文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (3): 678-692  
0
引用本文
刘浪, 刘德民, 邵俊琦, 丁国立, 黄彬彬, 黄锦山. 2020. 云南会泽地区玄武粗安岩年代学、地球化学及构造演化[J]. 中国地质, 47(3): 678-692.  
Liu Lang, Liu Demin, Shao Junqi, Ding Guoli, Huang Binbin, Huang Jinshan. 2020. Geochronology, geochemistry and tectonic evolution of the basaltic trachyandesite in Huize, northeastern Yunnan Province[J]. Geology in China, 47(3): 678-692. (in Chinese with English abstract).  

云南会泽地区玄武粗安岩年代学、地球化学及构造演化
刘浪1, 刘德民1, 邵俊琦1, 丁国立2, 黄彬彬1, 黄锦山1    
1. 中国地质大学 (武汉) 地球科学学院, 湖北 武汉 430074;
2. 福建省地质调查研究院, 福建 福州 350013
摘要:滇东北会泽地区发现峨眉山玄武岩中沿NNE向发育的玄武粗安岩,通过详细的野外地质调查、镜下岩相学分析、锆石U-Pb定年以及岩石地球化学测试等方法,研究了该玄武粗安岩形成年龄,地球化学特征及其指示的构造演化过程。LA-ICP-MS锆石U-Pb年代学确定玄武粗安岩形成的加权年龄为(251.6±4.2)Ma(MSWD=0.20),蚀变年龄分别为(143.5±1.9)Ma和(150.5±2.4)Ma。岩石地球化学主量、稀土和微量元素测试表明,玄武粗安岩的SiO2含量在52.09%~54.10%,属于中基性火山岩;Mg#介于19.88~40.86,在TAS图解上整体显示为碱性玄武岩粗安岩系列;稀土元素和微量元素特征显示出会泽玄武粗安岩来自交代的富集地幔源区,岩浆演化过程中发生了一定的单斜辉石、斜长石和磁铁矿的分离结晶作用。会泽玄武粗安岩是峨眉山玄武岩的一部分,推断其为峨眉山地幔柱活动消亡期的产物。
关键词玄武粗安岩    二叠纪    地幔柱    板内环境    地质调查工程    会泽    云南    
中图分类号:P541;P581            文献标志码:A             文章编号:1000-3657(2020)03-0678-15
Geochronology, geochemistry and tectonic evolution of the basaltic trachyandesite in Huize, northeastern Yunnan Province
LIU Lang1, LIU Demin1, SHAO Junqi1, DING Guoli2, HUANG Binbin1, HUANG Jinshan1    
1. School of Earth Sciences, China University of Geosciences, Wuhan 430074, Hubei, China;
2. Fujian Institute of Geological Survey, Fuzhou 350013 Fujian, China
Abstract: Several small-scale basalt trachyandesite rock masses were found in NNE direction in Emeishan basalts of Huize area, northeastern Yunnan Province. Based on detailed field geological survey, microscopic petrographic analysis, zircon U-Pb dating and rock geochemical test, the authors studied the formation age and geochemical characteristics of these basalt trachyandesites and their tectonic evolution process. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of(251.6±4.2)Ma (MSWD=0.20) for the basalt trachyandesite, and the alteration ages are(143.5±1.9) Ma and(150.5±2.4) Ma, respectively. The content of SiO2 in basalt trachyandesite is between 52.09%-54.10%, implying that it belongs to the intermediate basic volcanic rock. The Mg# values of basalt trachyandesite are from 19.88 to 40.86, and the TAS diagram generally shows that it belongs to alkali basalt trachyandesite series. The characteristics of REE and trace elements show that the basalt trachyandesite of Huize was derived from enriched mantle source. In the process of magmatic evolution, a part of clinopyroxene, plagioclase and magnetite experienced fractional crystallization. It is considered that the basalt trachyandesite of Huize is a part of Emeishan basalts, and that it might have been the product of the extinction of Emeishan mantle plume.
Key words: basaltic trachyandesite    Permian    mantle column    plate internal environment    geological survey engineering    Huize    Yunnan Province    

1 引言

峨眉山玄武岩主要分布在中国西南云、贵、川三省(王登红, 2001; 宋谢炎等, 2002; 何斌等, 2003)。前人对峨眉山玄武岩进行了大量研究,并积累了丰富的研究资料(汪云亮等,1987; 侯增谦等, 1996; 宋谢炎等, 1998, 2001; 李文博等,2002; 肖龙等, 2003; 王伟等, 2006; 聂爱国等, 2007; 赖绍聪等, 2009; 王富东等, 2011; 汪云峰, 2013; 肖龙等, 2013; 高学震, 2014)。普遍认为峨眉山玄武岩为基性-超基性镁铁质熔岩,是地幔柱与岩石圈相互作用的结果,其喷发时限为259 Ma左右,根据Ti的含量不同,可将峨眉山玄武岩划分为高钛玄武岩和低钛玄武岩(徐义刚等, 2001)。峨眉山玄武岩的研究对滇东北地区晚古生代构造演化具有重要作用。

滇东北发现一系列受NNE向断裂控制的次玄武岩,结合其岩相学特征将其定名为玄武粗安岩。会泽玄武粗安岩侵入时代应与断裂某一期活动相一致,但对其研究仅1:20万东川幅区调资料存在简单叙述,仅将其确定为年代不明的次玄武岩。本文以会泽地区玄武粗安岩为研究对象通过同位素年代学、地球化学的手段,来探讨会泽地区玄武粗安岩与峨眉山玄武岩之间的关系,阐明该区晚古生代构造-岩浆活动特点及其壳幔作用过程,为进一步研究滇东北地区晚古生代峨眉山地幔柱消亡和演化过程提供新资料和年代学证据。

