文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (1): 133-143  
0
引用本文
王胜建, 任收麦, 周志, 吴丽艳, 郭天旭, 刘一珉, 侯啓东. 2020. 鄂西地区震旦系陡山沱组二段页岩气储层测井评价初探[J]. 中国地质, 47(1): 133-143.  
Wang Shengjian, Ren Shoumai, Zhou Zhi, Wu Liyan, Guo Tianxu, Liu Yimin, Hou Qidong. 2020. Discussion on petrophysical evaluation of shale gas reservoir in the second Member of Sinian Doushantuo Formation in Western Hubei Province, South China[J]. Geology in China, 47(1): 133-143. (in Chinese with English abstract).  

鄂西地区震旦系陡山沱组二段页岩气储层测井评价初探
王胜建1, 任收麦2, 周志1, 吴丽艳3, 郭天旭1, 刘一珉1,4, 侯啓东1,4    
1. 中国地质调查局油气资源调查中心, 北京 100083;
2. 中国地质调查局发展研究中心, 北京 100037;
3. 斯伦贝谢中国公司, 北京 100015;
4. 中国地质大学(北京), 北京 100083
摘要:鄂西地区震旦系陡山沱组是中国页岩气勘查的新层系,其页岩储层矿物成分以白云石为主,测井响应特征与奥陶系五峰组—志留系龙马溪组、寒武系牛蹄塘组硅质页岩明显不同,原有储层“七性”关系测井评价对于陡山沱组页岩储层精细刻画和压裂施工解释评价存在一定的不适用性。本文以鄂阳页1井为例,综合利用常规测井、特殊测井和样品测试分析资料,研究发现不同于五峰组—龙马溪组和牛蹄塘组硅质页岩“四高四低”测井响应特征,陡山沱组二段云质页岩具有低伽马、低铀、低声波时差、低中子,高电阻率、高密度“四低两高”测井响应特征,认为元素测井是评价陡山沱组二段页岩地层总有机碳含量最直接和有效的方法,MRIL-P型核磁测井适用于该地层孔隙度参数评价。通过拟合计算完善了适用于该地层的含气量估算方法,获取了有利页岩储层评价参数,研究成果将为同类型页岩储层测井评价提供参考依据。
关键词页岩气    测井    储层评价    震旦系陡山沱组    鄂阳页1井    油气勘查工程    湖北省    
中图分类号:P618.13;TE321            文献标志码:A             文章编号:1000-3657(2020)01-0133-11
Discussion on petrophysical evaluation of shale gas reservoir in the second Member of Sinian Doushantuo Formation in Western Hubei Province, South China
WANG Shengjian1, REN Shoumai2, ZHOU Zhi1, WU Liyan3, GUO Tianxu1, LIU Yimin1,4, HOU Qidong1,4    
1. Oil & Gas Survey, China Geological Survey, Beijing 100083, China;
2. Development and Research Center of China Geological Survey, Beijing 100037, China;
3. Schlumberger China S. A., Beijing 100015, China;
4. China University of Geosciences, Beijing 100083, China
Abstract: Being a new layer of shale gas exploration in China, the Sinian Doushantuo Formation located in western Hubei Province, which shale reservoir mineral composition is dominated by dolomite and therefore its log response characteristics is obviously different with the siliceous shale of Ordovician Wufeng Formation, Silurian Longmaxi Formation and the Cambrian Niutitang Formation. The previous "seven parameter relationship" study on Longmaxi and Niutitang Formation is not support effectively for the fine characterization and fracturing construction of the Doushantuo Formation shale reservoir. In this paper, after analyzed the conventional logging, special logging and sample data of Eyangye 1 well, we suggested that the logging response characteristics of second member of Sinian Doushantuo Formation with low gamma, low uranium, low acoustic time difference, low neutron, high resistivity, and high density on the conventional logging curve. Furthermore, we proposed that the elemental logging is the most direct and effective logging method for evaluating the TOC of the second member of Doushantuo Formation shale, and analyzed that MRIL-P type nuclear magnetic survey is suitable for the evaluation of porosity parameters. At last, we evaluated the shale gas content via the new fitting method, and obtained favorable evaluation parameters of shale reservoirs. The research results above mentioned will provide parameter basis for the logging evaluation of the same type shale reservoir.
Key words: shale gas    logging    reservoir evaluation    Sinian Doushantuo Formation    Eyangye 1 well    oil-gas exploration engineering    Hubei Province    

