文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (3): 725-741  
0
引用本文
刘亮, 李江涛, 杨鹏涛, 何学锋, 苏画, 梁斌, 杨宇东, 江辉. 2020. 新疆博格达造山带石炭纪的构造属性:来自辉长岩年代学与地球化学的证据[J]. 中国地质, 47(3): 725-741.  
Liu Liang, Li Jiangtao, Yang Pengtao, He Xuefeng, Su Hua, Liang Bin, Yang Yudong, Jiang Hui. 2020. The Carboniferous tectonic attributes of the Bogda orogenic belt in Xinjiang: Evidence from gabbro chronology and geochemistry[J]. Geology in China, 47(3): 725-741. (in Chinese with English abstract).  

新疆博格达造山带石炭纪的构造属性:来自辉长岩年代学与地球化学的证据
刘亮1,2, 李江涛2,3, 杨鹏涛1,2, 何学锋1, 苏画1, 梁斌1,2, 杨宇东1, 江辉1    
1. 四川省地质矿产勘查开发局川西北地质队, 四川 绵阳 621010;
2. 西南科技大学环境与资源学院, 四川 绵阳 621010;
3. 乐山市自然资源局, 四川 乐山 614000
摘要:博格达造山带广泛分布着基性侵入岩体,其成因对正确认识该区地球动力学背景具有重要意义。鉴于此,本文对位于博格达造山带西段的辉长岩进行了岩石学、地球化学及锆石U-Pb年代学研究,探讨其岩石成因及构造属性,以期为解决博格达造山带的地质构造演化提供依据。岩石地球化学分析结果显示,辉长岩SiO2含量介于48.08%~51.03%,全碱(ALK)含量为3.09%~4.39%(小于5%),富CaO(6.87%~11.41%)、贫Al2O3(12.59%~18.49%),MgO含量介于3.78%~7.66%,Mg#值为31.75~65.73(均值为47.03),铝饱和指数值(A/CNK=0.60~0.80),属准铝质中钾钙碱性岩石系列。岩石稀土元素含量较低(36.30×10-6~147.72×10-6),轻重稀土之间以及轻重稀土内部不存在明显的分馏过程;微量元素中Th、Ta、Nb元素明显亏损,Ti元素亏损不明显以及U元素的轻微富集,具大陆裂谷岩浆活动特点。根据有关微量元素、稀土元素的相关图解比值,指示该区辉长岩岩浆源于亏损的岩石圈地幔,侵位过程中受到了地壳物质的混染,分异演化程度较低,为原始尖晶石相橄榄岩较高程度的部分熔融,形成于板内裂谷环境。此外,辉长岩LA-ICP-MS锆石U-Pb定年结果表明,其形成时代为(305.0±1.6)Ma(晚石炭世末期),处于博格达裂谷火山活动期晚期,为博格达西段裂谷作用由全面伸展向局限伸展转换的标志。综合区域地质资料分析,认为晚古生代期间(早石炭世—早二叠世),博格达造山带存在大面积的与裂谷演化有关的岩浆活动,造山带是在裂谷基础上发展起来,其形成与康古尔塔格洋推动着准噶尔—吐哈地块向北俯冲作用有关。
关键词辉长岩    地球化学    锆石U-Pb定年    大陆裂谷    地质调查工程    博格达造山带    
中图分类号:P588.12+4;P541            文献标志码:A             文章编号:1000-3657(2020)03-0725-17
The Carboniferous tectonic attributes of the Bogda orogenic belt in Xinjiang: Evidence from gabbro chronology and geochemistry
LIU Liang1,2, LI Jiangtao2,3, YANG Pengtao1,2, HE Xuefeng1, SU Hua1, LIANG Bin1,2, YANG Yudong1, JIANG Hui1    
1. Northwest Sichuan Geological and Mineral Exploration Party, Mianyang 621010, Sichuan, China;
2. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
3. Leshan Natural Resources Bureau, Leshan 614000, Sichuan, China
Abstract: Basic intrusive rock masses are extensively developed in Bogda orogenic belt, and their origin is of great significance to the correct understanding of the geodynamic background of this area. In this paper, the authors studied systematically petrology, geochemistry and zircon U-Pb geochronology of gabbro in the west of Bogda orogenic belt, in order to discuss their petrogenesis and tectonic significance and then to provide a basis for solving geological tectonic evolution of Bogda orogenic belt. Petrogeochemical analysis shows that their SiO2 values range from 48.08% to 51.03%, and ALK values range from 3.09% to 4.39% (less than 5%), and that they are rich in CaO (6.87%-11.41%), and depleted in Al2O3 (12.59%-18.49%). The MgO values range from 3.78% to 7.66%, Mg#=31.75-65.73 (47.03 on average), and A/CNK=0.60-0.80, indicating that the rocks belong to metaluminous intermediate K calc-alkaline rock series. The analysis also shows that they have low REE (36.30×10-6-147.72×10-6), with no obvious fractionation between light and heavy rare earth elements and between heavy rare earth elements. They are obviously depleted in Th, Ta, Nb elements, with no obvious loss of Ti and slight enrichment of U element, showing the characteristics of continental rift magmatism. According to the relevant diagram and the ratio of trace elements and rare earth elements, the gabbro magma probably originated from depleted lithospheric mantle, with the contamination of the crust; their differentiation evolution degree was low; they experienced higher degree of partial melting of the original phase spinel peridotite, and were formed in the intraplate rift environment. Moreover, gabbro LA-ICP-MS zircon U-Pb dating results show that the formation age is (305.0±1.6) Ma, suggesting the late period of the Bogda rift volcanic activity in late Carboniferous. All these data indicate that the west of Bogda rift underwent a conversion from the overall extension stage to the confined extension stage. The analysis of regional geological data shows that there existed a large rift evolution related to magmatism during Late Paleozoic (Early Carboniferous-Early Permian), and the orogenic belt was developed on the basis of rifting, with its formation related to the northward subduction of the Junggar-Turpan-Hami block driven by the Kangurtag Ocean.
Key words: gabbro    geochemistry    zircon U-Pb dating    continental rift    geological survey engineering    Bogda orogenic belt    

1 引言

中亚造山带作为是全球显生宙大陆增生最显著的地区和全球最大的增生造山带,记录了西伯利亚板块与塔里木及华北克拉通相向汇聚、古亚洲洋俯冲消减,以及多种构造单元相互碰撞、拼合的复杂演化历史(Badarch et al., 2002Xiao et al., 2004)。夹持于西伯利亚板块和塔里木板块间的东天山博格达造山带作为中亚造山带古亚洲洋构造演化的产物,保存了大量古亚洲洋板片俯冲、弧-陆碰撞、古洋陆格局及其演变等重要信息(Xiao et al., 2004李锦轶等,2006马星华等,2015刘亮等,2017李江涛等,2017),因而成为当今地学界研究的重点及热点。近年来国内外众多学者对博格达造山带的物质组成和构造演化做了大量研究,但对其晚古生代的构造属性问题仍存在两种截然不同的认识,一种观点认为:博格达山与哈尔里克山相连,这一地区发育有大量的钙碱性系列火山岩、火山碎屑岩建造,构造上属于北天山洋盆向北俯冲形成的晚古生代博格达—哈尔里克岩浆弧(Coleman,1989方国庆,1993马瑞士等,1997)或弧后盆地(李锦轶,2004张传恒等,2005孙桂华等,2007);而另一种观点认为:博格达造山带为裂谷环境(吴庆福,1986Sawkins,1990何国琦等,1994Han Baofu et al., 1999顾连兴等,2001王银喜等,2006崔方磊等,2015汪晓伟等,2015),早石炭世裂谷开启,随后经历了早、中石炭世的沉降和火山活动之后,于中—晚石炭世发生碰撞闭合(Sawkins,1990顾连兴等,2001崔方磊等,2015汪晓伟等,2015),迅速走向衰亡。且博格达裂谷东、西两段的闭合过程差异显著,东段的启动早于西段(王银喜等,2006崔方磊等,2015汪晓伟等,2015)。然而,这些研究多集中在博格达造山带东段且多从火山岩及其沉积建造的角度来探讨其构造属性问题(王金荣等,2008汪晓伟等,2015汪晓伟等,2015孙吉明等,2018),较为缺乏对该造山带基性侵入岩体的系统研究分析。受古亚洲洋造山作用的影响,博格达造山带发育大量的基性侵入岩体,这些基性岩体记录了造山带形成过程的深部动力学信息,是展示地壳-地幔物质组成的重要窗口,对于研究造山带岩浆活动机制、壳幔演化格局、探讨板块相互作用及形成的构造背景等关键问题提供了研究实体。