2 区域地质背景及岩相学特征

研究区位于云南东北部,处于地质演化复杂、多期构造叠加的构造结合部位,经历了长期构造演化和多期构造叠加,发育多种类型的构造形迹,在最终的压扭环境下形成大量南北走向和北东走向的走滑断层系统(图 1a)。

图 1 峨眉山玄武岩分布图(a, 据何斌等,2006;李宏博等,2012修改)、研究区地质简图(b)、岩体剖面图(c) (a):1—玄武岩;2—断层及编号;3—地名。(b, c):1—中元古界昆阳群鹅头山组;2—南华系澄江组;3—震旦系陡山沱组;4—震旦系灯影组;5—寒武系筇竹寺组;6—泥盆系宰格组;7—石炭系;8—二叠系梁山组;9—二叠系阳山组;10—峨眉山玄武岩三段;11—峨眉山玄武岩四段;12—三叠系飞仙关组;13—三叠系嘉陵江组;14—三叠系关岭组;15—玄武粗安岩;16-白云质灰岩;17—玄武粗安岩;18—砂岩;19—逆断层;20—断层线;21—整合接触界线;22—角度不整合界线;23—采样点;F1—怒江断裂;F2—柯街断裂;F3—澜沧江断裂;F4—金沙江—哀牢山断裂;F5—木里—丽江断裂;F6—弥渡—华坪断裂;F7—甘孜—理塘断裂;F8—龙门山—箐河断裂;F9—炉霍—道孚断裂;F10—雅砻江—绿汁江断裂;F11—安宁河—益门断裂;F12—小江断裂;F13—华山断裂;F14—垭都—紫云断裂;F15—师宗—弥勒断裂 Fig. 1 Distribution of basalts in the Emeishan (a, after He Bin et al., 2006; Li Hongbo et al., 2012); geological schematic map of the study area (b); section of rock mass (c) Fig. 1a: 1-Basalt; 2-Fault and its serial number; 3-Place name.Fig. 1b, c, 1-Mesoproterozoic Etoushan Formation of Qunyang system; 2-Chengjiang Formation of Nanhua system; 3-Doushantuo Formation of Sinian; 4-Dengying Formation of Sinian; 5-Qiongzhusi Formation of Sinian; 6- Zaige Formation of Devonian; 7- Carboniferous; 8- Liangshan Formation of Permian system; 9- Yangshan Formation of Permian; 10-Third member of Emeishan basalt; 11-Fourth member of Emeishan basalt; 12-Feixianguan Formation of Triassic; 13-Jialingjiang Formation of Triassic; 14- Guanling Formation of Triassic; 15- Basalt trachyandesite; 16- Dolomitic limestone; 17- Basalt trachyandesite; 18- Sandstone; 19-Thrust fault line; 20- Fault line; 21- Contact line; 22-Angular unconformity boundary; 23-Sampling point. F1-Nujiang fault; F2-Kejie fault; F3- Lancang River fault; F4- Jinshajiang- Ailaoshan fault; F5- Muli- Lijiang fault; F6- Midu- Huping fault; F7- Garze- Litang fault; F8-Longmenshan-Qinghe fault; F9-Luhuo-Daofu fault; F10-Yalongjiang-Luzhi River fault; F11-Anlingjiang-Yimen fault; F12-Xiaojiang fault; F13-Huashan fault; F14-Yadu-Ziyun fault; F15-Shizong-Maitreya fault

玄武粗安岩出露于下寒武统筇竹寺组粉砂岩中,东侧为寒武系筇竹寺组粉砂岩,西侧为中三叠统关岭组白云质灰岩,与两侧地层为断层接触(图 1b)。东侧寒武系筇竹寺组粉砂岩俯冲玄武粗安岩之上,粉砂岩层发育牵引褶皱及破碎带。玄武粗安岩上覆第四系黏土,表面多被风化为土黄色,其新鲜面灰绿—深绿色,局部有零星杏仁体。玄武粗安岩受北东向断裂控制,产出于NNE向断裂之中,走向与断裂方向一致,NNE向断层后期被NNW向断层截切。岩体剖面显示火山岩体主要有两处露头,中间为破碎带隔开,岩体表面风化严重,风化面为土黄色,在两处分别系统采取新鲜样品(图 1c)。

会泽玄武粗安岩野外露头呈致密块状构造,间或有杏仁状构造,斑状结构,手标本可见杏仁体(图 2a),杏仁体主要为绿泥石、方解石、石英等。其新鲜面呈灰绿色,少斑结构,斑晶主要为斜长石、辉石(图 2b)。斑晶(<10%)由斜长石和辉石组成,斜长石半自形板状,零星分布,粒度为1~1.5 mm;单斜辉石斑晶呈半自形短柱状或粒状,内部发育不规则裂隙,粒度多在0.5~1 mm,呈单颗粒无序分布。大部分辉石斑晶有较强的绿泥石化蚀变。基质主要由针状斜长石微晶(50%~65%)无序分布为间粒结构,斜长石间隙分布着辉石颗粒和磁铁矿颗粒,具有较强的绿泥石化、绿帘石化,部分薄片基质为似交织结构,斜长石微晶具有弱定向(图 2c)。有部分薄片可见捕掳晶,内部物质主要为长石、均质体、玻璃质,周边分布绿泥石(图 2d)。

图 2 会泽玄武粗安岩岩相学特征图 a—玄武粗安岩手标本;b—玄武粗安岩少斑结构和间粒结构(单偏光);c—玄武粗安岩基质矿物组成(单偏光);d—玄武粗安岩捕掳晶(正交光)。Pl—斜长石;Chl—绿泥石;Px—辉石;Mt—磁铁矿;Kf—钾长石 Fig. 2 Petrographic characteristics of basaltic trachyandesite a-Basaltic trachyandesite specimens; b-Basaltic trachyandesite with less plaque structure and intergranular structure (plainlight); c-Basaltic trachyandesite matrix mineral (plainlight); d-Basaltic trachyandesite trapping crystal (crossed nicols). Pl-Plagioclase; Chl-Chlorite; Px-Pyroxene; Mt-Magnetite; Kf-Kotassium feldspar
3 分析方法

