文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (2): 450-471  
0
引用本文
蒋昊原, 赵志丹, 祝新友, 杨尚松, 蒋斌斌, 杨朝磊, 茅椿伟. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450-471.  
Jiang Haoyuan, Zhao Zhidan, Zhu Xinyou, Yang Shangsong, Jiang Binbin, Yang Chaolei, Mao Chunwei. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450-471. (in Chinese with English abstract).  

内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示
蒋昊原1,2,3,4, 赵志丹5, 祝新友4, 杨尚松4, 蒋斌斌4, 杨朝磊1, 茅椿伟5    
1. 中国科学院西北生态环境研究院, 甘肃 兰州 730000;
2. 甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室, 甘肃 兰州 730000;
3. 中国科学院大学, 北京 100049;
4. 北京矿产地质研究院, 北京 100012;
5. 中国地质大学 (北京), 北京 100083
摘要:边家大院铅锌银矿床位于中亚造山带东段,属于大兴安岭主峰锡、铅、锌、铜成矿带。通过对边家大院矿区中花岗斑岩和辉石闪长岩进行LA-ICP-MS锆石U-Pb定年、主量元素、微量元素和钠长石电子探针分析,结果表明花岗斑岩与辉石闪长岩锆石U-Pb年龄分别为(138.2±0.8)Ma、(137.4±0.7)Ma,为早白垩世岩浆活动的产物。辉石闪长岩SiO2含量为50.99%~52.89%,CaO含量为7.47%~7.51%,MgO含量为3.64%~4.68%,全碱Na2O+K2O含量为4.91%~5.36%,位于高钾钙碱性系列与钙碱性系列交界线上;花岗斑岩具有晶洞构造、镜下鉴定显示长石全部为碱性长石,新鲜无矿化的花岗斑岩高硅(SiO2=70.34%~74.49%)、富碱(Na2O+K2O=4.83%~9.42%)、A/CNK值为1.13~2.40,属于过铝质花岗岩、贫钙(CaO=0.16%~1.04%),属于高钾钙碱性-钾玄岩系列,稀土元素配分图显示轻稀土富集,具强烈的Eu负异常(δEu=0.12~0.32),富集大离子亲石元素Rb、Th、U、K,明显亏损高场强元素Ta、Nb、P、Ti和过渡元素Sr、Ba等,钠长石An(0.03~4.64)远小于10,显示无矿化花岗斑岩具有高演化的A2型造山后碱长花岗岩特征,推断花岗斑岩岩浆来源于地壳,形成于张性环境中。结合地质特征和前人研究成果,认为边家大院花岗斑岩为成矿地质体,矿区西部深处仍有较大成矿潜力。
关键词铅锌银矿床    锆石U-Pb测年    燕山期    矿产勘查工程    边家大院    林西    内蒙古    
中图分类号:P597;P618.42            文献标志码:A             文章编号:1000-3657(2020)02-0450-22
Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia
JIANG Haoyuan1,2,3,4, ZHAO Zhidan5, ZHU Xinyou4, YANG Shangsong4, JIANG Binbin4, YANG Chaolei1, MAO Chunwei5    
1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Gelogy and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
3. University of Chinese Academy of Sciences, Beijing 100049 China;
4. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China;
5. China University of Geosciences(Beijing), Beijing 100083, China
Abstract: Located in the southern section of the CAOB (Central Asian Orogenic Belt), the Bianjiadayuan Pb-Zn-Ag polymetallic deposit belongs to the Sn-Cu-Zn-Pb metallogenic belt of Da Hinggan Mountains. In this study, a series of analyses, such as LAICP-MS zircon U-Pb isotopic dating, major element and trace elements testing and electron microprobe analysis of albite, were performed for the granite porphyry and augite diorite. The results show that the age of granite porphyry and pyroxene diorite are ca. 138 Ma and ca.137 Ma respectively, indicating that the intrusive rocks are products of the magmatic activities in the Early Cretaceous. The pyroxene diorite belongs to high K calc-alkaline series and calc-alkaline series with SiO2 (50.99%-52.89%), CaO (7.4%7-7.51%), MgO (3.64%-4.68%), and alkali (Na2O+K2O) 4.91%-5.36%. Granitic porphyry with miarolitic structure and microscopic identification shows that feldspar is all alkaline feldspar. Non-mineralized granite porphyry is characterized by high SiO2 (50.99%-52.89%), alkali (Na2O+K2O=4.83%-9.42%), A/CNK (1.13-2.40), LREE enrichment, strong negative Eu anomalies (δEu=0.12-0.32), enrichment of LILE such as Rb, Th, U and K, depletion of HFSE such as Ta, Nb, P and Ti and transition elements such as Sr and Ba. According to the electron microprobe analyses, the An values of the albite in granite porphyry are by far lower than 10 (0.03-4.64). These features are similar to the features of typical highly evolved A2 post-orogenic alkali feldspar granite pluton, suggesting that the magma was derived from the lithospheric mantle and formed in the tensional setting. Combined with the geological characteristics and previous research results, the authors hold hat the metallogenic geological body of the Bianjiadayuan area is the granite porphyry pluton, and there is still a great potential for mineralization in the deep part of western mining area.
Key words: lead-zinc-silver deposit    U-Pb dating of zircon    Yanshanian period    mineral exploration engineering    Bianjiadayuan    linxi    Inner Mongolia    

1 引言

边家大院矿区位于大兴安岭南段,属于大兴安岭主峰锡、铅、锌、铜成矿带与燕山期花岗岩有关的稀有金属成矿系列(王长明等, 2006),呈北东向展布于大兴安岭主脊南段,该地区产有大量与燕山期高分异花岗岩岩浆活动相关的锡铅锌银矿床,如大井锡石硫化物脉型锡铜矿(廖震等, 2012)、黄岗矽卡岩型铁锡矿(Zhou et al., 2012)、巴尔哲花岗岩型稀有金属矿(Jahn et al., 2001)等,成岩成矿时代集中于125~145 Ma,是中国北方重要的稀有稀土矿化集中区。为了探讨成因模式,部分学者对边家大院矿床成矿和控矿因素(王宇等, 2014)、矿区内岩体成岩年龄、成矿年龄及成矿物质来源(阮班晓等, 2013王喜龙等, 2013, 2014a顾玉超等, 2017Zhai et al., 2017Zhai et al., 2018)、侵入岩体地球化学特征(王喜龙等, 2014a刘怀金等, 2016)、矿床流体包裹体特征(Ruan et al., 2015)等进行研究并认为矿床属于岩浆热液脉型铅锌银矿床,矿区内花岗斑岩及辉石闪长岩形成于早白垩世,成岩成矿同期进行,但对于成矿岩体目前存在争议,翟德高等(Zhai et al., 2017)认为边家大院成矿岩体为花岗斑岩,成岩年龄为(140.8±0.9)Ma,阮班晓等(Ruan et al., 2013)认为矿体产出与辉石闪长岩相关。本文在详细野外地质调查和镜下鉴定的基础上结合锆石U-Pb同位素和主微量元素数据对矿区中出露的花岗斑岩和辉石闪长岩年代学、岩石地球化学特征、成岩物质来源以及其与成矿之间的关系进行了详细的探讨。

2 区域地质背景

大兴安岭地区位于中亚造山带东段,由额尔古纳地块、兴安地块、松辽—锡林浩特地块以及最东侧的佳木斯地块组成(Liu et al., 2016b),各地块之间被新林—喜贵图缝合带、黑河—贺根山缝合带、牡丹江—虎林缝合带以及西拉木伦缝合带分隔(图 1a)。古生代至早中生代期间大兴安岭构造演化受控于古亚洲洋的闭合作用,进入中生代后蒙古—鄂霍茨克洋在晚三叠世开始向南俯冲于额尔古纳地块(曾维顺等, 2014)。俯冲作用延续到173 Ma,在活动大陆边缘形成一系列钙碱性I型花岗岩。在中侏罗世(170~165 Ma),额尔古纳地块西部的鄂霍茨克洋闭合。额尔古纳地区和大兴安岭地区广泛发育的165~144 Ma的双峰式火山岩和A型花岗岩代表了拉伸背景下加厚下地壳的部分熔融(Wu et al., 2011Wang et al., 2015)。中国东北地区受到古太平洋向西俯冲的影响,约早侏罗世(180 Ma)与欧亚板块发生碰撞,碰撞作用持续到137~130 Ma,之后二者形成统一陆块,东北地区发育碰撞后拉伸背景下的A型花岗岩(Zhou et al., 2015)。