鉴于此,本文在新疆东天山甘河子一带1:5万四幅区域地质矿产调查工作的基础上,选择前人研究较少,出露于博格达造山带西段的基性侵入岩体。系统地采集辉长岩样品,进行了详细的锆石U-Pb年代学、岩石学及地球化学研究,探讨其侵位时代、岩石成因及其构造属性,以期为进一步理解博格达造山带的构造格局及演化历史提供重要的地质依据。

2 地质概况及样品特征

博格达造山带地处天山山脉东段,呈东西向延伸长近400 km,东西两端宽度90~100 km,中间较窄,介于30~60 km;大地构造位置上,北与东准噶尔盆地毗邻,南与吐哈盆地相接,西连伊林哈尔尕造山带,东临卡拉麦里—哈尔里克造山带(舒良树等,2005)(图 1a)。本次研究区位于博格达造山带西段博格达峰南侧(图 1b),野外地质调查表明,区内出露最老地层为上石炭统柳树沟组(C2l)和祁家沟组(C2qj),主体均为一套浅海相火山-沉积岩系。其中,祁家沟组(C2qj)主体以陆源碎屑岩为主,局部夹少量凝灰岩,上未见顶,并与下伏柳树沟组呈平行不整合接触。柳树沟组(C2l)主体由火山岩、火山碎屑岩组成,局部可见陆源碎屑岩,按岩性可进一步划分出3个段,各段之间均为整合接触关系,未见下伏地层。柳树沟组地层火山岩岩石类型较为齐全,火山熔岩和火山碎屑岩均有分布,其中火山熔岩为基性玄武岩和酸性英安岩、流纹岩;火山碎屑岩以火山角砾岩为主,凝灰岩次之。以溢流相(玄武岩、英安岩、流纹岩)→爆发相(火山碎屑岩类)→爆发-沉积相(凝灰岩、凝灰质砂—泥岩)的韵律,构成了一个较为完整的火山喷发旋回。

图 1 博格达造山带区域构造位置图(a)及研究区地质简图(b) 1—冲积物; 2—冰碛物; 3—冲洪积物; 4—祁家沟组; 5—柳树沟组三段; 6—柳树沟组二段; 7—柳树沟组一段; 8—玄武岩; 9—英安岩; 10—流纹岩; 11—凝灰岩; 12—火山角砾岩; 13—研究区范围; 14—阿克苏河; 15—闪长岩类; 16—辉绿岩; 17—辉长岩; 18—断裂; 19—地质界线; 20—U-Pb年龄样; 21—样品位置及编号 Fig. 1 Structural location (a) and simplified geological map(b) in the Bogda orogenic belt 1-Alluvium; 2-Moraine; 3-Alluvial-proluvial material; 4-Qijiagou Formation; 5-Member 3 of Liushugou Formation; 6-Member 2 of Liushugou Formation; 7-Member 1 of Liushugou Formation; 8-Basalt; 9-Dacite; 10- Rhyolite; 11-Tuff; 12-Volcanic breccia; 13- Study area; 14-Aksu River; 15-Diorite; 16-Diabase; 17-Gabbro; 18- Fault; 19-Geological boundary; 20-U-Pb age sample; 21-Sampling location and its number

研究区的辉长岩侵位于上石炭统柳树沟组(C2l)和祁家沟组(C2qj),主要分布于博格达峰南侧三个岔沟、黑沟、阿克苏河一带,岩体走向较为稳定、平直,受区域上的深大断裂构造的控制,地层和地形的影响较小,呈岩墙、岩床、岩株和岩枝状产出,近EW向展布,部分地段被后期闪长岩类岩脉侵位,或被第四系覆盖。辉长岩呈暗绿-灰黑色,岩石具细-中粒辉长结构,块状构造(图 2ac)。薄片镜下显示(图 2bd),主要矿物成分为斜长石(45% ~55%)、辉石(35%~40%)、角闪石(15%~20%)等,另含少量副矿物(5%±)。其中,斜长石呈自形—半自形板条状,聚片双晶发育,显示弱的绢云母化、钠黝帘石化;辉石为单斜辉石,呈半自形—他形粒状或短柱状,部分辉石中镶嵌板状斜长石,部分充填于斜长石间,常见部分或全部发生绿泥石化、绿纤石化;角闪石为普通角闪石,呈棕色或褐色,半自形粒状,具弱的蚀变,部分褪色;副矿物主要有磁铁矿、赤铁矿、钛铁矿、榍石、磷灰石和锆石,以磁铁矿居多。

图 2 博格达造山带辉长岩野外照片及正交偏光照片 a—灰黑色辉长岩野外照片;b—灰黑色辉长岩镜下偏光照片;c—暗绿色辉长岩野外照片;d—暗绿色辉长岩镜下偏光照片;Cpx—单斜辉石;Pl—斜长石;Hbl—普通角闪石;Chl—绿泥石;Pmp—绿纤石;Mt—磁铁矿 Fig. 2 Field photo and crossed nicols photographs of gabbro in Bogda orogenic belt a−Field photo of grayish black gabbro; b−Polarized photo of grayish black gabbro; c−Field photo of dark green gabbro; d−Polarized photo of dark green gabbro; Cpx—Clinopyroxene; Pl-Plagioclase; Hbl-Hornblende; Chl-Chlorite; Pmp-Pumpellyite; Mt-Magnetite
3 测试方法 3.1 锆石U-Pb年代学

进行LA-ICP-MS锆石U-Pb定年样品取自露头较好的三个岔沟一带的辉长岩,样品编号SGCG-23,地理坐标为:43°45′8.6″N;88°34′25.4″E(图 1b)。锆石按照常规方法分选,然后在双目镜下挑选出晶形完好、具有代表性的锆石颗粒。将挑选好的锆石颗粒与标准锆石91500和硅酸盐玻璃标准样品NIST610一起黏贴在环氧树脂表面,制备成测定年龄用的样品靶;对靶中锆石样品进行抛光,使锆石内核充分暴露,接着进行锆石透射光、反射光以及阴极发光照相分析。锆石的阴极发光(CL)在北京离子探针中心进行。

锆石U-Pb同位素年龄测定在中国地质科学院矿产资源研究所实验室完成。实验测试的激光剥蚀系统为GeoLas200M,激光器为ComPex102ArF准分子激光器,波长为193 nm,ICP-MS为Elan6100DRC型。样品分析时激光束斑直径为30 μm,ICP-MS的运行模式为一般模式,数据采集选用跳峰方式。实验中采用He作为剥蚀物质的载气。样品测定时用哈佛大学的91500标准锆石作为计算U-Pb同位素年龄的外标,其参考加权值平均206Pb/238U年龄为(1065.4±0.6)Ma;元素含量计算采用美国国家标准物质局人工合成硅酸盐玻璃NIST610作为外标,29Si作为内标元素进行校正。样品原始数据处理采用Glitter4.0软件进行计算,并采用Anderson软件对测试数据进行普通铅校正(Anderson,2002),加权平均年龄计算采用Isoplot3.00软件完成(Ludwig,2003)。详细的数据处理及方法参见文献(Yuan et al., 2003)。

