文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (2): 375-393  
0
引用本文
肖凡, 班宜忠, 范飞鹏, 许乃岑, 毛光武, 李凤春. 2020. 福建政和县东际金(银)矿床黄铁矿微量元素和硫-铅同位素及锆石年龄研究[J]. 中国地质, 47(2): 375-393.  
Xiao Fan, Ban Yizhong, Fan Feipeng, Xu Naicen, Mao Guangwu, Li Fengchun. 2020. Research on zircon U-Pb, S-Pb isotopes and trace elements of pyrite from the Dongji Au(Ag) deposit in Zhenghe County, Fujian Province[J]. Geology in China, 47(2): 375-393. (in Chinese with English abstract).  

福建政和县东际金(银)矿床黄铁矿微量元素和硫-铅同位素及锆石年龄研究
肖凡1, 班宜忠1, 范飞鹏1, 许乃岑1, 毛光武2, 李凤春3    
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 中国冶金地质总局二局, 福建 福州 350108;
3. 中国冶金地质总局山东局测试中心, 山东 济南 250014
摘要:东际金(银)矿床赋存于燕山晚期南园组火山岩中,是东南沿海地区一个隐爆角砾岩型贵金属矿床,已探明金资源量达12.5 t,银资源量135.9 t。通过开展主要金属硫化物黄铁矿电子探针和硫-铅同位素分析,讨论了成矿作用和成矿物质来源等问题。研究表明,东际金(银)矿床黄铁矿Co/Ni值3~94(平均值23)且Co含量为500×10-6~1070×10-6(均值799×10-6),Fe/(S+As)值0.827~0.871(均值0.860),Au/Ag值0.9~5.5(均值2.6),反映该矿床是与陆相火山作用有关的浅成中低温热液型矿床。黄铁矿δ34S在-6.6‰~-0.7‰,206Pb/204Pb为17.9801~18.4303,207Pb/204Pb为15.2689~15.9397,208Pb/204Pb为37.9052~38.7871,指示成矿物质主要来源于具有壳幔混源性质的花岗质岩浆,此外含矿热液也活化萃取了部分基底变质岩和火山岩围岩的金属元素。通过锆石U-Pb年代学研究和区域成矿资料对比,东际金(银)矿床成矿时代可被限定于早白垩世晚期。
关键词金(银)矿    隐爆角砾岩    早白垩世    矿产勘查工程    东际    福建省    
中图分类号:P597.3;P612            文献标志码:A             文章编号:1000-3657(2020)02-0375-19
Research on zircon U-Pb, S-Pb isotopes and trace elements of pyrite from the Dongji Au(Ag) deposit in Zhenghe County, Fujian Province
XIAO Fan1, BAN Yizhong1, FAN Feipeng1, XU Naicen1, MAO Guangwu2, LI Fengchun3    
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. No.2 Bureau of China Metallurgical Geology Bureau, Fuzhou 350001, Fujian, China;
3. Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, Shandong, China
Abstract: The Dongji Au(Ag) deposit is a cryptoexplosive breccia deposit in the southeastern coastal area, with reserves of 12.5 tons Au and 135.9 tons Ag, and hosted in late Yanshanian Nanyuan Formation. To discuss metallogenic and metal material source of the Dongji deposit, the authors carried out multiple isotope (S-Pb) and electron microprobe analysis (EPMA). Pyrite Co/Ni ratio is 3-94 (averaging 23), Co is 500×10-6-1070×10-6 (averaging 799×10-6), Fe/(S+As) is 0.827-0.871 (averaging 0.860), Au/Ag is 0.9-5.5 (averaging 2.6), which suggests that the Dongji Au(Ag) deposit is an epithermal deposit resulting from volcanism. δ34S of pyrite ranges from -0.7‰ to -6.6‰, 206Pb/204Pb is 17.9801-18.4303, 207Pb/204Pb is 15.2689-15.9397, and 208Pb/204Pb is 37.9052-38.7871, which suggests that metal materials were mainly derived from crust-mantle granite magma and partly from metamorphic basement and volcanic wall rocks. Based on zircon U-Pb ages of crystal tuff and granite porphyry combined with regional mineralizaton in the Zhenghe-Jianou area, the authors hold that the metallogenic epoch of the Dongji deposit should be late early Cretaceous.
Key words: Au (Ag) deposit    cryptoexplosive breccia    early Creteceous    mineral exploration engineering    Dongji    Fujian Province    

1 引言

隐爆角砾岩型矿床一般形成于浅成-超浅成(0.5~3 km)封闭或半封闭环境(唐菊兴, 1995; 卿敏和韩先菊, 2002),引发岩石隐蔽爆破的热液流体以岩浆热液为主,且多分布于浅成-超浅成中酸性侵入岩/次火山岩的顶部(Sillitoe, 1985; 卿敏和韩先菊, 2002; 张西社等, 2015),但也可见远离侵入岩的含矿隐爆角砾岩(Ni et al., 2018),该类型矿床的形成实质包括岩石爆破(气爆或者浆爆)和成矿流体注入过程(黄定华等, 1997; 李生元和马小兵, 1999; 马小兵和李生元, 1999)。隐爆角砾岩型矿床与斑岩型矿床或者浅成低温热液型矿床具有紧密联系(Eaton et al., 1993; Pirajno, 1995),有些学者甚至将其作为深部斑岩型矿床的找矿标志(Silltoe et al., 2003;张会琼等, 2012)。

东南沿海地区属于环太平洋多金属成矿带西南部分,发育许多隐爆角砾岩型Au、Ag、Cu、Pb、Zn、Mo矿床(姜耀辉等, 1994; 濮为民等, 2008; 邓新根和华杰雄, 2010; 陈华, 2011; 林书平等, 2012)。其中,东际金(银)矿床位于闽北政和—建瓯金银矿集区内,具有隐爆角砾岩型矿床特征。2012年储量核实报告表明,该矿床已探明金资源量12.5 t,银资源量135.9 t,为次火山热液型矿床(刘永发, 2011)或者浅成中低温热液型矿床(卢燕等, 2017; 王波涛和严卸平, 2019; 刘日富等, 2019),成矿流体具有中低温(168.4~ 211.4℃)和低盐度(3.22%~ 8.13%NaCleqv)特征(王波涛和严卸平, 2019)。在以往的研究中,该矿床成矿物质来源和成矿时代等问题研究较少,制约了该金矿成矿与区域构造-岩浆事件的关联性研究,不利于进一步探讨此矿床深部找矿潜力。鉴于此,本文开展了黄铁矿硫、铅同位素,电子探针和锆石U-Pb测年等测试分析,试图解决东际金(银)矿床成矿作用方面的问题。

2 区域地质背景

闽北政和—建瓯金银矿集区位于华夏造山带北部龙泉—政和俯冲增生杂岩和浙闽沿海岩浆弧交界位置。该矿集区内地层主要为新元古代马面山岩群(变质基底)和燕山期陆相火山-沉积岩系(盖层)(图 1)。基底变质岩原岩是一套浊积特征显著并有中-基性火山物质掺杂的巨厚复理石建造,变质程度为绿片岩相。盖层主要为燕山期酸性—中酸性陆相火山岩建造,其中,晚侏罗世南园组火山岩浆活动表现为裂隙式喷发,构成北东向火山岩带,早白垩世晚期石帽山群火山岩浆活动则为中心式喷发,形成了东坑火山盆地(安山岩Rb- Sr年龄(104.4 ± 23)Ma,ISr= 0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr= 0.7101,谢家莹等, 1994)和仁山火山盆地。

图 1 政和—建瓯金矿集区大地构造位置(a)和地质矿产图(b)(图a据张克信等, 2015;图b据冯志文等, 1991 Fig. 1 Tectonic location (a) and geological and mineral resources map (b) of the Zhenghe-Jianou gold ore concentration area (a after Zhang Kexin et al., 2015; b after Feng Zhiwen et al., 1991)

