文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (2): 406-425  
0
引用本文
梁涛, 卢仁, 杨楠, 王莉, 温静静. 2020. 河南省西峡县高庄金矿Rb-Sr等时线年龄和H、O、S、Pb同位素特征:北秦岭板内造山成矿作用的识别[J]. 中国地质, 47(2): 406-425.  
Liang Tao, Lu Ren, Yang Nan, Wang Li, Wen Jingjing. 2020. Rb-Sr isochron age and isotopic compositions of H, O, S and Pb of the Gaozhuang gold deposit, Xixia County, Henan Province: Identification of intraplate orogenic metallogenesis in northern Qinling Mountain[J]. Geology in China, 47(2): 406-425. (in Chinese with English abstract).  

河南省西峡县高庄金矿Rb-Sr等时线年龄和H、O、S、Pb同位素特征:北秦岭板内造山成矿作用的识别
梁涛1,2, 卢仁1,2, 杨楠1,2, 王莉1,2, 温静静1,2    
1. 河南省有色金属地质勘查总院, 河南 郑州 450052;
2. 河南省有色金属深部找矿勘查技术研究重点实验室, 河南 郑州 450052
摘要:高庄金矿是河南省北秦岭金矿床集中区内的典型矿床之一,为限定它的形成时代,探讨深部成矿动力学过程,揭示深源成矿物质的释放机制和分析深部及区域Au成矿潜力,对高庄金矿开展了矿石Rb-Sr同位素定年和H、O、S、Pb同位素测试。7件矿石样品中黄铁矿和石英的87Rb/86Sr和87Sr/86Sr比值范围分别为0.0709~5.963和0.711139~0.721982,初始87Sr/86Sr比值为0.711025±0.000052,等时线年龄为(129.8±1.4)Ma(MSWD=1.3),与烟镇岩体和高庄花岗细晶岩的年龄几乎一致,说明它们近同时形成于早白垩世约130 Ma。高庄金矿3件石英样品的δ18OV-SMOW值和δDV-SMOW值分别介于11.6‰~12.1‰和-60.9‰~-42.5‰,它们的δ18OH2O值介于2.16‰~2.66‰,表明高庄金矿成矿流体具有混合来源的特征。6件黄铁矿样品的δ34S值介于-2.8‰~-1.6‰,具有塔式分布特征,显示幔源硫特征。7件样品的206Pb/204Pb比值、207Pb/204Pb比值和208Pb/204Pb比值范围分别为17.549~18.278、15.461~15.619和37.593~38.428,它们的μ值、△α值、Δβ值和Δγ值范围依次为9.30~9.51、59.52~75.10、11.44~19.80和30.38~37.99。在206Pb/204Pb-207Pb/204Pb和206Pb/204Pb-208Pb/204Pb图解中,高庄金矿样品点主要位于造山带Pb演化线两侧。在Δβγ图解中,它们落入上地壳与地幔混合的俯冲带Pb和造山带Pb两个源区域内。高庄金矿的成矿物质来源于上地幔-下地壳,成矿过程中有上地壳物质加入,具有多源区混合的特征。高庄金矿床的形成与北秦岭燕山期板内(陆内)造山过程密切相关,它与埃达克质烟镇岩体及高庄花岗细晶岩同为区域岩石圈拆沉作用的产物。深部含矿流体也因此获得大规模快速释放,在上升过程中联通了浅部不同深度范围的多层成矿源区,在汇聚混合之后上侵到地壳浅部构造有利部位形成高庄金矿,表明高庄金矿深部及烟镇岩体周缘具有大的内生金属成矿潜力。
关键词高庄金矿    Rb-Sr年龄    成矿物质    岩石圈拆沉    板内造山    成矿潜力    矿产勘查工程    北秦岭    河南    
中图分类号:P597.3;P612            文献标志码:A             文章编号:1000-3657(2020)02-0406-20
Rb-Sr isochron age and isotopic compositions of H, O, S and Pb of the Gaozhuang gold deposit, Xixia County, Henan Province: Identification of intraplate orogenic metallogenesis in northern Qinling Mountain
LIANG Tao1,2, LU Ren1,2, YANG Nan1,2, WANG Li1,2, WEN Jingjing1,2    
1. General Institute of Non-ferrous Metals Geologic Exploration, Zhengzhou 450052, Henan, China;
2. Key Laboratory of Deep Ore-prospecting Technology Research for Non-ferrous Metals of Henan Province, Zhengzhou 450052, Henan, China
Abstract: The Gaozhuang gold deposit is one of the important Au deposits in Au polymetallic ore concentration area of northern Qinling Mountain, Henan Province. The Rb-Sr isochron age and H, O, S and Pb isotopes of ores from the Gaozhuang gold deposit were analyzed so as to constrain Au mineralization formation age and discuss the source of ore metals and the controlling factor of deep ore fluids discharge as well as the Au mineralization potential. The 87Rb/86Sr and 87Sr/86Sr ratios of pyrite and quartz from 7 ore samples are in the range of 0.0709-5.963 and 0.711139-0.721982, respectively. The initial 87Sr/86Sr ratios are in the range of 0.711025±0.000052 and the Rb-Sr isochron age is (129.8±1.4)Ma (MSWD=1.3), almost consistent with the age of the Yanzhen granitic intrusive and the Gaozhuang granitic aplite. It is suggested that they were nearly formed at the same time of -130Ma in early Cretaceous. The δ18OV-SMOW and δDV-SMOW values of 3 quartz samples are 11.6‰-12.1‰ and -60.9‰—-42.5‰, respectively. Their δ18OH2O values range from 2.16‰ to 2.66‰, suggesting that ore-forming fluids of the Gaozhuang gold deposit were a mixed source. The δ34SV-CTD values of 6 pyrite samples are from -2.8‰ to -1.6‰ with a tower shape in the δ34S histogram, which indicates a mantle source. The ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb of 7 samples are 17.549-18.278, 15.461-15.619 and 37.593-38.428, respectively. Their μ, Δα, Δβ and Δγ are 9.30-9.51, 59.52-75.10, 11.44-19.80 and 30.38-37.99. In 206Pb/204Pb-207Pb/204Pb and 206Pb/204Pb-208Pb/204Pb diagrams, sample points of the Gaozhuang gold deposit are close to the orogenic line. They fall into the crust-mantle subduction zone mixed lead source and the orogenic belt lead source in Δβγ of Pb isotopic diagram. It is suggested that metallogenic materials of the Gaozhuang gold deposit were derived from the lower crust and the upper mantle, with the addition of the upper crust materials in the ore-forming process. The formation of the Gaozhuang gold deposit was closely related to Yanshanian intraplate (intracontinental) orogenesis of northern Qinling Mountain. The Gaozhuang gold deposit, the Yanzhen granitic intrusive and the Gaozhuang granitic aplite are all products of regional lithosphere delamination. Deep fluids were rapidly discharged, and diverse sources of metallogenic materials at different depths were connected in the process of regional lithosphere delamination. The Gaozhuang gold deposit was formed when the mixed fluids stopped moving in shallow crust. It is suggested that the deep part beneath the Gaozhuang gold deposit and the Yanzhen area possessed endogenetic metallogenic potential with rapid discharging of deep fluids controlled by regional lithosphere delamination.
Key words: Gaozhuang gold deposit    Rb-Sr isochron age    intraplate orogenesis    metallogenic material    lithosphere delamination    mineralization potential    mineral exploration engineering    northern Qinling Mountain    Henan Province    

1 引言

河南省是中国重要的金资源产地之一,形成了小秦岭、崤山、熊耳山—外方山、北秦岭、桐柏山—大别山和南秦岭等6个金矿床集中区(罗铭玖等,2000),典型矿床如文峪金矿、半宽金矿、上宫金矿、高庄金矿、老湾金矿及毛堂金矿。比较而言,北秦岭金矿床集中区的金成矿效应是它们中较弱的,仅有万沟、竹林沟、小寨沟、高庄、水地沟、朱堰堡岭、蒿坪、梅子沟、河南庄等金矿床(点)出露。鉴于它们的规模以中—小型为主且找矿成果长期未获突破,北秦岭金矿矿床集中区获得的关注度偏低,仅对高庄金矿(杨崇辉等, 1994, 1996, 1999郭瑞卿和赵亨,1999庞绪成等,2001刘玉琳,2002马庚杰等,2010方芳等,2017向世红等,2017)、水地沟金矿(胡伟捷等,2015朱晓冰,2015马玉见等,2019)、蒿坪金矿(王学明等,1998)和河南庄金矿(燕长海等,2001张文等,2012刘小照等,2015李照义等,2018)开展了矿床学及找矿方法研究工作。

作为北秦岭金矿床集中区的典型矿床之一,众多学者对高庄金矿开展了成矿时代、流体包裹体、成矿物质来源及矿石矿物学等方面的研究工作,认为它形成于(90.90±1.54) Ma(杨崇辉等,1999),成矿流体具有低盐度、低密度、中低温、富CO2和多来源混合特征(杨崇辉等,1999庞绪成等,2001向世红等,2017),与成矿作用时代相近的花岗岩参与提供了成矿流体,成矿物质来源于深部及围岩地层(杨崇辉等,1996向世红等,2017),并且矿石中发育多种碲化物(杨崇辉等, 1996, 1999刘玉琳,2002)。事实上,K-Ar法定年存在同位素体系是否有效封闭、过剩氩、氩丢失等诸多不确定因素,并且高庄金矿周缘也缺乏约90 Ma的岩浆活动,这说明其含矿石英脉中白云母K-Ar年龄仅具有参考意义。另一方面,高庄金矿形成的深部成矿动力学过程以及深源成矿物质的释放机制鲜有提及,这对评价高庄金矿深部及区域Au成矿潜力具有重要的参考。为此,对高庄金矿床进行了矿石Rb-Sr同位素定年,开展了矿石H、O、S、Pb同位素测试,分析了高庄金矿形成的深部动力学过程,探讨了高庄金矿深部及区域的Au成矿潜力。

2 地质特征

高庄金矿位于西峡县北部,南距米坪镇约6 km处,地处北秦岭构造带二郎坪—刘山岩地体(图 1a)。区域地层主要为古元古界秦岭群、下古生界二郎坪群、上古生界和中生界(图 1b),秦岭群包括石槽沟组和雁岭沟组,石槽沟组岩性以片麻岩和白云质大理岩为主,雁岭沟组的主要岩性为大理岩。二郎坪群包括火神庙组、大庙组和二进沟组,上古生界由小寨组、抱树坪组和子母沟组组成(王志宏等,2000),火神庙组岩性以细碧岩、细碧玢岩、角斑岩、石英角斑岩及火山碎屑岩为主,大庙组岩性以硅质板岩、石英砂岩和大理岩为主,二进沟组主要为细碧岩-石英角斑岩系夹凝灰岩、火山碎屑岩,小寨组主要岩性为黑云石英片岩、黑云(或绢云)斜长片岩、绢云片岩,抱树坪组以石英片岩、黑云斜长片岩为主,子母沟组主要为大理岩夹黑云石英片岩。中生界出露下三叠统五里川组,岩性主要为炭质板岩、长石石英砂岩和紫红色砾岩。