1 引言

国外学者利用测井资料和岩心数据,对北美Barnett、Marcellus、Woodford硅质页岩,建立了密度与总有机碳含量(TOC)、矿物成分与孔隙度、TOC与含气量的评价模型与参数,并有效评价储层品质(Jacobi et al., 2008Kale et al., 2010Glorioso et al., 2012Gupta et al., 2012)。参照Barnett页岩的测井响应特征,有学者根据中国寒武系牛蹄塘组和奥陶系五峰组—志留系龙马溪组富有机质页岩矿物成分富含硅质的特点,总结提出高自然伽马、高铀、高电阻率、高声波时差、低密度、低中子、低无铀伽马、低光电吸收截面指数的“四高四低”测井响应特征(万金彬等,2012王明飞等,2015),形成了基于密度曲线、自然伽马能谱、声波时差和补偿中子等多参数线性回归TOC的计算方法(黄仁春等,2014Zhang et al., 2015钟光海等,2015王濡岳等,2015),提出有机孔隙、黏土孔隙、碎屑孔隙和微裂缝孔隙的定量计算方法(李军等,2014),拟合了龙马溪组和牛蹄塘组页岩层段TOC、石英含量、黏土含量与含气量的计算公式,计算结果与岩心测试结果相吻合(聂海宽等,2012张晓明等,2017陈孝红等,2018),表明上述储层测井评价方法对于龙马溪组和牛蹄塘组具有较好的适用性,为储层优选与资源潜力评价提供了技术支撑。

2017—2018年,中国地质调查局发现鄂西地区震旦系陡山沱组二段发育厚层暗色页岩,在鄂阳页1井、鄂宜页1井、秭地2井均见到良好页岩气显示,其中鄂阳页1井直井压裂获最高达5460 m3/d气量(李浩涵等,2017翟刚毅等,2017Bao et al., 2018Chen et al., 2018),鄂阳页2HF井1410 m水平井压裂试气获得5.53万m3/d的稳定高产工业气流,展示良好资源前景。经野外及钻井岩心观察,震旦系陡山沱组二段发育云质页岩,与寒武系牛蹄塘组和奥陶系五峰组—志留系龙马溪组的硅质页岩成分不同,因此前述页岩测井响应特征和储层参数计算经验公式很难适用于陡山沱组云质页岩储层。本文以鄂阳页1井为例,综合利用常规测井、特殊测井和分析化验资料,系统研究了陡山沱组二段云质页岩测井响应特征,分析了矿物组成、烃源岩特性、储层物性和含气性等储层参数,试图为同类型地层页岩储层测井评价提供参数依据。

2 地质特征

鄂西地区包括宜昌市、恩施自治州、襄阳、荆门市和神农架等,大地构造位于扬子板块中段,处于川东褶皱构造带与湘鄂西褶皱带的结合部位。受燕山期以来多期构造活动影响,研究区发育北东向为主的“隔槽式”褶皱构造,鄂西地区发育利川复向斜、中央复背斜、花果坪复向斜、宜都—鹤峰复背斜以及桑植—石门复向斜等多个构造单元(马力等,2004;刘保林等;2015;李海等,2016)。

鄂阳页1井位于鄂西地区黄陵背斜的西南部,井区附近主要发育2组断裂,其中北北西走向的仙女山断裂形成于晚侏罗世,以走滑运动为主,而后经历了晚白垩世和古近纪末期的伸展作用与挤压逆冲作用(邓铭哲等,2018);北西走向的天阳坪断裂在早燕山期为由北向南的逆冲断层,晚燕山期—早喜山期发生构造反转为正断层(甘家思等,1997)。在黄陵背斜南部地区鄂宜页1井、鄂宜参1井和秭地2井也钻遇陡山沱组页岩(图 1)。

图 1 研究区地质图和钻井位置 Fig. 1 Geological map of study area and well site

岩石组合上,陡山沱组可划分为4段,陡山沱组一段为灰色泥质白云岩,厚度11.46 m;研究层段陡山沱组二段以黑色页岩为主,厚度127.69 m;陡山沱组三段以灰色灰质白云岩、浅灰色白云岩为主,厚度57.72 m;陡山沱组四段为深灰色泥岩,厚度0.65 m(邓胜徽等,2015陈孝红等,2015)(图 2)。陡山沱组二段是在海侵条件下,发育形成的一套面积广、厚度大、层位稳定的烃源岩层系,其页岩层段总有机碳含量普遍大于1%,有机质类型主要为Ⅰ~Ⅱ1型,成熟度平均为3.24%;矿物成分以白云石为主,脆性矿物含量高,黏土含量低,发育有机质孔、粒内孔、粒缘缝等(单长安等,2015Zhai et al., 2018)。

图 2 鄂阳页1井震旦系陡山沱组地层柱状图 Fig. 2 Stratigraphic column of the Sinian Doushantuo Formation, Eyangye1 Well

为精细评价矿物成分、孔隙度等参数,标定测井评价结果,在鄂阳页1井陡山沱组实施了自然伽马能谱、补偿中子、岩性密度、双侧向电阻率等常规测井和微电阻率扫描成像、核磁共振、正交偶极阵列声波测井、岩性扫描特殊测井。另外,在实验室开展了TOC、X衍射全岩分析、孔隙度、渗透率及等温吸附共101组分析化验。