区内侵入岩主要有熊山岩体(闪长岩,Sm-Nd等时线年龄为(585.7±30)Ma;任胜利等, 1997)、林屯岩体(石英闪长岩,锆石U-Pb年龄(433±7)Ma,隰弯弯等,2019)、富美岩体(花岗岩,锆石U-Pb年龄为(369±4)Ma,隰弯弯等,2019)、铁山岩体(燕山期大型钾质交代岩,Chen et al., 2017;也有人称石英正长岩和辉石正长岩,锆石U-Pb年龄为(254±4)Ma,Wang et al., 2005)和铜盆庵岩体(二长花岗岩和正长花岗斑岩,锆石U-Pb年龄为(153.5±1.8)Ma和(153.0±0.8)Ma,李亚楠等, 2015),其次是早白垩世岩脉(有~130 Ma和~100 Ma两期,未发表数据),岩石类型从中酸性—酸性—酸偏碱性皆有,以酸性和中酸性岩为主。区域构造以政和—大埔北东向断裂带为主,其次为浦城—三都澳北西向断裂带,二者交汇区域也是政和—建瓯矿集区的主体位置。该区内已发现东际金(银)矿(刘永发, 2011)、王母山金矿(胡荣华, 2009)、大药坑金矿(肖凡等, 2017)、狮子岗铜矿和夏山铅锌矿等,最近又新发现了井后超大型叶蜡石矿床(卢林, 2018),表明矿集区具有很好的成矿地质条件。

3 矿区地质特征

东际金(银)矿床位于东坑火山盆地西缘,矿区出露地层有新元古代马面山岩群、晚侏罗世南园组和早白垩世晚期黄坑组,金(银)矿体均赋存于南园组(图 2)。马面山岩群出露于矿区西南角,岩性以片岩为主。南园组出露于矿区北部,岩性主要为流纹质晶屑凝灰(熔)岩夹晶屑凝灰(熔)岩,不整合于马面山岩群之上。黄坑组出露于矿区东南部,不整合覆盖于南园组及马面山岩群之上,上部为凝灰杂砂质砾岩、含砾砂岩,下部为凝灰质角砾岩、火山角砾岩。

图 2 东际金(银)矿床地质简图(据刘永发, 2011修改) Fig. 2 Simplified geological map of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

矿区构造以夏山—东际北东向断裂带为主,次为前际—地坪北西向断裂带及次级或派生断裂,均为成矿后断裂。夏山—东际断裂带主体走向北东,往南东陡倾,或为岩脉充填切割矿体,或直接错断矿体,东坑火山盆地边界断裂也是其组成部分。前际—地坪断裂带总体走向北西,向南西陡倾,为花岗斑岩和辉绿玢岩充填,多表现为切割矿体。

矿区侵入岩、次火山岩及脉岩广泛发育,包括中晚志留世细粒花岗岩和燕山晚期花岗斑岩、石英二长斑岩、石英正长斑岩、正长斑岩、闪长玢岩等,沿北东向断裂带及北西向断裂带充填。

矿区隐爆角砾岩和矿体空间关系紧密,在416 m、450 m、501 m、517 m等中段均有出露。以450 m中段为例,此隐爆角砾岩主要由灰白色晶屑凝灰岩角砾和热液胶结物(石英和黄铁矿)组成,角砾彼此之间可拼贴完整,且遭受了硅化和绢云母化等蚀变,往往靠近围岩,角砾化程度降低,热液胶结物含量减少,而在角砾化程度较高位置,几乎全由灰黑色石英和黄铁矿构成,这样的区域也是金品位最高位置。

矿区围岩蚀变主要有硅化、黄铁矿化、绢云母化、绿泥石化、绿帘石化和碳酸盐化等,其中,以硅化、黄铁矿化和绢云母化分布最为广泛,与成矿关系最为密切,尤以富铝绢云母带与金、银矿化带空间耦合性最好,可作为成矿流体主通道位置的识别标志(卢燕等, 2017)。

4 矿床地质特征

矿区内共圈定金(银)矿体7个,其中Ⅰ号主矿体占矿床总资源/储量88%。Ⅰ号主矿体赋存于南园组底部,呈似层状产出(图 3),并具有分枝复合特点,矿体沿走向延伸305 m,沿倾向延伸400~500 m,最大为550 m(0#线),矿体走向为北东向(10~60°),倾向南东,倾角25~45°。其他矿体均属于Ⅰ号主矿体顺延伸方向尖灭再现或侧移的小矿体,储存部位及产状特征与Ⅰ号主矿体基本一致。

图 3 东际金(银)矿0#勘探线地质剖面图(据刘永发, 2011修改) Fig. 3 Sketch geological section along 0# geological exploration line of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

矿石中金属矿物以黄铁矿为主,少量毒砂、黄铜矿、方铅矿和闪锌矿,微量自然金、银金矿、自然银和含银矿物等(图 4)。脉石矿物以石英、绢云母、水云母、绿泥石,少量方解石及绿帘石等。其中,金以自然金和银金矿形式存在,自然金呈他形粒状充填于石英晶粒间,金黄色,粒径5~20 μm,属细-微粒金,银金矿也赋存于石英晶粒间,粒径4~15 μm,呈不规则状和似椭球状。此外,银矿物(如辉银矿和深红银矿)沿黄铁矿裂隙生长,或以包体形式赋存于黄铁矿,粒径10~40 μm。

图 4 东际金(银)矿床主要金属矿物特征 a—自形—半自形粒状结构黄铁矿;b, c—黄铁矿被毒砂交代,黄铜矿沿毒砂颗粒边缘或者微裂隙生长,指示矿物生成顺序由早到晚依次为黄铁矿→毒砂→黄铜矿;d—黄铜矿、方铅矿交代他形粒状黄铁矿;e—银矿物沿黄铁矿裂隙生长(BSE图像);f—银矿物呈包裹体形式产于黄铁矿中(BSE图像);g, h—金矿物生长于石英颗粒间(BSE图像)。矿物代号:Py—黄铁矿;Ccp—黄铜矿;Apy—毒砂;Gn—方铅矿 Fig. 4 Characteristics of main metal minerals of the Dongji Au(Ag) deposit a-Euhedral-subhedral texture pyrite; b, c-Pyrite replaced by arsenopyrite and chalcopyrite, which suggests that the sequence of metal minerals is pyrite, arsenopyrite and chalcopyrite; d-Anhedral texture pyrite replaced by chalcopyrite and galena; e-Ag-bearing mineral growing in the fracture of pyrite (BSE image); f- Ag-bearing mineral occurring as a inclusion in the pyrite (BSE image); g, h-Au-bearing mineral growing in the quartz. Mineral abbreviation: Py-Pyrite; Ccp-Chalcopyrite; Apy-Arsenopyrite; Gn-Galena

矿石结构主要有粒状结构、压碎结构、交代残余结构和包含结构(图 4),矿石构造主要有角砾状构造、块状构造、脉状构造和稀疏浸染状构造(图 5),其中角砾状构造最为常见,当角砾变少时可变为块状构造,金品位明显增加,故两种矿石类型在空间上可同时出现,局部可见二者渐变过渡关系。

图 5 东际金(银)矿床矿化特征 a—黄铁矿-石英细脉;b—网脉状黄铁矿细脉;c, d, e—角砾状矿化,其中角砾已发生强烈硅化,胶结物为热液成因石英和黄铁矿;f—角砾状矿化,当岩石角砾变小和变少时,可变化为块状矿石,金含量也随之升高 Fig. 5 Mineralization characteristics of the Dongji Au(Ag) deposit a-Pyrite-bearing quartz vein; b-Stockwork pyrite; c, d, e, f -Breccia mineralization, silicification breccias cemented by hydrothermal quartz and pyrite. The breccias become smaller and less in the breccia zone, whereas the Au grade is higher
5 样品特征及测试方法