图 1 河南省西峡县北部高庄—二郎坪地区地质简图及金矿床(点)分布 a—河南省构造分区简图(据河南省地质矿产局,1989简化);Ⅰ—华北克拉通;Ⅱ—秦岭造山带;F—栾川—确山—固始深大断裂带;b—西峡北部高庄—二郎坪地区地质简图及金矿床(点)分布(底图据河南省地质矿产开发局第一地质调查队,2005简化):1—第四系;2—下三叠统五里川组;3—上古生界子母沟组;4—上古生界抱树坪组;5—上古生界小寨组;6—下古生界火神庙组;7—下古生界大庙组;8—下古生界二进沟组;9—下元古界雁岭沟组;10—下元古界石槽沟组;11—燕山期二长花岗岩;12—燕山期正长花岗岩;13—海西期花岗闪长岩;14—加里东期花岗闪长岩;15—加里东期斜长花岗岩;16—加里东期二长花岗岩;17—加里东期闪长岩;18—元古代二长花岗岩;19—地质界线;20—断层;21—金矿床及编号;其中A1—龙潭沟金矿;A2—杨树沟金矿;A3—高庄金矿;A4—水地沟金矿;A5—朱堡堰岭金矿;A6—蒿坪金矿;A7—梅子沟金矿;A8—角沟金矿;A9—湾潭金矿 Fig. 1 Simplified geological map of Gaozhuang-Erlangping area and distribution of Au deposits and mineralization spots, north Xixia County, Henan Province a-Simplified tectonic map of Henan Province (modified after Bureau of Geology and Mineral Resources of Henan Province, 1989), Ⅰ-North China craton; Ⅱ-Qinling orogenic belt; F-Lushi-Luanchuan-Queshan faults belt. b-Simplified geologic map of Gaozhuang-Erlangping area and distribution of Au deposits and mineralization spots (after No. 1 Geological Survey Party, Bureau of Geology and Mineral Resources of Henan Province, 2005 ); 1-Quaternary; 2-Wulichuan Formation of Upper Triassic; 3-Zimugou Formation of Upper Paleozoic; 4-Baoshuping Formation of Upper Paleozoic; 5-Xiaozhai Formation of Upper Paleozoic; 6-Huoshenmiao Formation of Lower Paleozoic; 7-Damiao Formation of Lower Paleozoic; 8-Erjingou Formation of Lower Paleozoic; 9-Yanlinggou Formation of Paleo-Proterozoic; 10-Shicaogou Formation of Paleo-Proterozoic; 11-Yanshanian monzonitic granite; 12-Yanshanian syenogranite; 13-Hercynian granodiorite; 14-Caledonian granodiorite; 15-Caledonian plagiogranite; 16-Caledonian monzonitic granite 17-Caledonian diorite; 18-Proterozoic monzonitic granite; 19-Geoloigical boundary; 20-Fault, 21-Location of Au deposits and mineralization spots; A1-Longtangou Au deposit; A2-Yangshugou Au deposit; A3-Gaozhuang Au deposit; A4-Shuidigou Au deposit; A5-Zhubaoyanling Au deposit; A6-Haoping Au deposit; A7-Meizigou Au deposit; A8-Jiaogou Au deposit; A9-Wantan Au deposit

朱阳关—夏馆深大断裂带是北秦岭重要的断裂构造之一,它呈近北西西向展布于朱阳关、米坪、军马河、小水、夏馆一线(图 1),延伸约350 km,东、西两端分别与西官庄—镇坪—龟山断裂带和瓦穴子—鸭河口—明港断裂带相交(河南省地质矿产局,1989)。朱阳关—夏馆深大断裂带在南阳盆地以西的走向以310°为主,倾向多变,倾角60°~80°,两侧次级断裂构造发育。朱阳关—夏馆断裂带的变形环境为绿片岩相到低角闪岩相之间,变质程度最高可达角闪岩相,韧性变形阶段的变形温度介于400~600℃(张欢等,2012)。此外,环弧形构造也是该区域的典型构造特征之一,在大坪—瓦房院、西庄河、大磨石沟—军马河、二郎坪等地出露环形构造(张侍威和和志军,2003)。

高庄金矿区域内岩浆活动强烈,时间跨度大,形成新元古代、古生代和燕山期3个集中活动期(图 1b)。新元古代岩浆产物主要出露于秦岭群内,典型代表如牛角山岩体、德河岩体、寨根岩体等。早古生代火山岩以二郎坪群火神庙组内的火山岩为主,其中变基性火山岩的锆石U-Pb年龄介于463~475 Ma(赵娇等,2012),早古生代侵入岩以满子营岩体为代表,锆石U-Pb年龄为(459.5±0.9)Ma(郭彩莲等,2010)和(451.7±5.7)Ma(杨晓勇等,2010);晚古生代侵入岩是埃达克质的早泥盆世堂坪—长探河岩体,锆石U-Pb年龄为(408.0±2.4)Ma。燕山期侵入岩以早白垩世花岗岩为主,烟镇岩体形成于(131.3±0.6)Ma(梁涛和卢仁,2018),二郎坪岩体的SHRIIMP和LA-ICP-MS锆石U-Pb年龄分别为(116.5±2.0)Ma(韩以贵,2007)和(114.0±0.5)Ma(梁涛等,2019),骨头崖岩体的锆石U- Pb年龄为(111.7±0.6)Ma(卢仁和梁涛,2017)。此外,满子营岩体南侧辉绿岩的SHRIMP锆石年龄为(126.7± 2.4)Ma(韩以贵,2007),高庄花岗细晶岩的锆石UPb年龄(128.8±1.3)Ma

西峡县北部发育金、铁、铜、钼、铅等矿化。金矿床(点)大致呈北西西向分布(图 1b),龙潭沟、高庄、杨树沟、水地沟、蒿坪、梅子沟、湾潭等金矿是其典型代表。铁矿床(点)主要出露于张罗沟、桑条沟、大庙、桐树沟等地,铜矿床主要为西庄河铜矿、郭家墁铜矿和黄龙湾铜矿,石门沟钼矿、马家庄钼矿、西岭钼矿、细辛钼矿等为钼矿床的典型代表,铅矿床主要位于魏家庄和榆树岭。此外,在西峡北部还探明了太平镇中型轻稀土矿床(李靖辉等,2017)。

3 矿床地质特征

高庄金矿矿区内地层以火神庙组为主,大庙组位于矿区东北部,出露面积较小,矿区沟谷内出露第四系(图 2a)。火神庙组在高庄矿区内自下而上划分出3个岩性段,第一岩性段以变中酸性凝灰岩和变细碧岩为主,厚度大于173 m;第二岩性段主要岩性为变细碧岩夹变细碧玢岩、变石英角斑岩、变角斑岩和变中基性凝灰岩,是金矿体的主要赋存层位;第三岩性段岩性主要为变中基性凝灰岩夹薄层大理岩、变细碧岩和变石英角斑岩,厚度大于100 m。大庙组岩性主要为条纹状含砾大理岩、石英片岩、斜长角闪岩和黑云变粒岩。

图 2 河南省西峡县高庄金矿地质图(据河南省地质矿产厅第四地质调查队,1993简化修改 a—河南省西峡县高庄金矿地质图:1—第四系;2—火神庙组;3—大庙组;4—海西期花岗闪长岩;5—燕山期花岗细晶岩;6—花岗岩;7—金矿脉及编号;8—金矿化蚀变带及编号;9—钻孔及编号;b—49勘探线剖面图;c—24勘探线剖面图;d—48线勘探线剖面图:1—第四系;2—火神庙组;3—金矿脉及编号;4—金矿化蚀变带及编号;5—花岗细晶岩;6—花岗伟晶岩 Fig. 2 Geological map of the Gaozhuang Au deposit, Xixia County, Henan Province (modified from No. 4 Geological Survey Party, Bureau of Geology and Mineral Resources of Henan Province, 1993) a-Geological map of Gaozhuang Au deposit; 1-Quaternary; 2-Huoshenmiao Formation; 3-Damiao Formation; 4-Hercynian granodiorite; 5-Yanshanian granitic aplite; 6-Granite; 7-Au vein and its serial number; 8-Au altered belt and its serial number; 9-Drill hole and its serial number; b-Geological section along No. 9 exploration line; c-Geological section along No. 24 exploration line; d-Geological section along No. 48 exploration line: 1-Quaternary; 2-Huoshenmiao Formation; 3-Au vein and its serial number; 4-Au altered belt and and its serial number; 5-Yanshanian granitic aplite, 6-Granite pegmatite

高庄金矿位于朱阳关—夏馆深大断裂带的次级断裂中,矿区内发育北西西向、北西向和北北西向三组断裂构造(河南省地质矿产厅第四地质调查队,1993)。北西西向断裂总体走向300°,倾向南西,倾角28°~40°,出露规模不等的22条次级层间破碎带,平面展布为右行斜列式,剖面上呈叠瓦状,北西西向断裂及其层间破碎带控制了矿区内金矿化蚀变带和矿体的分布。北西向断裂控制着矿区内花岗细晶岩脉的产出,最厚可达10 m,最薄处仅为0.5 m,一般2 m左右,总体走向310°,倾向南西,倾角25°~40°。北北西向断裂规模较小,倾向以260°为主,局部东倾,倾角大于60°。

火神庙组内的火山岩在高庄矿区内大面积出露,岩性以变中酸性凝灰岩、变细碧岩、变细碧玢岩、变石英角斑岩、变角斑岩和变中基性凝灰岩为主。早泥盆世堂坪—长探河岩体出露在矿区的东北部,岩性以石英二长岩、二长花岗岩和花岗闪长岩为主,它具有埃达克的特性,锆石U-Pb年龄为(408.0±2.4)Ma。矿区内还出露有花岗细晶岩、花岗岩、花岗伟晶岩等脉岩(图 2),其中花岗细晶岩脉呈近北西向断续贯穿整个矿区,倾向南西,厚度主要介于2.0~4.0 m,局部厚度超6.0 m,属于埃达克岩,其锆石U-Pb年龄(128.8±1.3)Ma

在高庄矿区东西长约1.8 km、南北宽约1.2 km的范围内,分段集中赋存了规模不等、近平行雁列状排列的20余条金矿化蚀变带,101和102蚀变带位于矿区西北部,307、308、309-1和309-2蚀变带位于矿区东南部。蚀变带露头标高具有西北高、东南低的特征,剖面上多层近平行产出,其层间距20~40 m(图 2bcd)。高庄金矿蚀变带走向北西西为主,南西倾多见,偶有北西倾,倾角10°~30°,厚度变化大,最厚和最薄分别约5.0 m和0.1 m,平均厚度约1 m。高庄金矿的围岩蚀变作用发育,蚀变种类主要包括硅化、绿帘石化、黄铁矿化、黄铜矿化、闪锌矿化、磁黄铁矿化(图 3a)以及绿泥石化、钾化、绢云母化、碳酸盐化等。

图 3 高庄金矿围岩矿石野外及显微照片 a—发育硅化、绿帘石化的变细碧岩,可见黄铁矿、黄铜矿和闪锌矿;b—变细碧岩中出露的含金石英脉,发育黄铁矿化、黄铜矿化和闪锌矿化;c—含金石英脉,黄铁矿含量约15%;d—富硫化物(约50%)含金石英脉,以黄铁矿和黄铜矿为主;e—金矿石中磁黄铁矿和石英形成的“港湾”状结构;f—金矿石中黄铁矿和黄铜矿的共边结构; Qtz—石英;Py—黄铁矿;Pyr—磁黄铁矿;Cp—黄铜矿;Sph—闪锌矿;Ep—绿帘石 Fig. 3 Field and microscopic photos of wall rock and gold ores from the Gaozhuang Au deposit a-Silicatization and epidotization in altered spilite with pyrite, chalcopyrite and shpalerite; b-Gold vein in alter spilite with pyrite, chalcopyrite and shpalerite; c-Gold vein with ~15% pyrite; d-Gold vein enriched in sulfide (~50%); e-Gulf-shaped structure between pyrrhotite and quartz in gold ore; f- Common boundary structure between pyrite and chalcopyrite in gold ore.Qtz- Quartz; Py- Pyrite; Pyr- Pyrrhotite; Cp- Chalcopyrite; Sph-Sphalerite; Ep-Epidote

高庄金矿先后圈出15个Au矿体,如101、102、103、307、308、309-1②、309-2②等,309-2②矿体的Au平均品位是24.26 g/t,最高品位为79.41 g/t,307矿体的平均品位为8.51 g/t,最高品位为36.53 g/t(马庚杰等,2010),103金矿体是新发现的盲矿体,最高品位达76.21 g/t。矿体产状与所赋存的蚀变带产状基本一致,总体走向290°~320°,倾向南西,倾角8°~35°,局部地段北西倾,倾角4°~25°,矿体平均厚度不足1.0 m,在蚀变带产状变化处矿体厚度变大。矿体在平面上连续性差,如101矿体在101蚀变带内分成5段出露,在49勘探线内向深部延伸十分有限(图 2ab)。矿体在剖面上也是呈透镜状断续分布于金矿蚀变带内,如309蚀变带在24勘探线内显示了309-1①、309-1②和309-1④三个透镜状矿体,水平间距约100 m(图 2c)。高庄金矿矿体还有一个典型的特征就是剖面上呈多层近平行产出,如49勘探线中的101和102矿体,24和48勘探线内的309-1、307和308矿体(图 2cd)。在对比24勘探线和48勘探线内309-1和307矿体延长情况后发现307矿体自北西向南西规模增大,而309-1矿体则在48勘探线尖灭(图 2cd)。