LA-ICP-MS锆石U-Pb定年样品挑选工作在河北廊坊诚信地质矿产服务有限公司完成。首先将测年样品用常规法进行人工或碎样机碎样至100~200目,经过几次淘洗再进行重力分选法将比重小的颗粒分离出去,再采用电磁分选法对导电性或具磁性的矿物分离出去,在双目镜下挑选颗粒比较完整的锆石。对所采的测年样品在武汉上普公司实验室采用无色透明的环氧树脂进行固定制成圆形样品制靶,采用扫描电镜加载阴极发光进行透射光、反射光照相和阴极发光图(CL图)。根据锆石阴极发光图(CL)选择锆石内部环带清晰、无包裹体、无裂纹,锆石表面干净的锆石进行锆石微区分析。锆石U-Pb同位素分析在上普测试中心X Series2 LA-ICP-MS仪器上进行,成分标定样为Nist 610、同位素比值标样为91500。(Ludwig, 2003; Liu et al., 2008)对离线数据的处理使用ICPMSDataCal, 各样品的加权平均年龄计算及和谐图的绘制采用Isplot 3.0程序。

岩石全岩分析采集的样品经人工处理,选取8个新鲜无蚀变的玄武粗安岩样品进行全岩分析,由广州地球化学研究所实验室完成。主量元素采用X射线荧光光谱法(XRF)(仪器型号为RIX2100)分析完成,微量及稀土元素采用等离子体质谱仪(ICPMS)(仪器型号为Agilent7500a)分析,实验流程及测试方法同文献(刘颖等,1996),采用国际标准AGV-2,BHVO-2,BCR-2,GSR-3做分析样品元素浓度的校正标准,分析精度一般优于5%。

4 分析结果 4.1 锆石U-Pb年代学

除了2颗锆石具有弱分带,内含包裹体和气孔,边部可见再生边等热液锆石特征外,其余锆石以柱状为主,多为浅色、透明晶体,长度变化于55~110 μm,长宽比值介于1:1~4:1,晶体自形程度都较高,阴极发光图像(图 3)显示所有锆石具有较为典型的岩浆震荡环带,暗示其为岩浆锆石。部分锆石内部裂隙较发育且结构不清晰,另外,部分锆石由于铅丢失等原因,导致谐和度不高,为了保证数据的质量,这些都不参与最终年龄计算。参与计算锆石谐和度均大于90%。

图 3 会泽玄武粗安岩CL图像及U-Pb年龄 Fig. 3 CL image and zircon U-Pb age of basaltic trachyandesite in Huize

根据锆石的年龄区间以及CL图像特点,可以将其分为3组。第一组为4个较老的锆石点(17-20号点),其年龄分别为(796.3±6.9)Ma、(2486.0±13.1)Ma、(2508.2±19.7)Ma、(2124.5±25.1)Ma,锆石发育振荡环带,Th/U值为0.33~0.97,为捕获的岩浆锆石。第二组8个测点(1-8号点)206Pb/238U年龄值介于(248.5±3.8)Ma~(256.3±1.3)Ma,加权平均年龄为(251.6±4.2)Ma(MSWD=0.20),长-短柱状,Th/U值为0.38~1.79,锆石发育振荡环带,内部环带宽缓,边缘细密,为典型的岩浆锆石。第三组为2个年轻的锆石点(15、16号点),测得锆石年龄为(143.5±1.9)Ma、(150.5±2.4)Ma,为半自形,具有弱分带,边部见再生边,且其Th、U、Th/U值明显大于锆石,为热液蚀变锆石。因此,会泽玄武粗安岩存在3种锆石锆石,分别为较老的捕获岩浆锆石、岩浆锆石及较新的热液蚀变锆石(图 4)。

图 4 会泽玄武粗安锆石U-Pb年龄谐和图 Fig. 4 Zircon U-Pb concordia age diagram of basaltic trachyandesite in Huize
4.2 主量元素特征

从岩石样品主量元素分析结果(表 1)可知,8件样品化学成分上SiO2含量变化在52.09%~54.10%,属于中基性火山岩。CaO含量变化1.96%~3.29%,MgO含量变化在1.92%~3.47%,Na2O含量变化在5.27% ~5.94%,K2O含量变化在0.77% ~2.05%,Na2O/ K2O比值2.57~7.47,K2O含量低,显示出钠质火山岩特征。全碱(Na2O+K2O)含量变化在6.52%~7.32%。在火山岩SiO2-(Na2O+K2O)(TAS)图解中(图 5a),8件样品均落在玄武粗安岩区域,并落在碱性玄武岩系列与亚碱性玄武岩系列界线附近及以上,整体属于碱性玄武岩系列。在SiO2-K2O图解中(图 5b),有5件样品落在钙碱性系列区域,1件落在高钾钙碱性系列区域,2件落在两者分界线上,因此将会泽玄武粗安岩归入钙碱性火山岩系列。

表 1 滇东北会泽玄武粗安岩(D6211)锆石U-Pb定年分析结果 Table 1 U–Pb dating results of zircon U-Pb from the Huize basalt trachyandesite (D6211) in northeast Yunnan
图 5 玄武粗安岩SiO2-(Na2O+K2O)图解(a, 底图据Lebas et al., 1986)及玄武粗安岩SiO2-K2O图解(b, 底图据Hastie et al., 2007 Fig. 5 SiO2- (Na2O + K2O) diagram of basaltic trachyandesite (a, after Lebas et al., 1986) and SiO2-K2O diagram of basaltic trachyandesite (b, after Hastie et al., 2007)
4.3 稀土元素特征