锆石年龄样品为矿区450 m中段角砾状矿石晶屑凝灰岩角砾和穿插矿体的花岗斑岩。晶屑凝灰岩主要由石英晶屑组成,少量岩屑,大小为0.1~ 0.4 mm,大者可至1mm,基质为隐晶质物质,发生了绢云母化蚀变(图 6abc)。花岗斑岩穿插矿(化)体,后者被氧化后呈特征“铁锈色”,花岗斑岩的斑晶矿物为石英、斜长石和黑云母等,含量分别可至20%、35%和5%,大小一般在0.4~0.8 mm,基质由斜长石和微细晶石英组成,总体含量40%(图 6def)。上述样品经人工破碎至80~100目后,按常规重液和电磁方法分选,并在双目镜下挑选锆石。将锆石颗粒置于环氧树脂制靶,固化抛光,用于阴极发光(CL)照相,并从中选取环带清晰的锆石进行LA-ICP-MS U-Pb定年测试分析,实验测试单位为中国冶金地质总局山东局测试中心。激光剥蚀系统为美国Conherent公司生产的GeoLasPro 193 nm Arf准分子系统,ICP-MS为Thermo X2。激光剥蚀采样过程以氦气作为载气,束斑直径为30 μm、频率为10Hz、能量密度约为10J/cm3。采样方式为单点剥蚀、跳峰采集。采用Plesovice(年龄为(337 ± 0.4)Ma,Slama et al., 2008)和GJ-1标准锆石作为外标进行基准校正。数据处理采用ICPMSDATACAL软件,锆石U-Pb年龄谐和图、年龄分布频率图和加权平均年龄计算采用Isoplot/Exver 3(Ludwig, 2003)完成。

图 6 晶屑凝灰岩(a, b, c)和花岗斑岩(d, e, f)产状及矿物组成 Q—石英;Pl—斜长石;Bt—黑云母;γπ—花岗斑岩 Fig. 6 Geological characteristics and minerals of crystal tuff and granite porphyry Q-Quartz; Pl-Plagioclase; Bt-Biotite; γπ-Granite porphyry

电子探针实验样品取自450 m中段,分别选取了块状矿石、角砾状矿石、细脉状矿石和稀疏浸染状矿石。切制探针片之后,首先进行黄铁矿岩相学观察,选取生成顺序清晰的黄铁矿作为目标点位,然后送至中国地质大学(武汉)地质过程与矿产资源国家重点实验室电子探针实验室进行表面喷碳处理,进而利用配备4道波谱仪的JEOL JXA-8100电子探针完成分析测试,工作加速电压20 kV,加速电流20 nA,束斑直径<1 μm,所有测试数据均进行了ZAF校正处理。

硫、铅同位素样品为富Au角砾状矿石,采样位置为450 m中段和416 m中段1#穿脉位置。首先将矿石粉碎,使用双目镜,挑选黄铁矿单矿物,保证纯度在99%以上。然后使用超声波清洗掉矿物表面粘附粉尘,用玛瑙钵研磨至200目,送澳实分析检测(广州)有限公司实验室测试。其中,硫同位素使用S-ISTP01方法,元素分析仪配套硫同位素质谱仪测δ34S,数据经V-CDT即陨硫铁标准物质标准化。铅同位素使用Pb-IRM01方法,试样加入硝酸、盐酸和氢氟酸,微波消解,然后用扇形磁场等离子体质谱(HR-ICP-SFMS)测试,数据经内标(TI同位素比率)和外部校准(自然铅物质标样)标准化,206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值相对偏差RSD<0.2%。

6 结果分析 6.1 硫、铅同位素

当成矿流体fO2较低时,硫主要呈低价态HS-和S2-存在,基本都富集于硫化物中;当成矿流体fO2较高时,硫主要呈高价态SO42-存在,并富集于硫酸盐矿物中,此时硫化物δ34S值低于成矿热液中总δ34S值(Ohmoto, 1972)。通过光薄片观察,东际金(银)矿床不发育硫酸盐矿物,含硫矿物主要为黄铁矿、毒砂、黄铜矿和方铅矿等,说明成矿过程中未发生不同价态含硫矿物之间硫同位素分馏,故本文研究的黄铁矿δ34S值可以反映成矿流体δ34SΣ的特征。东际金(银)矿床角砾状矿石金含量较高,故开展此类矿石中黄铁矿硫、铅同位素示踪,最能反映成矿物质来源。实验结果表明(表 1),416m中段黄铁矿δ34S为-1.8‰,450m中段黄铁矿δ34S为-0.7‰~-6.6‰,不同深度黄铁矿δ34S值相差不大。总体来看。东际金(银)矿床黄铁矿δ34S值为-0.7‰~-6.6‰,极差5.8‰,除一件样品较高外(450 CM0-1),其余样品δ34S值较集中,平均值为-2.03‰。

表 1 东际金(银)矿床黄铁矿硫、铅同位素特征 Table 1 Sulfur and lead isotope data of pyrites from the Dongji Au(Ag) deposit

由于金属硫化物U、Th元素含量低,在其结晶以后,通过衰变作用所产生的放射性成因铅含量非常低,对铅同位素组成的影响可以忽略,故硫化物铅同位素是示踪成矿物质来源的有效方法之一(张乾等, 2000)。东际金(银)矿床角砾状矿石黄铁矿206Pb/204Pb为17.9801~18.4303,207Pb/204Pb为15.2689~15.9397,208Pb/204Pb为37.9052~38.7871(表 1),与矿集区内大药坑金矿和邻区金矿矿石铅具有很好线性关系(图 7),与矿区周边马面山岩群变质岩、晚侏罗世南园组晶屑凝灰岩、晚侏罗世石英闪长岩和二长斑岩(发育于东坑火山盆地内,穿切早白垩世晚期火山岩,推测成岩时代为早白垩世晚期或者晚白垩世早期)等岩石的铅同位素相比,该矿床矿石铅与燕山期火山-侵入杂岩的岩石铅更加接近,也与马面山岩群中某些变质岩的铅同位素相似。

图 7 东际金(银)矿床208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb图解 (大药坑数据肖凡等, 2017, 邻区金矿、晶屑凝灰岩、二长斑岩和石英闪长岩铅同位素数据冯志文等, 1991, 马面山岩群绿片岩、石英片岩、灰绿色片岩铅同位素数据丰成友等, 2007 Fig. 7 Plot of 208Pb/204Pb versus 206Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb of the Dongji Au(Ag) deposit (Dayaokeng Au deposit data after Xiao Fan et al., 2017; adjacent Au deposits, crystal tuff, monzonite porphyry and quartz diorite data after Feng Zhiwen et al., 1991; Mamianshan Group metamorphic rock data after Feng Chengyou et al., 2007)
6.2 电子探针

依据矿石构造类型、黄铁矿产出状态和晶形特征,黄铁矿可划分出5种类型(分别以Py1、Py2、Py3、Py4和Py5表示)。角砾状矿石黄铁矿有两种形态,Py1颗粒大,粒径0.1~0.4 mm,半自形结构,Py2颗粒小,粒径<0.1 mm,他形结构(图 8a)。浸染状矿石黄铁矿(Py3)颗粒小,粒径0.05~0.1 mm,它形结构,矿物集合体零星分布于晶屑凝灰岩中(图 8b)。细脉浸染状矿石黄铁矿(Py4)颗粒小,粒径<0.05 mm,常与毒砂矿物共生,矿物集合体呈放射状产出(图 8c)。块状矿石黄铁矿(Py5)颗粒大,粒径0.4~0.8 mm,半自形-自形结构,含金、银矿物(图 8d)。

图 8 东际金(银)矿床中不同类型黄铁矿岩相学特征 Fig. 8 Petrographic characteristics of different types of pyrites from the Dongji Au(Ag) deposit

东际金(银)矿床黄铁矿S含量为50.89% ~ 53.42%,平均52.57%,Fe含量为44.38%~46.54%,平均45.83%(表 2),均低于黄铁矿S和Fe的理论含量(分别为53.45%和46.55%,一般沉积型黄铁矿接近理论值),但黄铁矿S/Fe值(原子数比值)为1.99~ 2.02(均值2.01),略高于理论值,说明东际金(银)矿床黄铁矿总体具有富硫贫铁特征。

