Pb concordia diagram of the Aweng Co granodiorites
4.2 地球化学特征

阿翁错花岗闪长岩的地球化学分析结果见表 2

表 2 阿翁错花岗闪长岩主量元素(%)和微量元素(10-6)分析结果 Table 2 Major elements(%) and trace elements(10-6)compositions of the Aweng Co granodiorites

主量元素方面,SiO2含量为65.06%~69.85%,Al2O3含量14.08%~15.46%,全碱Na2O+K2O含量为5.83%~6.58%,平均含量6.27%。且相对富钠(K2O/ Na2O为0.54~0.74),FeO*/MgO值为1.58%~2.26%,Mg#值为45.42~54.29,此外岩石TiO2、MnO、CaO、P2O5含量较低,在SiO2-K2O图解显示其为钙碱性系列花岗岩(图 4a)。在A/CNK-A/NK图解显示其为准铝质系列花岗岩(图 4b)。

图 4 阿翁错花岗闪长岩K2O-SiO2(a,据Rickwood,1989)及A/CNK-A/NK(b,据Maniar and Piccoli, 1989)图解 Fig. 4 Diagrams of K2O-SiO2(a, after Rickwood, 1989) and A/CNK-A/NK(b, after Maniar and Piccoli, 1989) of the Aweng Co granodiorites

微量元素方面,ΣREE值为76.53×10-6~148.54× 10-6,总量变化范围不大;稀土元素球粒陨石标准化配分曲线图呈右倾型配分模式(图 5),相对富集轻稀土元素;Eu异常少量呈弱正异常,总体表现不明显;(La/Yb)N值为2.77~15.01,表明轻、重稀土元素具有一定程度的分馏。微量元素原始地幔标准化蛛网图表明,岩体富集大离子亲石元素Rb、K,亏损高场强元素Nb、Ti、P,显示其具有岛弧花岗岩特征。

图 5 阿翁错花岗闪长岩球粒陨石标准化稀土元素配分曲线图(a,标准化值据Boynton,1984)及原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989 Fig. 5 Chondrite-normalized REE patterns(a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams(b, normalization values after Sun and McDonough, 1989)for the Aweng Co granodiorites
5 讨论 5.1 岩石成因

阿翁错花岗闪长岩具有较高的Mg#值(45.42~ 54.29),且SiO2值(65.06%~69.85%)也相对较高。而与下地壳部分熔融有关的岩浆产物Mg#值一般小于40(Atherton and Petford, 1993),因此阿翁错花岗闪长岩可能与幔源相关。

近年来,高镁安山岩或镁安山岩作为俯冲带的一种特殊岩石类型一直备受关注(Kay,1978Tatsumi et al., 1982Defaut et al., 1991Kelemen,1995Yogodzinski et al., 1995Deng et al., 2009),其主要特点为具有较高的MgO或Mg#。但由于不同学者对高镁安山岩的划分标准不同,因而对高镁安山岩的定义或认识也不同(赵振华等,2007),邓晋福等(2010)根据实验岩石学数据结合前人的研究,对高(富)镁安山岩进行了详细的讨论和进一步归纳,认为这些岩石主要可以划分为高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA)两类,其中高镁安山岩/闪长岩类(HMA)是楔型地幔在含水条件下橄榄岩局部熔融产生的,而镁安山岩/闪长岩类(MA)是俯冲洋壳局部熔融岩浆与地幔楔相互作用产生的。

阿翁错花岗闪长岩具有高Mg#,低MgO,低FeO*/MgO的特征,与Panamn MA(Defaut et al., 1991)的特征相似(图 6);而相容元素Cr、Ni和MgO均与Mg#呈良好的正相关,FeO*/MgO与Mg#呈良好的负相关(图 7),且Cr值(26.69~65.05)、Ni值(5.91~ 27.80)相对本区其他中酸性岩体偏高(胡隽等,2014),暗示可能与地幔橄榄岩的不同程度的交代作用。此外,阿翁错花岗闪长岩相对富集轻稀土元素和大离子亲石元素Rb、K,亏损高场强元素Nb、Ti、P,显示其具有岛弧花岗岩特征,暗示岩浆的成因可能与岛弧环境密切相关。