玄武粗安岩在球粒陨石标准化的稀土元素模式图中(图 6a),玄武粗安岩配分曲线表现为向右陡倾,斜率大致相等,表明该岩石轻、重稀土元素之间分馏程度大,轻稀土元素(LREE)较富集,而重稀土元素(HREE)亏损,与峨眉山玄武岩(丽江、会泽)、正常洋中脊玄武岩(N-MORB)及洋岛玄武岩(OIB)标准化稀土元素配分曲线对比,明显区别于轻稀土亏损的洋中脊玄武岩(N-MORB),也区别于轻稀土元素向右陡倾而重稀土元素相对平坦的汇聚板块边缘玄武岩的稀土元素配分模式,而与峨眉山玄武岩稀土配分曲线十分相似,共同具有洋岛玄武岩(OIB)相似的配分趋向模式,显示为板内玄武岩的特征。在玄武粗安岩原始地幔标准化微量元素蛛网图(图 6b)上,会泽玄武粗安岩与峨眉山玄武岩微量元素配分曲线总体变化趋势一致,可认为会泽玄武粗安岩划分为峨眉山玄武岩的一部分。

图 6 玄武粗安岩球粒陨石标准化稀土元素配分(a)及原始地幔标准化微量元素蛛网(b)(标准值据Winchester and Floyd, 1977 Fig. 6 Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spider diagram(b)for the basaltic trachyandesite (standard value after Winchester and Floyd, 1977)
4.4 微量元素特征

玄武粗安岩微量元素结果(表 2)进行分析,原始地幔标准化微量元素蛛网图(图 6b)上,会泽玄武粗安岩与峨眉山玄武岩微量元素配分曲线总体变化趋势相似。富集大离子亲石元素(LILE),如Ba、Rb、K、Pb等,而高场强元素(HFSE)略为亏损,如Nb、Zr、Ti、Hf出现负异常,这些特征使之明显区别于洋中脊玄武岩(E-MORB和N-MORB),具有洋岛玄武岩的特征。Zr/Nb值6.74~7.64(均值7.24),La/Nb值1.20~1.44(均值1.35),Ba/Nb值16.16~43.18(均值27.98),值6.74~7.64(均值7.24),Ba/Th值126.73~308.48(均值202.21),Rb/Nb值0.54~1.74(均值1.01),Th/Nb值0.12~0.15(均值0.14),Th/La值0.09~0.12(均值0.10),Ba/La值12.90~30.80(均值20.71)(表 3),均显示洋岛火山岩的地球化学特征(Baker et al., 1994)。

表 2 会泽玄武粗安岩样品主量元素(%)和微量元素(10-6)分析结果 Table 2 Major elements (%) and trace elements (10-6) analytical results of Huize basaltic trachyandesite samples
表 3 研究区玄武岩和OIB端元及各主要化学储库不相容元素比值 Table 3 Basalt and OIB end elements and incompatible element ratios in major chemical reservoirs in the study area
5 讨论 5.1 锆石年龄

会泽玄武粗安岩存在3种类型锆石,分别为捕获的岩浆锆石、岩浆锆石及热液蚀变锆石。其中,4颗捕获的岩浆锆石其年龄分别为(796.3±6.9)Ma、(2486.0±13.1)Ma、(2508.2±19.7)Ma、(2124.5±25.1)Ma。据甘晓春等(1996)对华南地区火成岩中捕获锆石U-Pb定年表明,华南地区火成岩中普遍存在太古宙—古元古代捕获锆石,最老年龄达3.1 Ga,并且年龄主要集中在1.8~2.1 Ga、~2.2 Ga、~2.5 Ga、~2.7 Ga、~3.1 Ga,认为该区深部地壳在古元古代—太古宙存在物质再循环(杜远生, 2013),该组年龄较大的3颗锆石可与之对应,说明火山作用发生在古老的结晶基底。

2颗热液锆石,年龄分别为(143.5 ± 1.9)Ma、(150.5±2.4)Ma,内部可见部分原锆石残留,可知不是从热液直接结晶出来的锆石,而是对前期锆石改造形成的。因此,对其边部热液影响较彻底区域进行测年得到的年龄可代表热液活动的时间(毕诗健等, 2008; 李长民, 2009; 李长民等, 2010)。

5.2 分离结晶作用

会泽玄武粗安岩样品的Cr、Ni值(Ni=30.5×10-6 ~53.5×10-6; Cr=37×10-6 ~ 56×10-6),低于原生玄武质岩浆(Ni=300 × 10-6~400 × 10-6; Cr=300 × 10-6~500×10-6),以及较低的Mg#值(0.20~0.41,均值0.34),也暗示了岩浆演化过程中存在的分离结晶现象(Frey et al., 1978; Morgan et al., 2013)。

在MgO与其他氧化物之间协变关系图解(图 7)中,Ni、Cr和MgO的正相关关系,Ni、Cr明显亏损表明岩浆形成过程中经历了橄榄石和单斜辉石的分离结晶(Green, 1980),CaO/Al2O3与MgO呈正相关,也表明存在单斜辉石的分离结晶(Green, 1980)。正常情况下,MgO与Fe2O3应该呈正相关,但在本区部分样品却呈负的相关性,说明本区含铁矿物分离结晶程度较强,这与岩相学研究中磁铁矿存在相一致。一般来讲,从玄武质岩浆分离结晶形成安山质岩浆的过程中,磁铁矿的分离起了重要作用,它导致安山质岩浆中铁的亏损和硅的富集,使岩浆由富铁向富碱方向演化的。

图 7 会泽玄武粗安岩MgO与其他氧化物及微量元素协变关系图 Fig. 7 Covariation relationship between MgO and other oxides and trace elements in Huize basaltic trachyandesite