表 2 东际金(银)矿床黄铁矿电子探针数据(%) Table 2 EPMA data of pyrites from the Dongji Au(Ag) deposit(%)

不同类型黄铁矿具有相似微量元素变化曲线(图 9),表明它们形成于同一热液体系。黄铁矿Au/ Ag比值总体在0.9~5.5,均值2.6,表现出富金贫银特征,但不同类型黄铁矿Au元素含量存在差异,如晶屑凝灰岩中浸染状黄铁矿含有相对均匀的Au含量,而角砾状矿石中黄铁矿含有不均匀的Au含量,这可能反映成矿热液体系物化条件不稳定。研究表明,低温条件下不利于Se元素类质同象置换黄铁矿中S元素(刘英俊等, 1984),Py2贫Se元素且富集低温元素Sb,表明Py2形成温度最低,是角砾状矿石晚期黄铁矿,与岩相学观察基本一致(图 8a),这说明角砾状矿石是多阶段热液流体作用的产物,其金元素富集或许归因于这个地质过程。

图 9 东际金(银)矿床不同类型黄铁矿微量元素变化曲线 Fig. 9 Plot of trace elements of different kinds of pyrites in the Dongji Au(Ag) deposit
6.3 锆石U-Pb

晶屑凝灰岩中锆石颗粒较大,自形程度高,粒径在100~150 μm,成分环带清晰,Th/U值在0.55~ 2.29,均值为0.92,表明岩浆成因锆石。其中,18个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(154±2)Ma(MSWD=2.1,N=18)(图 10表 3),说明晶屑凝灰岩形成于晚侏罗世。此外,1颗锆石发育“核-边”二元结构,核部锆石206Pb/238U表面年龄为506.6 Ma,发育岩浆成分环带,为岩浆锆石,边部锆石无震荡环带,可能是变质成因,其206Pb/238U表面年龄为402.1 Ma。另一颗锆石发育“核-幔”二元结构,核部锆石呈浑圆状且无岩浆成分环带,可能是变质锆石,其207Pb/206Pb表面年龄为2613 Ma,幔部锆石因较窄而无法进行实验。上述锆石的出现,反映了基底构造演化历史之复杂,可能经历了泛非期、加里东期乃至新太古代等时期的构造-岩浆运动。

图 10 东际金(银)矿床晶屑凝灰岩锆石CL图和U-Pb谐和图 Fig. 10 Zircon CL images and U-Pb concordia diagram of crystal tuff from the Dongji Au(Ag) deposit
表 3 东际金(银)矿床晶屑凝灰岩和花岗斑岩锆石U-Pb数据 Table 3 Zircon U-Pb data of crystal tuff and porphyry granite of the Dongji Au(Ag) deposit

花岗斑岩锆石较粗大,自形程度高,粒径在150~250 mm,具有清晰成分环带,Th/U值在0.82~ 2.12,均值为1.27,是岩浆成因锆石。其中,30个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(96.7±0.8)Ma(MSWD=0.65,N=30)(图 11表 4),说明此斑岩形成于晚白垩世早期。此外,有1颗锆石发育明显“核-幔”二元结构,“核部”锆石呈浑圆状,具有溶蚀残留特征,颜色发黑,但仍可见岩浆成分环带,故认为此锆石也为岩浆成因,其206Pb/238U表面年龄为148 Ma,“幔部”锆石具有清晰岩浆成分环带,也是岩浆成因锆石,其206Pb/238U表面年龄为98 Ma,这种锆石的出现可能是晚白垩世早期岩浆侵位时,捕获了围岩中较老锆石,并以此为核重新结晶生长而成。

图 11 东际金(银)矿床花岗斑岩锆石CL图和U-Pb谐和图 Fig. 11 Zircon CL images and U-Pb concordia diagram of granite porphyry of the Dongji Au(Ag) deposit
表 4 典型金矿床黄铁矿Fe、As、S和Fe/(As+S)含量 Table 4 Content of Fe, As, S and Fe/(As+S) of pyrites from typical gold deposits
7 讨论 7.1 成矿热液性质

黄铁矿Fe常被其同族元素Co和Ni类质同象置换,高温热液条件下,Co比Ni更易替代Fe2+,故不同成因黄铁矿Co/Ni值不一样(Yuan et al., 2018),一般沉积型Co/Ni值小于1且Co含量<100×10-6,变质热液型接近1,岩浆热液型Co/Ni值在1~5,且Co含量>400×10-6,火山热液型Co/Ni值大于5,同时Co含量>500 ×10-6且Ni含量<100 ×10-6王奎仁, 1987)。东际金(银)矿床黄铁矿Co/Ni值介于3~94,平均值23,Co含量在500×10-6~1070×10-6(均值799×10-6),Ni含量在10×10-6~240×10-6(均值104× 10-6),在黄铁矿Co-Ni图解中(图 12a),落在火山成因区域和岩浆热液成因区域,并以前者为主,与紫金山铜金矿中黄铁矿投点区域重叠,表明东际金(银)矿床中黄铁矿主体为火山作用相关的热液成因,与紫金山铜金矿中黄铁矿成因相同。在黄铁矿As-Co-Ni图解中(图 12b),东际金(银)矿床黄铁矿落在岩浆或火山热液成因区域,与Co-Ni图解中判断一致,成矿热液是与火山作用相关的热液,相对紫金山铜金矿床黄铁矿更富As,一般深循环低温大气水混入较多时,热液体系将更加富As(李红兵和曾凡志, 2005; 曹素巧等, 2014),故东际金(银)矿床成矿热液中含有一定量的大气水。

图 12 东际金(银)矿床黄铁矿Co-Ni图解和As-Co-Ni图解 (紫金山铜金矿黄铁矿数据张文媛等,2014) Fig. 12 Plot of Co-Ni and As-Co-Ni of pyrites from the Dongji Au(Ag) deposit (Zijinshan Cu-Au deposit data after Zhang Wenyuan et al., 2014)

Au/Ag比值可以指示成矿温度,中低温热液型黄铁矿Au/Ag值>0.5(周学武等, 2005)。东际金(银)矿床黄铁矿Au/Ag值介于0.9~5.5,均值为2.6,说明黄铁矿形成于中低温条件,与王波涛和严卸平(2019)流体包裹体研究结果一致。邻区一些金矿床也具有类似特征,如前际金矿床均一温度为250~ 280℃,小坑金矿床为240~260℃,后坑—翁坑金矿区为260~280℃(冯志文等, 1991)。浅成中低温热液型矿床成矿温度大多在300℃以内(Hedenquist et al., 2000; Pirajno, 2009),如紫金山铜金矿(120~ 240℃)和团结沟金矿(170~230℃)等(毛景文等,2003)。因此,包含东际、前际、小坑等金(银)矿床在内的政和—建瓯金矿集区可能是一个中低温热液型金矿田。

黄铁矿Fe/(S+As)比值与其形成深度具有相关性(周学武等, 2005; 彭丽娜等, 2009; 曹素巧等, 2014;张文媛等, 2014)。东际金(银)矿床黄铁矿Fe/(S+As)值为0.853~0.867(表 4),高于紫金山铜金矿床下部铜矿体中黄铁矿(Fe/(S+As)值平均0.848,张文媛等, 2014, 成矿深度0.5~1.5 km,高天钧, 1999),低于浙东南怀溪铜金矿中黄铁矿(Fe/(S+As)值平均0.881,彭丽娜等, 2009, 成矿压力126.25 × 105~ 295.5×105 Pa,属浅成环境,陶奎元等, 1998),说明东际金(银)矿床成矿深度具有浅成特征。王波涛和严卸平(2019)流体包裹体研究后,也认为该矿床主体成矿深度较浅(0.4~1.1 km)。此外,东际矿区热液蚀变类型以绢云母化和绿泥石化为主,缺失蒙脱石带,金、银矿化主要赋存在以伊利石为主的绢云母化带中,也佐证该矿床形成于浅成热液环境(卢燕等, 2017)。