3.2 岩石地球化学

经过严格筛选和详细镜下薄片鉴定,选择8件新鲜的辉长岩样品(SGCG-09/23/25、HG-11/37、AKSH-21/63/75),细碎至200目以上后进行主量元素、微量元素以及稀土元素分析测试。分析测试均在西南冶金地质测试中心国家重点实验室完成。主量元素除FeO和LOI采用标准湿化法分析外,其余元素分析则用样品的碱熔玻璃片在帕拉科生产的Axios型荧光光谱仪(XRF)上分析测试,分析测试过程中采用BCR-2和GBW07105标样监控,执行GB/T14506.28-2010标准,采用DZG20-02进行数据检查,分析精度和准确度优于5%。稀土、微量元素分析则采用等离子发射光谱法、质谱法、X荧光法,在iCAP6300全谱仪、NexLON 300x ICP-MS、Axios X荧光仪分析测试完成,采用AGV-1、BCR-1、BHVO-1国际标样监控,执行JY/T016-1996标准,采用DZG20-02、DZG20-06进行数据检查,参考国际标准GBW校正,分析精度和准确度优于10%。详细的数据处理及方法参见文献(Qi et al., 2003)。

4 测试结果 4.1 锆石U-Pb年代学

研究区辉长岩样品(SGCG-23)LA-ICP-MS锆石U-Pb年龄分析结果、锆石年龄谐和图和加权平均年龄图及阴极发光图像(CL)分别列于表 1图 3中。阴极发光图像(CL)显示(图 3),锆石结晶较好,晶形较为完整,呈柱状、六方双锥状或半截锥状,晶体一般长60~150 μm,宽50~80 μm,长宽比约2~3:1,继承锆石核少见,条纹状振荡结晶韵律环带清晰,且有的环带较为密集,属典型岩浆成因锆石(李江涛等,2016)。本次共对22颗锆石进行了UPb同位素年龄测定(表 1),22颗锆石的Th/U比值介于0.41~0.82,均值为0.52(大于0.4),同样也暗示本区锆石全为岩浆成因锆石(Pak Sang Wan et al,2019)。从锆石207Pb/206U-238U/206Pb年龄谐和图可以看出(图 3a),这些岩浆锆石具有较为一致的206Pb/238U年龄值(301.4±3.2)~(309.8±4.4)Ma,年龄数据点都集中分布在谐和曲线上或其附近,谐和度高,为岩浆活动一次结晶而成,锆石206Pb/238U加权平均年龄为(305.0±1.6)Ma(MSWD=0.48)(图 3b),该年龄精度高,可以准确反映辉长岩的形成年龄。

表 1 博格达造山带西段辉长岩(SGCG-23)LA-ICP-MS锆石U-Pb年龄分析结果 Table 1 LA-ICP-MS zircon U-Pb dating results of gabbro(SGCG-23)from the west of Bogda orogenic belt
图 3 博格达造山带西段辉长岩(SGCG-23)中锆石U−Pb谐和图(a)、加权平均年龄图(b)及阴极发光(CL)图像(c) Fig. 3 Zircon U−Pb concordia diagram (a) and averaged age (b) and cathodoluminescence(CL)images (c) of gabbro(SGCG-23) from the west of Bogda orogenic belt
4.2 岩石地球化学

在研究区基性岩类分布较广三个岔沟、黑沟、阿克苏河一带共采集了8件样品,对其进行了岩石地球化学分析。全岩主量、微量和稀土元素测试结果及特征值列于表 2,CIPW标准矿物计算结果列于表 3

表 2 博格达造山带西段辉长岩主量元素(%)、微量及稀土元素(10-6)分析结果 Table 2 Major (%), rare earth and trace elements (10-6) analyses of gabbro from the west of Bogda orogenic belt
表 3 博格达造山带西段辉长岩CIPW标准矿物计算结果 Table 3 CIPW standard mineral analyses of gabbro from the west of Bogda orogenic belt
4.2.1 主量元素

由主量元素分析结果(表 2)可知,研究区基性侵入岩分析结果有一定烧失量(LOI为2.16% ~4.23%),显示岩石受到过一定程度的蚀变或混染。其SiO2含量介于48.08%~51.03%,Na2O含量2.78%~3.51%,K2O含量0.31%~0.95%,全碱(K2O+Na2O)为3.09%~4.39%(小于5%),高于Ringwood计算所得的地幔相关主量元素含量(Ringwood,1975),显示受地壳物质混染。在TAS分类图上,均位于Ir-Irvine分界线下方,落入亚碱性辉长岩区域(图 4a)。K2O/Na2O比值介于0.11~0.28(富钠贫钾),里特曼指数(σ)介于1.51~3.26,均值为2.36(远小于3.30),与峨眉山玄武岩相当(2.15)(林浩,2017),指示岩石属中钾钙碱性系列(图 4b);与CIPW计算结果(表 3),碱度率AR较低(1.24~1.56,均值1.42,小于1.50)相吻合。此外,样品TiO2含量0.81%~2.94%、Al2O3含量12.59%~18.49%、CaO含量6.87%~11.41%,P2O5含量0.10%~0.58%,MgO含量介于3.78%~7.66%,Mg#值(100Mg/(Mg+Fetot2+))为31.75~65.73,均值47.03。FeO(T FeO+Fe2O3×0.8998)为7.12%~14.49%,铝饱和指数值A/CNK为0.60~0.80,A/NK指数值介于1.87~3.45,属准铝质岩石;这也与CIPW计算结果中(表 3),分异指数DI较低(26.18~41.19,均值35.73<36.00)、固结指数SI较高(16.36~42.46,均值26.90≈ 27.00),所有样品均未出现刚玉(C)和霞石(Ne)标准分子的特征一致。由此可见,受混杂作用影响,研究区辉长岩岩石类型属准铝质钙碱性岩石系列,推测其初始岩石类型应属碱性系列。

图 4 博格达造山带西段辉长岩岩石系列图解 a—TAS分类图(底图据Ewart, 1982);b—SiO2-K2O图解(底图据Davies et al., 1987 Fig. 4 Discrimination diagrams of rock series for gabbro from the west of Bogda orogenic belt a-TAS classification map (base map after Ewart, 1982); b-SiO2-K2O diagram (after Davies et al., 1987)
4.2.2 稀土及微量元素

研究区辉长岩稀土元素含量普遍较低(表 2),其∑ REE,∑ LREE和∑ HREE的含量分别为36.30×10-6~147.72×10-6(均值80.96×10-6),25.77×10-6~108.46 × 10-6(均值60.23 × 10-6),8.57 × 10-6~29.26×10-6(均值20.73×10-6),LREE/HREE为2.33~3.94(均值3.02)。稀土元素球粒陨石标准化配分图显示(图 5a),与E-MORB型玄武岩相似(Middlemost,1994),曲线变化较为一致,为低缓略右倾型,轻稀土(LREE)相对重稀土(HREE)富集,暗示它们可能为同源演化的产物;此外,各相关元素比值:(La/Yb)N为1.67~3.36(均值2.40),(La/Sm)N为1.18~1.75(均值1.41),(Gd/Yb)N为1.00~1.53(均值1.37),表明轻重稀土之间以及轻重稀土内部不存在明显的分馏过程(Eby,1992)。除样品AKSH-63呈现较为明显的正Eu异常外(δEu为1.22),其余样品的Eu异常均不明显(δEu为0.93~1.10),可能指示岩浆具有较高的氧逸度,亦或岩浆在演化过程中斜长石没有发生显著的分离结晶或堆晶作用(王银喜等,2005)。这与区域内石炭系上统柳树沟组(C2l)玄武岩以及博格达造山带东段辉长岩稀土配分曲线基本一致(Boynton et al., 1984王银喜等,2006王金荣等,2010屈翠侠等,2015雷万杉等,2016),具有轻稀土富集型配分曲线特征。微量元素方面,表 2以及微量元素原始地幔标准化蛛网图(图 5b)显示与E-MORB型玄武岩相似(邹先武等,2011),区内辉长岩微量元素具较为一致的分布曲线,具同源岩浆演化产物特征,且均富集Rb、Ba、U、K等大离子亲石元素(LILE),相对亏损Ta、Nb、Ti等高场强元素(HFSE),随SiO2含量的增加,部分元素亏损程度逐渐减弱。其中,主要富集元素Rb、Ba的含量分别为5.36×10-6~19.34×10-6和80.74×10-6~390.90×10-6,主要亏损元素Ta、Nb的含量则分别为0.10×10-6~0.62×10-6、1.54×10-6~8.87×10-6,兼具消减带与板内玄武岩的特征(Han et al., 1999)。