3 测井响应特征

震旦系陡山沱组二段云质页岩表现为低伽马、低铀、低声波时差、低中子、高电阻率、高密度的测井响应特征。其中,陡山沱组自然伽马值介于13.90~105.20 API,平均值36.93 API;铀值介于0.75×10-6~3.75×10-6,平均值1.80×10-6;去铀伽马值介于6.92~100.90 API,平均值24.27 API。岩性密度、补偿中子及声波时差受3299.0~3350.2 m和3389.8~3396.5 m扩径影响,曲线失真。剔除受扩径影响的部分,岩性密度数值介于2.53~2.78 g/cm3,平均值2.69 g/cm3;补偿中子数值介于1.46%~19.57%,平均值11.55%;声波时差数值介于47.62~77.92 μs/ ft,平均值57.14 μs/ft。光电吸收截面指数值介于3.92~8.84 b/e,平均值5.76 b/e。深侧向电阻率数值介于16.52~1680.49 Ω · m,平均值199.33 Ω · m(图 3)。

图 3 鄂阳页1井震旦系陡山沱组二段测井响应图 Fig. 3 Logging response of shale in the second Member of Sinian Doushantuo Formation
4 页岩关键参数测井评价 4.1 岩石矿物与地球化学特征

Litho Scanner测井结果显示,页岩储层矿物成分以白云石为主,平均含量54%,其次是石英,平均含量21%,方解石平均含量5%,长石平均含量5%,黏土矿物平均含量13%(图 4)。实验分析数据与测井评价结果一致显示,震旦系陡山沱组二段页岩矿物成分与奥陶系五峰组—志留系龙马溪组和寒武系牛蹄塘组明显不同,脆性矿物(白云石+石英+方解石+长石)达85%。

图 4 鄂阳页1井震旦系陡山沱组二段测井解释综合图 Fig. 4 Petrophysical evaluation of shale in the second Member of Sinian Doushantuo Formation

利用Litho Scanner岩性扫描获得地层中TOC的含量(魏国等,2015Radtke et al., 2017),结果显示,陡山沱组二段TOC介于0.15%~4.16%,平均值为1.7%;实验室分析测试TOC介于0.18%~4.05%,平均2.02%,两者数据吻合度较高(图 4),陡山沱组二段TOC大于2%的优质页岩累计厚度为56.84 m。

4.2 页岩储层物性

利用MRIL-P型核磁测井获取了鄂阳页1井地层的精细的孔隙结构和储层孔隙度参数,结果表明,陡山沱组二段以小孔隙为主,T2谱主频小于10 ms(图 5)。在氩离子抛光扫描电镜上可以看到发育有机质孔、粒内孔、粒缘缝以及莓粒状黄铁矿与黏土颗粒形成大量孔洞,但孔缝较小,有机质孔径约60 nm(图 6)。

图 5 页岩核磁共振T2谱分布图 Fig. 5 Distributing diagram of NMR T2 spectrum of shale
图 6 页岩孔隙结构特征 Fig. 6 Pore structure characteristics of shale

虽然3299.0~3350.2 m和3389.8~3396.5 m扩径较严重,核磁共振测井孔隙度失真偏大,但结合常规曲线以及Litho Scanner测井得到的矿物含量进行孔隙度综合评价,并以实验室物性分析资料对计算得到的孔隙度进行标定,保证了扩径层段孔隙度的准确性。井眼条件较好的层段核磁孔隙度介于0.39%~3.70%,平均值1.72%;实验室核磁共振分析测试数据显示,孔隙度介于0.28%~3.47%,平均值1.69%。结果表明,在井眼条件好的条件下,即使对于低孔页岩储层,核磁共振测井也可以提供较为准确的孔隙度评价结果(图 4)。

页岩储层基质渗透率极低,目前尚无利用常规测井方法求取云质页岩地层基质渗透率的有效方法(金武军,2017)。本文利用实验室核磁共振测试手段,确定渗透率介于0.007~5.450 md,3384.83 m、3400.04 m和3419.08 m样品存在裂缝,导致渗透率增大(表 1)。

表 1 云质页岩渗透率实测值 Table 1 Permeability from the laboratory data of dolomitic shale
4.3 页岩含气性

测井方法评价页岩地层的含气性主要是通过计算吸附气和游离气含量实现。鄂阳页1井陡山沱组为常压地层,计算地层压力约为34.42 MPa,目的层温度为57.8℃,陡山沱组14个样品等温吸附实验的理论吸附值VL为0.58~6.02 m3/t,换算到地层压力下的等温吸附量为0.44~5.26 m3/t。根据实验室实测TOC和等温吸附数据拟合了研究区吸附气量与总有机碳之间的关系(图 7)。

图 7 陡山沱组页岩吸附气含量与TOC拟合关系 Fig. 7 The relationship between absorbed gas content and total organic carbon content of shale in Doushantuo Formation

游离气含气量主要受储层孔隙度与含气饱和度影响,游离气的计算公式(Lewis et al., 2004)为:

式中:Gcfm=游离气含量,scf/ton;

Bg=气层体积系数,cg/sf;

Φeff=有效孔隙度,%;

Sw=含水饱和度,%;

ρb=体积密度,g/cm3

Ψ=转换常数(32.1052)

吸附气和游离气计算结果显示,陡山沱组二段总含气量介于0.67~7.91 m3/t,其中,吸附气含量介于0.42~2.57 m3/t,平均1.25 m3/t;游离气含量介于0.08~6.43 m3/t,平均2.52 m3/t。现场解析的总含气量介于0.12~4.80 m3/t,平均2.01 m3/t(图 4)。

5 讨论 5.1 测井响应特征对比分析

中国南方地区奥陶系五峰组—志留系龙马溪组、寒武系牛蹄塘组页岩气有利储层自然伽马值均大于150 API,铀含量平均大于10×10-6,声波时差值平均为77.84 μs/ft和78.49 μs/ft,密度曲线值平均分别为2.53 g/cm3和2.57 g/cm3,光电吸收截面指数平均分别为3.38 b/e和4.71 b/e。奥陶系五峰组—志留系龙马溪组有利页岩层段电阻率小于100Ω·m,寒武系牛蹄塘组有利页岩段电阻率变化幅度较大,整体偏高,平均480.03 Ω·m。上述两套页岩在常规测井曲线均表现为高伽马、高铀、高电阻率、高声波时差、低密度、低中子、低去铀伽马、低光电吸收截面指数的“四高四低”响应特征(严伟等,2014郭旭升,2014Han et al., 2016)。

震旦系陡山沱组二段3299.0~3350.2 m、3389.9~3396.5 m扩径较严重,对常规测井的中子、密度等曲线产生影响,对比上述两套层系,未扩径层段富有机质页岩在常规测井曲线上表现为低伽马、低铀、低声波时差、低中子、高电阻率、高密度的测井响应特征(表 2)。

表 2 不同层系页岩气储层常规测井响应特征 Table 2 Logging response of shale gas reservoir in different Formations

矿物成分的不同造成陡山沱组页岩与五峰组—龙马溪组和牛蹄塘组页岩测井响应差异大。五峰组—龙马溪组和牛蹄塘组优质页岩位于深水陆棚沉积环境,页岩矿物成分以石英为主(王明飞等,2015王濡岳等,2015高莉等,2019),平均含量分别为56.8%和37.0%,黏土含量均大于25%;陡山沱组以台地相的白云石为主,平均含量为54.0%,黏土含量为13%(图 8)。沉积岩中放射性的强弱与泥岩含量紧密相关(黄隆基,2000),陡山沱组黏土含量低,放射性物质吸附能力较弱,造成铀含量较低。高成分的白云石含量使地层电阻率增高,也使储层更加致密,导致储层测井密度值增加,中子值变小,声波时差值较低。

图 8 不同层系页岩矿物成分组成 Fig. 8 Mineral compositions in different shale formation
5.2 陡山沱组TOC计算方法评价

元素测井是评价陡山沱组二段页岩地层TOC最直接和有效的测井方法。相对于普通硅质页岩来说,有机碳的存在会导致密度偏低、声波时差变大、中子变高、电阻率增大,往往又伴随着铀含量的增大,所以体积密度法、自然伽马、铀曲线法、声波-电阻率曲线法等基于常规测井的TOC评价手段较为适用(Schmoker, 1981Autric et al., 1985Passey et al., 1990王胜建等,2016)。特别是四川涪陵地区奥陶系五峰组—志留系龙马溪组海相页岩,TOC与测井密度之间具有极强的相关性(李军等,2014),通过岩心数据的标定,由密度曲线可回归得到计算TOC的经验公式。

由于陡山沱组二段为云质页岩,测井曲线的响应更多是白云石等矿物的响应,储层中有机碳的电性特征基本被掩盖,本文尝试利用常规测井的自然伽马、铀、电阻率、声波时差及密度与实验室TOC结果进行交会,建立回归公式,但相关性均较差,无法建立仅依靠常规测井曲线评价云质页岩储层TOC的计算模型。Litho Scanner元素测井受井眼和泥浆类型的影响较小,直接测量地层中总碳含量,通过减去方解石、白云石等中的无机碳,获取TOC,与岩心实测TOC高度吻合,表明利用元素测井可有效评价陡山沱组二段地层的TOC。

因鄂阳页1井部分井段井眼条件较差,常规测井受到影响,很难通过常规测井曲线构建泥岩、砂岩及云岩计算模型求取不同层段矿物成分。通过Litho Scanner元素扫描测井在裸眼段和套管中进行元素测量,测量结果与岩心分析结果一致,但Litho Scanner矿物含量与常规曲线间的关系,尚需在合适的井况下进一步测量和研究建立。