7.2 成矿物质来源

一般认为自然界有地幔硫、现代海洋硫和沉积(还原)硫三种不同硫来源(郑永飞等, 2000),地幔硫与陨石硫同位素变化于0‰附近,受地壳再循环组分影响,会在-6‰~+6‰变化(Denies, 1995),典型浅成低温热液型铜、金、银矿床δ34S值大都在此范围之内,如紫金山高硫型铜金矿金属硫化物的δ34S值峰值介于-5‰~-1‰(梁清玲等, 2015),悦洋低硫型银矿金属硫化物δ34S值介于- 6.8‰ ~ -1.0‰,平均值-4‰(梁清玲等, 2015),阿希低硫型金矿的黄铁矿δ34S值为-4‰~3.1‰,均值-0.45‰ (翟伟等, 2010)。因此,深源岩浆是浅成低温热液型铜、金、银矿床主要成矿物质来源,可以通过围岩淬取、深源岩浆期后热液或者火山喷气等方式富集。东际金(银)矿床黄铁矿δ34S在-0.7‰~-6.6‰,除样品450 CM0-1的δ34S值为-6.6‰外,其余δ34S值在-0.7‰~-2.3‰(平均值-2.03‰),与同一矿集区内锦屏金矿床(δ34S为0.5‰~2.6‰)和小坑—翁坑金矿化带(δ34S平均值为3.05‰)十分相似,均与幔源硫相似(0±3‰,Chaussidon et al., 1990),指示东际金(银)矿床和相邻金矿床硫源为深部岩浆硫。样品450 CM0-1的δ34S值(-6.6‰)与浙闽地区中生代火山岩中黄铁矿δ34S(4.6‰~6.8‰)和毫石银矿黄铁矿δ34S值(5‰~7‰,此矿床为地热水循环成因,成矿物质主要来源于晚侏罗世火山岩围岩;徐步台等, 1994)十分相近,表明火山岩围岩也是东际金(银)矿床成矿物质来源之一。

除416 m中段黄铁矿,东际金(银)矿床矿石铅μ值在9.27~9.54,均值9.41,位于地幔(8.92)和造山带(10.87)(Doe et al., 1979)之间,ω值为36.22~38.21,均值37.2,超出正常铅范围(35.55±0.59),说明成矿物质具有壳幔混源特征。研究表明,放射性铅同位素“铀铅”(206Pb,207Pb)和“钍铅”(208Pb)含量不同,与物质来源紧密相关,一般化学沉积岩和花岗岩富“铀铅”(206Pb/204Pb>18,207Pb/204Pb>15.3)贫“钍铅”(208Pb/204Pb<39),变质岩铅贫“铀铅”(陈华勇等, 2000)。东际金(银)矿床矿石铅总体富“铀铅”贫“钍铅”型(除样品416 CM1-3外,206Pb/204Pb均值18.335,207Pb/204Pb均值15.565,208Pb/204Pb均值38.584),个别矿石铅贫“铀铅”(样品416 CM1-3的206Pb/204Pb为17.98,207Pb/204Pb为15.269),因此,东际金(银)矿成矿物质具有多源性。在与东际矿区周边马面山岩群变质岩、侵入岩、火山岩和邻区金矿床的铅同位素对比上(图 7),发现东际金(银)矿与邻区金矿矿石铅具有线性关系,与燕山期火山-侵入杂岩接近,也与个别变质岩铅同位素值相似,说明矿集区内金矿床的成矿物质来源相似,主要来自于燕山晚期火山-侵入岩系,变质岩次之。

7.3 成矿时代厘定

东际金(银)矿床角砾状矿石晶屑凝灰岩角砾锆石U-Pb年龄为(154±2)Ma,与德化地区东洋金矿床容矿围岩年龄相近(158~162 Ma,Xu et al., 2018),穿插矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,因此,该矿床成矿年龄应在上述两个年龄之间。在政和—建瓯金矿集区内,东际金(银)矿与邻区金矿具有相似成矿物质来源,可能反映它们形成于相同成矿构造环境,东坑盆地主体由早白垩世晚期石帽山群火山-沉积岩系构成(安山岩Rb-Sr年龄(104.4±23)Ma,ISr=0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr=0.7101,谢家莹等, 1994),上山岗金矿、东坑金矿和马仑头金矿等赋存于此地层中,这表明区域金矿化时间应晚于上述时期,据此可进一步约束东际金(银)矿床形成时间为早白垩世晚期。

从区域上来讲,浙闽交界地区三都澳—浦城北西向断裂带是一条铜钼金银多金属成矿带,主要由浦城铜多金属矿集区、政和—建瓯金矿集区和周宁—(福安)铜钼铅锌银矿集区等构成,成矿时代大都集中于100~105 Ma(张克尧等, 2009; 王登红等, 2010),同时也是早白垩世晚期(或称石帽山期)火山盆地分布区域,如东坑盆地、仁山盆地、香炉山盆地等,故该构造-岩浆带是一条早白垩世晚期成岩成矿带,矿床具有相似成矿地质背景和成矿物质来源(冯志文等, 1991),只是因成矿热液物理化学条件不一致,形成了不同成矿类型。因此,将东际金(银)矿床成矿时代限定为早白垩世晚期是可行的,它是区域强烈火山岩浆活动背景下的产物,也是该区大规模成矿的一个缩影。

8 结论

(1)黄铁矿微量元素特征指示东际金(银)矿床成矿热液具有多阶段性特征,形成于浅成中低温热液条件,成矿热液中含有一定量大气降水。

(2)此矿床黄铁矿硫、铅同位素特征反映成矿物质主要来源于壳幔混源型花岗质岩浆,在岩浆-热液体系演化过程中,活化萃取了变质基底和火山岩围岩中金属元素。

(3)东际金(银)矿区赋矿围岩晶屑凝灰岩锆石U-Pb年龄为(154±2)Ma,穿切矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,结合区域性资料对比分析,可以限定东际金(银)矿床成矿年龄为早白垩世晚期。

致谢: 在东际金(银)矿野外考察工作中,感谢福建省东鑫矿业技术股份有限公司朱玉磷教授级高级工程师和王波涛工程师给予的指导和帮助。两位匿名评审的修改意见使得本文质量得到很好提升,在此一并表示感谢。