图 5 博格达造山带西段辉长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b) (a、b据Sun et al., 1989) Fig. 5 Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagram of gabbro from the west of Bogda orogenic belt (a, b after Sun et al., 1989)
5 讨论 5.1 岩浆成因

研究区辉长岩具有较低的SiO2含量(48.08%~51.03%)和全碱(K2O+Na2O)含量(3.09%~4.39%),铝饱和指数值(A/CNK)为0.60~0.80,属准铝质中钾钙碱性岩石系列(考虑混染作用,初始岩石类型应为碱性系列)。其∑REE总量较低,总体LREE较HREE富集,轻重稀土之间以及轻重稀土内部分馏不明显,配分曲线略微右倾,无明显Eu异常;且微量元素中Th、Ta、Nb元素明显亏损、Ti元素亏损不明显以及U元素的轻微富集,与博格达造山带内火山岩中的早期岩浆演化过程中受较高程度部分熔融形成的玄武岩十分相似(崔方磊等,2015汪晓伟等,2015),具大陆裂谷岩浆活动特点(王银喜等,2006;邹先武等,2011),显示幔源岩浆的成分特征(Zindler,1986)。同时,根据氧化物MnO、TiO2、Al2O3、FeO的含量可得出斜长石的结晶温度tpl邓晋福等,2004),即tpl=1144.7-136.26 ×MnO(%)+ 19.23×TiO2(%)+7.41×Al2O3(%)-1.04×FeO(%),计算得出斜长石的结晶平均温度为1186.25℃,该温度远低于典型OIB的形成温度1500℃(Xu,2001),极为接近软流圈与岩石圈地幔的界面温度1200℃(Wilson,1989)。结合较低Nb/Zr比值0.02~0.05(与亏损地幔值接近),以及Zr-Nb图解(图 6a),表明形成该区辉长岩的岩浆主要起源于亏损的岩石圈地幔(Condie,1989;Weaver,1989)。此外,从微量元素原始地幔标蛛网图(图 5b)可以看出,辉长岩中K、Ba、U等元素相对富集,且具较低的Nb/La(0.25~0.67,小于1),Nb/Ta比值(14.03~17.39,小于17.50),La/Ta(25.71~67.05,大于25),Th/Ta(1.37~10.30,除一件样品外,均大于2),指示在岩浆作用过程中有地壳物质的加入,遭到了一定程度的地壳物质混染(Frey and Prinz, 1978Condie,1986Wilson,1989Condie,1989;Weaver,1989;Lassiter and Depaolo, 1997Tomlinson Kirsty, 2001Kieffer and Arndt, 2004)。但是,其早期岩浆演化过程中是否受结晶分异作用或部分熔融的影响还需进一步探讨。

图 6 博格达造山带西段辉长岩岩石成因及源区判别图解 a—Zr-Nb图解(底图据Condie,1989);b—La/Yb-La/Sm图解(底图据Condie,1986); c—Zr/Nb-Ce/Y图解(底图据Deniel,1998);d—La/YbDy/Yb图解(底图据Miller et al., 1999 Fig. 6 Discrimination diagrams of petrogenesis and provenance for gabbro from the west of Bogda orogenic belt a−Zr-Nb diagram (base map after Condie, 1989); b−La/Yb-La/Sm diagram (base map after Condie, 1986) c−Zr/Nb-Ce/Y diagram (base map after Deniel, 1998); d−La/Yb-Dy/Yb diagram (base map after Miller et al., 1999)

据此推断,本区辉长岩岩浆起源于亏损的岩石圈地幔,岩浆运移过程中经历了一定程度地壳混染作用,受结晶分异作用的影响小,显示出较高程度的部分熔融的特征。主要基于以下几点考虑:(1)Mg#的变化趋势可作为识别岩浆岩形成机理的一个判断依据(Zindler and Hart, 1986邓晋福等,2004崔方磊等,2015),本区基性侵入岩的Mg#值在为31.75~65.73,低于玄武质原始岩浆的Mg#值68~75(Frey and Prinz, 1978),且样品Rb/Sr、Rb/Ba平均值分别为0.048、0.105,与亏损的岩石圈地幔的Rb/Sr(0.049)、Rb/Ba(0.108)比值相当(Sun and Mc Donough,1989),这说明形成基性侵入岩的岩浆结晶分异演化程度较弱。(2)同样,在La/Yb-La/Sm图解中(图 6b),显示在岩浆演化过程中几乎不受结晶分异作用的影响,部分熔融占主导作用(Condie,1986)。(3)据前人研究来源于不同矿物相源区不同部分熔融程度形成的玄武岩浆具有不同的Zr/Nb、Ce/Y比值以及Dy/Yb、La/Yb比值(Deniel,1998Miller et al., 1999汪晓伟等,2015),本区样品的Zr/Nb比值介于18.53~41.99(均值为33.59),Ce/Y比值介于0.44~0.84(均值为0.61),Dy/Yb比值介于1.35~1.84(均值为1.69),La/Yb比值介于2.47~4.98(均值为3.56);在源区判别图解中(图 6cd),样品均位于原始尖晶石橄榄岩的熔融线附近,部分熔融程度高,接近20%。

5.2 石炭纪构造事件响应

博格达造山带西段博格达峰南缘辉长岩LAICP-MS锆石U-Pb测年显示,22颗锆石的Th/U比值为0.41~0.82(大于0.4),阴极发光图像(CL)显示继承锆石核少见,条纹状振荡结晶韵律环带清晰,均指示它们全为岩浆成因锆石。锆石具有较为一致的206Pb/238U年龄值(301.4±3.2)Ma~(309.8±4.4)Ma,年龄数据点都集中分布在谐和曲线上或其附近,谐和度高,206Pb/238U加权平均年龄为(305.0±1.6)Ma(MSWD=0.48,n=22),该年龄可以反映辉长岩的形成年龄,为晚石炭世岩浆活动的产物。长期以来,博格达造山带是东天山地区研究的热点和争论的焦点地区之一,由于迄今为止在该造山带中未发现石炭纪洋壳的标志,对其构造属性的认识国内外学者至今仍存在较大争议。近年来,随着测试技术的飞跃发展,博格达造山带出现越来越多的岩石学、岩石地球化学和同位素地球化学等数据,其中陆续识别出大量晚古生代与裂谷演化岩浆活动,表明博格达晚古生代陆内造山带是在裂谷基础上发展起来的(顾连兴等,2001王银喜等,2005王银喜等,2006王金荣等,2010),大体可划分出几个不同的时期,且各期次都有代表性的产物。