高庄金矿矿石以原生矿石为主,氧化矿石仅在地表零星出露,呈黄-黄褐色,具孔洞状、蜂窝状结构,主要矿物为褐铁矿、黄铁钾钒和石英。原生矿石类型有两种:(1)蚀变岩型金矿石为硫化物-石英脉侵入到变细碧岩内所致(图 3b),多呈细脉状,局部发育细脉网状,硫化物以黄铁矿、黄铜矿、闪锌矿和磁黄铁矿为主,脉石矿物主要为石英、长石和绿泥石等,它在原生矿中所占比例较低,且金品位不高;(2)高品位的主体矿石类型为石英-硫化物型矿石(图 3cd),矿石构造以块状、浸染状和网脉状为主,硫化物主要为黄铁矿、磁黄铁矿、黄铜矿及闪锌矿和方铅矿等,脉石矿物主要为石英。

依据金矿体野外地质特征和矿石矿物的组合特征(图 3ef),高庄金矿成矿作用可以划分出3个成矿阶段:Ⅰ阶段为少硫化物-石英阶段,以乳白色石英脉+少量黄铁矿为主要特征,黄铁矿多呈颗粒状零星分布,含量一般不超过5%,金含量较低;Ⅱ阶段为富硫化物-金-石英阶段,金成矿作用明显,为主成矿阶段,硫化物含量高于10%,以黄铁矿、磁黄铁矿、黄铜矿及闪锌矿为主(图 3cdef),黄铁矿多以团块状产出;Ⅲ阶段为石英-碳酸盐阶段,以石英细脉为主,可见碳酸盐(主要为方解石)细脉。

4 测试方法

高庄金矿矿石Rb-Sr定年样品的黄铁矿和石英单矿物分选由河北省区域地质矿产调查研究所实验室完成,其纯度大于99%。样品的Rb、Sr含量测试和同位素比值分析均在南京南太地质测试研究所完成,测试仪器为英国VG354热电离多接收同位素质谱仪,用于测定NBS987同位素标样87Sr/86Sr值为0.710236±7,详细的测定方法见文献(王银喜等,2007),等时线年龄使用Isoplot程序(Ludwig, 2001)处理获得。

H、O同位素分析由中国科学院地质与地球物理研究所稳定同位素地球化学实验室完成。H同位素分析采用热爆法,O同位素分析采用BrF5法,质谱型号为Finnigan公司的MAT-252,分析误差均在0.2‰以内,δD和δ18O均为相对V-SMOW之值。

S、Pb同位素分析由北京科荟技术有限公司同位素实验室完成。S同位素采用V2O5法,分析仪器为Thermo Fisher公司的MAT 253plus、Flash EA元素分析仪和Conflo Ⅳ多用途接口。Pb同位素样品经二次蒸馏的浓HF和HNO3溶样后,采用Sr特效树脂上柱分离,测试仪器为Thermo Fisher公司的Neptune plus型MC-ICP-MS。

5 测试结果 5.1 Rb-Sr同位素结果

高庄金矿矿石中黄铁矿和石英的Rb-Sr同位素测试结果见表 1

表 1 高庄金矿黄铁矿和石英Rb-Sr同位素组成 Table 1 Rb-Sr isotopic analyses of pyrite and quartz from the Gaozhuang gold deposit

6件黄铁矿样品的Rb、Sr含量分别介于0.5294×10-6~0.9813×10-6和0.4332×10-6~2.127×10-6,4件石英样品的Rb、Sr含量分别介于0.0781×10-6~0.1987×10-6和1.424×10-6~5.643×10-6。10件样品的87Rb/86Sr比值范围为0.0709~5.963,其中石英样品的87Rb/86Sr比值明显偏低,介于0.0709~0.2985。它们的87Sr/86Sr比值范围为0.710189~0.721982,黄铁矿样品的87Sr/86Sr比值明显偏高,介于0.712473~0.721982。

在高庄金矿Rb-Sr等时线图解中,10件样品点的等时线年龄为(139 ± 28)Ma,其中GZ05PY、GZ06QTZ和GZ08PY三个样品点明显偏离总体趋势(图 4a)。黄铁矿的Rb和Sr主要受控于其内矿物包裹体和流体包裹体,并且后期流体改造作用也可影响它的Rb-Sr同位素体系(Han et al., 2007)。另外一方面,高庄金矿黄铁矿和石英中的Rb和Sr含量较低,可能导致实际测试误差偏大,样品GZ05PY、GZ06QTZ和GZ08PY的87Rb/86Sr比值误差明显高于其他样品(表 1)。所以在年龄处理中这3件样品不予考虑,剩余7个样品点显示了一致的线性相关关系(图 4b),获得的等时线年龄为(129.8± 1.4)Ma(MSWD=1.3),初始87Sr/86Sr比值为0.711025±0.000052。

图 4 高庄金矿矿石中黄铁矿和石英的Rb-Sr等时线图解 a—10件样品的Rb-Sr等时线图解;b—7件样品(不含GZ05PY、GZ06QTZ和GZ08PY)的Rb-Sr等时线图解 Fig. 4 Rb-Sr isochron of pyrite and quartz of ore from the Gaozhuang Au deposit a-Rb-Sr isochron of 10 samples from the Gaozhang gold deposit; b-Rb-Sr isochron of 7 samples (not including GZ05PY, GZ06QTZ and GZ08PY) from the Gaozhang gold deposit
5.2 H、O同位素结果

高庄金矿矿石样品中石英的H、O同位素分析结果见表 2

表 2 高庄金矿金矿石中石英的氢、氧同位素组成 Table 2 δ18O and δD isotopic compositions of quartz in gold ore from the Gaozhuang gold deposit

高庄金矿3件石英样品的δ18OV-SMOW值和δDV-SMOW值分别介于11.6‰ ~12.1‰和- 60.9‰ ~-42.5‰,根据石英中流体包裹体均一温度和石英-水的氧同位素分馏方程,可计算获得包裹体中的δ18OH2O值,同批次高庄金矿流体包裹体样品表明其成矿均一温度为240℃,分馏方程采用1000lnα石英-水=3.38 × 106/T2-3.40(Clayton et al., 1972),它们的δ18OH2O值介于2.16‰~2.66‰(表 2)。高庄金矿10件石英样品的δDV-SMOWδ18OH2O值分别介于-83.4‰~-42.5‰和2.11~7.06(表 2),4个投点落入δ18O-δD图解中的岩浆水区域及附近,6个样品点落入变质水区域及附近(图 5),这表明高庄金矿成矿流体具有混合来源的特征。

图 5 高庄金矿的δ18O-δD图解(底图据Rollison,1993简化) 1—高庄金矿(本次研究);2—高庄金矿(据杨崇辉等;1999);3—高庄金矿(据向世红等,2017);4—蒿坪金矿(据王学明等,1998 Fig. 5 δ18O-δD diagram of the Gaozhuang Au deposit (basic map after Rollison, 1993) 1-Samples of the Gaozhuang gold deposit (this study); 2-Samples of the Gaozhuang gold deposit (after Yang Chonghui et al., 1999); 3-Samples of the Gaozhuang gold deposit (after Xiang Shihong et al., 2017); 4- Samples of Haoping gold deposit (after Wang Xueming et al., 1998)
5.3 S同位素结果

高庄金矿矿石中黄铁矿的S同位素分析结果见表 3

表 3 金矿石的硫同位素组成 Table 3 Sulfur isotopic compositions of gold ore from the Gaozhuang gold deposit

高庄金矿7件黄铁矿样品的δ34S值介于-2.8‰ ~-1.6‰,磁黄铁矿和黄铜矿样品的δ34S值分别为-1.2‰和-1.3‰,它们显示了明显的塔式分布特征(图 6)。水地沟金矿和蒿坪金矿的δ34S值也显示了塔式分布特征,比较而言,水地沟金矿黄铁矿样品的δ34S值均大于高庄金矿的,蒿坪金矿硫化物的δ34S值整体上也是大于高庄金矿黄铁矿的δ34S值(图 6)。

图 6 高庄金矿硫化物的S同位素直方图 (高庄金矿(3件样品)和梅子沟金矿(1件样品)的硫同位素数据引自河南省地质矿产厅第一地质调查队,1991;水地沟金矿的硫同位素数据马玉见等,2019;蒿坪金矿的硫同位素数据王学明等,1998 Fig. 6 δ34 S histogram of ore minerals from the Gaozhuang Au deposit δ34 assay results of 3 samples from the Gaozhuang gold deposit and 1 sample from Meizigou gold deposit (after No. 1 Geological Survey Party, Bureau of Geology and Mineral Resources of Henan Province, 1991), δ34 assay results of Shuidigou gold deposit (after Ma Yujian et al., 2019), δ34 assay results of Haoping gold deposit (after Wang Xueming et al., 1998)
5.4 Pb同位素结果

高庄金矿矿石中黄铁矿和石英的Pb同位素分析结果见表 4

表 4 高庄金矿石的铅同位素组成及相关参数 Table 4 Pb-isotopic compositions and characteristic parameters of gold ore from the Gaozhuang gold deposit

高庄金矿6件黄铁矿样品的206Pb/204Pb比值、207Pb/204Pb比值和208Pb/204Pb比值范围分别为17.549~18.278、15.461~15.619和37.593~38.428,它们的μ值、△α值、Δβ值和Δγ值范围依次为9.30~9.51、59.52~75.10、11.44~19.80和30.38~37.99,其最小值和最大值分别出自样品YP19PY和GZ01PY。石英的206Pb/204Pb比值、207Pb/204Pb比值和208Pb/204Pb比值依次为17.855、15.553和38.081,对应的μ值、△α值、Δβ值和Δγ值依次为9.44、68.40、16.76和38.65。

206Pb/204Pb-207Pb/204Pb图解中,高庄金矿样品的投点位于造山带Pb演化线两侧,其中高庄金矿YP19样品点位于上地幔Pb演化线附近(图 7a)。在206Pb/204Pb-208Pb/204Pb图解中,高庄金矿样品的投点位于造山带Pb演化线上侧(图 7b)。在Pb同位素的Δβγ图解中(图 8),高庄金矿样品点位于上地壳与地幔混合的俯冲带Pb(3a区,与岩浆作用相关)和造山带Pb(8区)两个源区域内。

图 7 高庄金矿Pb同位素图解(底图据Zartman and Doe, 1981 1—高庄金矿黄铁矿;2—高庄金矿石英;3—水地沟金矿黄铁矿(马玉见等,2018);4—水地沟金矿石英(马玉见等,2019);5—梅子沟金矿(河南省地质矿产厅第一地质调查队,1991);6—蒿坪金矿(王学明等,1998);UC—上地壳;OG—造山带;UM—上地幔;LC—下地壳 Fig. 7 Pb isotope diagrams of the Shuidigou Au deposit (basic map after Zartman and Doe, 1981) 1-Samples of pyrite from the Gaozhuang gold deposit, 2-Samples of quartz from the Gaozhuang gold deposit, 3-Samples of pyrite from the Shuidigou gold deposit (after Ma et al., 2019), 4-Samples of quartz from the Shuidigou gold deposit (after Ma Yujian et al., 2018), 5-Samples from Meizigou gold deposit (after No. 1 Geological Survey Party, Bureau of Geology and Mineral Resources of Henan Province, 1991), 6-Samples from the Haoping gold deposit (after Wang Xueming et al., 1998); UC-Upper crust; OG-Orogenic belt; UM-Upper mantle; LC-Lower crust
图 8 高庄金矿Pb同位素Δβγ图解(底图据朱炳泉,1998 D1—地幔源Pb;D2—上地壳源Pb;D3—上地壳与地幔混合的俯冲带Pb(D3a—岩浆作用,D3b—沉积作用);D4—化学沉积型Pb;D5—海底热水作用Pb;D6—中深变质作用Pb;D7—深变质下地壳Pb;D8—造山带Pb;D9—古老页岩上地壳Pb;D10—退变质作用Pb;图例同图 7 Fig. 8 Pb isotope Δβγ diagram of the Shuidigou Au deposit(basic map after Zhu Bingquan, 1998) D1-Mantle lead; D2-Upper crust lead; D3-Subduction zone lead mixed with upper crust and mantle (D3a-Magmatism, D3bDeposition); D4-Chemical deposition lead; D5-Submarine hot water lead; D6-Mesometamorphism lead; D7-Katametamorphism lower crust lead; D8-Orogenic belt lead; D9-Ancient shale upper crust lead; D10-Retrograde metamorphism lead; legends of samples as for Fig. 7
6 讨论 6.1 成矿时代