图 1 中国东北区域地质构造图(a)及大兴安岭中南段侵入岩分布情况及地质矿产简图(b)(底图据Liu et al., 2016b和项目组成果) a:①—新林—喜桂图缝合带;②—黑河—贺根山缝合带;③—牡丹江—虎林缝合带;④—西拉沐伦缝合带;⑤—德尔布干断裂;⑥—嫩江断裂;⑦—松辽盆地中央断裂;⑧—佳木斯—临安断裂;⑨—墩汉—米山断裂;⑩—赤峰开源断裂;EB—额尔古纳地块;XAB—兴安地块;SHB—松辽—锡林浩特地块;JB—佳木斯地块;NCC—华北克拉通北缘. b:1—奥陶纪岩体;2—石炭纪岩体;3—二叠纪岩体;4—三叠纪岩体;5—侏罗纪—白垩纪岩体;6—深大断裂;7—矿床 Fig. 1 Geologic map of the Great Hinggan Range (GHR) in northeast China (a) and igneous rocks in the southern section of Greater Khingan Range showing the locations and timing of major ore deposits (b) (modified from Liu et al., 2016b and project results) a:①-Xinlin-xiguitu suture; ②-Heihe-Hegenshan suture; ③-Mudanjiang-Hulin suture; ④-Xilamulun suture; ⑤-Delbkan suture; ⑥-Nengjiang suture; ⑦-Central fault of Songliao Basin; ⑧-Jiamusi-Linan suture; ⑨-Dunhan-Mishan suture; ⑩-Chifeng-Kaiyuan suture; EB: Erguna Block; XAB: Xing'an Block; SHB: Songliao- Xilinhaote Block; JB: Jiamusi Block; NCC: North China Craton; .b:1- Ordovician; 2- Carboniferous; 3-Permian; 4-Triassic; 5-Jurassic-Cretaceous; 6-Deep fault; 7-Ore deposit

区域内地层主要有石炭系中统本巴图组(CPb)和上统阿木山组(CPa),主要岩性为碎屑沉积岩;中二叠统哲斯组(P2zs)、上二叠统林西组(P3l)浅海相、滨海相及陆相沉积地层;上侏罗统满克头鄂博组和玛尼吐组陆相火山岩。受多期次构造变形作用影响,大兴安岭南段广泛发育不同期次、不同性质的褶皱及断裂构造,区域内断裂主要为NE、NNE及近NW向,其中NE向断裂控制了大多数地质体的展布。由于大兴安岭主脊断裂和西拉木伦河深大断裂等长期反复活动,导致区域内火山-岩浆活动强烈,为成矿提供了大量的成矿物质(张喜周等, 2003)。区域内发育大量的中生代酸性岩浆岩(图 1b),形成北东向带状展布的岩浆岩带(Ouyang et al., 2015)。大部分侵入岩呈岩基、岩株产出于大兴安岭南段中央隆起带上,主体为碱长花岗岩、正长花岗岩、花岗闪长岩等(梅微, 2014),伴随产出与岩体同源的次火山岩,如流纹岩、石英斑岩等。

3 矿床地质背景

边家大院矿区主要出露地层为二叠系哲斯组中段(P2zs)和第四系,哲斯组中段由一套浅海相灰色—黑色粉砂质泥质板岩、变质细砂岩、炭质板岩等互层组成,为主要赋矿围岩。矿区内断裂构造发育,以NW向为主,并且和NE向构成格子状,断层控制了岩体的侵位,北西向F1断层是东区铅锌银矿区主要导矿构造。矿区内部岩浆活动强烈,矿区中部发育有辉石闪长岩;矿区西部发育花岗斑岩;岩脉主要有花岗闪长岩脉、花岗细晶岩脉、石英脉等(图 2a)。

图 2 边家大院矿区地质简图(a)及边家大院长勘探线剖面图(b)(资料来源内蒙古自治区核工业二四三大队 a:1—第四系;2—二叠系中统哲斯组;3—隐爆角砾岩;4—辉石闪长岩;5—花岗斑岩;6—黑云母二长花岗岩;7—石英脉;8—石英闪长岩脉;9—碳酸岩脉;10—实测断层位置及编号;11—剖面线;12—勘探线及编号;13—Sn矿体;14—Cu矿体;15—Pb矿体;16—Pb、Zn、Ag共生矿体. b:1—第四系;2—砂质板岩;3—花岗斑岩;4—隐爆角砾岩;5—辉石闪长岩;6—Cu矿体;7—Sn矿体;8—Mo矿体;9— Pb、Zn、Ag共生矿体 Fig. 2 Simplified geological map of the Bianjiadayuan (a) and long exploration line profile in Bianjiadayuan deposit (b) (modified from CNNC No.243) a:1-Quaternary; 2-Middle Permian Zhesi Formation; 3-Breccia tube; 4-Pyroxene diorite; 5-Granite porphyry; 6-Biotite monzonitic granite; 7- Quartz vein; 8- Quartz diorite vein; 9- Carbonate vein; 10- Fault location and number; 11- Section line; 12- Exploration line and number; 13- Sn ore body; 14- Cu ore body; 15- Pb ore body; 16- Pb/Zn/Ag symbiotic ore body. b:1- Quaternary; 2- Sandy slate; 3- Granite porphyry; 4- Breccia tube; 5- Pyroxene diorite; 6- Cu ore body; 7- Sn ore body; 8- Mo ore body; 9- Pb/Zn/Ag symbiotic ore body

矿体与围岩界线清楚。矿区西部矿化类型主要有云英岩型锡-铜-钼矿体、角砾岩型铅-锌-银矿体、脉状铅-锌-银矿体,金属矿物组成主要有锡石、黝锡矿、闪锌矿、黄铁矿、黄铜矿、辉钼矿、方铅矿等,主要呈脉状、浸染状产出,铜-锡矿体主要产出于花岗斑岩体的云英岩化带中,铅锌银矿体产出于隐爆角砾岩之中,并严格受其控制;矿区东部为热液脉型铅-锌-银矿体,金属矿物主要有闪锌矿、方铅矿、黄铜矿、黄铁矿、磁黄铁矿、银黝铜矿、辉银矿、深红银矿等呈块状、脉状、浸染状产出于侵入岩体与围岩的构造薄弱面中或地层构造裂隙之中。

根据野外地质现象、钻孔编录和矿山资料整理显示,矿区西部存在一条逆断层破碎带(图 2b),上盘为隐爆角砾岩,下盘为哲斯组粉砂岩,层理较清晰、构造破碎不发育,断层界线清晰;西矿区钻孔ZKB20-17、ZKB20-03花岗斑岩与辉石闪长岩、粉砂岩之间呈断层接触(图 3ab),钻孔岩心之中可见断层泥发育,断裂附近可见辉石闪长岩角砾的构造角砾岩,胶结物主要为石英和方解石(图 3c);山坡西侧可见花岗斑岩与哲斯组地层界线,二者呈断层接触,断层界线清晰(图 3d)。

图 3 边家大院矿区岩芯及地表断层破碎带特征 a—ZKB20-17花岗斑岩与辉石闪长岩呈断层接触;b—ZK20-03花岗斑岩与哲斯组粉砂质板岩之间呈断层接触;c—断层附近辉石闪长岩中发育的构造角砾岩;d—地表探槽中花岗斑岩与粉砂质板岩之间的逆断层 Fig. 3 Characteristics of fault and fracture zone in core and surface of Bianjiadayuan deposit a-The fault between porphyritic granite and pyroxene diorite in ZKB20-17; b-The fault between porphyritic granite and siltstone of the Zhesi Formation in ZKB20-17; c-Tectonic breccia in the pyroxene diorite near the fault; d-Reverse fault between porphyritic granite and silty slate in trench
4 岩相学特征 4.1 花岗斑岩特征