早石炭世初期,康古尔塔格洋推动着准噶尔—吐哈地块向北运动,呈三角形的准噶尔—吐哈地块哈密以东突出部分顶在西伯利亚板块的南端,南北的不均匀受力导致准噶尔—吐哈地块发生顺时针旋转,造成了吐—哈地块与准噶尔地块之间向东开口的撕裂,形成了博格达初始裂谷,故前人将之称为俯冲撕裂型裂谷(顾连兴等,2001王银喜等,2006崔方磊等,2015)。随着准—吐—哈地块的扩张,巴里坤煤矿一带发育一套代表拉张环境的泥盆纪拉斑系列玄武岩—安山岩,基性火山岩LA-ICPMS锆石U-Pb年龄为(366.1±1.7)Ma(崔方磊等,2015),代表了裂谷作用的开始;进而在博格达东段七角井刺梅沟发育一套双峰式火山岩组合,流纹岩和玄武岩Rb-Sr等时线年龄分别为(340.0±3.4)Ma和(342.0±3.2)Ma(王银喜等,2006)。后期的侧向撕裂加快了博格达裂谷化的过程,早石炭世晚期,准—吐—哈地块进一步拉张,地壳伸展变形强烈,导致博格达东段克孜库都克地区双峰式火山岩喷出地表(玄武岩LA-ICP-MS锆石U-Pb年龄为(331.0±3.0)Ma(汪晓伟等,2015),以及博格达西段三个山地区石英闪长岩岩体的侵位(石英闪长岩SHRIMP锆石U-Pb为(333.5±2.2)Ma)(李平等,2013),代表了裂谷发育初期阶段。早石炭世末期—晚石炭世早期,随着拉张应力的进一步加大,岩石圈撕裂程度达到了最大,导致博格达西段三个山地区形成东段七角井—巴里坤一带出露的基性岩墙(辉绿岩LA-ICP-MS锆石U-Pb年龄分别为(322.1±6.5)Ma(靳刘圆等,2014)、(314.7±1.5)Ma(崔方磊等,2015)),以及形成了博格达东段西地—伊齐一带双峰式火山岩建造(玄武岩Rb-Sr等时线年龄为(322.0±3.0)Ma)(田黎萍等,2010)、萨尔乔克地区双峰式火山岩建造(英安岩LA-ICP-MS锆石U-Pb年龄为(320.3±1.1)Ma)(汪晓伟等,2015)、芨芨台地区双峰式火山岩建造(流纹岩LA-ICP-MS锆石U-Pb年龄为(312.0 ± 1.0)Ma)(汪晓伟等,2015),此时博格达裂谷发育到鼎盛时期。晚石炭世末期至早二叠世早期,吐哈地块南的康古尔塔格古大洋逐渐闭合、弧陆碰撞形成康古尔塔格碰撞带(舒良树等,2001),预示着裂谷作用由全面伸展向局限伸展转换,最终裂谷闭合而进入挤压体制,开始了隆起造山阶段;雷万杉等(2016)在博格达造山带东段苏吉山碱长花岗岩中识别出基性岩体,其辉长岩LA-ICP-MS锆石U-Pb年龄为(308.1±3.3)Ma,为裂谷作用由全面伸展向局限伸展转换的标志,而伊齐—小红柳峡一带柳树沟组双峰式火山活动则是裂谷火山作用的最后阶段(流纹岩Rb-Sr等时线年龄为(296.0±2.0)Ma(王金荣等,2015))。随后,博格达裂谷开始折返造山,沿沙尔乔克—纳瓦库都克一带出露的构造石英片岩带可能是该碰撞折返过程的产物(雷万杉等,2016)。早二叠世晚期,经过短暂的碰撞闭合,博格达地区进入后造山伸展阶段,博格达山西段达坂城以东上大河沿岩体(闪长岩Rb-Sr等时线年龄为(298.4±0.76)Ma(顾连兴等,2000)、以及白杨沟一带滑塌堆积岩中发现辉绿岩墙(辉绿玢岩单颗锆石207Pb/235U表面年龄为(288.9±4.7)Ma(舒良树等,2005),均为裂谷碰撞闭合后初始拉张阶段的产物,而博格达东段北缘卡拉岗组陆相酸性火山岩建造(流纹岩Rb-Sr等时线年龄为(278.0±2.0)Ma(第鹏飞等,2010),则标志着博格达造山作用的最终结束。上述研究成果,较为完整地刻画了博格达裂谷构造岩浆演化的各个阶段。

本次研究在博格达造山带西段博格达峰南缘识别出晚石炭世末期辉长岩,其LA-ICP-MS锆石U-Pb年龄为(305.0±1.6)Ma,略晚于博格达造山带东段苏吉山辉长岩(308.1±3.3)Ma年龄,处于博格达裂谷火山活动晚期(王金荣等,2010),可作为博格达西段裂谷作用由全面伸展向局限伸展转换的标志。岩石地球化学分析表明,该区辉长岩属准铝质中钾钙碱性岩石系列(初始岩石类型应为碱性系列),以富集Rb、Ba、U、K等大离子亲石元素(LILE),相对亏损Ta、Nb、Ti等高场强元素(HFSE)为特征,暗示有地壳物质的加入,结合稀土元素特征,显示出大陆裂谷属性,且Zr含量为64.51×10-6~294.09×10-6(均值为146.98×10-6),Hf含量为1.72×10-6~7.28×10-6(均值为4.04×10-6),Zr/Y比值介于3.27~4.93(均值为3.98>3.50),与板内玄武岩值相当。在构造环境判别Y-Cr图解(Pearce,1982).以及Zr-Zr/Y图解中(Pearce et al., 1973),除个别样品外,其余样品也均落入板内玄武岩区(图 7)。由此可见,该区辉长岩时代以及岩石地球化学特征,进一步证实了在晚古生代期间(早石炭世—早二叠世),博格达造山带存在大面积的与裂谷演化有关的岩浆活动,造山带是在裂谷基础上发展起来,并非属于北天山洋盆向北俯冲形成的博格达—哈尔里克岩浆弧或弧后盆地,这与天山大部分地区以岛弧岩浆作用为特征的构造演化过程有显著差异。结合近年来在该区以及东部哈尔里克山一带陆续发现的岩浆活动及其相关的岩石地球化学特征、锆石U-Pb年代学数据等大地构造方面的资料(吴庆福,1986李锦轶等,1988Sawkins,1990何国琦等,1994Han et al., 1999顾连兴等,2001Xiao et al., 2004王银喜等,2005李锦轶等,2006王银喜等,2006王金荣等2010马星华等,2015崔方磊等,2015汪晓伟等,2015李振生等,2016聂晓勇等,2016刘亮等,2017李江涛等,2017),本文倾向于博格达晚古生代撕裂型裂谷的形成与康古尔塔格洋推动着准噶尔—吐哈地块向北俯冲作用有关。

图 7 博格达造山带西段辉长岩构造环境判别图解 a—Y-Cr图解(底图据Pearcee,1982);b—Zr-Zr/Y图解(底图据Pearce et al., 1973 Fig. 7 Discrimination diagrams of tectonic settings for gabbro from the west of Bogda orogenic belt a−Cr−Y diagram (base map after Pearce, 1982); b−Zr−Zr / Y diagram (base map after Pearce et al., 1973)
6 结论

基于新疆东天山博格达造山带西段基性侵入岩的岩石学、岩石地球化学以及LA-ICP-MS锆石U-Pb年代学分析,结合区域构造演化历史,可以得出以下认识:

(1)岩石地球化学分析结果显示,基性侵入岩属准铝质中钾钙碱性岩石系列(原始岩石类型应为碱性系列);微量元素特征具大陆裂谷岩浆活动特点,岩浆起源于亏损的岩石圈地幔,运移过程中经历了地壳混染作用,受结晶分异作用的影响小,显示出较高程度的部分熔融特征。

(2)基性岩体中辉长岩LA-ICP-MS锆石UPb定年结果显示,其206Pb/238U加权平均年龄为(305.0±1.6)Ma(MSWD=0.48,n=22),表明其侵位于晚石炭世末期,处于博格达裂谷火山活动晚期,可作为博格达西段裂谷作用由全面伸展向局限伸展转换的标志。