测定可靠的成矿时代一直都是矿床学研究的基本任务之一,矿石中金属硫化物及石英的年龄可直接代表矿床的形成时代。随着高精度低检出限质谱仪、超纯酸超纯水制取等技术的出现,金属硫化物的Rb-Sr同位素定年方法取得了快速发展且技术日臻成熟。Rb-Sr同位素定年在河南省华北克拉通南缘矿床学研究中获得了应用,如祁雨沟金矿黄铁矿的Rb-Sr等时线年龄为(126±11)Ma(Han et al., 2007)、骆驼山多金属矿硫化物的Rb-Sr等时线年龄为约138 Ma(邢波等,2016杨晨英等,2016)、中鱼库锌(铅)矿闪锌矿的Rb-Sr等时线年龄为(136.4±0.8)Ma(曹华文等,2016)、店房金矿黄铁矿和方铅矿的Rb- Sr等时线年龄为(121.5 ± 1.7)Ma(Tian et al., 2017)、洪洞沟铅锌多金属矿闪锌矿的Rb- Sr等时线年龄为(135.7 ± 3.2)Ma(Yang et al., 2017)和吉家洼金矿成矿Ⅲ阶段闪锌矿的Rb-Sr等时线年龄为(118.2±2.4)Ma(张兴康等,2018)。

高庄金矿黄铁矿和石英样品的87Rb/86Sr-87Sr/86Sr投点显示了良好的线性关系,尤其是除GZ05PY、GZ06QTZ和GZ08PY三件样品之外的7个样品投点显示了一致的线性相关关系(图 4ab),等时线拟合度高,表明被测试黄铁矿和石英在其形成过程中Sr同位素是均一的,并且有着很好的封闭性,所获得的等时线年龄为(129.8±1.4)Ma(MSWD=1.3)可代表高庄金矿矿石中黄铁矿和石英的形成时代。

高庄金矿含矿石英脉中白云母K-Ar年龄为(90.90±1.54)Ma(杨崇辉等,1999),但K-Ar法定年存在同位素体系是否有效封闭、过剩氩、氩丢失等诸多不确定因素,认为此年龄对限定高庄金矿成矿时代仅具有参考意义。高庄金矿的Rb-Sr等时线年龄(129.8±1.4)Ma与前文中祁雨沟金矿、店房金矿及洪洞沟铅锌多金属矿等矿床的Rb-Sr等时线年龄相近,表明高庄金矿Rb-Sr等时线年龄是准确可靠的。不仅如此,烟镇岩体和高庄花岗细晶岩的锆石U-Pb年龄分别为(131.3±0.6)Ma(梁涛和卢仁,2018)和(128.8±1.3)Ma,它们与高庄金矿Rb-Sr等时线年龄(129.8±1.4)Ma几乎一致。

所以,高庄金矿矿石中黄铁矿和石英的的RbSr等时线年龄(129.8±1.4)Ma可以代表成矿时代,高庄金矿形成于早白垩世30 Ma左右。

6.2 成矿物质来源

高庄金矿9件金属硫化物样品的δ34S值变化范围介于-2.8‰~-1.2‰,说明其来源具有单一性。高庄金矿矿石中含硫矿物主要为黄铁矿、磁黄铁矿、黄铜矿和闪锌矿,不含重晶石等硫酸盐矿物,表明其成矿条件处于低氧逸度的还原环境,金属硫化物的δ34S平均值可近似代表热液的总δ34S值(Ohmoto and Rye, 1979)。高庄金矿9件金属硫化物样品的δ34S平均值为-2.1‰,其成矿流体的总δ34S值近似为- 2.1‰,原始地幔的δ34S值介于0 ± 3‰(Chaussidon and Lorand, 1990),这说明高庄金矿金属硫化物的硫具有幔源硫特征,高庄金矿成矿物质的来源具有深源性。

高庄金矿样品的投点主要位于造山带Pb演化线附近,仅YP19样品点位于上地幔Pb演化线附近(图 7ab),在Δβγ图解中(图 8),高庄金矿样品点位于上地壳与地幔混合的俯冲带Pb和造山带Pb两个源区域内。这说明高庄金矿的成矿物质来源于上地幔-下地壳,还存在上地壳物质的加入,具有多源区混合的特征,与石英H-O同位素示踪结果相吻合(图 5)。

成矿物质多源区混合的特征在水地沟金矿、梅子沟金矿和蒿坪金矿的Pb同位素示踪中也得以体现。它们的206Pb/204Pb-207Pb/204Pb比值投点主要位于上地幔Pb和上地壳Pb演化趋势线之间(图 7a),206Pb/204Pb-208Pb/204Pb比值投点主要位于造山带Pb和下地壳Pb演化趋势线之间(图 7b)。高庄金矿、水地沟金矿、梅子沟金矿和蒿坪金矿的Δβγ投点落在地幔源Pb、上地壳源Pb、上地壳与地幔混合的俯冲带源Pb和造山作用Pb(图 8),这说明它们的成矿物质也来自下地壳-上地幔,上地壳也参与提供了成矿物质,它们的形成与北秦岭燕山期造山过程密切相关。

碲是一种亲地核和地幔的元素,碲化物出现的意义在于表明幔源组分对成矿物质存在贡献(毛景文和魏家秀,2000毛景文和李荫清,2001赵胜金等,2010周起凤等,2011余宇星等,2012疏孙平等,2017)。高庄金矿矿石中发育多种碲化物,如叶碲铋矿、碲铋矿、硫碲铋矿、碲铅矿、碲银矿和碲金矿等(杨崇辉等, 1996, 1999刘玉林,2002),表明其成矿物质中存在幔源组分的加入,这也与S、Pb同位素示踪的结果相一致。

所以,高庄金矿的同位素示踪不仅表明其成矿物质来源具有多源混合的特征,上地幔、下地壳及上地壳均参与提供,而且说明高庄金矿床的形成与北秦岭燕山期板内(陆内)造山过程关系密切。

6.3 深部过程及成矿潜力

高庄金矿的成矿物质来源于上地幔、下地壳及上地壳物质的混合,但如此“宽泛且全面”的源区范围反而显得源区示踪是“无效”。事实上,这些同位素示踪结果的重要意义在于揭示了成矿期的深部构造运动波及到上地幔-下地壳及卷入上地壳,即深源成矿物质释放的深部控制机制,安妥岭钼矿(梁涛,2010卢仁等,2013a)和水地沟金矿(马玉见等,2019)的同位素示踪结果即是例证。

深部含矿流体库或矿源层在上地幔-岩石圈内的形成是一个长期积累的渐变过程,而其释放却是一个瞬时的突变过程,岩石圈稳定性/活动性(厚度)的转变为流体释放的触发机制(罗照华等, 2008a, 2009),中国东部燕山期成矿作用大爆发得益于岩石圈-软流圈系统巨变,成矿作用首先受控于岩石圈的性质(邓晋福等, 1999a, 2004)。扬子板块与华北板块在印支末期完成对接拼合形成统一的板块,秦岭的地质演化进入了陆内(板内)阶段(卢欣祥,2000张国伟等,2001),但深部岩石圈-软流圈系统的汇聚仍在持续中,陆内(板内)碰撞造山过程得以显现,之后的深部构造背景为岩石圈垮塌(拆沉)(邓晋福等, 1996, 1999a, 1999b, 2004, 2007)。另一方面,这种由多个块体经长期反复拼合而成的大陆板块具有复杂的岩石圈不均一性和重力不稳定性,即使在同一深部过程下,各块体所产生深部响应也因其不均一性的差异而不同(罗照华等, 2006a, 2007a, 2008a, 2009)。

高庄金矿矿区北西约3.0 km处出露具有埃达克岩属性的烟镇岩体,它的LA-ICP-MS锆石年龄为(131.3±0.6)Ma,是岩石圈拆沉作用的产物(梁涛和卢仁,2018)。高庄花岗细晶岩脉LA-ICP-MS锆石U-Pb年龄为(128.8±1.3)Ma,满子营岩体南侧辉绿岩墙SHRIMP锆石年龄为(126.7±2.4)Ma(韩以贵,2007),它们具有造山后脉岩组合(罗照华等, 2006b, 2008b)或宽谱系岩墙群(罗照华等,2012黑慧欣等,2015)的特征。高庄金矿矿石中黄铁矿和石英的Rb-Sr等时线年龄为(129.8±1.4)Ma,它与烟镇岩体及宽谱系岩墙群的形成时代接近一致,说明高庄金矿的金成矿作用与岩浆作用是受控于同一深部过程,深部含矿流体因岩石圈拆沉作用获得快速释放并在浅部就位形成了高庄金矿。

成矿源区可简单理解为深部岩浆/流体富集带、高导层、矿源层或构造滑脱带,成矿物质有可能来自单一源区,也可能来自几个源区的混合(罗照华等, 2009, 2012),就高庄金矿成矿物质来源示踪结果来看,笔者更倾向认为区域岩石圈-软流圈系统中不同深度范围内存在多层这样的成矿源区。深部含矿流体因区域岩石圈拆沉作用而获得快速释放,它在上升过程中注入到途经的不同深度范围的多层成矿源区体系,依次与之混合,相继使之活化继续上侵,即透岩浆流体成矿作用(罗照华等, 2007b, 2008c, 2009, 2010, 2011, 2014)。携带上地幔源区信息的高庄金矿成矿流体注入到途经的下地壳成矿源区体系,混合活化之后继续快速上侵,注入到上地壳成矿源区体系内,混合活化之后上侵至浅部构造有利部位固结成矿,因而成就了高庄金矿“宽泛且全面”的成矿物质来源示踪结果。

河南省华北克拉通南缘约130 Ma成岩成矿作用广泛且强烈,崤山—熊耳山地区出露一系列早白垩世约130 Ma区域岩石圈拆沉作用形成的埃达克岩(卢仁等, 2013b, 2014梁涛等, 2014, 2015, 2016梁涛和卢仁, 2015, 2016, 2017;仁和梁涛,2018;),Au、Mo等金属矿床的同位素成矿年龄值集中于121~138 Ma(徐启东等,1998朱嘉伟等,1999Li et al., 2002; Wang et al., 2002李永峰等,2006叶会寿,2006李厚民等,2007Han et al., 2007, 2013; 苏捷等,2009周珂等,2009姚军明等,2009高亚龙等,2010高建京等,2011刘军等,2011邢波等,2016杨晨英等,2016曹华文等,2016Yang et al., 2017;Tian et al., 2018)。由此可见,约130 Ma左右是河南省华北克拉通南缘和北秦岭重要的成矿期次之一,华北克拉通南缘燕山期岩石圈巨大减薄的成岩成矿效应波及到其紧邻的北秦岭地区,高庄金矿是对这一过程的地质响应之一。

早白垩世~130 Ma的岩石圈拆沉作用触发了高庄地区埃达克质岩浆及深部含矿流体的释放,这个复杂的熔浆与流体体系在经历一种非平衡、非线性的解耦过程时,可以在不同的边界条件下产生不同类型的成矿作用,形成不同的成矿体系(罗照华等, 2007b, 2008c, 2009, 2010, 2011, 2014)。基于这种认识,更多的成矿流体应是被有效封闭于深部的,不仅高庄金矿深部具有较大的Au成矿潜力,而且烟镇岩体周缘及深部具有较大的内生金属成矿潜力。

7 结论

(1)高庄金矿矿石黄铁矿和石英的Rb-Sr等时线年龄为(129.8±1.4)Ma,属于早白垩世。

(2)高庄金矿成矿物质来源于上地幔-下地壳,成矿过程中还有上地壳物质的加入,具有多源区混合的特征,它的形成与北秦岭燕山期板内(陆内)造山过程密切相关。

(3)早白垩世约130 Ma区域岩石圈拆沉作用致使深部含矿流体快速释放,它在上升过程中注入不同深度范围的多层成矿源区体系,依次与之混合活化之后上侵至浅部构造有利部位形成高庄金矿,大规模深部流体的快速释放及有效封存表明高庄金矿深部及烟镇岩体周缘具有大的成矿潜力。

注释

❶河南省地质矿产厅. 1994.河南省米坪幅1:50, 000地质图说明书[R].郑州: 1-33.