花岗斑岩仅在矿区西部有局部出露,长轴走向近东西,自东向西逐渐变宽变深,向西倾伏,倾角约为20°(图 2a)。花岗斑岩手标本灰白色,似斑状结构、块状构造,晶洞构造发育(图 4a)。镜下鉴定显示,花岗斑岩中的斑晶主要为钾长石和石英,石英斑晶2~5 mm,半自形-他形晶,边部浑圆,含量约为20%,内部包含早期钾长石;钾长石斑晶较大,为2~8 mm,自形晶为主,含量约为30%,镜下可见明显的卡式双晶,多为微斜长石,少量表现为条纹长石;基质为细粒结晶结构,主要为石英、钾长石和较少的黑云母,暗色矿物不发育(图 4b)。岩体下部逐渐转变为等粒花岗结构(图 4c),钠长石含量明显增多,钠长石大部分出现在石英与钾长石之间,呈半自形—自形晶,粒径0.1~1 mm,含量20%左右(图 4d)。花岗斑岩体400 m以上发生不均匀矿化蚀变,主要为硅化、绢云母化、绿泥石化,局部发育高岭土化,金属矿物主要为黄铜矿、黄铁矿、闪锌矿等,矿化蚀变带出现无规律。向深部花岗斑岩矿化蚀变逐渐减弱至消失,保持原始结构与矿物组合。

图 4 边家大院花岗斑岩及隐爆角砾岩岩相学特征 a—花岗斑岩,具晶洞构造;b—花岗斑岩钾长石和石英斑晶特征;c—等粒花岗岩;d—钠长石特征;e—隐爆角砾岩;f—隐爆角砾岩粉砂岩、花岗斑岩角砾及胶结物镜下特征 Fig. 4 Petrographic characteristics of porphyritic granite and cryptoexplosive breccia in Bianjiadayuan deposit a-Porphyritic granite with miarolitic structure miarolitic structure; b-Characteristics of K-feldspar and quartz phenocrysts in porphyritic granites; cEquigranular granite; d-Characteristics of albite; e-Cryptoexplosion breccia; f- Microscopic characteristics of siltstone, granite breccia and agglutinate in cryptoexplosive breccia

隐爆角砾岩出露于矿区西北地表(图 2a),位于花岗斑岩顶部(图 2b),平面上呈不对称的V字形,整体走向NE、向SW方向侧伏,岩石手标本呈灰色—灰黑色,角砾状结构、块状构造,角砾为花岗斑岩和粉砂岩、砂质板岩,粒径1~15 cm不等,次棱角状-次圆状,胶结物主要为石英、云母、硫化物等热液物质,胶结物所占比例较小,局部由强烈云英岩化的角砾碎屑堆积形成(图 4e)。镜下鉴定特征显示角砾呈棱角状,主要为粉砂岩和花岗斑岩,胶结物为大量的热液蚀变胶结矿物,可见浸染状黄铜矿、黄铁矿等(图 4f)。

4.2 辉石闪长岩特征

辉石闪长岩出露于矿区中西部,平面呈椭圆形,长轴走向NW300°,向西倾伏,倾角为10°~20°。手标本呈灰色至浅灰色,半自形粒状结构,块状构造,主要由斜长石、石英、黑云母、辉石、角闪石组成,主要矿物斑晶2 mm左右(图 5a)。镜下特征显示斜长石聚片双晶明显,半自形板状,含量约占70%,辉石为普通辉石呈半自形粒状、板状结构,含量约10%,黑云母呈片状,含量约5%,角闪石为普通角闪石,粒状、长柱状,含量约5%,石英粒度较细,含量约5%,不具明显辉长结构(图 5b),故前人定名有误,辉长岩应为辉石闪长岩。

图 5 辉石闪长岩手标本特征(a)及辉石闪长岩镜下特征(b) Fig. 5 Characteristics of specimen (a) and photomicrograph of pyroxene diorite (b)
5 样品采集和分析测试方法

花岗斑岩及辉石闪长岩样品主要采集于B20线见矿钻孔IZKB20-17。钻孔中样品较新鲜,仅具有轻微绢云母化、绿泥石化。

锆石单矿物分选在廊坊市宇能矿岩技术服务有限公司进行,在双目镜下选取适当大小的纯净锆石颗粒和标样共同进行制靶。锆石阴极发光(CL)图像在中国科学院地质与地球物理研究所扫描电镜实验室完成,经过对锆石透反射照片与CL图像进行研究之后,选取晶型较好的锆石进行LA-ICPMS测年分析。

锆石U-Pb年代学测试在中国地质大学(北京)科学研究院LA-ICP-MS实验室完成,激光器型号为美国New Wave公司UP193SS型激光器,波长193 nm。激光束斑直径36 μm,频率10 Hz;预剥蚀时间和剥蚀时间分别为5 s和45 s,使用He作为载气,流速0.8 L/min。等离子质谱仪(ICP-MS)型号为美国Agilent公司生产的7500a型质谱仪;U、Th、P元素积分时间为20 ms,Si、Zr为6 ms,其余10 ms。使用Glitter4.4.1程序进行数据处理,以标准锆石TEM为外标进行同位素比值校正、标准锆石91500和Qinghu为监控盲样。以标样NIST610为外标、Si为内标计算锆石中的元素含量,NIST612和NIST614作为监控盲样。主量元素和微量元素分析均在核工业北京地质研究院完成,通过人工挑选无蚀变的新鲜样品碎块进行分析。主量元素测试使用X射线荧光光谱仪(XRF-1500)完成,采用国家一级岩石标样GBW07101- 07114作基体效应矫正。微量和稀土元素含量测试利用电感耦合等离子质谱仪进行测试,每10个样品插入一个平行样,另有空白样进行对比。以GSR为标样进行质量监控,使用标准曲线法进行校正,相对偏差一般≤10%。

电子探针分析在中国地质科学院矿产资源研究所电子探针实验室完成,仪器型号为JXA-8230,加速电压为20 kV,电流为20 nA,束斑为1~5 μm。氧化物计数时间为15 s,硫化物除Ag和Au外计数时间为30 s外,其余均为15 s,使用天然样品和人工合成氧化物、硫化物作为标样。

6 分析测试结果 6.1 锆石U-Pb年代学

锆石U-Pb同位素测试样品选取自边家大院矿区西部IZKB20- 17钻孔新鲜、无矿化花岗斑岩(BJP1-C22)、辉石闪长岩(BJP1-C31)。边家大院花岗斑岩共测试20个点。锆石多呈半自形、自形短柱状,锆石表面干净,晶型及结构完整,长宽比为2:1~3:1,粒度范围70 ~300 μm(图 6a)。CL图像显示锆石具有较好的振荡环带,且颜色较深,可能由于锆石中U(271×10-6~749×10-6)、Th(107×10-6~441×10-6)含量较高导致,这与锡钨多金属矿床成矿花岗岩锆石特征相似。锆石测试点Th/U比值在0.35~0.64,均大于0.1,并且U和Th之间显示了良好的正相关性(Hoskin and Schaltegger, 2003)(图 7a),以上特征代表边家大院花岗斑岩锆石为典型的岩浆成因锆石。

图 6 边家大院花岗斑岩(a)及辉石闪长岩(b)锆石CL图和测试点位置 Fig. 6 Cathodoluminescence (CL) image and measured positions of representative zircons from the porphyritic granite (a) and pyroxene diorite (b) in Bianjiadayuan deposit
图 7 边家大院花岗斑岩(a)及辉石闪长岩锆石U-Th含量图(b) Fig. 7 U, Th content in zircons from porphyritic granite (a) and pyroxene diorite (b)

辉石闪长岩测试19个点,自形-半自形柱状晶型,少部分锆石晶型不完整,粒度范围50 ~200 μm,CL图像显示环带特征明显(图 6b),Th含量(398×10-6~2388×10-6)和U含量(532×10-6~5212×10-6)变化范围较大,Th/U比值0.33~1.07,同样具有良好的正相关性(图 7b),为良好的岩浆成因锆石(吴元保等, 2004)。具体数据见表 1

表 1 边家大院花岗斑岩与辉石闪长岩锆石U-Pb分析数据 Table 1 U-Pb dating results of zircons from porphyritic granite and pyroxene diorite in Bianjiadayuan deposit