此外,样品Sr强烈亏损,表明有斜长石的分离结晶,岩相学研究中存在斜长石斑晶,但含量较少,这与Eu没有出现明显的负异常相符,说明可能Sr强烈亏损很大程度和交代蚀变作用有关。

5.3 源区分析

由稀土元素配分形式图和微量元素比值蛛网图蛛网图可知会泽玄武粗安岩与洋岛玄武岩(OIB)有相似的分布特征。轻稀土元素La与稀土元素Sm在石榴石和尖晶石中都为不相容元素,其丰度与部分熔融有关,而中稀土元素Sm相对重稀土元素Yb富集程度取决于源区是否有石榴子石残留相的存在,因为重稀土更倾向富集于石榴子石相。且与岩浆源区相比较,分离结晶作用对La/Sm以及Sm/Yb比值影响较小,所以利用它们的比值可以了解岩浆源区的性质和部分熔融程度(张招崇等, 2004, 2005)。样品具有高的La/Sm比值(3.56~4.49)和Sm/Yb比值(3.15~3.58),在La/Sm-Sm/Yb图中(图 8),样品投在由石榴石二辉橄榄岩组成的原始地幔熔融线上,指示其源区是由接近原始地幔成分的石榴石二辉橄榄岩低程度熔融形成的,同时,样品轻稀土元素富集重稀土亏损,并有较高的P2O5含量和La/Yb比值,也佐证了源区有富含重稀土的石榴子石残留,所有这些特征说明会泽玄武粗安岩,来自和OIB相似的地幔源区。

图 8 玄武粗安岩(La/Sm)-(Sm/Yb)图解(底图据Mahoney et al., 1997 PM—原始地幔;DMM—亏损地幔;CLM—大陆岩石圈地幔;LC—下地壳;CC—整个地壳;UC—上地壳 Fig. 8 (La / Sm)-(Sm / Yb) diagram of basaltic trachyandesite (after Mahoney et al., 1997) PM-Primitive mantle; DMM-Depleted mantle; CLM-Continental lithosphere mantle; LC-Lower crust; CC-Whole crust; UC-Upper crust
5.4 成岩环境

研究区玄武粗安岩轻稀土元素富集,重稀土平坦的特征,使其明显区别于来自亏损地幔的洋中脊玄武岩(MORB),而具有板内玄武岩的一般特征。

高场强元素属非活动性元素,对岩浆的结晶分离和同化混染反应不灵敏,受蚀变影响也较小。因此,用Ti、Zr、Y等元素能有效地判别岩浆喷发的构造环境,其成分很大程度上代表了地幔源区的成分。进一步对玄武粗安岩进行构造环境判别投图分析,Ti-Zr-Y图解最能有效地板内玄武与其它板块边缘玄武岩(洋中脊玄武岩、火山弧玄武岩)(Pearce et al., 1973),在Ti/100-Zr-Y*3图解中,大多数样品均落于板内玄武岩区域内(图 9c),有个别落在岛弧拉斑玄武岩和板内玄武岩分界线上;在Zr/Y-Zr图解中样品点全部落入板内玄武岩区域(图 9d);在Hf/3-Th-Nb/16图解中,所有样品均落在了板内碱性玄武岩与E-MORB和板内拉板玄武岩的交界处(图 9a)。在Nb*2-Zr/4-Y图解中,所有样品都集中投入到板内碱性玄武岩和板内拉斑玄武岩区(图 9b);在Th/Hf-Ta/Hf图解中,所有样品几乎都落在了地幔柱玄武岩区和陆内裂谷玄武岩边界附近,可以认为是主要受地幔柱影响的,岩石圈在拉张减压下大陆裂谷的产物(图 9e)。在Th/Yb-Ta/Yb图解中,样品主要落在介于板内玄武岩和活动大陆边缘玄武岩之间,表示岩浆起源于富集型地幔(宋谢炎等,2001)(图 9f)。

图 9 成岩环境图解 a—Th-Hf-Nb图解(据Pearce et al., 1973); b—Nb-Zr-Y图解(据Meschede, 1986); c—Ti-Zr-Y图解(据Meschede, 1986); d—Zr/Y-Zr图解(据Pearce et al., 1973); e—Ta/Hf-Th/Hf图解(据Pearce et al., 1973); f—Th/Yb-Ta/Yb图解(据Pearce, 1982 Fig. 9 Diagenetic environment diagram a-Th-Hf-Nb diagram (after Pearce et al., 1973); b-Nb-Zr-Y diagram (after Meschede, 1986); c-Ti-Zr-Y diagram (after Meschede, 1986); d-Zr / Y-Zr diagram (after Pearce et al., 1973); e-Ta / Hf-Th / Hf Graphic illustration (after Pearce et al., 1973); f-Thze / Yb-Ta / Yb graphic (after Pearce, 1982)

综合以上几种图解及微量元素特征,共同显示会泽玄武粗安岩主要形成于板内拉张环境,与二叠纪地幔柱活动相关。

5.5 与峨眉山玄武岩的关系

传统意义上峨眉山大火成岩省主体分布在西北界龙门山—小箐河深大断裂,西南界金沙江—哀牢山—红河断裂,东南界师宗—弥勒断裂,向东延伸到贵阳以西罗泽河—紫云一带的近似菱形区域内。何斌等根据玄武岩下伏地层灰岩的剥蚀程度划分为内、中、外三带(何斌等, 2003),本文所研究的会泽玄武粗安主要位于大火成岩省内带南缘,邻区火山岩几乎全部属于二叠纪峨眉山玄武岩的一部分。

从年代学特征来看,前人对峨眉山大火成岩省的各类岩石进行了大量的同位素测年工作,结果显示:其形成年龄变化范围很大(251~263 Ma),其主喷发期主要集中在257~259 Ma(徐义刚, 2002; 宋谢炎等, 2002; 范蔚茗等, 2004; 李宏博, 2012; 刘德民等,2019)。范蔚茗等(2004)认为ELIP的大规模快速喷发发生在253~256 Ma,251~253 Ma的中酸性岩石代表了该火成岩事件的晚期产物。本文对会泽玄武粗安岩锆石U-Pb测年获得(251.7±4.2)Ma成岩年龄,属于晚期产生的中基性岩浆。