参考文献
Cao Suqiao, Jia Jinsheng, Zhong Zengqiu, Hong Hanlie, Wang Chaowen, Yin Ke, Cheng Feng, Ye Han. 2014. Composition and sulfur isotope characteristics of auriferous pyrite from the Shilongtou gold deposit in Kaihua, western Zhejiang Province[J]. Acta Petrologica et Mineralogica, 33(5): 937-946 (in Chinese with English abstract).
Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France):An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. DOI:10.1016/0016-7037(90)90018-G
Chen Hua. 2011. The geological characteristics and its meaning for ore prospecting of cryptoexplosive breccia containing copper-tungsten ore in Jiuquling county of Ningde city, Fujian province[J]. Geology of Fujian, 30(4): 278-285 (in Chinese with English abstract).
Chen S Z, Xing G F, Li Y N, Xi W W, Zhu X T, Zhang X D. 2017. Re-recognition of Tieshan "Syenite" and its geological significance in Zhenghe, Fujian Province[J]. Acta Geologica Sinica (English Edition), 91(s1): 72-73. DOI:10.1111/1755-6724.13192
Deng Xingen, Hua Jiexiong. 2010. Research on the characters and the genesis of the Pb-Zn orebody Ⅰ in Zhilingtou mining zone, Zhejiang[J]. Mineral Exploration, 1(5): 458-462 (in Chinese with English abstract).
Denies P. 1995. Sulfids inclusion chemistry and carbon isotopes of Africa diamond[J]. Geochemica et Cosmochimica Acta, 59: 3171-3188.
Doe B R, Zartman R E. 1979. Plumb Tectonic, the Phanerozoic[C]//Barbnes H L (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd.New York: Wileg-Interscience.
Eaton P C, Setterfield I N. 1993. The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji[J]. Economic Geology, 88: 1053-1083. DOI:10.2113/gsecongeo.88.5.1053
Feng Chenyou, Feng Yaodong, Zhang Dequan, She Hongquan, Li Daxin, Li Jinwen, Dong Yingjun. 2007. Sulfur and lead isotope tracing for sources of ore-forming material and ore-forming age of the Meixian-style Pb-Zn(-Ag) deposits in the central Fujian rift, southeast China[J]. Acta Geologica Sinica, 81(7): 906-916 (in Chinese with English abstract).
Feng Zhiwen, Xia Weihua, Zeng Zuoxun, Xu Yiwei, Zhu Youguang. 1991. Geology of Volcanic Type Gold Deposit in Jian, ou-Zhenghe District, Northern Fujian[M]. Wuhan: China University of Geoscience Press (in Chinese).
Gao Tianjun. 1999. Comparison of the Zijinshan copper-gold deposit and circum-pacific epithermal deposits[J]. Geology of Fujian, 18(4): 167-177 (in Chinese with English abstract).
Hedenquist J W, Arribas R A, Gonzalez-Urien E. 2000. Exploration for epithermal gold deposits[J]. SEG Reviews, 13: 245-277.
Hu Chunjie, Huang Wenting, Bao Zhiwei, Liang Huaying, Wang Chunlong. 2012. LA-ICP-MS zircon U-Pb dating of the dacite porphyry from Zijinshan Cu-Au deposit and its metallogenetic implications[J]. Geotectonica et Metallogenia, 36(2): 284-292 (in Chinese with English abstract).
Hu Ronghua. 2009. Geological characteristics and prospecting foreground of the Wangmushan of the gold deposit in Zhenghe county of Fujian Province[J]. Geology of Fujian, 28(2): 92-100 (in Chinese with English abstract).
Huang Dinghua, Xiang Shuyuan, Zhu Yunhai, Ye Junlin. 1997. Cryptoexplosive mechanics and its significance for mechanism of mineralization[J]. Geological Science and Technology Information, 16(1): 79-82 (in Chinese with English abstract).
Jiang Yaohui, Chen Henian, Wu Quanhuai, Chen Shizhong. 1994. Geological characteristics, genesis and further prospecting direction of Ag-Pb-Zn mineralization of Qinxi-Guansi, Zhouning, Fujian[J]. Geology and Prospecting, (4): 21-25 (in Chinese with English abstract).
Li Hongbin, Zeng Fanzhi. 2005. The pyrite, s typomorphic characteristics in gold deposit[J]. Contributions to Geology and Mineral Resources Research, 20(3): 199-203 (in Chinese with English abstract).
Li Shengyuan, Ma Xiaobin. 1999. Cryptoexplosive rock and its ore-forming sense to gold-silver deposit in the northeastern Shanxi Province, China[J]. Contributions to Geology and Mineral Resources Research, 14(4): 8-14 (in Chinese with English abstract).
Li Yanan, Xing Guangfu, Zhou Taofa, Chen Shizhong, Chen Zhihong, Duan Zheng, Dou Zhijuan, Mai Tingcheng, Xi Wanwan. 2015. Isochronology study on the Tongpenan pluton in the Zhenghe region of Fujian province and its geological significance[J]. Journal of Mineralogy and Petrology, 35(1): 73-81 (in Chinese with English abstract).
Liang Qingling, Jiang Sihong, Bai Daming, Wang Shaohuai. 2015. Sources of ore-forming materials of epithermal deposits in Zijinshan orefield in Fujian Province:Evidence from H, O, S and Pb isotopes[J]. Mineral Deposits, 34(3): 533-546 (in Chinese with English abstract).
Lin Shuping, Liu Sha, Wang Chunlong, Huang Wenting, Li Zhenjie, Wang Cuizhi, Qi Jinping, Liang Huaying. 2012. Locating the cryptoexplosion center at Ermiaogou Cu polymetallic deposit in the Zijin ore field and its geological implication[J]. Geotectonica et Metallogenia, 36(3): 450-456 (in Chinese with English abstract).
Liu Rifu, Zhou Xin, Guo Xinli. 2019. Analysis of Dongji gold deposit metallogenic geologic conditions, Zhenghe County, Fujian[J]. Mineral Exploration, 10(4): 885-889 (in Chinese with English abstract).
Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry[M]. Beijing: Science Press (in Chinese).
Liu Yongfa. 2011. The geologic characteristics of the Dongji gold deposit in Zhenghe County, Fujian Province[J]. Geology of Fujian, 30(1): 21-28 (in Chinese with English abstract).
Lu Lin. 2018. Analysis of geological characteristics of Jinghou pyrophyllite deposits in area of Jianou City, Fujian Province[J]. Geology of Fujian, 37(1): 21-30 (in Chinese with English abstract).
Lu Yan, Zhou Yan, Zhang Hongliang, Yang Kai, Chen Shizhong, Xi Wanwan, Xiu Liancun, Xing Guangfu. 2017. Hydrothermal alteration and its significance for exploration at the Dongji gold-silver deposit in Zhenghe, Fujian Province[J]. Geology and Exploration, 53(6): 1039-1050 (in Chinese with English abstract).
Ludwig K R. 2003. Isoplot 3.0:A geochronological tool kit for Microsoft excel[J]. Berkeley Geochronology Center Special Publication: 1-70.