(3)晚古生代期间(早石炭世—早二叠世),博格达造山带存在大面积的与裂谷演化有关的岩浆活动,造山带是在裂谷基础上发展起来,并非属于北天山洋盆向北俯冲形成的博格达—哈尔里克岩浆弧或弧后盆地,其形成与康古尔塔格洋推动着准噶尔—吐哈地块向北俯冲作用有关。

参考文献
Anderson T. 2002. Correction of Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79.
Badarch G, Cunningham W D, Windley B F. 2002. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of central Asia[J]. Journal of Asian Earth Sciences, 21(1): 87-110.
Boynton W V. 1984.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P(ed.). Rare Earth Element Geochemistry., Elsevier, Amsterdam, 63-114.
Coleman R G. 1989. Continental growth of north west China[J]. Tectonics, 8(1): 621-635.
Condie K C. 1986. Geochemistry and tectonic setting of Early Proterozoic supercrustal rocks in the southern United states[J]. Journal of Geology, 94: 845-864.
Condie K C. 1989. Plate Tectonics and Crustal Evolution[M]. London: Oxford Pergamon Press, 476.
Cui Fanglei, Wang Xiaowei, Xu Xueyi, Ma Zhongping, Zhu Xiaohui, Sun Jiming. 2015. Geochronology and genesis of the diabasedykes from Qijiaojing-Balikun area in eastern Tianshan Mountain[J]. Northwestern Geology, (2): 43-56 (in Chinese with English abstract).
Cui Fanglei, Xu Xueyi, Ma Zhongping, Wang Xiaowei, Zhu Xiaohui, Sun Jiming. 2015. Confirmation of the Late Devonian volcanic rocks from the northern Tuha basin in east Tianshan and its petrogenetic and tectonic significance[J]. Acta Geologica Sinca, 89(8): 1402-1416 (in Chinese with English abstract).
Davies G R, Macdonald R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex:Combined trace element and Sr-Nd-Pb isotope constraints[J]. Journal of Petrology, 28(6): 1009-1031.
Deng Jinfu, Luo Zhaohua, Shu Shangguo, Mo Xuanxue, Yu Bingsong, Lai Xingyun, Shen Hongwei. 2004. Rock formation, Tectonic Environment and Mineralization[M]. Beijing: Geological Publishing House, 3-49 (in Chinese with English abstract).
Deniel C. 1998. Geochemical and isotopic(Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean)[J]. Chemical Geology, 144: 281-303.
Di Pengfei, Li Taide, Wang Jinrong, Wang Xiaowei, OuYang Jing, Wang Huaitao, Zhao Zhixiong, Yu Man. 2010. Geological significance and geochemical characteristics of Permian rhyolite from the eastern section of Bogeda orogenic belt, Xinjiang[J]. Journal of Lanzhou University(Natural Sciences), 46(3): 8-13 (in Chinese with English abstract).
Eby G N. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. The Journal of Geology, 20(7): 641-644.
Ewart A. 1982. The mineralogy and petrology of petrology of TertiaryRecent orogenic volcanic rock with special reference to the andesitic-basaltic compositional range[C]//Thorpe R S(ed.).Andesites. Chichester: Wiley, 25-87.
Fang Guoqing. 1993. Sedimentological evidence of Late Palaeozoic Bogda island arc[J]. Acta Sedimentologica Sinica, (3): 31-36 (in Chinese with English abstract).
Frey F A, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona:Petrologic and geochemical data bearing on their petrogenesis[J]. Earth & Planetary Science Letters, 38(1): 129-176.
Gu Lianxing, Hu Shouxi, Yu Chunshui, Wu Changzhi, Yan Zhengfu. 2001. Inltiation and evolution of the Bogda subduction-torn-type rift[J]. Acta Petrologica Sinica, 17(4): 585-597 (in Chinese with English abstract).
Gu Lianxing, Yu Chunshui, Li Hongyu, Xiao Jianxin, Yan Zhengfu. 2000. Rb-Sr isotope age of the Shangdaheyan intrusion in the Bogda orogenic belt and its geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 19(1): 19-21 (in Chinese with English abstract).
Han Baofu, He Guoqi, Wang Shiguang. 1999. Postcollisional mantlederived magmatism, under plating and implications for basement of the Junggar basin[J]. Sience in China(Series D), 42(2): 113-119.
He Guoqi, Li Maosong, Liu Dequan, Tang Yanling, Zhou Ruhong. 1994. Paleozoic Tectonic Evolution and Mineralization in Xinjiang of China[M]. Urumqi: Xinjiang People's Publishing House, 37-214 (in Chinese with English abstract).
Jin Liuyuan, Liu Wei, Zhu Zhixin, Zhao Tongyang. 2014. U-Pb age, geochemistry and tectonic implications of mafic dyke in Sangeshan, Bogda[J]. Xinjiang Geology, 32(3): 316-321 (in Chinese with English abstract).
Kieffer B, Arndt N, Lapierre H. 2004. Flood and shield basalts from Ethiopia:Magmas from the African superswell[J]. Journal of Petrology, 45(4): 793-834.
Lassiter J C, Depaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[C]//Mahoney J(ed.). Large igneous provinces: Continental, oceanic, and planetary flood volcanism.Geophysical Monography 100, American Geophysical Union, 335-355.
Lei Wangshan, Xu Peng, Guo Junfeng, Xiao Liang, Li Xiangchuan. 2016. LA-ICP-MS zircon U-Pb dating, Geological and geochemical features of Sujishan gabbro pluton, eastern Bogda Mountains, and their tectonic significances[J]. Geological Review, 62(2): 317-330 (in Chinese with English abstract).
Li Jiangtao, He Xuefen, Liu Liang, Yang Pengtao, Liang Bin, Su Hua, Yang Yudong, Han Hongming, Liu Yingzhong, Dai Zhihui. 2017. Ordovician tectonic evolution of Harlik in eastern Tianshan of Xinjiang:Constraints from LA-ICP-MS zircon U-Pb geochronology and geochemistry of volcanic rocks[J]. Geoscience, 31(3): 460-473 (in Chinese with English abstract).
Li Jiangtao, Liang Bin, He Wenjing, Xu Gang, Wen Long, Xie Qixing. 2016. Geological and tectonic evolution of the basement in the Qiangtang basin of northern Tibet:Evidence from detrital zircon U-Pb isotope chronology of sandstone in the Jurassic Yanshipin Group[J]. Geology in China, 43(4): 1216-1226 (in Chinese with English abstract).
Li Jinyi, Xiao Xuchang, Tang Yaoqing, Zhao Min, Feng Yimin, Zhu Baoqing. 1988. New progress in the study of paleo plate tectonics in kalamari area, eastern Junggar, Xinjiang[J]. Science Bulletin, 33(10): 762-764.