图 6 MA的SiO2-MgO图(a)和SiO2-FeO*/MgO图(b)(据Deng et al., 2009修改) (a)实线范围为实验的MA;虚线为实验的玄武岩局部熔浆(即非MA);点划线范围为阿留申弧MA;双点划线为Panamn MA;上、下两条实线PQ和RS分别为HMA/MA与MA/非MA的边界,竖虚线表示SiO2=52%(b)黑线范围所代表的与6-a中一样(见图中标注);灰色直线为Miyashiro的CA与TH分界线,灰色点划线范围为Yogodzinski等的强CA系列,灰色双点线为Arculus的低Fe(LF-CA)与中Fe系列的边界 Fig. 6 SiO2-MgO diagram (a) and SiO2- FeO/MgO diagram (b) of MA (simplified from Deng et al., 2009) (a)The area of solid line represents MA from experiment; the area of dashed line represents partial melt of basalt from experiment (non-MA); the area of dot-dash line represents the MA of Aleutian; the area of double-dot dash line represents the MA of Panamn; the lines PQ and RS mean the boundary of HMA/MA and MA/non-MA respectively. The dashed line means SiO2=52%. (b)The areas defined by different dark lines are the same as those in Fig. 3-a; the gray straight line is the CA/TH boundary by Miyashiro. The gray dot line is strong CA series by Yogodzinski. The gray double-dot line is the boundary between low Fe and medium Fe, which is named low Fe CA (LF-CA) in this paper
图 7 阿翁错花岗闪长岩选择性地球化学图解 Fig. 7 Selective geochemical diagrams of the Aweng Co granodiorite
5.2 高镁花岗闪长岩形成的构造环境

如前所述,阿翁错高镁花岗闪长岩高Mg#,低MgO,低FeO*/MgO的地球化学特征与Panamn MA相似,为典型的高镁安山岩/闪长岩类(MA)。但阿翁错镁花岗闪长岩具有相对较低的La/Yb值(11.05~20.92)和高的Y值(12.66~22.93)、Yb值(1.64~2.70),与Panamn MA高Sr/Y(La/Yb)和低Y(Yb)的埃达克质特征存在明显不同。Defant et al.(1991)认为Panamn MA岩浆起源于俯冲板片在石榴子石和角闪石为残留相的环境下部分熔融,因此具有典型的埃达克质岩石的特征,而阿翁错高镁花岗闪长岩明显不亏损Y、Yb,表明俯冲板片在石榴子石作为残留相之前发生的部分熔融。这可能与本区俯冲带结构有一定关系,因为北拉萨地块以新生地壳为主,而这种条件下形成的楔形地幔的温度梯度可能相对比Panamn MA形成的楔形地幔的梯度温度高。

此外,阿翁错高镁花岗闪长岩具有较低的Nb/ Ta比值(1.17~3.18),远低于大陆地壳的Nb/Ta比值为11~16(Barth et al., 2000)。而近年来的研究表明,俯冲变质过程是Nb和Ta分异的地球化学过程(Xiao et al., 2006Ding et al., 2013)。因此,阿翁错高镁花岗闪长岩明显与俯冲变质作用有关。实验岩石学表明,低Mg#(< 70)角闪石与富水流体之间的Nb分配系数大于Ta(Tiepolo et al., 2000Foley et al., 2002),因此角闪岩脱水可以形成低Nb/Ta值的富水流体(Xiao et al., 2006aDing et al., 2009Liang et al., 2009)。阿翁错高镁花岗闪长岩具有明显低的Nb/Ta值,可能来源于俯冲板片在俯冲变质过程中,由蓝片岩向角闪岩相的俯冲变质过程中同时发生了部分熔融,由此形成了低Nb/Ta值的花岗质岩浆。

综上所述,阿翁错高镁花岗闪长岩可能形成于班公湖—怒江洋壳南向俯冲的背景下,俯冲板片在由蓝片岩向角闪岩相转变的变质过程中发生了部分熔融,形成的熔体在上升过程中与地幔橄榄岩发生交代作用后,通过底侵作用上升到地表并成岩。