边家大院花岗斑岩206Pb/238U年龄变化于136~140 Ma,加权平均值为(138.2±0.8)Ma,辉石闪长岩剔除不谐和的年龄点之后206Pb/238U年龄变化于137~138 Ma,加权平均值为(137.4±0.7)Ma。锆石U-Pb谐和图(图 8)显示年龄数据点较为集中,样品谐和度较高,样品点均分布于谐和线上或附近,分析数据可以代表边家大院矿床花岗斑岩和辉石闪长岩的成岩年龄,大约为早白垩世。与区域花岗岩及花岗岩成矿相关矿床成岩成矿年龄基本一致(翟德高等, 2012)。

图 8 边家大院花岗斑岩锆石U-Pb谐和图(a)及辉石闪长岩锆石U-Pb谐和图(b) Fig. 8 U-Pb concordia diagrams of zircon from porphyritic granite (a) and pyroxene diorite (b) in the Bianjiadayuan deposit
6.2 岩石地球化学数据 6.2.1 主量元素特征

对选自边家大院西矿区ZK20-17中新鲜花岗斑岩(11件)以及具矿化蚀变的花岗斑岩(4件)、无蚀变辉石闪长岩(2件)进行主量及微量元素分析。主微量元素分析结果见表 2

表 2 边家大院花岗斑岩与辉石闪长岩主量元素(%)微量元素(10-6)分析结果 Table 2 Compositions of major elements (%) and rare elements (×10-6) of porphyritic granite and pyroxene diorite in Bianjiadayuan deposit

边家大院新鲜花岗斑岩SiO2含量较高,为70.34%~74.49%,K2O含量为4.39%~6.34%,CaO含量为0.16%~1.04%,MgO含量为0.12%~0.67%,全碱(Na2O+K2O)含量较高为4.83%~9.42%,里特曼指数σ为0.79~3.19;K2O/Na2O值大于1,属于富钾富碱岩石;F元素含量为274×10-6~1243×10-6,显示花岗斑岩体富F的特征;FeOT/MgO为2.24~9.83;A/CNK值为1.13~2.40,属于过铝质花岗岩,总体属高钾钙碱性系列-钾玄岩系列(图 9b),主量元素具有A型花岗岩主量元素的特征(张旗, 2013)。边家大院矿化花岗斑岩CaO、NaO、K2O含量相比无矿化花岗斑岩降低,里特曼指数σ为0.53~0.59;K2O/Na2O值远大于1;F元素含量为2233×10-6~4041×10-6,相比无矿化花岗斑岩含量更高;FeOT/MgO值为4.75~7.36,A/CNK值为2.75~2.89,高于无矿化花岗斑岩。

图 9 边家大院花岗斑岩和辉石闪长岩SiO2-全碱图解(a)(底图据Irvine and Baragar, 1971Middlemost, 1994)及SiO2-K2O岩石系列判别图(b)(底图据Peccerillo and Taylor, 1976 Fig. 9 SiO2-alkali classification diagram (a, after Irvine and Baragar, 1971; Middlemost, 1994) and SiO2-K2O diagram (b, after Peccerillo and Taylor, 1976) of porphyritic granite and pyroxene diorite in Bianjiadayuan deposit

辉石闪长岩SiO2含量为50.99%~52.89%,全铁含量10.53%~11.20%,K2O含量为1.51%~1.7%,CaO含量为7.47%~7.51%,MgO含量为3.64%~4.68%,全碱(Na2O+K2O)含量为4.91%~5.36%,里特曼指数为2.90~3.02;K2O/Na2O值小于1,位于高钾钙碱性系列与钙碱性系列交界线上(图 9b)。

6.2.2 稀土元素特征

新鲜花岗斑岩稀土元素总量较高,∑REE为274.3×10-6~430.7×10-6,LREE/HREE为6.31~11.79,(La/Yb)N范围为5.08~14.58,具强烈的Eu负异常,δEu为0.12~0.32,可能为成岩过程中经历了强烈的斜长石分离结晶作用或原岩熔融时残留相中存在斜长石。稀土元素配分曲线呈右倾型配分模式,轻稀土富集,轻重稀土分馏明显,具有明显的四分组效应,总体具有A型花岗岩稀土元素特征。矿化花岗斑岩与未蚀变的新鲜花岗斑岩相比,稀土元素含量特征相似,呈强烈Eu负异常的右倾配分模式;LREE/HREE为9.52~12.90,(La/Yb)N范围为9.33~11.85,轻重稀土元素分馏程度大于边家大院花岗斑岩,可能与成矿阶段的热液作用相关。

辉石闪长岩稀土元素总量相对较低,∑ REE为150.0×10-6~177.2×10-6,LREE/HREE为6.4、6.3,(La/Yb)N为5.9、6.6,较强烈轻重稀土元素分馏,辉石闪长岩δEu为0.84、0.82,微弱的Eu负异常。此外还具有弱的正Nd、Ta异常的特点,稀土元素配分曲线整体呈右倾配分模式(图 10a)。

图 10 花岗斑岩和辉石闪长岩稀土元素球粒陨石标准化图解(a)及微量元素标准化图解(b)(标准化值据Sun and Mcdonough, 1989 Fig. 10 Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element patterns (b) of porphyritic granite and pyroxene diorite (chondrite and primitive mantle normalized data from Sun and Mcdonough, 1989)
6.2.3 微量元素特征

微量元素原始地幔标准化分布曲线显示,边家大院花岗斑岩富集大离子亲石元素Rb、Th、U、K,明显亏损高场强元素Ta、Nb、P、Ti和过渡元素Sr、Ba等。Nb和Ta的亏损指示岩浆可能来源于地壳重熔或在演化过程中结晶分异出富Nb、Ta的矿物,Ba、Sr的负异常可能与花岗斑岩中出现大量的长石结晶相关。Nb/Ta值为8.35~11.21,Zr/Hf值为17.26~25.65,显示岩体具有较高的结晶分异程度(图 10b)。

辉石闪长岩富集大离子亲石元素K、Rb、Sr,亏损高场强元素Th、Ta、Nd、Ce、Zr、Ti。Sr在斜长石中的分配系数较大,Sr的正异常与辉石闪长岩中大量的斜长石特征相对应(图 10b)。

6.3 电子探针数据

电子探针数据(表 3)显示边家大院花岗斑岩中新鲜的长石Na2O含量为8.98%~11.69%,平均含量10.92%,K2O含量为0.02%~1.57%,平均含量0.25%,CaO含量为0.01%~0.92%,平均含量0.31%,An值介于0.03~4.64,平均值0.87,An值远小于10,为高度富Na的钠长石。

表 3 边家大院花岗斑岩钠长石电子探针分析结果(%) Table 3 Electron microprobe analyses (%) of the albite in porphyritic granite of the Bianjiadayuan deposit
7 讨论 7.1 成矿地质体与成岩成矿年代

边家大院成矿岩体目前存在争议,部分学者认为隐伏的花岗斑岩岩体是成矿热源中心以及成矿流体的主要来源,部分学者认为矿化与晚期的辉石闪长岩相关。大兴安岭中南段锡多金属矿床均与早白垩世高演化碱长花岗岩有关,如维拉斯托(祝新友等, 2016)、白音查干(刘新等, 2017)、宝盖沟(王国政, 2002)、道伦达坝(周振华等, 2014; 陈公正等, 2018)等,目前尚未发现与闪长岩相关的锡多金属矿床。

边家大院矿区花岗斑岩含浸染状金属矿物、晶洞构造(图 11a图 4a),镜下鉴定特征显示长石均为碱性长石,钠长石An < 4.64,不含斜长石,成矿作用与云英岩化作用明显(图 11c),具有高演化碱性花岗岩的特征(祝新友等, 2012);同时,花岗斑岩中较高的F含量以及隐爆角砾岩的存在代表成矿热液富含大量的F、Cl等挥发分元素(图 11b),挥发分的存在会降低岩浆熔体的密度,增大Sn的溶解度和迁移能力,使Sn随岩浆熔体向浅部运移,有利于Sn的富集;西矿区大致以隐爆角砾岩带为中心,向北部依次发育黄铜矿、辉钼矿、锡石、闪锌矿及少量铅锌银矿物,具有Cu、Mo、Sn、Zn、Pb、Ag的分带特征;向南部依次发育黄铜矿、辉钼矿、锡石、闪锌矿,具有Cu、Mo、Sn、Zn的分带特征,基本以西区花岗斑岩体为中心,向外部演化趋势为Mo-Cu-Sn-Zn-Pb-Ag的特征,表明流体来源及成矿热源为花岗斑岩。综上所述,边家大院成矿岩体应为矿区西部碱长花岗岩,即花岗斑岩。