❷河南省有色金属地质勘查总院. 2018a.河南省西峡县高庄—梅子沟金矿带成矿规律及找矿技术方法研究[R].郑州: 1-180.

❸河南省地质矿产开发局第一地质调查队. 2005.豫西南地区地质图(1:250, 000)[R].

❹河南省地质矿产厅第四地质调查队. 1993.河南省西峡县高庄金矿区勘探报告[R].郑州:1-100.

❺河南省有色金属地质勘查总院. 2018b.河南省西峡县高庄金矿深部及外围金矿普查(续作)设计[R].郑州: 1-61.

❻河南省地质矿产厅第一地质调查队. 1991.河南省二郎坪群、宽坪群金银矿成矿预测研究报告[R].郑州:1-298.

参考文献
Bereau of Geology and Mineral Resources of Henan Province. 1989. Regional Geology of Henan Province[M]. Beijing: Geological Publishing House, 1-772 (in Chinese).
Cao Huawen, Pei Qiuming, Zhang Shouting, Zhang Linkui, Zheng Luo, Hu Xinkai. 2016. Rb-Sr dating and geological significance of shhalerites from the Zhongyuku Zn(Pb) deposit in Luanchuan, west Henan, China[J]. Journal of Chengdou Universtiy of Technology(Science and Technology Edition), 43(5): 528-538 (in Chinese with English abstract).
Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-eastern Pyrenees, France):An ion microprobe study[J]. Geochemica et Cosmochemica Acta, 54: 2835-2846. DOI:10.1016/0016-7037(90)90018-G
Clayton R N, O'Nell J R, Mayeda T K. 1972. Oxygen isopoe exchange between quartz and water[J]. Journal of Geophysical Research, 77: 3057-3067. DOI:10.1029/JB077i017p03057
Deng Jinfu, Luo Zhaohua, Su Sangguo, Mo Xuanxue, Yu Bingsong, Lai Xingyun, Chen Hongwei. 2004. Petrogenesis, Tectonic Environment and Metallogenesis[M]. Beijing: Geological Publishing House, 1-149 (in Chinese with English abstract).
Deng Jinfu, Mo Xuanxue, Luo Zhaohua, Zhao Hailing, Zhao Guochun, Cao Yongqing, Yu Xuezheng. 1999b. Igneous petrotectonic assemblage and crust mantle metallogenic system[J]. Earth Science Frontiers, 6(2): 259-270 (in Chinese with English abstract).
Deng Jinfu, Mo Xuanxue, Zhao Hailing, Luo Zhaohua, Zhao Guochun, Dai Shengqian. 1999a. The Yanshanian lithosphere-asthenosphere catastrophe and metallogenic environment in east China[J]. Mineral Deposits, 18(4): 309-315 (in Chinese with English abstract).
Deng Jinfu, Xiao Qinghui, Su Shangguo, Liu Cui, Zhao Guochun, Wu Zongxu, Liu Yong. 2007. Igneous petrotectonic assemblages and tectonic settings:A discussion[J]. Geological Journal of China Universities, 13(3): 392-402 (in Chinese with English abstract).
Deng Jinfu, Zhao Hailing, Mo Xuanxue, Wu Zongxu, Luo Zhaohua. 1996. Continental Roots-Plume Tectonics of China:Key to the Continental Dynamics[M]. Beijing: Geological Publishing House, 1-110 (in Chinese with English abstract).
Fang Fang, Men Gaidao, Li Na, Fu Xiong, Wang Hairong. 2017. Metallogenic geology condition, deposit genesis and exploration perspective of Gaozhuang gold deposit in Xixia County, Henan Province[J]. Mineral Resource and Geology, 31(3): 517-523 (in Chinese with English abstract).
Gao Jianjing, Mao Jingwen, Chen Maohong, Ye Huishou, Zhang Jijun, Li Yongfeng. 2011. Vein structure analysis and 40Ar-39Ar dating of sericite from sub-ore altered rock in the Tieluping large-size Ag-Pb deposit of western Henan Province[J]. Acta Geologica Sinica, 85(7): 1172-1187 (in Chinese with English abstract).
Gao Yalong, Zhang Jiangming, Ye Huishou, Meng Fang, Zhou Ke, Gao Yang. 2010. Geological characteristics and molybdenite Re-Os isotope dating of Shiyaogou porphyry molybdenum deposit in the east Qinling[J]. Acta Petrologica Sinica, 26(3): 729-739 (in Chinese with English abstract).
Guo Cailian, Chen Danling, Fan Wei, Wang Aiguo. 2010. Geochemical and zircon U-Pb chronological studies of the Manziying granite in Erlangping area, western Henan Province[J]. Acta Petrologica et Mineralogica, 29(1): 15-22 (in Chinese with English abstract).
Guo Ruiqing, Zhao Heng. 1999. Research for structural ore controlling regular of Gaozhuan deposit in Xixia of Henan Province[J]. Journal of Xi'An Engin Eegineering University, 21(1): 24-28 (in Chinese with English abstract).
Han Y G, Li X H, Zhang S H, Zhang Y H, Chen F K. 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan, central China[J]. Chinses Science Bulletin, 52(13): 1820-1826. DOI:10.1007/s11434-007-0248-3
Han Y G, Zhang S H, Pirajno F, Zhou X W, Zhao G C, Qu W J, Liu S H, Zhang J M, Liang H B, Yang K. 2013. U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China:Insights into the oxidation state of granitoids and Mo (Au) mineralization[J]. Ore Geology Reviews, 55: 29-47. DOI:10.1016/j.oregeorev.2013.04.006
Han Yigui. 2007. Structual and Magmatic Evolutions in Western Henan Province and their Implications to Gold Mineralization: New Geochronological Evidence[D]. Beijing: China University of Geosciences (Beijing), 1-119 (in Chinese with English abstract).
Hei Huixin, Luo Zhaohua, Li Dedong, Pan Ying, Yang Zongfeng, Zhou Jiulong. 2015. The wide composition spectrum dike swarm(WSDS):Petrogenesis and its tectonic and metallogenic implications[J]. Geological Bulletin of China, 34(2/3): 229-250 (in Chinese with English abstract).
Hu Weijie, Zhao Liang, Hu Weiping, Hao Guobing. 2015. Geologic features and prospecting of Shuidigou gold deposit, Xixia County, Henan Province[J]. Inner Mongolia Science Technology and Economy, 23: 72-75 (in Chinese).
Li Jinghui, Chen Huakai, Zhang Hongwei, Zhang Yunhai, Zhang Tonglin, Wen Guodong, Zhang Panpan. 2017. Mineralization characteristics and ore genesis of the light rare earth deposit in Taiping Town, western Henan Province[J]. Geology in China, 44(2): 288-300 (in Chinese with English abstract).
Li Houmin, Ye Huishou, Mao Jingwen, Wang Denghong, Chen Yuchuan, Qu Wenjun, Du Andao. 2007. Re-Os dating of molybdenites from Au (Mo) deposits in Xiaoqinling gold ore district and its geological significance[J]. Mineral deposits, 26(4): 417-424 (in Chinese with English abstract).
Li Q Z, Chen Y J, Zhong Z Q, Li W L, Li S R, Guo X D, Jin B Y. 2002. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area[J]. Acta Geologica Sinica, 76(4): 488-493. DOI:10.1111/j.1755-6724.2002.tb00102.x
Li Yongfeng, Mao Jingwen, Liu Dunyi, Wang Yanbin, Wang Zhiliang, Wang Yitian, Li Xiaofeng, Zhang Zuoheng, Guo Baojian. 2006. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication[J]. Geological Review, 52(1): 122-128 (in Chinese with English abstract).
Li Zhaoyi, Chen Shouyu, Li Shengli, Chen Junlin, Tian Guangli, ZanPei. 2018. Study on the geochemical characteristics and ore-forming fluids of Henanzhuang gold deposit[J]. Geology and Resources, 27(6): 546-553.
Liang Tao, Lu Ren. 2015. LA-ICP-MS zircon U-Pb dating, geochemical features and geological implications of Xiaomeihe rock mass in Xiaoshan Mountain, western Henan Province[J]. Geological Bulletin of China, 34(8): 1526-1540 (in Chinese with English abstract).
Liang Tao, Lu Ren. 2016. LA-ICP-MS zircon U-Pb age of Laoliwan body and its geologic implications[C]//Annual Meeting of Chinese Geoscience Union, Beijing: 323-326 (in Chinese).
Liang Tao, Lu Ren. 2017. Geochemical characteristics and zircon rare earth elements of Houhe intrusive complex in Xiaoshan Mountain, western Henan Province[J]. Geoscience, 31(4): 705-715 (in Chinese with English abstract).
Liang Tao, Lu Ren. 2018. Zircon U-Pb dating and geochemical features of Yanzhen granitic body in northern Qinling Mountains, and it geologic implications[J]. Chinese Journal of Geology, 53(2): 615-637 (in Chinese with English abstract).
Liang Tao, Bai Fengjun Luo Zhaohua, Lu Xinxiang, Lu Ren, Xu Shitou, Cheng Jingliang. 2014. LA-ICP-MS zircon U-Pb dating and its geological implications of Banzhusi granitic porphyry in Xiong'ershan of western Henan Province[J]. Northwestern Geology, 47(2): 41-50 (in Chinese with English abstract).
Liang Tao, Lu Ren, Wang Li. 2019. LA-ICP-MS zircon dating, geochemical features and geologic implications of the Erlangping rock mass in northern Qinling Mountains[J]. Journal of Jilin University (Earth Science Edition), 49(2): 445-459 (in Chinese with English abstract).
Liang Tao, Lu Ren, Luo Zhaohua, Liu Xiao. 2016. Geochemical features and its geologic implications of Banzhusi granitic porphyry in Xiong'ershan of western Henan Province[J]. Geological Survey and Research, 39(1): 15-23 (in Chinese with English abstract).
Liang Tao, Lu Ren, Luo Zhaohua, Bai Fengjun, Liu Xiao. 2015. LAICP-MS U-Pb age of zircons from Haopinggou biotite granite porphyry in Xiong'er Mountain, western Henan Province, and its geologic implications[J]. Geological Review, 61(4): 901-912 (in Chinese with English abstract).