5.3 高镁花岗闪长岩形成的大地构造意义

前已述及,拉萨地块中北部地区白垩纪时期地球动力学背景目前仍存在较大的争议:(1)雅鲁藏布新特提斯洋壳向北低角度或平板俯冲(Coulon et al., 1986Zhang et al., 2004Kapp et al., 2005, 2007Leier et al., 2007);(2)与雅鲁藏布新特提斯洋壳岩石圈北向俯冲有关的弧后裂谷背景相关(Zhang et al., 2004);(3)拉萨地块带中北部地区中生代岩浆岩与班公湖—怒江洋壳岩石圈的南向俯冲有关(朱弟成等, 2006, 2008康志强等,2009Zhu et al., 2009, 2011a;杜德道等,2011;Wu et al., 2015)。虽然越来越多的证据表明本区岩浆活动可能与班公湖—怒江洋壳的南向俯冲有关,但仍然缺少与俯冲带消减相关的岩石学、地球化学、年代学证据。本次发现早白垩世晚期(约114.4 Ma)的阿翁错高镁花岗闪长岩为典型的镁安山岩/闪长岩类(MA),是该时期洋壳俯冲消减过程中俯冲板片发生了部分熔融,所产生的溶体在上升过程中交代地幔楔橄榄岩的产物。由于该岩体位于拉萨地块北缘,在空间位置上不可能是雅鲁藏布新特提斯洋壳向北俯冲的产物,也直接否定了雅鲁藏布新特提斯洋壳北向俯冲有关的弧后裂谷背景的可能,而是班公湖—怒江洋壳的南向俯冲消减的相关火山活动证据。由此本文认为,阿翁错早白垩世晚期高镁花岗闪长岩为班公湖—怒江洋壳早白垩世晚期的俯冲消减过程提供了直接的岩石学、地球化学和年代学证据。

6 结论

(1)阿翁错花岗闪长岩LA-ICP-MS锆石UPb年龄为(114.4±1.9)Ma,表明阿翁错花岗闪长岩的成岩年龄为早白垩世晚期。

(2)岩石地球化学性质表明,阿翁错花岗闪长岩属于典型的镁安山岩/闪长岩类,是俯冲板片在由蓝片岩向角闪岩相转变的变质过程中发生了部分熔融,形成的熔体在上升过程中与地幔橄榄岩发生交代作用后,通过底侵作用上升到地表并成岩。

(3)阿翁错花岗岩形成于班公湖—怒江洋壳岩石圈南向俯冲消减的地球动力学背景,是班公湖—怒江洋壳俯冲消减的产物,为班公湖—怒江洋壳俯冲消减的提供了直接的岩石学、地球化学和年代学证据。

致谢: 两位匿名审稿专家对本文提出了建设性的意见和建议,在此表示衷心的感谢!