图 11 边家大院矿床中岩芯照片 a—花岗斑岩中浸染状矿物;b—花岗斑岩中萤石-方解石脉;c—矿脉两侧发育云英岩化,可见晶洞构造;d—花岗斑岩穿插辉石闪长岩 Fig. 11 Core characteristics photos in Bianjiadayuan deposit a- Disseminated minerals in porphyritic granite; b-Fluorite and calcite veins in porphyritic granite; c-Greisenization and miarolitic structure; dPorphyritic granite penetrating pyroxene diorite

边家大院锡铜矿体相关的花岗斑岩U-Pb谐和年龄(138.2±0.8)Ma,与王喜龙(王喜龙等, 2014b)测得(140 ± 1.2)Ma、顾玉超(顾玉超等, 2017)测得(140.3±0.3)Ma相近。花岗斑岩年龄与辉石闪长岩年龄(137.4±0.7)Ma在误差范围之内基本一致,但通过野外地质调查和钻孔揭露显示(图 2b),辉石闪长岩深部未出现矿化蚀变,矿体仅存在于辉石闪长岩体边部裂隙和构造破碎带中(图 2b),晚期花岗斑岩穿插于辉石闪长岩等现象(图 11d),表明辉石闪长岩形成时间要略早于花岗斑岩,并且成矿时间要晚于辉石闪长岩侵位时间。翟德高等(Zhai et al., 2017)测得含硫化物石英脉中的辉钼矿Re-Os年龄显示,边家大院成矿年龄为(140.1±1.4)Ma,与成岩年龄相近,进一步证明,成矿地质体为花岗斑岩。

7.2 花岗斑岩成岩物质来源及成因

边家大院新鲜、无矿化的花岗斑岩主量元素以高硅、富碱、低铝为特征,K2O含量为4.39%~6.34%,K2O/Na2O>1,尤其矿化花岗斑岩K2O/Na2O远大于1,与A型花岗岩主量元素突出特征相符(张旗等, 2012)。稀土元素球粒陨石标准化图解显示所有样品轻稀土富集,重稀土相对平缓,具有强烈的Eu负异常(δEu=0.03~0.1)、四分组效应明显;微量元素蜘蛛图显示边家大院花岗斑岩整体呈右倾形态,大离子亲石元素(Rb、Th、U、K)富集,Sr、P、Ti、Ba等高场强元素亏损,为典型A型花岗岩微量元素分布形态(Eby, 1990张旗等, 2012);同时样品点在A型花岗岩判别图解上全部落入A型花岗岩判别区域(图 12),故边家大院花岗斑岩应为A型花岗岩。

图 12 A型花岗岩判别图解(A,I,S,M分别代表A型、I型、S型、M型花岗岩;底图据Whalen et al., 1987 Fig. 12 A-type granite discrimination diagrams (A, I, S, M represent A-type, I-type, S-type, M-type granite respectively; after Whalen et al., 1987)

前文已经讨论过边家大院花岗斑岩具有晶洞构造、岩体富F、钠长石An值小于5等高演化花岗岩的特征。由于Zr、Hf在锆石中分馏系数的不同,导致随着锆石的结晶会导致残留熔体中的Zr/Hf比值不断减小,可以反映岩浆结晶演化程度,比值>55为正常花岗岩,介于25~55为中等分异花岗岩,<25属于高分异花岗岩(Ballouard et al., 2016)。边家大院花岗斑岩Zr/Hf平均值为19.40,<25,花岗斑岩和矿化花岗斑岩高度富Rb,在Rb-Sr-Ba三角图解中集中于富Rb端元(图 13);本文认为边家大院花岗斑岩属于经历过高分异演化的A型花岗岩。

图 13 边家大院花岗斑岩Rb-Sr-Ba图解 Fig. 13 Rb-Sr-Ba discrimination diagram of porphyritic granite in Bianjiadayuan deposit

A型花岗岩的成因现有以下几种观点:来自幔源的拉斑玄武质岩浆、碱性岩浆结晶分异伴随或不伴随地壳同化混染(Bonin, 2007);壳幔混合作用(Kerr and Fryer, 1993; Wong et al., 2009);中基性结晶基底或变沉积岩重熔伴随基性岩浆底侵作用(Wang et al., 2010Sun et al., 2011Huang et al., 2011);富F、Cl的下地壳麻粒岩相析出I型或S型花岗质岩浆后小部分熔融(Collins et al., 1982King et al., 1997)。边家大院花岗斑岩可能不是幔源岩浆结晶分异与地壳同化混染形成的,因为基性岩浆结晶分异形成的A型花岗岩通常伴随大规模的同期基性-超基性岩浆岩共生(Turner et al., 1992),并且通常会形成由基性向中性、酸性连续变化的岩石(Wang et al., 2010),但研究区内晚侏罗世—早白垩世广泛发育钾长花岗岩、花岗闪长岩、二长花岗岩、花岗斑岩等酸性岩浆岩(梅微, 2014),区域上缺乏大范围同时代的基性岩浆岩。幔源镁铁质岩浆与壳源岩浆混合形成的A型花岗岩中广泛发育大量暗色镁铁质包体(Yang et al., 2006),但边家大院花岗斑岩中并未出现大量的暗色包体。

大兴安岭中南段中生代火山岩正εNd(t)值和较低的TDM值表明他们形成于相同的地幔源区(吴福元等, 1999; 洪大卫等, 2000),周振华等(周振华等, 2012)对大兴安岭地区及华北板块北缘收集的岩浆锆石Hf同位素测试数据发现,华北板块北缘εHft)全部为正值,具有年轻的Hf模式年龄,可该地区花岗岩源区能来源于年轻的亏损地幔物质的部分熔融。边家大院花岗斑岩在δEu-(La/Yb)图解上,样品全部落入壳源范围内(图 14a)。Nb、Ta是一对地球化学行为相似的元素,一般不会发生分馏,当壳幔分离时Ta明显在地壳中富集,Nb则亏损,因此,Nb/Ta可以指示岩浆形成时地壳组分的参与程度,边家大院花岗斑岩Nb/Ta值为8.35~11.21,平均值为9.67,明显小于球粒陨石和原始地幔的Nb/Ta值17.5。故矿区内花岗斑岩物质来源以壳源为主。

图 14 δEu-La/Y判别图解(a)、A型花岗岩Nb-Ce-Y分类图解(b)、花岗岩lg[CaO/(Na2O+K2O)]-SiO2构造环境判别图解(c)、Y-Nb构造环境判别图解(d)(底图据Brown, 1982; Pearce et al., 1984; Eby, 1992 WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋中脊花岗岩;Syn-COLG—同碰撞花岗岩 Fig. 14 δEu-La/Y diagram (a), Nb-Ce-Y diagram of A-type granite (b), lg[CaO/(Na2O+K2O)]-SiO2 diagram (c), Y-Nd diagram of granite in Bianjiadayuan deposit (d) (after Brown, 1982; Pearce et al., 1984; Eby, 1992) WPG-Intraplate granites; VAG-Volcanic arc granites; OR-Ocean ridge granites; Syn-COLG-Synchronous-collision granites