5.3 储层评价参数分析

页岩含气量受埋藏深度、压力、有机地化参数、矿物成分等影响,其中TOC与孔隙度是控制页岩含气量计算的两个关键参数(聂海宽等,2012万金彬,2015)。在游离气计算过程中,由于受3299.0~3350.2 m、3389.9~3396.5 m井段扩径影响,使得核磁测井计算的有效孔隙度数值偏大,因此要针对扩径层段加密采样,进行核磁共振等实验室分析化验求取孔隙度,与元素测井获取的地层骨架密度建立关系,实现地层孔隙度的准确计算,进行获取更精准的地层含气量。在非扩径层段,测井计算含气量介于0.67~5.79 m3/t,平均2.91 m3/t,与现场解析总含气量基本一致,其中游离气与吸附气占比为1:1。但裂缝发育的页岩,特别是开启缝的发育,给渗透率评价带来很大挑战,要加强实验室渗透率测试分析。另外,云质页岩的岩石力学参数也不同于硅质页岩,有待结合偶极子声波测井定量评价。

6 结论

(1)陡山沱组二段有利层段页岩矿物成分以白云岩为主,与奥陶系五峰组—志留系龙马溪组、寒武系牛蹄塘组硅质页岩典型“四高四低”测井响应特征相比,具有低伽马、低铀、低声波时差、低中子、高电阻率、高密度的“四低两高”测井响应特征,以往基于常规测井资料针对硅质页岩的评价手段,难以准确计算云质页岩TOC和含气量。

(2)常规测井、核磁测井、元素扫描测井的综合可有效评价陡山沱组页岩气储层的岩性、孔隙性、烃源岩特性及含气性。孔隙度、TOC、含气量及储层厚度综合分析,表明研究区陡山沱组二段优质页岩储层发育,具有较好的勘查前景。

致谢: 感谢长江大学孟江辉副教授、湖北省地质调查院张焱林高级工程师在实验分析测试方面提供的帮助,感谢斯伦贝谢中国公司赵先然首席专家、吴金龙高级工程师在文章修改方面提出的建议。