Liang Tao. 2010. Genesis and Constrains from Deep Processes for Antuoling Porphyry-type Molybdenum Deposit[D]. Beijing: China University of Geosciences. 1-183 (in Chinese with English abstract).
Liu Jun, Wu Guang, Jia Shoumin, Li Zhongquan, Sun Yali, Zhong Wei, Zhu Mingtian. 2011. Re-Os isotopic dating of molybdenites from the Shapoling molybdenum deposit in western Henan Province and its geological significance[J]. Journal of Mineralogy and Petrology, 31(1): 56-62 (in Chinese with English abstract).
Liu Xiaozhao, Li Guoyong, Wang Lina, Xu Xinjian, Li Kun. 2015. Geological characteristics of the Henanzhuang gold deposit in Xixia County, Henan Province[J]. Resources Guide (Earth Science and Technology), 9: 20-24 (in Chinese with English abstract).
Lu Ren, Liang Tao. 2017. LA-ICP-MS zircon U-Pb dating, geochemical features of Gutouya granite in Xixia County, northern Qinling Mountains, and its geologic implications[J]. Geological Review, 63(6): 1479-1496 (in Chinese with English abstract).
Lu Ren, Liang Tao. 2018. Zircon U-Pb dating and geochemical features of Hangou granitic body in Xiaoshan Mountain, western Henan Province, and its geologic implications[J]. Geology in China, 45(1): 95-109 (in Chinese with English abstract).
Lu Ren, Liang Tao, Lu Xinxian, Bai Fengjun. 2013b. LA-ICP-MS zircon U-Pb dating of the Houhe granite and its geologic implication in Xiao Mountain, western Henan Province[J]. Geological Survey and Research, 36(4): 263-270 (in Chinese with English abstract).
Lu Ren, Liang Tao, Lu Xinxiang, Bai Fengjun, Cheng Jingliang, Wen Jingjing. 2014. Geochronology and geochemical features of Longwogou granite in Xiaoshan Mountain, western Henan Province, and their geological implications[J]. Geology in China, 41(3): 756-772 (in Chinese with English abstract).
Lu Ren, Liang Tao, Luo Zhaohua, Fan Binghong. 2013a. Pb isotope of Antuoling porphyry deposit, north Taihang Mountain, and its geological implications[J]. Mineral Resource and Geology, 27(1): 83-88 (in Chinese with English abstract).
Lu Xinxiang. 2000. Granitoid Tectonic Map of Qinling Belt[M]. Xi'an: Xi'an Cartographic Publishing House, 1-33 (in Chinese).
Lu Yuanfa. 2004. GeoKit:A geochemical toolkit for Microsoft Excel[J]. Geochimica, 33(5): 459-464 (in Chinese with English abstract).
Ludwing K R. 2001. Users Manual for Isoplot/Ex (rev2.49):A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Center Special Publication, 1-55.
Luo Mingjiu, Li Shimei, Lu Xinxiang, Zheng Deqiong, Su Zhenbang. 2000. Metallogenesis and Deposit Series of Main Mineral resources of Henan Province[M]. Beijing: Geological Publishing House, 1-125 (in Chinese with English abstract).
Luo Zhaohua, Chen Bihe, Jiang Xiumin, Wang Zhangqi, Wang Yongheng. 2012. A preliminary attempt for targeting prospecting districts using wide composition-spectrum dike swarms:An example of the south Alatao Mountains, Xinjiang, China[J]. Acta Petrologica Sinica, 28(7): 1949-1965 (in Chinese with English abstract).
Luo Zhaohua, Liang Tao, Chen Bihe, Xin Houtian, Ke Shan, Zhang Zili, Cheng Suhua. 2007a. Intraplate orogenesis and its implications in metallogenesis[J]. Acta Petrologica Sinica, 23(8): 1945-1956 (in Chinese with English abstract).
Luo Zhaohua, Lu Xinxiang, Chen Bihe, Huang Fan, Yang Zongfeng, Wang Bingzhang. 2008a. The constraints from deep processes on the porphyry metallogenesis in collisional orogens[J]. Acta Petrologica Sinica, 24(3): 447-456 (in Chinese with English abstract).
Luo Zhaohua, Lu Xinxiang, Chen Bihe, Li Mingli, Liang Tao, Huang Fan, Yang Zongfeng. 2009. Introduction to the Metalogenic Theory on the Transmagmatic Fluids[M]. Beijing: Geological Publishing House, 1-177 (in Chinese with English abstract).
Luo Zhaohua, Lu Xinxiang, Guo Shaofeng, Sun Jing, Chen Bihe, Huang Fan, Yang Zongfeng. 2008c. Metallogenic systems on the transmagmatic fluid theory[J]. Acta Petrologica Sinica, 24(12): 2669-2678 (in Chinese with English abstract).
Luo Zhaohua, Lu Xinxiang, Liu Cui, Li Dedong, Yang Zongfeng, Wen Sibo. 2011. On failing of the magmatic hydrothermal metalogenic theory:The cause and the new departure[J]. Journal of Jilin University (Earth Science Edition), 41(1): 1-11 (in Chinese with English abstract).
Luo Zhaohua, Lu Xinxiang, Wang Bingzhang, Chen Bihe, Huang Fan, Yang Zongfeng, Wang Yang. 2008b. Post orogenic dike complexes and implications for metallogenesis[J]. Earth Science Frontiers, 15(4): 1-12 (in Chinese with English abstract). DOI:10.1016/S1872-5791(08)60034-2
Luo Zhaohua, Lu Xinxiang, Xu Junyu, Liu Cui, Li Dedong. 2010. Petrographic indicators of the ore-bearing intrusions[J]. Acta Petrologica Sinica, 26(8): 2247-2254 (in Chinese with English abstract).
Luo Zhaohua, Mo Xuanxue, Lu Xinxiang, Chen Bihe, Ke Shan, Hou Zengqian, Jiang Wan. 2007b. Metallogeny by trans-magmatic fluids) theoretical analysis and field evidence[J]. Earth Science Frontiers, 14(3): 165-183 (in Chinese with English abstract).
Luo Zhaohua, Wei Yang, Xin Houtian, Ke Shan, Li Wentou, Li Dedong, Huang Jinxiang. 2006a. The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China[J]. Earth Science Frontiers, 13(6): 52-63 (in Chinese with English abstract).
Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan, Li Wentao. 2006b. Petrogenesis of the post-orogenic dike complex:Constraints to lithosphere delamination[J]. Acta Petrologica Sinica, 22(6): 1672-1684 (in Chinese with English abstract).
Luo Zhaohua, Zhou Jiulong, Hei Huixin, Liu Cui, Su Shangguo. 2014. Post-surpereruption (-superintrusion) metallogenesis[J]. Acta Petrologica Sinica, 30(11): 3131-3154 (in Chinese with English abstract).
Ma Gengjie, Liu Weijie, Liu Qinan, Liu Guofan. 2010. Geological characteristics and prospecting potential of Gaozhuang gold deposit, Xixia County, Henan Province[J]. Geology and Mineral Resources of South China, 26(4): 38-44 (in Chinese with English abstract).
Ma Yujian, Liang Tao, Lu Ren, Xie Xiaofang. 2019. Geologic features and S and Pb tracer isotopes of the Shuidigou gold deposit in Xixia County, Henan Province[J]. Geology and Prospecting, 55(2): 472-483 (in Chinese with English abstract).
Mao Jingwen, Li Mengqing. 2001. Fluid inclusions of the Dongping gold telluride deposit in Hebei Province, China:Involvement of mantle fluid in metallogenesis[J]. Mineral Deposits, 20(1): 23-36 (in Chinese with English abstract).
Mao Jingwen, Wei Jiaxiu. 2000. Helium and argon isotopic components of fluid inclusions and tracing to the source of metallogenic fluids in the Dashuigou tellurium deposit of Sichuan Province[J]. Acta Geoscientia Sinica (Bulletin of the Chinese Academy of Geological Sciences), 21(1): 58-61 (in Chinese with English abstract).
Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon[C]//Barnes H L(ed.). Geochemistry of Hydrothermal Ore Deposit. New York: Wiley-Interscience, 509-567.
Pang Xucheng, Song Baoliang, Fan Baojun, Fan Xiaolei, Huang Guojun, Li Deting. 2001. Geological features of Gaozhuang gold deposit, Xixia County, Henan[J]. Gold Science and Technology, 9(5): 23-29 (in Chinese with English abstract).
Rollison H R. 1993. Using Geochemical Data:Evalution, Presentation, Interpretation[M]. New York: Longman Scientific & Technical, 102-213.
Shu Sunping, Zhang Jing, Chen Yanjing, Li Lei, Li Qiugen, Wang Qisong. 2017. Discovery and geological significance of tellurides in the Herzhedegai gold deposit, Beishan metallogenic belt[J]. Acta Petrologica Sinica, 33(6): 1859-1871 (in Chinese with English abstract).
Su Jie, Zhang Baolin, Sun Dahai, Cui Minli, Qu Wenjun, Du Andao. 2009. Geological features and Re-Os isotopic dating of newly discovered Shapoling veinlet-disseminated Mo deposit in the eastern section of east Qinling Mountains and its geological significance[J]. Acta Geologica Sinica, 83(10): 1490-1496 (in Chinese with English abstract).
Tian Y F, Sun J, Ye H S, Mao J W, Wang X X, Bi M F, Xia X P. 2017. Genesis of the Dianfang breccia-hosted gold deposit, western Henan Province, China:Constraints from geology, geochronology and geochemistry[J]. Ore Geology Reviews, 91: 963-980. DOI:10.1016/j.oregeorev.2017.08.011