Eby(1990, 1992)利用微量元素在非造山与造山后构造环境中的不同特征将A型花岗岩区分为A1和A2两个亚类,A1为非造山环境,A2为造山后环境,在Nb-Y-Ce图解中,边家大院花岗斑岩全部落入A2型造山后花岗岩(图 14b)。在lg[CaO/(Na2O+K2O)]-SiO2图解和Y-Nb图解中边家大院花岗斑岩样品投点全部落入板内花岗岩区域内(图 14cd),表明其具有张性花岗岩的特征。边家大院花岗斑岩Ba/Nb比值为9.4~11.2,区别于同时代与俯冲作用相关的岛弧花岗岩(Ba/Nb>30)(邵济安等, 2015);Sr含量为20.8×10-6~61.3×10-6,小于100×10-6,Y含量25.8×10-6~53.6×10-6,大于2×10-6,具有明显的负Eu异常,属于典型的南岭型花岗岩(张旗等, 2006)。结合判别图解,边家大院花岗斑岩应形成于造山后地壳拉伸减薄的张性环境中。

7.3 岩浆活动与成矿作用

目前认为,边家大院属于锡多金属矿床,锡多金属矿床主要类型包括花岗岩型、伟晶岩型、云英岩型、石英脉型、矽卡岩型、锡石硫化物脉型等(Heinrich, 1986)。前人将边家大院西矿区花岗斑岩命名为石英斑岩(王喜龙等, 2014b),岩体内的Cu-Sn矿体命名为斑岩型(Zhai et al., 2017)。国内的斑岩型锡矿以广东银岩锡矿为典型代表(关勋凡等, 1985),特征为主矿体发育于岩体顶部,外侧围岩发育石英硫化物矿体。斑岩型矿床具有大规模、低品位、浅成、成矿岩体为斑岩体、细网脉状矿化、大规模热液蚀变的特征(侯增谦等, 2009)。边家大院成矿岩体主要呈似斑状,锡产于硅铝质花岗岩中与铜、铅、锌等共同产出,与云英岩化关系密切,并不具备斑岩型矿床发育的细网脉特征。所以矿体类型应归类为云英岩型,而不是前人所定的斑岩型。

边家大院矿床同位素研究显示(王喜龙等, 2014a):矿床中的S来源于深源岩浆,Pb主要来源于地幔,并在矿床形成过程中混入了少量壳源Pb;C-O、H-O同位素显示,矿床早期阶段成矿流体以岩浆水为主,晚期流体混入大气降水。前人研究表明内生锡多金属矿床普遍发育有以成矿岩体为中心良好的矿化分带(Liu et al., 2016a),结合前人研究成果与本次野外地质现象和样品分析,对边家大院锡多金属矿床成矿模式进行讨论(图 15)。边家大院矿床从成矿岩体向外,依次形成云英岩型Cu-Sn矿、角砾岩型Sn-Cu-Pb-Zn矿、石英脉型Cu-Zn矿、硫化物脉型Pb-Zn-Ag矿,Sn主要赋存于内带,外侧石英脉型、硫化物脉型铜铅锌银矿脉中基本不含锡。在岩浆演化晚期热液流体与花岗斑岩发生交代作用,使钨锡等金属元素从原来的载体矿物中析出进入成矿流体,同时与早期形成的矿物相发生蚀变重熔,促使成矿元素进一步沉淀、富集,形成化学成分高于围岩的蚀变晕;云英岩化流体中富含H2O、F、Cl、S等挥发分,F的存在可以使岩浆结晶温度下降,延长结晶分异时间,降低熔体密度,有助于Sn的迁移富集,Cl的存在有助于提高Sn的溶解度(Weidner and Martin, 1987Dingwell and Virgo, 1988),同时Sn主要以Sn-Cl或Sn-F络合物形式迁移。花岗质岩浆经过不断演化之后形成富Si、富K及富Na体系(Breiter et al., 2014),导致花岗斑岩中长石为钾长石和钠长石。富挥发分热液沿早期辉石闪长岩侵位过程中形成的构造裂隙不断聚集,当含大量气液挥发分及丰富的成矿物质内压超过围岩静压力之后,在岩体顶端发生隐爆作用,形成角砾岩型锡、铜、铅、锌矿体,而此时岩浆已接近固结,所以隐爆角砾岩中出现花岗质角砾,胶结物为金属硫化物,同时隐爆作用在碱长花岗岩中形成裂隙,导致含矿热液再次富集,形成Cu-Sn矿体,矿体两侧发生硅化、云英岩化;由于矿区断裂构造发育,围岩静岩压力驱动成矿热液进入围岩、辉石闪长岩中的断裂、解理裂隙之中向东侧向迁移,这也可能是隐爆角砾岩中的胶结物含量较少的原因之一。随后大气降水的加入使体系中的硫逸度升高,并且锡石的沉淀导致混合热液体系中的氧逸度降低,导致Cu、Pb、Zn、Ag开始以HS-络合物的形式迁移,进入矿区东部之后矿体产状受到断层控制,黄铜矿、方铅矿、闪锌矿、毒砂等逐渐沉淀,形成脉状硫化物矿体。矿区整体在水平方向上具有一定的分带性(图 15a)。

图 15 边家大院成矿模式图(a断层错动前;b断层错动后) Fig. 15 Metallogenic model of Bianjiadayuan deposit (a before the fault activity; b after the activity)

边家大院西矿区岩心中辉石闪长岩与上段花岗斑岩之间呈断层接触关系,两者之间的岩石破碎严重,呈泥化状态,且在距离破碎带不远处发现有构造角砾岩,结合矿区地表探槽揭露情况,花岗斑岩与地层呈逆断层接触,推测花岗斑岩与辉石闪长岩之间断裂为压扭性逆冲推覆构造(图 15b)。碱长花岗岩受到晚期逆冲断裂的影响,深部岩体顶部及隐爆角砾岩被逆冲推覆至距离地表较浅的地方形成,花岗斑岩体与辉石闪长岩之间的区域仍存在较大的成矿潜力。