参考文献
Autric Andre, Dumesnil Patrice, Said. 1985. Resistivity radioactivity and sonic transit time Logs to evaluation the organic content of low permeability rocks[J]. The Log Analyst, 26(3): 36-45.
Bao Shujing, Zhai Gangyi, Zhou Zhi, Yu Shufang, Chen Ke, Wang Yufang, Wang Hao, Liu Yimin. 2018. The evolution of the Huangling uplift and its control on the accumulation and preservation of shale gas[J]. China Geology, 1(3): 346-353. DOI:10.31035/cg2018052
Chen Xiaohong, Luo Shengyuan, Liu An, Li Hai. 2018. The oldest shale gas reservoirs in southern margin of Huangling uplift, Yichang, Hubei, China[J]. China Geology, 1(1): 158-159. DOI:10.31035/cg2018013
Chen Xiaohong, Wei Kai, Zhang Baoming, Li Peijun, Li Hai, Liu An, Luo Shengyuan. 2018. Main geological factors controlling shale gas reservoir in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns[J]. Geology in China, 45(2): 207-226 (in Chinese with English abstract).
Chen Xiaohong, Zhou Peng, Zhang Baomin. 2015. Stable isotope records of the Ediacaran Doushantuo Formation in the eastern Yangtze Gorges and its significance for choronostratigraphy[J]. Geology in China, 42(1): 207-223 (in Chinese with English abstract).
Deng Mingzhe, He Dengfa, Zhang Yuying. 2018. Tectonic evoluation of Xiannvshan fault and its influence on hydrocarbon traps in Changyang anticline, western Hubei fold belt[J]. Petroleum Geology & Experiment, 40(2): 177-184 (in Chinese with English abstract).
Deng Shenghui, Fan Ru, Li Xin, Zhang Shiben, Zhang Baomin, Lu Yuanzheng. 2015. Subdivision and correlation of the Sinian(Ediacaran) system in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 39(3): 239-254 (in Chinese with English abstract).
Gan Jiasi, Yuan Jinrong, Gao Shijun. 1997. New evidence of activity of Xiannvshan and Tianyangping fault zone in last period of LatePleistocene[J]. Crustal Deformation and Earthquake, 17(3): 84-88 (in Chinese with English abstract).
Gao Li, Wang Zongxiu, Liang Mingliang, Zhang Linyan, Li Huijun, Li Chunlin, Gao Wanli. 2019. Material composition and hydrocarbon potential of the shale of Wufeng-Longmaxi Formation in northwestern Hunan[J]. Geology in China, 46(2): 407-418 (in Chinese with English abstract).
Glorioso Juan Carlos, Rattia Aquiles Jesus. 2012. Unconventional reservoirs: Basic petrophysical concepts for shale gas[C]//SPE/EAGE European unconventional resources conference and exhibition, Vienna, Austria, 1-38.
Guo Xusheng. 2014. Enrichment Mechanism and Exploration Technology in Jiaoshiba Area of Fuling Shale Gas Field[M]. Beijing: Science Press (in Chinese).
Gupta Nabanita, Rai Chandra S, Sondergeld Carl H. 2012. Integrated petrophysical characterization of the Woodford Shale in Oklahoma[C]//SPWLA 53rd Annual Logging Symposium, Cartagena, Colombia, 1-35.
Han Shuangbiao, Zhang Jinchuan, Yang Chao, Bai Songtao, Huang Longxing, Dang Wei, Wang Chengshan. 2016. Well log evaluation of shale gas reservoirs and preservation conditions of Lower Cambrian shale succession in Cengong Block of southeast Sichuan Basin, south China[J]. Journal of Natural Gas Science and Engineering, 33: 337-346. DOI:10.1016/j.jngse.2016.05.019
Huang Longji. 2008. Principle of Nuclear Logging[M]. Dongying: China University of Petroleum Press (in Chinese).
Huang Renchun, Wang Yan, Cheng Sijie, Liu Shuai, Cheng Li. 2014. Optimal selection of logging-based TOC calculation methods of shale reservoirs:a case study of the Jiaoshiba shale gas field, Sichuan Basin[J]. Natural Gas Industry, 34(12): 25-32 (in Chinese with English abstract).
Jacobi David, Gladkikh Mikhail, Lecompte Brian, Hursan Gabor, Mendez Freddy, Longo John, Ong Seehong, Bratovich Matt, Patton George, Shoemaker Phillip. 2008. Integrated petrophysical evaluation of shale gas reservoirs[C]//CIPC/SPE gas technology symposium, Calgary, Alberta, Canada, 1-23.
Jin Wujun, Li Jun, Wu Qingzhao, Lu Jing, Gou Qiyong. 2017. Study on well logging evaluation method of gas shale permeability[J]. Progress in Geophysics, 32(1): 177-182 (in Chinese with English abstract).
Kale Sagar Vivek, Rai Chandra Shekhar, Sondergeld Carl H. 2010.Petrophysical characterization of barnett shale[C]//SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA, 1-17.