通过前文分析发现,会泽玄武粗安岩与峨眉山玄武岩具有相似的地化特征(图 6)。由微量元素的构造环境判别分析可知会泽玄武粗安主要产于与峨眉山玄武岩相似的大陆裂谷环境,通过与峨眉山玄武岩的主微量元素、源区特征以及时空结构对比研究认为,会泽玄武粗安岩是峨眉山玄武岩的一部分,是地幔柱活动消亡期的地幔橄榄岩一定程度部分熔融的产物(刘德民等,2019)。

5.6 构造演化

综合峨眉山玄武岩的演化过程认为在早二叠世末,地幔柱开始活动,扬子地块西缘地壳发生大规模的伸展减薄。中二叠世以来,强烈的拉张作用和火山作用导致形成研究区大面积峨眉山玄武岩,玄武粗安岩在此背景下产出。该阶段区内主要出现两次较大的岩浆活动,其一为峨眉山玄武岩;其二为中二叠世晚期—晚三叠世早期基性、碱性岩脉的侵入,此时的岩浆活动加热了成矿流体,促使其能萃取围岩中的铅锌物质并进一步的富集。该期区内以地壳伸展减薄为主,整体表现为拉张环境(燕继红等, 2006刘德民等,2019)。由于晚三叠世的印支运动,区内构造背景由之前的拉张环境变化为挤压环境,并导致古特提斯洋关闭,进入陆内盆山演化阶段。燕山期,该地区受古太平洋板块的影响,陆内变形和褶皱作用进一步发展,并叠加在早期的构造带上。吴根耀等(2001)认为,扬子西缘川南—滇东褶皱冲断系定形于燕山期,并与古老深大断裂的再次活化有关。喜山期时,位于川滇地区西南部的印度板块和欧亚板块碰撞,导致滇东北地区一系列右行走滑断层,区内进一步发生挤压、褶皱、断裂活动,基本造就了现在的地质面貌(图 10)。

图 10 玄武粗安岩形成构造环境示意图 Fig. 10 Schematic diagram of basalt tectonic environment
6 结论

(1)会泽地区玄武粗安岩LA-ICP-MS锆石UPb测年,确定玄武粗安岩形成年龄为(251.6±4.2)Ma(MSWD=0.20),蚀变年龄分别为(143.5±1.9)Ma和(150.5±2.4)Ma。

(2)会泽地区玄武粗安属于高钛玄武粗安岩系列;是峨眉山玄武岩的一部分,具有较高的TiO2含量(约2.57%),为地幔柱消亡期(约251.6 Ma)地幔熔融程度较低的原始岩浆分离结晶形成的。

(3)滇东北地区在晚三叠世的印支期完成了由洋陆演化阶段向陆内盆山演化阶段的转换,构造体制由张裂环境转变为扭压环境,构造线方向开始转变为NE或NNE向,并在燕山期基本定型。