8 结论

(1)边家大院矿区成矿岩体为花岗斑岩,岩浆侵入年代为早白垩世(136~140 Ma),与区域大规模锡多金属成矿年代一致,矿床成矿时间应晚于辉石闪长岩侵位时间。

(2)岩石地球化学特征表明,边家大院花岗斑岩为高分异A型碱长花岗岩,属A2型板内造山后花岗岩,属于赋矿岩体。

(3)花岗斑岩和隐爆角砾岩可能受到成矿期后逆冲断裂的影响,矿体逆冲至地表。但该逆冲断裂产状尚未查明,矿区西部深处仍具有较大找矿潜力。

注释

❶内蒙古自治区核工业二四三大队. 2014.内蒙古自治区林西县边家大院铅多金属矿外围勘察工作总结报告[R]。

参考文献
Ballouard Christophe, Poujol Marc, Boulvais Philippe, Branquet Yannick, Tartèse Romain, Vigneresse Jean Louis. 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 44: 231-234. DOI:10.1130/G37475.1
Bonin Bernard. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 97: 1-29. DOI:10.1016/j.lithos.2006.12.007
Breiter Karel, Lamarão Claudio Nery, Borges Régis Munhoz Krás, Dall'Agnol Roberto. 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, s 192-195: 208-225.
Brown G C. 1982. Calc-alkaline intrusive rocks: their diversity, evolution, and relation to volcanic arcs[C]//Thorpe R S (ed.).Andesites-Orogenic Andesites and Related Rocks. New York, John Wiley&. Sons: 437-464.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 80: 189-200.
Chen Gongzheng, Wu Guan, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Zhang Tong, Chen Yuchuan. 2018. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance[J]. Mineral Deposits, 37(2): 225-245 (in Chinese with English abstract).
Dingwell D B, Virgo D. 1988. Viscosities of melts in Na2O-FeO-Fe2O3-SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts[J]. Geochimica et Cosmochimica Acta, 52: 395-403. DOI:10.1016/0016-7037(88)90095-6
Eby G Nelson. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134. DOI:10.1016/0024-4937(90)90043-Z
Eby G Nelson. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 20: 641. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Gu Yuchao, Chen Renyi, Jia Bin, Song Wanbing, Yu Changtao, Ju Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101-117 (in Chinese with English abstract).
Guan Xunfan, Zhou Yonging, Xiao Jinghua, Liang Shuzhao, Li Jinmao. 1985. Yinyan porphyry tin deposit-A new type of tin deposits in China[J]. Acta Geologica Sinica, 2: 73-107 (in Chinese with English abstract).
Heinrich C A. 1986. Thermodynamic predictions of hydrothermal chemistry of arsenic and their significance for the paragenic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits[J]. Economic Geology, 81: 511-529. DOI:10.2113/gsecongeo.81.3.511
Hong Dawei, Wang Shi, Xie Xilin, Zhang Jisheng. 2000. Gnesis of positive ε(Nd, t) granitoids in the DaHingGanMTS-Mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract).
Hoskin Paul W O, Schaltegger Urs. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev. Miner.Geochem., 53: 27-62. DOI:10.2113/0530027
Hou Zengqian, Yan Zhiming. 2009. Porphyry deposits in continental settings of China:Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83(12): 1779-1817 (in Chinese with English abstract).
Huang Huiqing, Li Xianhua, Li Wuxian., Li Zhengxiang. 2011. Formation of high 18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China:REPLY[J]. Geology, 39: 903-906. DOI:10.1130/G32080.1
Irvine T N, Baragar W R A. 1971. A Guide to the chemical classification of the common volcanic rocks[J]. Revue Canadienne Des Sciences De La Terre, 8: 523-548.
Jahn Bor Ming, Wu Fuyuan, Capdevila R, Martineau F, Zhao Zhenhua, Wang Yixian. 2001. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 59: 171-198. DOI:10.1016/S0024-4937(01)00066-4
Kerr Andrew, Fryer Brian J. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 104: 39-60. DOI:10.1016/0009-2541(93)90141-5
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38: 371-391. DOI:10.1093/petroj/38.3.371
Liao Zhen, Wang Yuwang, Wang Jingbin, Long Liling, Zou Tao, Zhang Huiqiong, Li Dedong. 2012. LA-ICP-MS zircon U-Pb dating of dykes of Dajing tin-polymetallic deposit, Inner Mongolia, China, and its geological significance[J]. Acta Petrologica Sinica, 28(7): 2292-2306 (in Chinese with English abstract).
Liu Huaijin, Yang Yongqiang, Sun Yinqiang, Xin Jiang, Wen Haicheng, Li Hao. 2016. The primary halo characteristics of Bianjiadayuan Pb-Zn-Ag polymetllic deposit in Inner Mongolia China and ore prediction to depth[J]. Contributions to Geology and Mineral Resources Research, 31(2): 245-252 (in Chinese with English abstract).
Liu Xin, Wan Jingbin, Zhu Xinyou, Sun Yalin, Jiang Haoyuan, Jiang Binbin, Wang Hai, Cheng Xiyin. 2017. Mineralization of the Baiyinchagan tin polymetallic deposit in Inner Mongolia Ⅰ:Metallic mineral assemblage and metallogenic mechanism[J]. Mineral Exploration, 8(6): 967-980 (in Chinese with English abstract).
Liu Yifei, Jiang Sihong, Bagas Leon. 2016a. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W)deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150-173. DOI:10.1016/j.oregeorev.2015.12.006
Liu Yongjiang, Li Weimin, Feng Zhiqiang, Wen Quanbo, Neubauer Franz, Liang Chenyue. 2016b. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43.
Mei Wei. 2014. Mesozoic Magamatism and Mineralization in Northern Chifeng, Inner Mongolia[D]. China University of Geology (in Chinese with English abstract).
Middlemost Eric A K. 1994. Naming materials in the magma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 37: 215-224.
Ouyang Hegen, Mao Jingwen, Zhou Zhenhua, Su Huiming. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, Northeastern China[J]. Gondwana Research, 27: 1153-1172. DOI:10.1016/j.gr.2014.08.010
Pearce Julian A, Harris Nigel B W, Tindle Andrew G. 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 25: 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo Angelo, Taylor S. R. 1976. Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58: 63-81.
Ruan Banxiao, Lü Xinbiao, Liu Shentai, Yang Wu. 2013. Genesis of Bianjiadayuan Pb-Zn-Ag deposit in Inner Mongolia:Constraints from U-Pb dating of zircon and multi-isotope geochemistry[J]. Mineral Deposits, 32: 501-514 (in Chinese with English abstract).
Ruan Banxiao, Lü Xinbiao, Yang Wu, Liu Shentai, Yu Yingmin, Wu Chunming, Adam Munir Mohammed Abdalla. 2015. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China:Implications for tectonic setting and metallogeny[J]. Ore Geology Reviews, 71: 121-137. DOI:10.1016/j.oregeorev.2015.05.004
Shao Jian, Zhang Lüqiao, Mou Baolei. 2015. Magmatism in the Mesozoic extending orogenic process of DaHinggan MTS[J]. Earth Science Frontiers, 6(4): 339-346 (in Chinese with English abstract).
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42: 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Sun Yang, Ma Changqian, Liu Yuanyuan, She Zhenbing. 2011. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China[J]. Journal of Asian Earth Sciences, 42: 1117-1131. DOI:10.1016/j.jseaes.2011.06.007
Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos, 28: 151-179. DOI:10.1016/0024-4937(92)90029-X
Wang Changming, Zhang Shouting, Deng Jun. 2006. The metallogenic space-time structure of copper-polymetallic deposits in the southern segment of Da Hinggan Mountains, China[J]. Journal of Chengdu University of Technology, 33(5): 478-484 (in Chinese with English abstract).
Wang Guozheng. 2002. Baogaigou tin deposit-A higher temperature hydrothermal deposit of albitite and biotite quartzite types[J]. Geology and Prospecing, 38(2): 42-45 (in Chinese with English abstract).
Wang Qiang, Wyman Derek A, Li Zheng Xiang, Bao Zhi Wei, Zhao Zhen Hua, Wang Yi Xian, Jian Ping, Yang Yue Heng, Chen Lin Li. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research, 178: 185-208. DOI:10.1016/j.precamres.2010.02.004
Wang Tao, Guo Lei, Zhang Lei, Yang Qidi, Zhang Jianjun, Tong Ying, Ye Ke. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365-392. DOI:10.1016/j.jseaes.2014.10.005
Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli, Wang Xiaoliang. 2013. LA-ICP-MS Zircon U-Pb Dating, Geochemistry of the Intrusive Rocks from the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, China and Tectonic Implications[J]. Geotectonica et Metallogenia, 37(4): 730-742 (in Chinese with English abstract).
Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli. 2014. A study of isotope geochemistry and sources of ore-forming materials of the Bianiiadayuan silver polymetallic deposit in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288-1303 (in Chinese with English abstract).
Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli. 2014. U-Pb dating, geocchemistry and tectonic implications of Bianjiadayuan quartz, prophyry, Inner Mongolia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 654-665 (in Chinese with English abstract).
Wang Yu, Cai Tong, Baonaizhu, Li Wei, Nie Tao, Da Chaoyuan, Sun Yinqiang. 2014. Geological characteristic and control factors in Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia[J]. Journal of East China Institute of Technology, 37(2): 212-219 (in Chinese with English abstract).
Weidner Jerry R, Martin Robert F. 1987. Phase equilibria of a fluorinerich leucogranite from the St. Austell pluton, Cornwall[J]. Geochimica et Cosmochimica Acta, 51: 1591-1597. DOI:10.1016/0016-7037(87)90340-1
Whalen Joseph B, Currie Kenneth L, Chappell Bruce W. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95: 407-419.
Wong Jean, Sun Min, Xing Guangfu, Li Xian Hua, Zhao Guochun, Wong Kenny, Yuan Chao, Xia Xiaoping, Li Longming, Wu Fuyuan. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125-100 Ma and its tectonic significance for South China[J]. Lithos, 112: 289-305. DOI:10.1016/j.lithos.2009.03.009
Wu Fuyuan, Sun Deyou, Lin Qiang. 1999. Petrogenesis of the Phanerozoic granites and crustal growth inNortheast China[J]. Acta Petrologica Sinica, 15(2): 181-189 (in Chinese with English abstract).
Wu Fuyuan, Sun Deyou, Ge Wenchun, Zhang Yanbin, Grant Matthew L, Wilde Simon A, Jahn Bor Ming. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1-30. DOI:10.1016/j.jseaes.2010.11.014
Wu Yuanbao, Zheng Yongfei, Gong Bing, Tang Jun, Zhao Zifu, Cha Xiangping. 2004. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyan zone[J]. Acta Petrologica Sinica, 20(5): 1007-1024 (in Chinese with English abstract).
Yang Jin Hui, Wu Fu Yuan, Chung Sun Lin, Wilde Simon A, Chu Mei Fei. 2006. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89: 89-106. DOI:10.1016/j.lithos.2005.10.002
Zeng Weishun, Zhou Jianbo, Dong Ce, Cao Jialin, Wang Bin. 2014. Subduction record of Mongol-Okhotsk Ocean:Constrains from Badaguan metamorphic complexes in the Erguna massif, NE China[J]. Acta Petrologica Sinica, 30(7): 1948-1960 (in Chinese with English abstract).
Zhai Degao, Liu Jiajun, Yang Yongqiang, Wang Jianping, Ding Li, Liu Xingwang, Zhang Mei, Yao Meijuan, Su Li, Zhang Hongyu. 2012. Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe-Sn deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 31(4): 513-523 (in Chinese with English abstract).
Zhai Degao, Liu Jiajun, Cook Nigel J, Wang Xilong, Yang Yongqiang, Zhang Anli, Jiao Yingchun. 2018. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita: 1-20.
Zhai Degao, Liu Jiajun, Zhang Anli, Sun Yinqiang. 2017. U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn ±Cu ±Mo an polymetallic (Ag-Pb-Zn-Cu) vein mineralization at bianjiadayuan, inner mongolia, northeast China:Implications for discrete mineralization events[J]. Economic Geology, 112: 2041-2059. DOI:10.5382/econgeo.2017.4540
Zhang Qi. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 32(2): 267-274 (in Chinese with English abstract).
Zhang Qi, Ran Gao, Li Chengdong. 2012. A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
Zhang Qi, Wan Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).
Zhang Xizhou, Zhang Zhenbang. 2003. Geological Structure and Metrallogeny in the Southern section of DaXing'AnLing, Inner Mongolia[J]. Mineral Resources and Geology, 17(s1): 298-301 (in Chinese with English abstract).
Zhou Jianbo, Cao Jialin, Wilde Simon A, Zhao Guochun, Zhang Jinjiang, Wang Bin. 2015. Paleo-Pacific subduction-accretion:Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 33: 2444-2466.
Zhou Zhenhua, Mao Jingwen, Lyckberg, Peter. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China:Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272-286. DOI:10.1016/j.jseaes.2012.01.015
Zhou Zhenhua, Ouyang Hegen, Wu Xinli, Liu Jun, Che Hewei. 2014. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu-W polymetallic deposit in the Inner Mogolia and its gelogical significance[J]. Acta Petrologica Sinica, 30(1): 79-94 (in Chinese with English abstract).
Zhou Zhenhua, Wu Xinli, Ouyan Hegen. 2012. LA-ICP-MS zircon U-Pb dating and Hf isotope study of the plagioclase granite porphyry in the Lianhuashan Cu-Ag deposit of Inner Mongolia and its geological significance[J]. Geology in China, 39(6): 1472-1485 (in Chinese with English abstract).
Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Shunting. 2012. Characteristics of alkali feldspar granite in tungsten (tin) deposits of Nanling region[J]. Geology in China, 39(2): 359-381 (in Chinese with English abstract).
Zhu Xinyou, Zhang Zhihui, Fu Xu, Li Boyang, Wang Yanli, Jiao Shoutao, Sun Yalin. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188-208 (in Chinese with English abstract).
陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义[J]. 矿床地质, 37(2): 225-245.
顾玉超, 陈仁义, 贾斌, 宋万兵, 余昌涛, 鞠楠. 2017. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44: 101-117.
关勋凡, 周永清, 肖敬华, 梁树钊, 李金茂. 1985. 银岩斑岩锡矿——中国锡矿床的一种新类型[J]. 地质学报: 73-107.
洪大卫, 王式, 谢锡林, 张季生. 2000. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘: 441-456.
侯增谦, 杨志明. 2009. 中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 83: 1779-1817. DOI:10.3321/j.issn:0001-5717.2009.12.002
廖震, 王玉往, 王京彬, 龙灵利, 邹滔, 张会琼, 李德东. 2012. 内蒙古大井锡多金属矿床岩脉LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 岩石学报, 28: 348-362.
刘怀金, 杨永强, 孙引强, 辛江, 温海成, 李浩. 2016. 内蒙古边家大院铅锌银多金属矿床原生晕地球化学特征及深部找矿预测[J]. 地质找矿论丛, 31: 245-252. DOI:10.6053/j.issn.1001-1412.2016.02.012
刘新, 王京彬, 祝新友, 孙雅琳, 蒋昊原, 蒋斌斌, 王海, 程细音. 2017. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅰ:金属矿物组合及其成因机制[J]. 矿产勘查, 8: 967-980. DOI:10.3969/j.issn.1674-7801.2017.06.007
梅微. 2014.内蒙古赤峰北部地区中生代岩浆作用与成矿研究[D].中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1015661070.htm
阮班晓, 吕新彪, 刘申态, 杨梧. 2013. 内蒙古边家大院铅锌银矿床成因——来自锆石U-Pb年龄和多元同位素的制约[J]. 矿床地质, 32: 501-514. DOI:10.3969/j.issn.0258-7106.2013.03.004
邵济安, 张履桥, 牟保磊. 2015. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 6: 339-346.
王国政. 2002. 宝盖沟锡矿-黑英岩钠长岩型高温热液矿床[J]. 地质与勘探, 38: 42-45.
王喜龙, 刘家军, 翟德高, 王建平, 张琪彬, 张安立. 2014a. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41: 1288-1303.
王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立. 2014b. 内蒙古边家大院矿区石英斑岩U-Pb年代学、岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 33: 654-665.
王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立, 王晓亮. 2013. 内蒙古边家大院铅锌银矿区侵入岩LA-ICP-MS锆石UPb年龄、地球化学特征及其地质意义[J]. 大地构造与成矿学, 37: 730-742.
王宇, 蔡彤, 包乃柱, 黎伟, 聂涛, 达朝元, 孙引强. 2014. 内蒙古边家大院铅锌银矿地质特征和控矿因素[J]. 东华理工大学学报(自然科学版), 37: 212-219. DOI:10.3969/j.issn.1674-3504.2014.02.016
王长明, 张寿庭, 邓军. 2006. 大兴安岭南段铜多金属矿成矿时空结构[J]. 成都理工大学学报(自然科学版), 33: 478-484. DOI:10.3969/j.issn.1671-9727.2006.05.008
吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15: 181-189.
吴元保, 郑永飞, 龚冰, 唐俊, 赵子福, 查向平. 2004. 北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成[J]. 岩石学报, 20: 1007-1024.
曾维顺, 周建波, 董策, 曹嘉麟, 王斌. 2014. 蒙古-鄂霍茨克洋俯冲的记录:额尔古纳地区八大关变质杂岩的证据[J]. 岩石学报, 30: 1948-1960.
翟德高, 刘家军, 杨永强, 王建平, 定立, 刘星旺, 张梅, 要梅娟, 苏犁, 张红雨. 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 31: 513-523. DOI:10.3969/j.issn.1000-6524.2012.04.004
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J]. 岩石矿物学杂志, 32: 267-274. DOI:10.3969/j.issn.1000-6524.2013.02.014
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31: 621-626. DOI:10.3969/j.issn.1000-6524.2012.04.014
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22: 2249-2269.
张喜周, 张振邦. 2003. 内蒙大兴安岭南段地质构造与成矿[J]. 矿产与地质, 17: 298-301. DOI:10.3969/j.issn.1001-5663.2003.z1.011
周振华, 欧阳荷根, 武新丽, 刘军, 车合伟. 2014. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报, 30: 79-94.
周振华, 武新丽, 欧阳荷根. 2012. 内蒙古莲花山铜银矿斜长花岗斑岩LA-MC-ICP-MS锆石U-Pb测年、Hf同位素研究及其地质意义[J]. 中国地质, 39: 1472-1485. DOI:10.3969/j.issn.1000-3657.2012.06.002
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2012. 南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J]. 中国地质, 39: 359-381. DOI:10.3969/j.issn.1000-3657.2012.02.009
祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质: 188-208.