Lewis Rick, Ingrhham David, Sawyer Walt. 2004. New evaluation techniques for gas shale reservoirs[C]//Reservoir Symposium Schlumberger, 1-15.
Li Hai, Liu An, Wei Kai, Li Jitao. 2016. Geological characteristic of Cambrian black shale and prediction of shale gas prospective area in western Hubei Province[J]. Geology and Mineral Resources of South China, 32(2): 117-125 (in Chinese with English abstract).
Li Haohan, Song Teng, Chen Ke, Lin Tuo, Jin Chunshuang, Meng Fanyang, Wang Peng, Zhang Yanlin. 2017. The discovery of shale gas from Sinian Formation at ZD-2 well in western Hubei[J]. Geology in China, 44(4): 812-813 (in Chinese with English abstract).
Li Jun, Lu Jing, Li Zheng, Wu Qingzhao, Nan Zeyu. 2014. 'Fourpore' modeling and its quantitative logging description of shale gas reservoirs[J]. Oil and Gas Geology, (2): 266-271 (in Chinese with English abstract).
Liu Baolin, Liu Junsheng, Wang Jianbin. 2015. Analysis on the main seismic acquisition parameters for shale gas exploration in western Hubei Province[J]. Geophysical Prospecting for Petroleum, 54(2): 188-196 (in Chinese with English abstract).
Ma Li, Chen Huanjiang, Gan Kewen, Xu Keding, Xu Xiaosong, Wu Genyao, Ye Zhou, Liang Xing, Wu Shaohua, Qiu Yunyu, Zhang Pinglan, Ge Pengpeng. 2004. Geotectonics and Marine Hydrocarbon Geology in Southern China[M]. Beijing: Geological Publishing House (in Chinese).
Nie Haikuan, Zhang Jinchuan. 2012. Shale gas accumulation conditions and gas content calculation:A case study of Sichuan Basin and its periphery in the lower Paleozoic[J]. Acta Geologica Sinica, 86(2): 349-361.
Passey Q R, Creaney S, Kulla J B, Stroud J D. 1990. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 74(12): 1777-1794.
Radtke R J, Lorente Maria, Adolph Bob, Berheide Markus, Fricke Scott, Grau Jim, Herron Susan, Horkowitz Jack, Jorion Bruno, Madio David, May Dale, Miles Jeffrey, Perkins Luke, Philip Olivier, Roscoe Brad, Rose David, Stoller Chris. 2017. A new capture and inelastic spectroscopy tool take geochemical logging to the next level[C]//SPWLA 53rd Annual Logging Symposium, 7: 16-20.
Schmoker James W. 1981. Determination of organic matter content of appalachina Devonian shales from gamma ray logs[J]. AAPG Bulletin, 65(7): 1285-1298.
Shan Chang'an, Zhang Tingshan, Guo Junjie, Liang Xing, Zhang Chao. 2015. Geological characteristics and resource potential of the Upper Sinian Doushantuo Formation shale gas in the north of middle Yangtze region[J]. Geology in China, 42(6): 1944-1958 (in Chinese with English abstract).
Wan Jinbin, He Yufei, Liu Miao, Wang Zhiyue, Zhu Manhong, Huang Ke, Yuan Ye. 2015. Shale gas content measurement and calculation method[J]. Well Logging Technology, 39(6): 756-761 (in Chinese with English abstract).
Wan Jinbin, Li Qinghua, Bai Songtao. 2012. Well-logging evaluation in shale gas reservoir and its advances[J]. Well Logging Technology, 36(5): 441-447 (in Chinese with English abstract).
Wei Guo, Zhang Shenqin, Hou Songyi. 2015. Application of LithoScanner logging technology in Qinghai oilfield[J]. Well Logging Technology, 39(2): 213-216 (in Chinese with English abstract).
Wang Mingfei, Chen Chao, Qu Dapeng, Miao Zhaiwei, Xiao jilin, Gao Hongxian. 2015. The geophysical characteristics of shale gas reservoir from Wufeng member to Longmaxi member in Jiaoshiba block of Fulin shale gas field[J]. Geophysical Prospecting for Petroleum, 54(5): 613-620 (in Chinese with English abstract).
Wang Ruyue, Ding Wenlong, Wang Zhe, Li Ang, He Jianhua, Yin Shuai. 2015. Progress of geophysical well logging in shale gas reservoirs evaluation[J]. Progress in Geophysics, 30(1): 228-241 (in Chinese with English abstract).
Wang Shengjian, Bao Shujing, Mei Jiansen, Mei Yanhui, Pan Hongfeng, Wang Daming. 2016. Shale petrophysical evaluation of the middle Jurassic Dameigou formation in Chaiye1 well, Qaidam Basin[J]. Geological Bulletin of China, 35(2/3): 260-272.
Yan Wei, Wang Jianbo, Liu Shuai, Wang Kun, Zhou Yinan. 2014. Logging identification for the Longmaxi mud shale reservoir in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 34(6): 30-36 (in Chinese with English abstract).