Ma Xiaobin, Li Shengyuan. 1999. Tectonomagmatism and metallogenesis of subvolcanic Au-Ag deposit in Mesozoic, Wutai-Hengshan region[J]. Contributions to Geology and Mineral Resources Research, 14(4): 49-55 (in Chinese with English abstract).
Mao Jingwen, Li Xiaofeng, Zhang Zuoheng, Wang Yitian, Li Houmin, Hu Huabin. 2003. Geology, distribution types and tectonic setting of Mesozoic epithermal gold deposits in east China[J]. Geological Journal of China Universities, 9(4): 620-637 (in Chinese with English abstract).
Ni P, Pan J Y, Huang B, Wang G G, Xiang H L, Yang Y L, Li S N, Bao T. 2018. Geology, ore-forming fluid and genesis of the Qiucun gold deposit:Implication for mineral exploration at Dehua prospecting region, SE China[J]. Journal of Geochemical Exploration, 195: 3-15. DOI:10.1016/j.gexplo.2018.03.018
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5): 551-578. DOI:10.2113/gsecongeo.67.5.551
Peng Lina, Wei Junhao, Sun Xiaoyan, Li Yanjun, Ye Zefu. 2009. Typomorphic characteristics of pyrites in the Huaixi copper-gold deposit, southeastern Zhejiang Province and its geological significance[J]. Geology and Exploration, 45(5): 577-587 (in Chinese with English abstract).
Pirajno F. 1995. Volcanic-hosted epithermal systems in northwest Turkey[J]. South African Journal of Geology, 98(1): 13-24.
Pirajno F. 2009. Hydrothermal Processes and Mineral System[M]. Germany: Springer, 355-356.
Pu Weimin, Lei Yinghua, Zeng Liang, Yang Yufan. 2008. Geological characteristics of concealed explosion Pb-Zn deposit in Zhilingtou area[J]. Nonferrous Metals(Mining Section), 60(6): 20-24 (in Chinese with English abstract).
Qing Min, Han Xianju. 2002. A commentary of cryptoexplosion breccia type gold deposits[J]. Gold Geology, 8(2): 1-7 (in Chinese with English abstract).
Ren Shengli, Li Jiliang, Zhou Xinhua, Sun Min. 1997. Geochronology, geochemistry and tectonic implications of Xiongshan diabasic dike swarm, northern Fujian[J]. Science in China(Series D), 27(2): 115-120 (in Chinese with English abstract).
Sillitoe R H. 1985. Ore-related breccias in volcanoplutonic arcs[J]. Economic Geology, 80(6): 1467-1514. DOI:10.2113/gsecongeo.80.6.1467
Silltoe R H, Hedenquist J W. 2003. Linkage between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits[J]. Society of Economic Geology, Special Publication, 10: 315-343.
Slama J, Kosler J, Condon D J. 2008. Plesovice zircon:Anew natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1-35.
Tang Juxing. 1995. Characteristics and study significance of gold-bearing hydrothermal cryptoexplosion breccias[J]. Journal of Chengdu Institute of Technology, 22(3): 59-64 (in Chinese with English abstract).
Tao Kuiyuan, Gao Tianjun, Lu Zhigang. 1998. Basement Tectonics of Volcanic Rock and Volcanic-intrusion Related to Mineralization of Coastal Area of Southeast China[M]. Beijing: Geological Publishing House, 54-73.
Wang Botao, Yan Xieping. 2019. Characteristics of fluid inclusion of Dongji gold deposit in the Zhenghe County, Fujian Province[J]. China Metal Bulletin, 1: 41-42.
Wang Denghong, Chen Zhenhui, Chen Yuchuan, Tang Juxing, Li Jiankang, Ying Lijuan, Wang Chenghui, Liu Shanbao, Li Lixing, Qin Yan, Li Huaqin, Qu Wenjun, Wang Yanbin, Chen Wen, Zhang Yan. 2010. New data of the rock-forming and ore-forming chronology for China, s important mineral resources areas[J]. Acta Geologica Sinica, 84(7): 1030-1040 (in Chinese with English abstract).
Wang Kuiren. 1987. Genetic Mineralogy of Earth and Cosmogenesis[M]. Hefei: Anhui Education Publishing House (in Chinese).
Wang Q, Li J, Jian P, Zhao Z, Xiong X, Bao Z, Xu J, Li C, Ma J. 2005. Alkaline syenites in eastern Cathaysia (South China):Link to Permian-Triassic transtension[J]. Earth and Planetary Science Letters, 230(3/4): 339-354.
Xi Wanwan, Chen Shizhong. 2019. Identification of Caledonian granite in the Zhenghe area, Fujian Province and its tectonic significance[J]. Acta Geological Sinica, 93(4): 804-815 (in Chinese with English abstract).
Xiao Fan, Ban Yizhong. 2017. Study of S, Pb isotopes and composition typomorphic characteristics of pyrites in Dayaokeng gold deposit, northern Fujian Province[J]. Mineral Deposits, 36(1): 171-184 (in Chinese with English abstract).
Xie Jiaying, Chen Henian, Zheng Huiwen, Huang Guoyi. 1994. Classification and correlation of early Cretaceous volcanic strata of the Pucheng-Sanduao volcanic eruptive belt in Fujian province[J]. Geology of Fujian, 13(1): 26-36 (in Chinese with English abstract).
Xu Butai, Li Changjiang, Chen Haoshou. 1994. Mineralization chronology and isotopic geochemistry of the Haoshi silver deposit in Zhejiang Province[J]. Mineral Deposits, 13(3): 271-281 (in Chinese with English abstract).
Xu N, Li S R, Santosh M, Tong B. 2018. Petrology, geochemistry and zircon U-Pb geochronology of the Jurassic porphyry dykes in the Dehua gold field, Southeast China:Genesis and geodynamics[J]. Geological Journal, 53: 547-564. DOI:10.1002/gj.2912
Yuan M W, Li S R, Li C L, Santosh M, Alam M, Zeng Y J. 2018. Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit, Central Asian Orogenic Belt:Implication for ore genesis[J]. Ore Geology Reviews 93: 255-267.
Zhai Wei, Sun Xaoming, Su Liwei, He Xiaoping, Wu Youliang. 2010. A Palezoic low-sulfidation type of epithermal gold deposit in Xinjiang, China[J]. Earth Science Frontiers, 17(2): 266-285 (in Chinese with English abstract).
Zhang Huiqiong, Wang Jingbin, Wang Yuwang. 2012. A study on lithofacies zonation of crypto-explosive breccias pipe in Zhijiadi Pb-Zn-Ag deposit, Linqiu county, northeastern Shanxi province, and its exploration significance[J]. Geological Review, 58(6): 1046-1055 (in Chinese with English abstract).
Zhang Kexing, Pan Guitang, He Weihong, Xiao Qinghui, Xu Yadong, Zhang Zhiyong, Lu Songnian, Deng Jinfu, Feng Yimin, Li Jinyi, Zhao Xiaoming, Xing Guangfu, Wang Yonghe, Yin Fuguang, Hao Guojie, Zhang Changjie, Zhang Jin, Gong Yiming. 2015. New division of tectonic-strata superregion in China[J]. Earth Science(Journal of China University of Geosciences), 40(2): 206-233 (in Chinese with English abstract). DOI:10.3799/dqkx.2015.016