参考文献
Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X
Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362: 144-146. DOI:10.1038/362144a0
Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 165(3-4): 197-213. DOI:10.1016/S0009-2541(99)00173-4
Boynton W V.1984. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P(ed.) Rare Earth Element Geochemistry[J]. Amsterdam: Elsevier, 63-114.
Coulon C, Maluski H, Bollinger C, Wang S. 1986. Mesozoic and Cenozoic volcanic-rocks from Central and Southern Tibet 39Ar-40Ar dating, petrological Characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 79: 281-302. DOI:10.1016/0012-821X(86)90186-X
Defaut M J, Richerson P M, Deboer J Z, Stewart R H, Maury R C, Bellon H, Drummond M S, Feigenson M D, Jackson T E. 1991. Dacite genesis via both Slab melting and differentiation:Petrogenesis of La Yeguada volcanic complex, Panama[J]. Journal of Petrology, 32: 1101-1142. DOI:10.1093/petrology/32.6.1101
Deng J F, Flower M F J, Liu C, Mo Xuanxue. 2009. Nomeuclature, diagnosis and oringin of high-magnesian andesites (HMA) and magnesian andesites (MA): A review from petrographic and experimental data[J]. Geochimica et Cosmochimica Acta, 73(13): Issue 13 Supplement 1, A279.
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyan. 2010. High-magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA):Two igneous rock types related to oceanic subduction[J]. Geology in China, 37: 1112-1118 (in Chinese with English abstract).
Ding X, Hu Y H, Zhang H, Li CY, Ling M X, Sun W D. 2013. Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro[J]. Journal of Geology, 121: 255-274. DOI:10.1086/669978
Du Daode, Qu Xiaoming, Wang Genghou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet:Evidence from zircon U-Pb LA-ICP-MS dating and petrogeochemistry of arc granites[J]. Acta Petrologica Sinica, 27(7): 1993-2002 (in Chinese with English abstract).
Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 417: 837-840. DOI:10.1038/nature00799
Hu Jun, Wan YongWen, Tao Zhuan, Zhang Dan, Chen GuoDong. 2014. Newgeochemisty and geochronology evidences related to southward subduction of Tethys Ocean basin in west segment of Bangonghu-Nujiang suture belt[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 41(4): 505-515 (in Chinese with English abstract).
Kang Zhiqiang, Xu Jifeng, Wang Baodi, Dong Yanhui, Wang Shuqing, Chen Jianlin. 2009. Geochemistry of Cretaceous volcanic rocks of Duoni Formation in Northern Lhasa Block:Discussion of tectonic Setting[J]. Earth Science (Journal of China University of Geosciences, 34(1): 89-104 (in Chinese with English abstract). DOI:10.3799/dqkx.2009.009
Kapp P, DeCelles P G, Gehrels G E, Heizier M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geol. Soc. Am.Bull., 119: 917-932. DOI:10.1130/B26033.1
Kapp P, Yin A, Harrison TM, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geol. Soc. Am. Bull., 117: 865-878. DOI:10.1130/B25595.1
Kay RW. 1978. Aleutian magnesian andesites:Melts from subductcd Pacific Ocean crust[J]. Journal of Volcanology and Geothermal Research, 4(1/2): 117-132.
Kelemen P B. 1995. Genesisof high Mg-number andesites and the continental-crust[J]. Contributions to Mineralogy and Petrology, 120(1): 1-19. DOI:10.1007/BF00311004
Leier A L, Kapp P, Gehrels G E, DeCelles P G. 2007. Detrital zircon geochronology of Carboniferous? Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 19: 361-378. DOI:10.1111/j.1365-2117.2007.00330.x
Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project[J]. Chemical Geology, 268: 27-40. DOI:10.1016/j.chemgeo.2009.07.006
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS[J]. Chinese Science Bulletin, 55: 1535-1546. DOI:10.1007/s11434-010-3052-4
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43.
Ludwig K R. 2003.User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Exce[M]. Berkeley Geochronological Center, Special Publication, Berkeley, 4: 1-71.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Qian Bing, Zhang ZhaoWei, Lu PengRui, Wang YaLei. 2018. Petrogenesis and Geodynamics Processes of Early Paleozoic Niubiziliang High-Mg Diorites in West Segment of North Qaidam, Qinghai[J]. Earth Science, 43(12): 4375-4389 (in Chinese with English abstract).
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263. DOI:10.1016/0024-4937(89)90028-5
Sui Qinglin. 2014. Chronology, Petrogenesis, and Tectonic Implication of Magmatic Rocks from Yanhu in Northern Lhasa Terrane, Tibet[M]. Beijing: China University of Geosciences (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.[C]//Saunders A D, Norry M J (eds.). Magmatism in the Oceanic Basins[J]. Geological Society, London, Special Publications, 42(1): 313-345.