Li Jinyi, He Guoqi, Xu Xin, Li Qinhua, Sun Guihua, Yang Tiannan, Gao Liming, Zhu Zhixin. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J]. Acta Geologica Sinca, 80(1): 148-168 (in Chinese with English abstract).
Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolutionof eastern Xinjiang, NW China[J]. Geological Review, 50(3): 304-322 (in Chinese with English abstract).
Li Ping, Liu Wei, Zhu Zhixin, Chen Chuan, Jin Liuyuan, Xu Shiqi, Zhao Tongyang, Chen Bangxue. 2013. Geochemical characteristics, geochronology and its geological significance of quartz diorite in Sangeshan area, west of Bogda, Xinjiang[J]. Xinjiang Geology, 31(3): 162-166 (in Chinese with English abstract).
Li Zhensheng, Nie Feng, Tian Xiaoli, Shi Yonghong, Niu Hao, Wang Chuang. 2016. Redefinition of Formation age of Late Paleozoic strata in the eastern Junggar tectonic zone and its implications for evolution of regional geological structure[J]. Acta Geologica Sinica, 90(3): 569-588 (in Chinese with English abstract).
Lin Hao. 2017. Basic Characteristics and Genesis Analysis of Emeishan Basalt in Dafang Area, Guizhou Province[M]. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.
Liu Liang, He Xuefen, Li Jiangtao, Yang Pengtao, Liang Bin, Su Hua, Yang Yudong, Liu Yingzhong, Dai Zhihui. 2017. Petrogenesis and tectonic signficances of the Qincheng Tianshengquan pluton in the Harlik orogen of eastern Xinjiang[J]. Geological Science and Technology Information, 36(2): 86-96 (in Chinese with English abstract).
Ludwig K R. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center, Special Publication.
Ma Ruishi, Shu Liangshu, Sun Jiaqi. 1997. East Tianshan Tectonic Evolution and Mineralization[M]. Beijing: Geological Publishing House, 1-202 (in Chinese with English abstract).
Ma Xinghua, Chen Bin, Wang Chao, Yan Xuelong. 2015. Early Paleozoic subduction of the paleo-Asian ocean:Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 31(1): 89-104 (in Chinese with English abstract).
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Sci. Rev., 37: 215-224.
Miller C, Schuster R, Klotzli U. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 40: 1399-1424.
Nie Xiaoyong, Liu Jiajun, Su Dayong, Zhang Xiangyun. 2016. Zircon U-Pb age of the east Qingshui plagiogranite in Kalamaili belt of Xinjiang and its geological implications[J]. Geology in China, 43(5): 1729-1736 (in Chinese with English abstract).
Pak Sang Wan, Ma Tuo, Gai Yongsheng, Kang Lei, Wang Chao, Liao Xiaoying, Liu Liang. 2019. Geochronology and Geochemical Characteristics of the Protolith Rock of Younusisayi High Pressure Granitic Gneiss:a Further Study on the Properties of Continental Crust Subduction Plate in South Altyn Tagh[J]. Northwestern Geology, 52(4): 76-97.
Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 19(2): 290-300.
Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorps R S(ed.). Andesites. New York: John Wiley and Sons: 525-548.
Qi L, Hu J, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 51(3): 507-513.
Qu Cuixia, Yang Xingke, Yi Pengfei, Liu Wei, Song Hongye. 2015. Geochemistry and Sr-Nd-Pb isotopes of Late Paleozoic intrusive rocks in Balikuntage, Xinjiang[J]. Northwestern Geology, (2): 17-30 (in Chinese with English abstract).
Ringwood A E. 1975. Composition and Petrology of the Earth's Mantle[M]. New York: McGraw-Hill Inc, 1-618.
Sawkins F J. 1990. Metal Deposits in Relation to Plate Tectonics[M]. Berlin: Springer-Verlag, Second edition, 1-461.
Shu Liangshu, Xia Fei. 2001. Late paleozoic continental accretionary tectonics in northern Xinjiang[J]. Xinjiang Geology, 19(1): 59-63 (in Chinese with English abstract).
Shu Liangshu, Zhu Wenbin, Wang Bo, Faure M, Charvet J, Cluzel D. 2005. The post-collision intracontinental rifting and olistostrome on the southern slope of the Bogda mountains, Xinjiang[J]. Acta Petrologica Sinica, 21(1): 25-36 (in Chinese with English abstract).
Sun Guihua, Li Jinyi, Zhu Zhixin, Li Yaping, Yang Zhiqing. 2007. Detrital zircon SHRIMP U-Pb dating of Carboniferous sandstone from the southern foot of the Harlik mountains, eastern Xinjiang, and its geological implications[J]. Geology in China, 34(5): 778-789 (in Chinese with English abstract).
Sun Jiming, Bai Jianke, Zhu Xiaohui, Niu Zheng, Ma Zhongping. 2018. Geochemistry of the Qijiaojing formation pillow basalt in the eastern Bogda orogenic belt east Tianshan and its implications for tectonic setting[J]. Acta Geologica Sinica, 92(3): 520-530 (in Chinese with English abstract).
Sun S S, Mc Donough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.) Magmatism in the Ocean Basins. Geological Society London Special Publications, 42(1): 313-345.
Tian Liping, Wang Jinrong, Tang Zhongli, Yu Man, Wang Huaitao, Zhao Zhixiong. 2010. Geochemical characteristic and tectonic significance of the early carboniferous volcanic rocks in eastern Bogda mountains of Xinjiang region[J]. Journal of Lanzhou University(Natural Sciences), 46(4): 30-41 (in Chinese with English abstract).
Tomlinson Kirsty Y, Condie Kent C. 2001. Archean mantle plumes:Evidence from greenstone belt geochemistry[J]. Special Paper of the Geological Society of America, 352: 341-357.
Wang Jinrong, Wang Shuangshuang, Wu Chunjun, Jia Zhilei, Ou Jian, Wang Xiaowei, Wu Jicheng. 2008. Geochemical characteristics and tectonic significance of Early Devonian basalts in the eastern part of the Bogda orogenic belt, Xinjiang[J]. Mineral and Petrochemical Bulletin, 27(z1): 280-281.
Wang Jinrong, Li Taide, Tian Liping, Yu Man, Wang Huaitao, Zhao Zhixiong, Tang Zhongli. 2010. Late Paleozoic tectono-magmatic evolution in Bogda orogenic belt, Xinjiang:Evidence from geochemistry of volcanic rocks[J]. Acta Petrologica Sinica, 26(4): 1103-1115 (in Chinese with English abstract).
Wang Xiaowei, Cui Fanglei, Sun Jiming, Zhu Xiaohui, Zhu Tao, Bai Jianke. 2015. Geochemical characteristics, geochronology and its geological significance of the diorite in Shagoukuduke area, east of the Bogda orogenic belt[J]. Geology of Xinjiang, 33(2): 151-158.