参考文献
Baker M B, Stolper E M. 1994. Determining the composition of highpressure mantle melts using diamond aggregates[J]. Geochimica et Cosmochimica Acta, 58(13): 2811-2827.
Bi Shijian, Li Jianwei, Zhao Xinfu. 2008. Hydrothermal zircon U-Pb dating and geochronology of quartz vein-type gold deposits:A review[J]. Geological Science and Technology Information, 27(1): 69-76 (in Chinese with English abstract).
Fernando C, John M. Hanchar, Paul W O Hoskin, Peter K. 2003. Altas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53: 469-500.
Frey F A, Green D H, Roy R D. 1978. Intergrated models of basalt petrogenesis:a study of quarti tholeiites to olivine melilities from south eastern Austrslis utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19: 463-513.
Gao Xuezhen. 2014. Study on metallogenic model of basalt copper deposits in mount Emei[J]. Sichuan Nonferrous Metals, (2): 26-29 (in Chinese with English abstract).
Green T H. 1980. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology and geochemistry[J]. Tectonophysics, 63(1): 367-385.
Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram[J]. Journal of Petrology, 48(12): 2341-2357.
He Bin, Xu Yigang, Xiao Long, Wang Kangming, Sha Shaoli. 2003. Generation and spatial distribution of the Emeishan large igneous province:new evidence from stratigraphic records[J]. Acta Geologica Sinica, 77(2): 194-202 (in Chinese with English abstract).
Hou Zengqian, Lu Jiren, Li Hongyang, Wang Denghong, Lü Qingtian. 1996. Tectonic evolution or the tethys in Southwestern China:Is controlled by plume tectonics[J]. Acta Geoscientia Sinica, 17(4): 439-453 (in Chinese with English abstract).
Lai Shaocong, Qin Jiangfeng, Zang Wenjuan, Li Xuejun. 2009. Geochemistry of the permian basalt and itsrelation ship with east Palaeo-Tethys evolution in Xiangyun area, Yunnan Province[J]. Journal of Northwest University (Natural Science Edition), 39(3): 444-452 (in Chinese with English abstract).
Lebas M J, LemaItre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkalisilica diagram[J]. Journal of Petrology, 27(3): 745-750.
Li Changmin. 2009. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 33(3): 161-174 (in Chinese with English abstract).
Li Changmin, Deng Jinfu, Su Shangguo, Li Huimin, Liu Xins. 2010. Two stage zircon U-Pb ages of the potash altered rock in the Dongping gold deposit, Hebei Province, and their geological implications[J]. Acta Geoscientica Sinica, 31(6): 843-852 (in Chinese with English abstract).
Li Hongbo. 2012. Mantle Plume Geodynamic significances of the Emeishan Large Igneous Province: Evidence from Mafic Dykes, Geochemistry and Stratigraphic Records[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
Li Wenbo, Huang Zhilong, Chen Jin, Han Runsheng, Guan Tao, Xu Cheng, Gao Derong, Zhao Deshun. 2002. Sources of ore-forming materials in Huize superlarge zinc-lead deposit, Yunnan province:evidence from contents of ore-forming element in strata and basalts from margin of ore district[J]. Mineral Deposits, (S1): 413-416 (in Chinese with English abstract).
Liu Demin, Guo Hongjie, Zhang Genyuan, Kong Linghao, Shao Junqi, Zhang Jinqi. 2019. Petrogenesis and Tectonic setting of High-Mg Volcanic Rock Xenoliths in Jianshui Area, South-eastern Yunnan, China[J]. Earth Sciences, 44(5): 1749-1760 (in Chinese with English abstract).
Liu Ying, Liu Haichen, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICPMS[J]. Geochimica, (6): 552-558 (in Chinese with English abstract).
Liu Yongshen, Hu Zhaochu, Gao Shan. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
Ludwig K R. 2003. Isoplot 3.0-A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Spec. Pub., (4): 1-70.
Mahoney J J, Coffin M F. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints[M]//Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 335-355 (in Chinese with English abstract).
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3/4): 207-218.
Morgan J P, Blackman D K, Sinton J M. 2013. Phase equilibria constraints on the origin of ocean floor basalts[M]//Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, 67-102.
Nie Aiguo, Qin Dexian, Guan Daiyun, Huang Zhiyong, Zhang Zhuru. 2007. A research on regional metallogenic contribution to gushing Emeishan basalt magma in western of Guizhou province[J]. Geology and Prospecting, 43(2): 50-54 (in Chinese with English abstract).
Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 19(2): 290-300.
Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[J]. Orogenic Andesites and Related Rocks: 528-548.
Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3): 325-94.
Song Xieyan, Wang Yulan, Cao Zhimin, Jin Jingfu, Li Juchu, Wen Chunqi. 1998. Emeishan basalts, Emei tafrogeny and mantle plume[J]. Geology Geochemistry, (1): 47-52 (in Chinese with English abstract).
Song Xieyan, Hou Zengqian, Cao Zhimin, Lu Jiren, Wang Yunliang, Zhang Chengjiang, Li Youguo. 2001. Geochemical characteristics and period of the Emeishan igneous province[J]. Acta Geologica Sinica, 75(4): 498 (in Chinese with English abstract).
Song Xieyan, Hou Zhengqian, Wang Yunliang, Zhang Chengjiang, Cao Zhimin. 2002. The mantle plume features of Emeishan basalts[J]. Journal of Mineralogy Petrology, 22(4): 27-32 (in Chinese with English abstract).
Wang Baolu, Lu Shikun, Hu Jugui. 2004. A tentative description of the Chuan-Dian-Qian rhombic massif[J]. Yunnan Geology, 23(2): 140-153 (in Chinese with English abstract).
Wang Denghong. 2001. Basic concept classification evolution of mantle plume and large scale mineralization probe into southwestern China[J]. Earth Science Frontiers, 8(3): 67-72 (in Chinese with English abstract).