Tang Gongjian, Wang Qiang. 2010. High-Mg andesites and their geodynamic implications[J]. Acta Petrologica Sinica, 26(8): 2495-2512 (in Chinese with English abstract).
Tatsumi Y, Ishizaka K. 1982. Origin of high-magnesium andesites in the Setouchi volcanic belt, Southwest Japan, I.petrographical and chemical characteristics[J]. EPSL, 60: 293-304. DOI:10.1016/0012-821X(82)90008-5
Tiepolo M, Vannucci R, Obert R, Foley S, Bottazzi P, Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite:crystal-chemical constraints and implications for natural systems[J]. Earth and Planetary Science Letters, 176: 185-201. DOI:10.1016/S0012-821X(00)00004-2
Wu Hao, Li Cai, Xu Mengjing, Li Xingkui. 2015. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab breakoff of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 97: 51-66. DOI:10.1016/j.jseaes.2014.10.014
Xiao Yilin, Sun Weidong, Hoefs Jochen, Simon Klaus, Zhang Zeming, Li Shugang, Hofmann Albrecht W., et al. 2006. Making continental crust through slab melting:Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochimica et Cosmochimica Acta, 70: 4770-4782. DOI:10.1016/j.gca.2006.07.010
Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. 1995. Magnesian andestites in the western Aleutions Komandorsky region:Implications for slab melting and processes in the mantle wedge[J]. GSA Bull., 107(5): 505-519. DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
Zhang K J, Xia B D, Wang G M, Li Y T, Ye H F. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. GSA Bulletin, 116(9/10): 1202-1222.
Zhao Zhenghua, Wang Qiang, Xiong Xiaolin, Niu Hecai, Zhang Haixiang, Qiao Yulou. 2007. Magnesian igneous rocks in northern Xinjiang[J]. Acta Petrologica Sinica, 23(7): 1696-1707 (in Chinese with English abstract).
Zhu Dicheng, Zhao Zhidan, Niu Yaolin, Dilek Yildirim, Mo Xuanxue. 2011b. Lhasa Terrane in southern Tibet came from Australia[J]. Geology, 39: 727-730. DOI:10.1130/G31895.1
Zhu Dicheng, Zhao Zhidan, Niu Yaolin, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011a. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301: 241-255. DOI:10.1016/j.epsl.2010.11.005
Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, Xu Jifeng, Zhou Changyong, Sun Chenguang, Wang Liquan, Chen Haihong, Dong Guochen, Zhou Su. 2008. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica, 24(3): 401-412 (in Chinese with English abstract).
Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guochen, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English abstract).
Zhu Dicheng, Zhao Zhidan, Niu Yaolin, Dilek Y, Hou Zengqian, Mo Xuanxue. 2013. The Origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23: 1429-1454. DOI:10.1016/j.gr.2012.02.002
Zhu Dicheng, Mo Xuanxue, Niu Yaolin, Zhao Zhidan, Wang Liquan, Liu Yongsheng, Wu Fuyuan. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268: 298-312. DOI:10.1016/j.chemgeo.2009.09.008
Zhu Dicheng, Zhao Zhidan, NiuYaoling, Wang Qing, Yildirim DILEK, Dong Guochen, Mo Xuanxue. 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane[J]. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract).
杜道德, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报, 27(7): 1993-2002.
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩闪长岩类(MA):与洋壳俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 37: 1112-1118. DOI:10.3969/j.issn.1000-3657.2010.04.025
胡隽, 万永文, 陶专, 张旦, 陈国东. 2014. 班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据[J]. 成都理工大学学报(自然科学版), 41(4): 505-515. DOI:10.3969/j.issn.1671-9727.2014.04.14
康志强, 许继峰, 王保弟, 董彦辉, 王树庆, 陈建林. 2009. 拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J]. 地球科学, 34(1): 89-104.
隋清霖.2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].北京: 中国地质大学.
钱兵, 张照伟, 吕鹏瑞, 王亚磊. 2018. 柴北缘西段晚古生代牛鼻子梁高镁闪长岩成因机制及地球动力学过程[J]. 地球科学, 43(12): 4375-4389.
唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义[J]. 岩石学报, 26(8): 2495-2512.
赵振华, 王强, 熊小林, 牛贺才, 张海祥, 乔玉楼. 2007. 新疆北部的富镁火成岩[J]. 岩石学报, 23(7): 1696-1707. DOI:10.3969/j.issn.1000-0569.2007.07.015
朱弟成, 莫宣学, 赵志丹, 许继峰, 周长勇, 孙晨光, 王立全, 陈海红, 董国臣, 周肃. 2008. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 24(3): 401-412.
朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J]. 岩石学报, 22(3): 534-546.
朱弟成, 赵志丹, 牛耀龄, 王青, DILEK Yildirim, 董国臣, 莫宣学. 2012. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 18(1): 1-15. DOI:10.3969/j.issn.1006-7493.2012.01.001