Zhai Gangyi, Bao Shujing, Wang Yufang, Chen Ke, Wang Shengjian, Zhou Zhi, Song Teng, Li Haohao. 2017. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei province[J]. Acta Geoscientica Sinica, 38(4): 441-447 (in Chinese with English abstract).
Zhai Gangyi, Wang Yufang, Zhou Zhi, Liu Guoheng, Wang Yuru, Li Juan. 2018. "Source-Diagenesis-Accumulation"enrichment and accumulation regularity of marine shale gas in southern China[J]. China Geology, 1(3): 319-330. DOI:10.31035/cg2018059
Zhang Rui, Ning Zhengfu, Yang Feng, Zhao Huawei. 2015. Evaluation of petrophysical and mechanical features for shale gas reservoirs in south Sichuan Basin, China[C]//EUROPEC 2015.
Zhang Xiaoming, Shi Wanzhong, Shu Zhiguo, Xu Zhuang, Wang Chao, Yuan Qi, Xu Qinghai, Wang Ren. 2017. Calculation model of shale gas content and its application in Fuling area[J]. Earth Science, 42(7): 1157-1167 (in Chinese with English abstract).
Zhong Guanghai, Xie Bing, Zhou Xiao. 2015. Well logging evaluation methods of shale gas reservoir:A case study from Shunna area, Sichuan Basin[J]. Lithologic Reservoirs, 27(4): 96-102 (in Chinese with English abstract).
Zhong Guanghai, Xie Bing, Zhou Xiao, Peng Xiao, Tian Chong. 2016. A logging evaluation method for gas content of shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 36(8): 43-51 (in Chinese with English abstract).
陈孝红, 危凯, 张保民, 李培军, 李海, 刘安, 罗胜元. 2018. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 45(2): 207-226.
陈孝红, 周鹏, 张保民. 2015. 峡东埃迪卡拉系陡山沱组稳定碳同位素记录及其年代地层意义[J]. 中国地质, 42(1): 207-223. DOI:10.3969/j.issn.1000-3657.2015.01.017
邓铭哲, 何登发, 张煜颖. 2018. 鄂西仙女山断裂构造演化及其对长阳背斜圈闭性的影响[J]. 石油实验地质, 40(2): 177-184.
邓胜徽, 樊茹, 李鑫, 张帅本, 张宝民, 卢远征. 2015. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志, 39(3): 239-254.
甘家思, 袁金荣, 高士钧. 1997. 晚更新世末期仙女山断裂带和天阳坪断裂带活动的最新证据[J]. 地壳形变与地震, 17(3): 84-88.
高莉, 王宗秀, 梁明亮, 张林炎, 李会军, 李春麟, 高万里. 2019. 湘西北地区五峰-龙马溪组页岩物质组成特征与页岩气潜力分析[J]. 中国地质, 46(2): 407-418.
郭旭升. 2014. 涪陵页岩气田焦石坝区块富集机理与勘探技术[M]. 北京: 科学出版社.
黄隆基. 2008. 核测井原理[M]. 东营: 中国石油大学出版社.
黄仁春, 王燕, 程斯洁, 刘帅, 程丽. 2014. 利用测井资料确定页岩储层有机碳含量的方法优选——以焦石坝页岩气田为例[J]. 天然气工业, 34(12): 25-32. DOI:10.3787/j.issn.1000-0976.2014.12.003
金武军, 李军, 武清钊, 路菁, 苟其勇. 2017. 页岩气储层渗透率测井评价方法研究[J]. 地球物理学进展, 32(1): 177-182.
李海, 刘安, 危凯, 李继涛. 2016. 鄂西地区寒武系黑色页岩地质特征及页岩气远景预测[J]. 华南地质与矿产, 32(2): 117-125. DOI:10.3969/j.issn.1007-3701.2016.02.003
李浩涵, 宋腾, 陈科, 林拓, 金春爽, 孟凡洋, 王鹏, 张焱林. 2017. 鄂西地区(秭地2井)震旦纪地层发现页岩气[J]. 中国地质, 44(4): 812-813.
李军, 路菁, 李争, 武清钊, 南泽宇. 2014. 页岩气储层"四孔隙"模型建立及测井定量表征方法[J]. 石油与天然气地质, (2): 266-271. DOI:10.11743/ogg20140214
刘保林, 刘军胜, 王建斌. 2015. 鄂西地区页岩气勘探地震采集主要参数分析[J]. 石油物探, 54(2): 188-196. DOI:10.3969/j.issn.1000-1441.2015.02.010
马力, 陈焕疆, 甘克文, 徐克定, 许效松, 吴根耀, 叶舟, 梁兴, 吴少华, 邱蕴玉, 章平澜, 葛芃芃. 2004. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社.
聂海宽, 张金川. 2012. 页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例[J]. 地质学报, 86(2): 349-361. DOI:10.3969/j.issn.0001-5717.2012.02.013
单长安, 张廷山, 郭军杰, 梁兴, 张朝. 2015. 中扬子北部上震旦统陡山沱组地质特征及页岩气资源潜力分析[J]. 中国地质, 42(6): 1944-1958.
万金彬, 李庆华, 白松涛. 2012. 页岩气储层测井评价及进展[J]. 测井技术, 36(5): 441-447. DOI:10.3969/j.issn.1004-1338.2012.05.001
万金彬, 何羽飞, 刘淼, 王志月, 朱满宏, 黄科, 袁野. 2015. 页岩含气量测井及计算方法研究[J]. 测井技术, 39(6): 756-761.
王明飞, 陈超, 屈大鹏, 缪志伟, 肖继红, 高红贤. 2015. 涪陵页岩气田焦石坝五峰组-龙马溪组一段页岩气储层地球物理特征分析[J]. 石油物探, 54(5): 613-620. DOI:10.3969/j.issn.1000-1441.2015.05.014
王濡岳, 丁文龙, 王哲, 李昂, 何建华, 尹帅. 2015. 页岩气储层地球物理测井评价研究现状[J]. 地球物理学进展, 30(1): 228-241.
王胜建, 包书景, 梅建森, 梅岩辉, 潘洪峰, 汪大明. 2016. 柴达木盆地北缘柴页1井中侏罗统大煤沟组页岩储层测井评价[J]. 地质通报, 35(2/3): 260-272.
魏国, 张审琴, 侯淞译. 2015. 岩性扫描测井技术在青海油田的应用[J]. 测井技术, 39(2): 213-216.
严伟, 王建波, 刘帅, 王昆, 周依南. 2014. 四川盆地焦石坝地区龙马溪组泥页岩储层测井识别[J]. 天然气工业, 34(6): 30-36. DOI:10.3787/j.issn.1000-0976.2014.06.005
翟刚毅, 包书景, 王玉芳, 陈科, 王胜建, 周志, 宋腾, 李浩涵. 2017. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 38(4): 441-447.
张晓明, 石万忠, 舒志国, 徐壮, 王超, 袁琪, 徐清海, 王任. 2017. 涪陵地区页岩气含气量计算模型及应用[J]. 地球科学, 42(7): 1157-1167.
钟光海, 谢冰, 周肖. 2015. 页岩气测井评价方法研究——以四川盆地蜀南地区为例[J]. 岩性油气藏, 27(4): 96-102. DOI:10.3969/j.issn.1673-8926.2015.04.014
钟光海, 谢冰, 周肖, 彭骁, 田冲. 2016. 四川盆地页岩储层含气量的测井评价方法[J]. 天然气工业, 36(8): 43-51.