Wang Fudong, Zhu Xiaoton, Han Tao, Wang Zhong-gang. 2011. An experimental study on genesis of Emeishan basalt-related native copper deposit in the Sichuan-Yunnan-Guizhou area[J]. Acta Mineralogica Sinica, 31(3): 322-327 (in Chinese with English abstract).
Wang Wei, Yang Ruidong, Bao Miao, Wei Huairui, Wang Qiang. 2006. Discussion on the mineralization associated with the wearthering crust on E'meishan basalt in Guizhou Province, China[J]. Journal of Guizhou University(Natural Science), 31(3): 322-327 (in Chinese with English abstract).
Wang Yunfeng. 2013. Studies on Petrology and Geochemistry of the Permian Basalts in Lijiang Area, Yunnan Province[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
Wang Yunliang, Hughes S S, Tong Chunhan, Xiong Shunhua, Li Juchu, Zhou Rongsheng, Li Jianlin. 1987. Geochemistry of the late permian Emeishan basalts and implication of subcotinental mantle evolution[J]. Journal of Chengdu College of Geology, (3): 62-77 (in Chinese with English abstract).
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 0-343.
Wu Genyao. 2001. Rejuvenation of fossil deep fractures and related Yanshanian intracontinental orogenics:Examples from south Sichuan east Yunnan and middle Yangtze areas[J]. Geotectonic et Metallogenia, 25(3): 246-253 (in Chinese with English abstract).
Xu Yigang. 2002. Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers (China University of Geosciences, Beijing), (4): 341-353 (in Chinese with English abstract).
Xiao Long, Xu Yigang, He Bin. 2003. Emei mantle plume-subcontinental lithosphere interaction:Sr-Nd and O isotopic evidences from low-Ti and high-Ti basalts[J]. Geological Journal of China Universities, 9(2): 207-217 (in Chinese with English abstract).
Xiao Long, Xu Yigang, Mei Houjun, Sha Shaoli. 2003. Geochemistry of Emeishan flood basalts at Binchuan area, SW China:Rock types and temporal evolution[J]. Chinese Journal of Geology, 38(4): 478-494 (in Chinese with English abstract).
Xu Yigang, Zhong Sunlin. 2001. The Emeishan large igneous province:Evidence for mantle plume activity conditions[J]. Geochimica, 30(1): 1-9 (in Chinese with English abstract).
Yan Jihong, Shen Jishan. 2006. Characteristics of Dongwu Movement in Southern China[J]. Land and Resources Guide, (S1): 7-9 (in Chinese with English abstract).
Yuan Honglin, Gao Shan, Liu Xiaoming, Li Huiming, Günther Detlef, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductivelu coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 28(3): 353-370.
Zhang Zhaochong, Wang Fusheng, Hao Yanli. 2004. Geochemistry of the picrites and associated basal ts from the emeishan large igneous basalt province and constraints on their source region[J]. Acta Geologica Sinica, 78(2): 171-180 (in Chinese with English abstract).
Zhang Zhaochong, Wang Fusheng, Hao Yanli. 2005. Picrites from the Emeishan Large Igneous Province:Evidence for the Mantle Plume Activity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17-22 (in Chinese with English abstract).
Zhou J X, Bai J H, Huang Z L. 2015. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China[J]. Journal of Asian Earth Sciences, 98(1): 272-284.
毕诗健, 李建威, 赵新福. 2008. 热液锆石U-Pb定年与石英脉型金矿成矿时代:评述与展望[J]. 地质科技情报, 27(1): 69-76.
范蔚茗, 王岳军, 彭头平, 苗来成, 郭峰. 2004. 桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J]. 科学通报, 49: 1892-1900.
高学震. 2014. 峨眉山玄武岩铜矿成矿模式研究[J]. 四川有色金属, (2): 26-29.
何斌, 徐义刚, 肖龙, 王康明, 沙绍礼. 2003. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报, 77(2): 194-202.
侯增谦, 卢记仁, 李红阳, 王登红, 吕庆田. 1996. 中国西南特提斯构造演化——幔柱构造控制[J]. 地球学报, 17(4): 439-453.
赖绍聪, 秦江锋, 臧文娟, 李学军. 2009. 滇西二叠系玄武岩及其与东古特提斯演化的关系[J]. 西北大学学报:自然科学版, 39(3): 444-452.
李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 33(3): 161-174.
李长民, 邓晋福, 苏尚国, 李惠民, 刘新秒. 2010. 河北省东坪金矿钾质蚀变岩中的两期锆石年代学研究及意义[J]. 地球学报, 31(6): 843-852.
李宏博. 2012.峨眉山大火成岩省地幔柱动力学: 基性岩墙群、地球化学及沉积地层学证据[D].中国地质大学(北京). http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364506.htm
李文博, 黄智龙, 陈进, 韩润生, 管涛, 许成, 高德荣, 赵德顺. 2002. 云南会泽超大型铅锌矿床成矿物质来源——来自矿区外围地层及玄武岩成矿元素含量的证据[J]. 矿床地质, (S1): 413-416.
刘德民, 郭宏杰, 张根袁, 孔令昊, 邵俊琦, 张婧琪. 2019. 滇东南建水地区高镁火山岩包体的成因和构造背景[J]. 地球科学, 44(5): 1749-1760.
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, (6): 552-558.
聂爱国, 秦德先, 管代云, 黄志勇, 张竹如. 2007. 峨眉山玄武岩浆喷发对贵州西部区域成矿贡献研究[J]. 地质与勘探, 43(2): 50-54.
宋谢炎, 王玉兰, 曹志敏, 金景福, 李巨初, 温春齐. 1998. 峨眉山玄武岩、峨眉地裂运动与幔热柱[J]. 地质地球化学, (1): 47-52.
宋谢炎, 侯增谦, 曹志敏, 卢纪仁, 汪云亮, 张成江, 李估国. 2001. 峨眉大火成岩省的岩石地球化学特征及时限[J]. 地质学报, 75(4): 498-506.
宋谢炎, 侯增谦, 汪云亮, 张成江, 曹志敏, 李佑国. 2002. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石, 22(4): 27-32.
王宝碌, 吕世锟, 胡居贵. 2004. 试论川滇黔菱形块体[J]. 云南地质, 23(2): 140-153.
王富东, 朱笑青, 韩涛, 王中刚. 2011. 川滇黔地区与峨眉山玄武岩有关的自然铜矿床成因实验研究[J]. 矿物学报, 31(3): 322-327.
王登红. 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J]. 地学前缘, 8(3): 67-72.
王伟, 杨瑞东, 鲍淼, 魏怀瑞, 王强. 2006. 贵州峨眉山玄武岩区风化壳与成矿关系[J]. 贵州大学学报:自然科学版, 23(4): 366-370.
汪云峰. 2013.云南丽江地区二叠纪玄武岩的岩石学和地球化学研究[D].中国地质大学(北京). http://cdmd.cnki.com.cn/Article/CDMD-11415-1014125394.htm
汪云亮, Hughes S S, 童纯菡, 熊舜花, 李巨初, 周蓉生, 李建林. 1987. 峨眉山玄武岩地球化学和大陆地幔演化[J]. 成都理工大学学报(自科版), (3): 62-77.
吴根耀. 2001. 古深断裂活化与燕山期陆内造山运动——以川南-滇东和中扬子褶皱-冲断系为例[J]. 大地构造与成矿学, 25(3): 246-253.
肖龙, 徐义刚, 梅厚钧, 沙绍礼. 2003. 云南宾川地区峨眉山玄武岩地球化学特征:岩石类型及随时间演化规律[J]. 地质科学, 38(4): 478-494.
肖龙, 徐义刚, 何斌. 2003. 峨眉地幔柱-岩石圈的相互作用:来自低钛和高钛玄武岩的Sr-Nd和O同位素证据[J]. 高校地质学报, 9(2): 207-217.
徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J]. 地球化学, 30(1): 1-9.
徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, (4): 341-353.
燕继红, 申继山. 2006. 中国南方东吴运动的特征[J]. 国土资源导刊, (S1): 7-9.
张招崇, 王福生, 郝艳丽. 2004. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J]. 地质学报, 78(2): 171-180.
张招崇, 王福生, 郝艳丽. 2005. 峨眉山大火成岩省中的苦橄岩:地幔柱活动证据[J]. 矿物岩石地球化学通报, 24(1): 17-22.