Wang Xueming, Ai Xia, Zhou Gang, Miao Yuanxing. 1998. The metallogenic geologic feature and genesis of Haoping gold ore deposit[J]. Contributions to Geology and Mineral Resources Research, 13(3): 35-47 (in Chinese with English abstract).
Wang Y T, Mao J W, Lu X X, Ye A W. 2002. 40Ar-39Ar dating and geological implication of auriferous altered rocks from the middle-deep section of Q875 gold-quartz vein in Xiaoqinling area, Henan, China[J]. Chinese Science Bulletin, 47(20): 1750-1755. DOI:10.1007/BF03183322
Wang Yinxi, Gu Lianxing, Zhang Zunzhong, Wu Changzhi, Li Huimin, Yang Jiedong. 2007. Sr-Nd-Pb isotope geochemistry of rhyolite of the late Carboniferous Dashitou Group in eastern Tianshan[J]. Acta Petrologica Sinica, 23(7): 1749-1755.
Wang Zhihong, Guan Baode, Wang Zhongshi, Pei Fang, Liu Yinhuan, Chai Shiqin, Liu Zhenhong, Zhang Baoping, Liu Pinde, He Guoqian, Wang Shiyan, Meng Shenghua. 2000. Staggered Tectonic Movement and Intraplate Growth:Introduction to 1:500000 Henan Province Geologic Map[M]. Beijing: China Environmental Science Press, 9-31 (in Chinese).
Xiang Shihong, Xue Chunji, Peng Jiao, Zhang Zhihui, Cao Jihu, Yang Yongqian. 2017. Research on fluid inclusion assemblages and ore-forming fluid of Gaozhuang gold deposit in Southwestern Henan[J]. Mineral Deposits, 36(5): 1197-1212 (in Chinese with English abstract).
Xing Bo, Xiang Junfeng, Ye Huishou, Chen Xiaodan, Zhang Guoshu, Yang Chenying, Jin Xue. 2016. Rb-Sr isochron age of sulfides and sulfur isotopic composition from lamellar ores of the Luotuoshan sulfur polymetallic deposit in western Henan Province and its constraints on the ore genesis[J]. Geological Bulletin of China, 35(6): 998-1014 (in Chinese with English abstract).
Xu Qidong, Zhong Zengqiu, Zhou Hanwen, Yang Facheng, Tang Xuechao. 1998. 40Ar/39Ar datingof the Xiaoqinling gold area in Henan Province[J]. Geological Review, 44(3): 323-327 (in Chinese with English abstract).
Yan Changhai, Yao Xinnian, Xie Guomin. 2001. Earth's surface marks of buried orebodies in the Henanzhuang gold deposit, southwestern Henan[J]. Geology Geochemistry, 29(3): 196-200 (in Chinese with English abstract).
Yang Chonghui, Han Zhiyong, Zhang Shouguang, Liu Yulin. 1996. Minralization geochemistry and metallogenic evolution of the Gaozhuang gold deposit, Henan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 15(4): 220-224 (in Chinese with English abstract).
Yang Chonghui, Han Zhiyong, Zhang Shouguang, Liu Yulin. 1999. The study on ore-forming fluids in Gaozhuang gold deposit, Henan[J]. Acta Geoscientia Sinica, 20(Supp.): 321-326 (in Chinese with English abstract).
Yang Chonghui, Han Zhiyong, Zhang Shouguang, Lu Xinxiang, Dong You, Chang Qiuling. 1994. Apreliminary study of distribution of gold deposits in northern Xixia County, Henan Province[J]. Henan Geology, 12(4): 255-262 (in Chinese with English abstract).
Yang Chenying, Ye Huishou, Xiang Junfeng, Chen Xiaodan, Xing Bo, Li Liang, Wang Sai. 2016. Rb-Sr isochron age of sulfide minerals in Luotuoshan pyrite-polymetallic deposit of western Henan Province and its geological significance[J]. Mineral Deposits, 35(3): 573-590 (in Chinese with English abstract).
Yang F, Wang G W, Cao H W, Li R X, Tang L, Huang Y F, Zhang H, Xue F, Jia W J, Guo N N. 2017. Timing of formation of the Hongdonggou Pb-Zn polymetallic ore deposit, Henan Province, China:Evidence from Rb-Sr isotopic dating of sphalerites[J]. Geoscience Frontiers, 8: 605-616. DOI:10.1016/j.gsf.2016.06.001
Yang Xiaoyong, Lu Xinxiang, Du Xiaowei, Li Wenming, Zhang Zhengwei, Qu Wenjun. 2010. Ore geochemistry, petrogenesis and metalogenic dynamics of the Nangou molybdenum district in the east Qinling Orogenic belt[J]. Acta Geologica Sinica, 84(7): 1049-1079 (in Chinese with English abstract).
Yao Junming, Zhao Taiping, Li Jing, Sun Yali, Yuan Zhenlei, Chen Wei, Han Jun. 2009. Molybdenite Re-Os age and zircon U-Pb age and Hf isotope geochemistry of the Qiyugou gold system, Henan Province[J]. Acta Petrologica Sinica, 25(2): 374-384 (in Chinese with English abstract).
Ye Huishou. 2006. The Mesozoic Tectonic Evolution and Pb-Zn-Ag Metallogeny in the South Margin of North China Craton[D]. Beijing: Chinese Academy of Geological Sciences, 1-217 (in Chinese with English abstract).
Yu Yuxing, Xu Hong, Wu Xiangke, Yang Lijun, Tian Zhu, Gao Sen, Wang Qiushu. 2012. Characteristics of the Au-Ag-Te minerals and its ore forming fluids in Sandaowanzi gold deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 28(1): 345-356 (in Chinese with English abstract).
Zartman R E, Doe B R. 1981. Plunbotectonic-The model[J]. Tectonophysics, 75: 135-162. DOI:10.1016/0040-1951(81)90213-4
Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Belt and Continental Dynamics[M]. Beijing: Science Press, 1-729 (in Chinese).
Zhang Huan, Song Chuanzhong, Wang Daoxuan, Ren Shenglian, Tu Wenchuan, Li Jiahao. 2012. Temperature and pressure condition of tectonic deformation of Zhuyangguan-Xiaguan fault belt[J]. Journal of Hefei University of Technology, 35(8): 1101-1105 (in Chinese with English abstract).
Zhang Siwei, He Zhijun. 2003. Gold and copper integrative prospecting model in Henan section of the north Qinling tectonic belt[J]. Geology and Prospecting, 39(1): 50-53 (in Chinese with English abstract).
Zhang Wen, Wang Jianguo, Li Xiaohong, Shen Liusheng. 2012. Ore-formeing fluid characteristics and ore genesis in Henanzhuang gold deposit[J]. Nonferrous Metals (Mining section), 64(2): 52-57 (in Chinese with English abstract).
Zhang Xingkang, Ye Huishou, Yan Zhengxin, Li Siwei, Fan Yupeng, Zhang Fubin. 2018. Metallogenic epoch and source of ore-forming material of Jijiawa Au deposit, western Henan Province:Evidence from Rb-Sr dating and Pb isotope[J]. Acta Geologica Sinica, 92(5): 1003-1018 (in Chinese with English abstract).
Zhao Jiao, Chen Danling, Tan Qinghai, Chen Miao, Zhu Xiaohui, Guo Cailian, Liu Liang. 2012. Zircon LA-ICP-MS U-Pb dating of basic volcanics from Erlangping Group of the North Qinling, eastern Qinling Mountains and its geological implications[J]. Earth Science Frontiers, 19(4): 118-125 (in Chinese with English abstract).
Zhao Shengjin, Liu Junlai, Bai Xiangdong, Zhao Haibin, Lv Jun, Chen Yue, Chen Meiyong. 2010. Fluid inclusions and sulfur isotopes of Sandaowanzi gold telluride deposit, Heilongjiang Province[J]. Mineral Deposits, 29(3): 476-488 (in Chinese with English abstract).
Zhou Ke, Ye Huishou, Mao Jingwen, Qu Wenjun, Meng Fang, Gao Yalong. 2009. Geological characteristics and molybdenite Re-Os isotopic dating of Yuchiling porphyry Mo deposit in western Henan Province[J]. Mineral Deposits, 28(2): 170-184 (in Chinese with English abstract).
Zhou Qifeng, Li Shengrong, Chen Haiyan, Song Yubo, Zhang Yunqiang, Zhang Xiubao, Cui Juchao. 2011. Deiscovery and geological significance of telluride minerals in the Yinggezhuang gold deposit, Rushan, Jiaodong[J]. Acta Petrologica Sinica, 27(6): 1847-1856 (in Chinese with English abstract).
Zhu Bingquan. 1998. Theory and Application of the Isotope System in Earth Science and Evolution of the Crust and Mantle in China[M]. Beijing: Science Press, 224-226 (in Chinese).
Zhu Jiawei, Zhang Tianyi, Xue Liangwei. 1999. Determination of the ore-forming age of gold deposits in Xiaoshan, Western Henan and its geological significance[J]. Geological Review, 45(4): 418-422 (in Chinese with English abstract).
Zhu Xiaobing. 2015. Geologic features and metallogenesis of Shuidigou gold deposit, Xixia County, Henan Province[J]. Land and Resource of North China, 69: 115-116 (in Chinese).
曹华文, 裴秋明, 张寿庭, 张林奎, 郑硌, 胡昕凯. 2016. 豫西栾川中鱼库锌(铅)矿床闪锌矿Rb-Sr年龄及其地质意义[J]. 成都理工大学学报(自然科学版), 43(5): 528-538. DOI:10.3969/j.issn.1671-9727.2016.05.03
邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 1-149.
邓晋福, 莫宣学, 罗照华, 赵海玲, 赵国春, 曹永清, 于学政. 1999b. 火成岩构造组合与壳-幔成矿系统[J]. 地学前缘, 6(2): 259-270.
邓晋福, 莫宣学, 赵海玲, 罗照华, 赵国春, 戴圣潜. 1999a. 中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J]. 矿床地质, 18(4): 309-315.
邓晋福, 肖庆辉, 苏尚国, 刘翠, 赵国春, 吴宗絮, 刘勇. 2007. 火成岩组合与构造环境:讨论[J]. 高校地质学报, 13(3): 392-402. DOI:10.3969/j.issn.1006-7493.2007.03.009