Zhang Keyao, Wang Jianping, Du Andao, Lin Qiantong, Huang Jinming, Hu Ronghua, Huang Qingmin. 2009. Re-Os isotopic dating of molybdenite from the Chilu molybdenum deposit in Fu, an, Fujian province[J]. Geology in China, 36(1): 147-155 (in Chinese with English abstract).
Zhang Qian, Pan Jiayong, Shao Shuxun. 2000. An interpretation of ore lead sources from lead isotopic compositions of some ore deposits in China[J]. Geochimica, 29(3): 231-238 (in Chinese with English abstract).
Zhang Wenyuan, Wang Cuizhi, Wei Xiaochan, Fan Mingsen, Chen Lihua. 2014. The implications and typomorphic characteristics of pyrite chemical composition in Zijinshan gold-copper deposit[J]. Advances in Earth Science, 29(8): 974-984 (in Chinese with English abstract).
Zhang Xishe, Wang Ruiting, Dai Junzhi, Yang Zhihui, Meng Deming, Huo Tianyun, Song Qingli, Cao Guangjie. 2015. Characteristics of cryptoexplosive breccias and its prospecting significance in the copper deposit in Sehepu, Shanyang County, Shanxi Province[J]. Acta Geologica Sinica, 89(4): 766-778 (in Chinese with English abstract).
Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry[M]. Beijing: Science Press, 218-247 (in Chinese).
Zhou Xuewu, Li Shengrong, Lu Li, Li Junjian, Wang Jizhong. 2005. Study of pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China[J]. Geoscience, 19(2): 231-238 (in Chinese with English abstract).
曹素巧, 贾锦生, 钟增球, 洪汉烈, 王朝文, 殷科, 程峰, 叶菡. 2014. 浙西开化石龙头金矿含金黄铁矿的成分标型及硫同位素特征研究[J]. 岩石矿物学杂志, 33(5): 937-946. DOI:10.3969/j.issn.1000-6524.2014.05.011
陈华. 2011. 福建宁德九曲岭含铜钨矿隐爆角砾岩筒地质特征及其找矿意义[J]. 福建地质, 30(4): 278-285. DOI:10.3969/j.issn.1001-3970.2011.04.002
陈华勇, 鲍景新, 张增杰, 刘玉琳, 倪培, 凌洪飞. 2000. 新疆望峰金矿成矿物质和流体来源同位素示踪——碰撞造山成矿作用研究示例[J]. 中国科学D辑:地球科学, 30(s): 45-52.
邓新根, 华杰雄. 2010. 浙江治岭头矿区Ⅰ号铅锌矿体地质特征及成因初探[J]. 矿产勘查, 1(5): 458-462. DOI:10.3969/j.issn.1674-7801.2010.05.007
丰成友, 丰耀东, 张德全, 佘宏全, 李大新, 李进文, 董英君. 2007. 闽中梅仙式铅锌银矿床矿质来源的硫、铅同位素示踪及成矿时代[J]. 地质学报, 81(7): 906-916. DOI:10.3321/j.issn:0001-5717.2007.07.005
冯志文, 夏卫华, 曾佐勋, 徐一伟, 朱有光. 1991. 闽北建瓯-政和火山岩型金矿地质[M]. 武汉: 中国地质大学出版社.
高天钧. 1999. 福建紫金山铜金矿床类型与环太平洋浅成低温矿床的比较[J]. 福建地质, 18(4): 167-177.
胡春杰, 黄文婷, 包志伟, 梁华英, 王春龙. 2012. 福建紫金山矿田晚中生代英安玢岩形成时代及其成矿意义[J]. 大地构造与成矿学, 36(2): 284-292. DOI:10.3969/j.issn.1001-1552.2012.02.015
胡荣华. 2009. 福建政和王母山金矿床地质特征及找矿前景分析[J]. 福建地质, 28(2): 92-100. DOI:10.3969/j.issn.1001-3970.2009.02.002
黄定华, 向树元, 朱云海, 叶俊林. 1997. 中浅成岩浆的隐爆机制及其成矿动力学意义[J]. 地质科技情报, 16(1): 79-82.
姜耀辉, 陈鹤年, 巫全淮, 陈世忠. 1994. 福建周宁芹溪-官司银铅锌矿化地质特征、成因及进一步找矿方向[J]. 地质与勘探, (4): 21-25.
李红兵, 曾凡治. 2005. 金矿中的黄铁矿标型特征[J]. 地质找矿论丛, 20(3): 199-203. DOI:10.3969/j.issn.1001-1412.2005.03.011
李生元, 马小兵. 1999. 晋东北隐爆岩及其对金银的控矿意义[J]. 地质找矿论丛, 14(4): 8-14. DOI:10.3969/j.issn.1001-1412.1999.04.002
李亚楠, 邢光福, 周涛发, 陈世忠, 陈志洪, 段政, 窦志娟, 买廷成, 隰弯弯. 2015. 福建政和地区铜盆庵花岗岩年代学研究及其地质意义[J]. 矿物岩石, 35(1): 73-81.
梁清玲, 江思宏, 白大明, 王少怀. 2015. 福建紫金山矿田浅成低温热液型矿床成矿物质来源探讨——H、O、S、Pb同位素地球化学证据[J]. 矿床地质, 34(3): 533-546.
林书平, 刘莎, 王春龙, 黄文婷, 李振杰, 王翠芝, 祁进平, 梁华英. 2012. 紫金山矿田二庙沟铜多金属矿点隐爆角砾岩活动中心的厘定及意义[J]. 大地构造与成矿学, 36(3): 450-456. DOI:10.3969/j.issn.1001-1552.2012.03.019
刘日富, 周鑫, 郭新利. 2019. 福建东际金矿成矿地质条件分析[J]. 矿产勘查, 10(4): 885-889. DOI:10.3969/j.issn.1674-7801.2019.04.020
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社.
刘永发. 2011. 福建政和东际金(银)矿床地质特征及成因初析[J]. 福建地质, 30(1): 21-28. DOI:10.3969/j.issn.1001-3970.2011.01.005
卢林. 2018. 福建建瓯井后叶蜡石矿床地质特征剖析[J]. 福建地质, 37(1): 21-30. DOI:10.3969/j.issn.1001-3970.2018.01.003
卢燕, 周延, 张红亮, 杨凯, 陈世忠, 隰弯弯, 修连存, 邢光福. 2017. 福建政和东际金-银矿床的热液蚀变特征及其勘探指示意义[J]. 地质与勘探, 53(6): 1039-1050. DOI:10.3969/j.issn.0495-5331.2017.06.001
马小兵, 李生元. 1999. 五台-恒山地区中生代构造-岩浆活动与次火山岩型金银的成矿作用[J]. 地质找矿论丛, 14(4): 49-55. DOI:10.3969/j.issn.1001-1412.1999.04.008
毛景文, 李晓峰, 张作衡, 王义天, 李厚民, 胡华斌. 2003. 中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景[J]. 高校地质学报, 9(4): 620-637. DOI:10.3969/j.issn.1006-7493.2003.04.014
彭丽娜, 魏俊浩, 孙晓雁, 李艳军, 叶泽富. 2009. 浙东南怀溪铜金矿床黄铁矿标型特征及其地质意义[J]. 地质与勘探, 45(5): 577-587.
濮为民, 雷英华, 曾亮, 杨裕凡. 2008. 治岭头地区隐爆型铅锌矿床地质特征[J]. 有色金属(矿山部分), 60(6): 20-24. DOI:10.3969/j.issn.1671-4172.2008.06.007
卿敏, 韩先菊. 2002. 隐爆角砾岩型金矿研究述评[J]. 黄金地质, 8(2): 1-7.
任胜利, 李继亮, 周新华, 孙敏. 1997. 闽北熊山岩墙群的年代学、岩石地球化学研究及其大地构造意义[J]. 中国科学(D辑:地球科学), 27(2): 115-120.
唐菊兴. 1995. 含金热液隐爆角砾岩的特征及研究意义[J]. 成都理工学院学报(自然科学版), 22(3): 59-64.
陶奎元, 高天钧, 陆志刚. 1998. 东南沿海火山基底构造及火山-侵入作用与成矿关系[M]. 北京: 地质出版社, 54-73.
王波涛, 严卸平. 2019. 福建政和东际金矿床流体包裹体特征[J]. 中国金属通报, 1: 41-42.
王登红, 陈郑辉, 陈毓川, 唐菊兴, 李建康, 应立娟, 王成辉, 刘善宝, 李立兴, 秦燕, 李华芹, 屈文俊, 王彦斌, 陈文, 张彦. 2010. 我国重要矿产地成岩成矿年代学研究新数据[J]. 地质学报, 84(7): 1030-1040.
王奎仁. 1987. 地球与宇宙成因矿物学[M]. 合肥: 安徽教育出版社.
隰弯弯, 陈世忠. 2019. 福建政和地区加里东期花岗岩的厘定及其大地构造意义[J]. 地质学报, 93(4): 804-815.
肖凡, 班宜忠. 2017. 闽北大药坑金矿床黄铁矿成分标型及硫、铅同位素组成研究[J]. 矿床地质, 36(1): 171-184.
谢家莹, 陈鹤年, 郑惠文, 黄国毅. 1994. 福建浦城-三都澳火山喷发带早白奎世火山地层划分对比[J]. 福建地质, 13(1): 26-36.
徐步台, 李长江, 陈好寿. 1994. 浙江毫石银矿床成矿年代学和同位素地球化学[J]. 矿床地质, 13(3): 271-281.
翟伟, 孙晓明, 苏丽薇, 贺小平, 吴有良. 2010. 新疆阿希金矿:古生代的低硫型浅成低温热液金矿床[J]. 地学前缘, 17(2): 266-285.
张会琼, 王京彬, 王玉往. 2012. 山西灵丘支家地铅锌银矿隐爆角砾岩筒的岩相分带性研究及其勘查意义[J]. 地质论评, 58(6): 1046-1055. DOI:10.3969/j.issn.0371-5736.2012.06.005
张克信, 潘桂堂, 何卫红, 肖庆辉, 徐亚东, 张智勇, 陆松年, 邓晋福, 冯益民, 李锦轶, 赵小明, 邢光福, 王永和, 尹福光, 郝国杰, 张长捷, 张进, 龚一鸣. 2015. 中国构造-地层大区划分新方案[J]. 地球科学——中国地质大学学报, 40(2): 206-233.
张克尧, 王建平, 杜安道, 林仟同, 黄金明, 胡荣华, 黄庆敏. 2009. 福建福安赤路钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 中国地质, 36(1): 147-155. DOI:10.3969/j.issn.1000-3657.2009.01.013
张乾, 潘家永, 邵树勋. 2000. 中国某些金属矿床矿石铅来源的铅同位素诠释[J]. 地球化学, 29(3): 231-238. DOI:10.3321/j.issn:0379-1726.2000.03.004
张文媛, 王翠芝, 魏晓灿, 范明森, 陈丽华. 2014. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 29(8): 974-984.
张西社, 王瑞廷, 代军治, 杨智慧, 孟德明, 霍天云, 宋清理, 曹广杰. 2015. 陕西山阳色河铺地区隐爆角砾岩特征及其铜矿找矿意义[J]. 地质学报, 89(4): 766-778. DOI:10.3969/j.issn.0001-5717.2015.04.009
郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社.
周学武, 李胜荣, 鲁力, 李俊健, 王吉中. 2005. 辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J]. 现代地质, 19(2): 231-238. DOI:10.3969/j.issn.1000-8527.2005.02.011