邓晋福, 赵海玲, 莫宣学, 吴宗絮, 罗照华. 1996. 大陆根-柱构造-大陆动力学的钥匙[M]. 北京: 地质出版社, 1-110.
方芳, 门道改, 李娜, 伏雄, 王海荣. 2017. 河南省西峡县高庄金矿床成矿地质条件、矿床成因及找矿前景[J]. 矿产与地质, 31(3): 517-523. DOI:10.3969/j.issn.1001-5663.2017.03.014
高建京, 毛景文, 陈懋弘, 叶会寿, 张继军, 李永峰. 2011. 豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定[J]. 地质学报, 85(7): 1172-1187.
高亚龙, 张江明, 叶会寿, 孟芳, 周珂, 高阳. 2010. 东秦岭石窑沟斑岩钼矿床地质特征及辉钼矿Re-Os年龄[J]. 岩石学报, 26(3): 729-739.
郭彩莲, 陈丹玲, 樊伟, 王爱国. 2010. 豫西二郎坪满子营花岗岩体地球化学及年代学研究[J]. 岩石矿物学杂志, 29(1): 15-22. DOI:10.3969/j.issn.1000-6524.2010.01.002
郭瑞青, 赵享. 1999. 河南西峡高庄金矿床构造控矿规律的探讨[J]. 西安工程学院学报, 21(1): 24-28.
韩以贵. 2007.豫西地区构造、岩浆作用与金成矿的关系——同位素年代学的新证据[D].北京: 中国地质大学(北京), 1-119.
河南省地质矿产局. 1989. 河南省区域地质志[M]. 北京: 地质出版社, 1-772.
黑慧欣, 罗照华, 李德东, 潘颖, 杨宗锋, 周久龙. 2015. 宽成分谱系岩墙群的岩石成因及其构造与成矿意义[J]. 地质通报, 34(2/3): 229-250.
胡伟捷, 赵亮, 胡伟平, 郝国宾. 2015. 河南省西峡县水地沟金矿区地质特征及找矿前景[J]. 内蒙古科技与经济, 23: 72-75.
李厚民, 叶会寿, 毛景文, 王登红, 陈毓川, 屈文俊, 杜安道. 2007. 小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J]. 矿床地质, 26(4): 417-424. DOI:10.3969/j.issn.0258-7106.2007.04.005
李靖辉, 陈化凯, 张宏伟, 张云海, 张同林, 温国栋, 张盼盼. 2017. 豫西太平镇轻稀土矿床矿化特征及矿床成因[J]. 中国地质, 44(2): 288-300.
李永峰, 毛景文, 刘敦一, 王彦斌, 王志良, 王义天, 李晓峰, 张作衡, 郭保健. 2006. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义[J]. 地质论评, 52(1): 122-131. DOI:10.3321/j.issn:0371-5736.2006.01.016
李照义, 陈守余, 李胜利, 陈俊霖, 田光礼, 昝培. 2018. 河南庄金矿地球化学特征及成矿流体探讨[J]. 地质与资源, 27(6): 546-553. DOI:10.3969/j.issn.1671-1947.2018.06.007
梁涛, 白凤军, 罗照华, 卢欣祥, 卢仁, 徐石头, 成静亮. 2014. 豫西熊耳山斑竹寺花岗斑岩岩体锆石U-Pb定年及地质意义[J]. 西北地质, 47(2): 41-50. DOI:10.3969/j.issn.1009-6248.2014.02.006
梁涛, 卢仁, 罗照华, 白凤军, 刘晓. 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 61(4): 901-912.
梁涛, 卢仁, 王莉. 2019. 北秦岭二郎坪岩体锆石U-Pb定年、地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 49(2): 445-459.
梁涛, 卢仁. 2015. 豫西崤山小妹河岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 地质通报, 34(8): 1526-1540. DOI:10.3969/j.issn.1671-2552.2015.08.012
梁涛, 卢仁. 2016.豫西崤山老里湾岩体LA-ICP-MS锆石U-Pb年龄及地质意义[C].北京: 中国地球科学联合会议, 323-326.
梁涛, 卢仁. 2017. 豫西崤山后河岩体的地球化学及锆石稀土元素特征[J]. 现代地质, 31(4): 705-715. DOI:10.3969/j.issn.1000-8527.2017.04.006
梁涛, 卢仁, 罗照华, 刘晓. 2016. 豫西熊耳山斑竹寺岩体的地球化学特征及地质意义[J]. 地质调查与研究, 39(1): 15-23. DOI:10.3969/j.issn.1672-4135.2016.01.002
梁涛, 卢仁. 2018. 北秦岭烟镇岩体的锆石U-Pb定年、地球化学特征及构造背景[J]. 地质科学, 53(2): 615-637.
梁涛. 2010.安妥岭斑岩钼矿的成因及其深部约束[D].北京: 中国地质大学(北京), 1-183. http://cdmd.cnki.com.cn/Article/CDMD-11415-2010086011.htm
刘军, 武广, 贾守民, 李忠权, 孙亚莉, 钟伟, 朱明田. 2011. 豫西沙坡岭钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿物岩石, 31(1): 56-62. DOI:10.3969/j.issn.1001-6872.2011.01.009
刘小照, 李国勇, 王丽娜, 徐新剑, 李堃. 2015. 河南省西峡县河南庄金矿矿床地质特征[J]. 资源导刊(地球科技版), 9: 20-24.
刘玉琳. 2002. 叶碲铋矿在我国的首次发现[J]. 北京大学学报(自然科学版), 38(4): 631-534.
卢仁, 梁涛, 卢欣祥, 白凤军, 成静亮, 温静静. 2014. 豫西崤山龙卧沟岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 中国地质, 41(3): 756-772. DOI:10.3969/j.issn.1000-3657.2014.03.006
卢仁, 梁涛, 卢欣祥, 白凤军. 2013b. 豫西崤山后河岩体LA-ICP-MS锆石U-Pb定年及地质意义[J]. 地质调查与研究, 36(4): 263-270.
卢仁, 梁涛, 罗照华, 樊秉鸿. 2013a. 北太行山安妥岭斑岩钼矿Pb同位素组成及地质意义[J]. 矿产与地质, 27(1): 83-88.
卢仁, 梁涛. 2018. 豫西崤山韩沟岩体锆石U-Pb定年、地球化学特征及地质意义[J]. 中国地质, 45(1): 95-109. DOI:10.3969/j.issn.1006-9372.2018.01.023
卢仁, 梁涛. 2017. 北秦岭西峡骨头崖花岗岩锆石U-Pb定年、地球化学特征及地质意义[J]. 地质论评, 63(6): 1479-1496.
卢欣祥. 2000. 秦岭花岗岩大地构造图[M]. 西安: 西安地图出版社, 1-33.
路远发. 2004. GeoKit:一个用VBA构建的地球化学工具软件包[J]. 地球化学, 33(5): 459-464. DOI:10.3321/j.issn:0379-1726.2004.05.004
罗铭玖, 黎世美, 卢欣祥, 郑德琼, 苏振邦. 2000. 河南省主要矿产的成矿作用及矿床成矿系列[M]. 北京: 地质出版社, 1-125.
罗照华, 莫宣学, 卢欣祥, 陈必河, 柯珊, 侯增谦, 江万. 2007b. 透岩浆流体成矿作用-理论分析与野外证据[J]. 地学前缘, 14(3): 165-183.
罗照华, 陈必河, 江秀敏, 王章棋, 王永恒. 2012. 利用宽谱系岩墙群进行勘查靶区预测的初步尝试:以南阿拉套山为例[J]. 岩石学报, 28(7): 1949-1965.
罗照华, 梁涛, 陈必河, 辛后田, 柯珊, 张自力, 程素华. 2007a. 板内造山作用与成矿[J]. 岩石学报, 23(8): 1945-1956.
罗照华, 卢欣祥, 陈必河, 黄凡, 杨宗锋, 王秉璋. 2008a. 碰撞造山带斑岩型矿床的深部约束机制[J]. 岩石学报, 24(3): 447-456.
罗照华, 卢欣祥, 陈必河, 李明立, 梁涛, 黄凡, 杨宗锋. 2009. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社, 1-177.
罗照华, 卢欣祥, 郭少丰, 孙静, 陈必河, 黄凡, 杨宗锋. 2008c. 透岩浆流体成矿体系[J]. 岩石学报, 24(12): 2669-2678.
罗照华, 卢欣祥, 刘翠, 李德东, 杨宗锋, 文思博. 2011. 岩浆热液成矿理论的失败:原因和出路[J]. 吉林大学学报(地球科学版), 41(1): 1-11.
罗照华, 卢欣祥, 王秉璋, 陈必河, 黄凡, 杨宗锋, 汪洋. 2008b. 造山后脉岩组合与内生成矿作用[J]. 地学前缘, 15(4): 1-12.
罗照华, 卢欣祥, 许俊玉, 刘翠, 李德东. 2010. 成矿侵入体的岩石学标志[J]. 岩石学报, 26(8): 2247-2254.
罗照华, 魏阳, 辛后田, 柯珊, 李文韬, 李德东, 黄金香. 2006a. 太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J]. 地学前缘, 13(6): 52-63.
罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006b. 造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束[J]. 岩石学报, 22(6): 1672-1684.
罗照华, 周久龙, 黑慧欣, 刘翠, 苏尚国. 2014. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 30(11): 3131-3154.
马庚杰, 刘伟頡, 刘勤安, 刘国范. 2010. 河南省西峡县高庄金矿床地质特征及找矿前景[J]. 华南地质与矿产, 26(4): 38-44. DOI:10.3969/j.issn.1007-3701.2010.04.006
马玉见, 梁涛, 卢仁, 谢小芳. 2019. 河南省西峡县水地沟金矿地质特征及S、Pb同位素示踪[J]. 地质与勘探, 55(2): 472-483.
毛景文, 李荫清. 2001. 河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系[J]. 矿床地质, 20(1): 23-36. DOI:10.3969/j.issn.0258-7106.2001.01.004
毛景文, 魏家秀. 2000. 大水沟碲矿床流体包裹体的He、Ar同位素组成及其示踪成矿流体的来源[J]. 地球学报, 21(1): 58-61. DOI:10.3321/j.issn:1006-3021.2000.01.009
庞绪成, 宋宝良, 范保军, 樊晓磊, 黄国俊, 李德亭. 2001. 河南西峡县高庄金矿床地质地球化学特征[J]. 黄金科学技术, 9(5): 23-29. DOI:10.3969/j.issn.1005-2518.2001.05.003
疏孙平, 张静, 陈衍景, 李雷, 李秋根, 王琦崧. 2017. 北山成矿带霍勒扎德盖金矿床碲化物的发现及其地质意义[J]. 岩石学报, 33(6): 1859-1871.
苏捷, 张宝林, 孙大亥, 崔敏利, 屈文俊, 杜安道. 2009. 东秦岭东段新发现的沙坡岭细脉浸染型钼矿地质特征、Re-Os同位素年龄及其地质意义[J]. 地质学报, 83(10): 1490-1496. DOI:10.3321/j.issn:0001-5717.2009.10.013
王学明, 艾霞, 周刚, 缪远兴. 1998. 蒿坪金矿成矿地质特征及成因浅析[J]. 地质找矿论丛, 13(3): 35-47.
王银喜, 顾连兴, 张遵忠, 吴昌志, 李惠民, 杨杰东. 2007. 东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J]. 岩石学报, 23(7): 1749-1755. DOI:10.3969/j.issn.1000-0569.2007.07.020
王志宏, 关保德, 王忠实, 裴放, 刘印环, 柴世钦, 刘振宏, 张保平, 刘品德, 贺国谦, 王世炎, 蒙胜华. 2000. 阶段性板块运动与板内增生-河南省1:50万地质图说明书[M]. 北京: 中国环境科学出版社, 9-31.
向世红, 薛春纪, 彭姣, 张智慧, 曹纪虎, 杨永千. 2017. 豫西南高庄金矿床流体包裹体组合研究及其成矿流体特征[J]. 矿床地质, 36(5): 1197-1212.
邢波, 向君峰, 叶会寿, 陈小丹, 张国苏, 杨晨英, 金雪. 2016. 豫西骆驼山硫多金属矿床纹层状矿石硫化物Rb-Sr定年及S同位素组成对矿床成因的制约[J]. 地质通报, 35(6): 998-1014. DOI:10.3969/j.issn.1671-2552.2016.06.017
徐启东, 钟增球, 周汉文, 杨发城, 唐学超. 1998. 豫西小秦岭金矿区的一组40Ar/39Ar定年数据[J]. 地质论评, 44(3): 323-327. DOI:10.3321/j.issn:0371-5736.1998.03.014
燕长海, 姚新年, 谢国敏. 2001. 豫西南地区河南庄金矿埋藏矿体的地表标志[J]. 地质地球化学, 29(3): 196-200. DOI:10.3969/j.issn.1672-9250.2001.03.035
杨晨英, 叶会寿, 向君峰, 陈小丹, 邢波, 李亮, 王赛. 2016. 豫西骆驼山多金属硫铁矿床硫化物Rb-Sr等时线年龄及其地质意义[J]. 矿床地质, 35(3): 573-590.
杨崇辉, 韩志勇, 张寿广, 刘玉琳. 1996. 河南高庄金矿床成矿作用地球化学特征及成矿演化过程[J]. 矿物岩石地球化学通报, 15(4): 220-224.
杨崇辉, 韩志勇, 张寿广, 刘玉琳. 1999. 河南省高庄金矿成矿流体研究[J]. 地球学报, 20(增刊): 321-326.
杨崇辉, 韩志勇, 张寿广, 卢欣祥, 董有, 常秋玲. 1994. 河南省西峡北部金矿分布特征浅析[J]. 河南地质, 12(4): 255-262.
杨晓勇, 卢欣祥, 杜小伟, 李文明, 张正伟, 屈文俊. 2010. 河南南沟钼矿矿床地球化学研究兼论东秦岭钼矿床成岩成矿动力学[J]. 地质学报, 84(7): 1049-1079.
姚军明, 赵太平, 李晶, 孙亚莉, 原振雷, 陈伟, 韩军. 2009. 河南祁雨沟金成矿系统辉钼矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学[J]. 岩石学报, 25(2): 374-384.
叶会寿. 2006.华北陆块南缘中生代构造演化与铅锌银成矿作用[D].北京: 中国地质科学院, 1-217. http://d.wanfangdata.com.cn/Thesis/Y932117
余宇星, 许虹, 吴祥珂, 杨利军, 田竹, 高燊, 王秋舒. 2012. 黑龙江三道湾子金矿Au-Ag-Te系列矿物特征及其成矿流体[J]. 岩石学报, 28(1): 345-356.
张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学[M]. , 1-729.
张欢, 宋传中, 王道轩, 任升莲, 涂文传, 李加好. 2012. 朱阳关-夏馆断裂带构造变形的温压条件[J]. 合肥工业大学学报(自然科学版), 35(8): 1101-1105, 1144. DOI:10.3969/j.issn.1003-5060.2012.08.021
张侍威, 和志军. 2003. 北秦岭构造带(河南段)金、铜遥感地质综合找矿模式研究[J]. 地质与勘探, 39(1): 50-53. DOI:10.3969/j.issn.0495-5331.2003.01.012
张文, 王建国, 李孝红, 沈柳生. 2012. 河南庄金矿床成矿流体特征及矿床成因[J]. 有色金属(矿山部分), 64(2): 52-57. DOI:10.3969/j.issn.1671-4172.2012.02.013
张兴康, 叶会寿, 颜正信, 李思伟, 樊玉朋, 张福斌. 2018. 豫西吉家洼金矿床成矿时代和成矿物质来源:来自闪锌矿Rb-Sr同位素年龄和Pb同位素的证据[J]. 地质学报, 92(5): 1003-1018. DOI:10.3969/j.issn.0001-5717.2018.05.008
赵姣, 陈丹玲, 谭清海, 陈淼, 朱小辉, 郭彩莲, 刘良. 2012. 北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J]. 地学前缘, 19(4): 118-125.
赵胜金, 刘俊来, 白相东, 赵海滨, 吕军, 陈越, 陈美勇. 2010. 黑龙江三道湾子碲化物型金矿床流体包裹体及硫同位素研究[J]. 矿床地质, 29(3): 476-488. DOI:10.3969/j.issn.0258-7106.2010.03.009
周珂, 叶会寿, 毛景文, 屈文俊, 孟芳, 高亚龙. 2009. 豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄[J]. 矿床地质, 28(2): 170-184. DOI:10.3969/j.issn.0258-7106.2009.02.006
周起凤, 李胜荣, 陈海燕, 宋玉波, 张运强, 张秀宝, 崔举超. 2011. 胶东乳山英格庄金矿碲化物的发现及其意义[J]. 岩石学报, 27(6): 1847-1856.
朱炳泉. 1998. 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 224-226.
朱嘉伟, 张天义, 薛良伟. 1999. 豫西崤山地区金矿成矿年龄的测定及其意义[J]. 地质论评, 45(4): 418-422. DOI:10.3321/j.issn:0371-5736.1999.04.013
朱晓冰. 2015. 河南省西峡县水地沟金矿地质特征及成矿机制简析[J]. 华北国土资源, 69: 115-116.