Wang Xiaowei, Cui Fanglei, Sun Jiming, Zhu Xiaohui, Bai Jianke, Zhu Tao. 2015. Geochemical characteristics and geological significance of early permian bimodal volcanic rocks in the Eastern Part of the Bogda orogenic belt in the Qinqitaizi area[J]. Northwest Geology, (4): 100-114.
Wang Xiaowei, Xu Xueyi, Ma Zhongping, Chen Junlu, Cui Fanglei, Zhu Xiaohui, Sun Jiming. 2015. Geochemistry and tectonic setting of the Early Carboniferous volcanic rocks in the eastern section of the Bogda orogenic belt in Xinjiang[J]. Geology and Exploration, 51(1): 108-122 (in Chinese with English abstract).
Wang Xiaowei, Xu Xueyi, Ma Zhongping, Chen Junlu, Zhu Xiaohui, Sun Jiming, Cui Fanglei. 2015. Geochemical characteristics of the Late Carboniferous bimodal volcanic rocks in Jijitaizi area, eastern Bogda orogenic belt, and their geological significance[J]. Geology in China, 42(3): 553-569 (in Chinese with English abstract).
Wang Xiaowei, Xu Xueyi, Ma Zhongping, Chen Junlu, Zhu Xiaohui, Sun Jiming, Cui Fanglei. 2015. Geochemical characteristic and its geological significance of the Early Carboniferous bimodal volcanic rocks in Saerqiaoke area east of the Bogda orogenic belt[J]. Geological Science and Technology Information, 34(3): 58-70 (in Chinese with English abstract).
Wang Yinxi, Gu Lianxing, Zhang Zhuzong, Wu Changzhi, Zhang Kaijun, Li Huimin, Yang Jiedong. 2006. Geochronology and NdSr-Pb isotops of the bimodal volcanic rocks of the Bogda rift[J]. Acta Petrologica Sinica, 22(5): 1215-1224 (in Chinese with English abstract).
Wang Yinxi, Gu Lianxing, Zhang Zunzhong, Zhang Kaijun, Li Huimin, Wu Changzhi, Yang Jiedong. 2005. Isotopic chronologic evidence of Bogda rift closure and regional uplift and its geological significance[J]. Acta Geoscientica Sinica, 26(S1): 102-104 (in Chinese with English abstract).
Weaver B L. 1991. The origin of ocean island baslt end-member composition:Trace element an isotopic constraints[J]. Earth Planet Sci. Lett., 104: 381-397.
Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman, 1-464.
Wu Qingfu. 1986. Tectonic evolution and oil gas prospect in Junggar Basin[J]. Xinjiang Geology, 4(3): 1-19 (in Chinese with English abstract).
Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan(China):Implications for the continental growth of central Asia[J]. American Journal of Science, 304(4): 370-395.
Xu Y G. 2001. Thermo-tectonic destruction of the archean lithospheric keel beneath the Sino-Korean Carton in China:Evidence, timing and mechanism[J]. Phys. Chem. Earth Pt.A, 26(9/10): 747-757.
Yuan H L, Wu F Y, Gao S, Liu X M, Xu P, Sun D Y. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin, 48(22): 2411-2421.
Zhang Chuanhen, Liu Dianbo, Zhang Chuanlin, Wang Ziqiang, Yu Qixiang. 2005. Stratigraphic constraints on the initial uplift age of Bogda Shan, Xinjiang, north-west China[J]. Earth Science Frontiers, 12(1): 294-302 (in Chinese with English abstract).
Zindler A, Hart S R. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493-571.
崔方磊, 汪晓伟, 徐学义, 马中平, 朱小辉, 孙吉明. 2015. 东天山七角井-巴里坤地区辉绿岩脉年代学及岩石成因[J]. 西北地质, (2): 43-56.
崔方磊, 徐学义, 马中平, 汪晓伟, 朱小辉, 孙吉明. 2015. 东天山博格达东北部泥盆纪火山岩的确立、成因及其地质意义[J]. 地质学报, 89(8): 1402-1416.
邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 3-149.
第鹏飞, 李泰德, 王金荣, 王晓伟, 欧阳京, 王怀涛, 赵志雄, 于漫. 2010. 新疆博格达造山带东段二叠纪流纹岩地球化学特征及地质意义[J]. 兰州大学学报(自然科学版), 46(3): 8-13.
方国庆. 1993. 博格达晚古生代岛弧的沉积岩石学证据[J]. 沉积学报, (3): 31-36.
顾连兴, 胡受奚, 于春水, 吴昌志, 严正富. 2001b. 论博格达俯冲撕裂型裂谷的形成与演化[J]. 岩石学报, 17(4): 585-597.
顾连兴, 于春水, 李宏宇, 肖新建, 严正富. 2000. 博格达上大河沿岩体铷-锶同位素年龄及其地质意义[J]. 矿物岩石地球化学通报, 19(1): 19-21.
何国琦, 李茂松, 刘德权, 唐延龄, 周汝洪. 1994. 中国新疆古生代地壳演化及成矿[M]. 乌鲁木齐: 新疆人民出版社, 37-214.
靳刘圆, 刘伟, 朱志新, 赵同阳. 2014. 博格达三个山地区基性岩墙U-Pb年龄、地球化学特征及地质意义[J]. 新疆地质, 32(3): 316-321.
雷万杉, 许鹏, 郭俊锋, 肖良, 李相传, 李勇. 2016. 博格达山东段苏吉山辉长岩LA-ICP-MS锆石U-Pb年龄、地质地球化学特征及构造意义[J]. 地质论评, 62(2): 317-330.
李江涛, 何学锋, 刘亮, 杨鹏涛, 梁斌, 苏画, 杨宇东, 韩洪明, 刘应忠, 戴智慧. 2017. 新疆东天山哈尔里克奥陶纪的构造属性:来自火山岩LA-ICP-MS锆石U-Pb年代学与地球化学的制约[J]. 现代地质, 31(3): 460-473.
李江涛, 梁斌, 何文劲, 徐刚, 文龙, 谢启兴. 2016. 藏北羌塘盆地基底的地质构造演化:来自侏罗纪雁石坪群砂岩碎屑锆石U-Pb同位素年代学证据[J]. 中国地质, 43(4): 1216-1226.
李锦轶, 肖序常, 汤耀庆, 赵民, 冯益民, 朱宝清. 1988. 新疆东准噶尔卡拉麦里地区古板块构造研究的新进展[J]. 科学通报, 33(10): 762-764.
李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 80(1): 148-168.
李锦轶. 2004. 新疆东部新元古代晚期和中生代构造格局及其演变[J]. 地质论评, 50(3): 304-322.
李平, 刘伟, 朱志新, 陈川, 靳刘圆, 徐仕琪, 赵同阳, 陈邦学. 2013. 博格达西段三个山石英闪长岩体地球化学特征、年代学及地质意义[J]. 新疆地质, 31(3): 162-166.
李振生, 聂峰, 田晓莉, 石永红, 牛浩, 王创. 2016. 东准噶尔构造带晚古生代地层时代的厘定及其对区域构造演化意义[J]. 地质学报, 90(3): 569-588.
林浩. 2017. 贵州省大方地区峨眉山玄武岩基本特征及成因分析[M]. 成都: 成都理工大学.
刘亮, 何学锋, 李江涛, 杨鹏涛, 梁斌, 苏画, 杨宇东, 刘应忠, 戴智慧. 2017. 新疆东部哈尔里克山沁城天生圈岩体岩石成因及其构造意义[J]. 地质科技情报, 36(2): 86-96.
马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿[M]. 北京: 地质出版社, 1-202.
马星华, 陈斌, 王超, 鄢雪龙. 2015. 早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报, 31(1): 89-104.
聂晓勇, 刘家军, 苏大勇, 章享云. 2016. 新疆卡拉麦里清水东斜长花岗岩的锆石U-Pb年龄及地质意义[J]. 中国地质, 43(5): 1729-1736.
PAK Sang Wan, 马拓, 盖永升, 康磊, 王超, 廖小莹, 刘良. 2019. 南阿尔金尤努斯萨依高压花岗质片麻岩原岩的形成时代与地球化学特征:对南阿尔金陆壳深俯冲板片属性的进一步限定[J]. 西北地质, 52(4): 76-97.
屈翠侠, 杨兴科, 易鹏飞, 刘渭, 宋宏业. 2015. 巴里坤塔格晚古生代侵入岩岩石地球化学与Sr-Nd-Pb同位素特征[J]. 西北地质, (2): 17-30.
舒良树, 夏飞. 2001. 新疆北部古生代大陆增生构造[J]. 新疆地质, 19(1): 59-63.
舒良树, 朱文斌, 王博, Faure M, Charvet J, Cluzel D. 2005. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J]. 岩石学报, 21(1): 25-36.
孙桂华, 李锦轶, 朱志新, 李亚萍, 杨之清. 2007. 新疆东部哈尔里克山南麓石炭纪砂岩碎屑锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 34(5): 778-789.
孙吉明, 白建科, 朱小辉, 牛峥, 马中平. 2018. 东天山博格达造山带东段七角井组枕状玄武岩地球化学特征及构造背景探讨[J]. 地质学报, 92(3): 520-530.
田黎萍, 王金荣, 汤中立, 于漫, 王怀涛, 赵志雄. 2010. 新疆博格达山东段早石炭世火山岩地球化学特征及其构造意义[J]. 兰州大学学报(自然科学版), 46(4): 30-41.
汪晓伟, 崔方磊, 孙吉明, 朱小辉, 白建科, 朱涛. 2015. 博格达造山带东段芨芨台子地区早二叠世双峰式火山岩地球化学特征及其地质意义[J]. 西北地质, (4): 100-114.
汪晓伟, 崔方磊, 孙吉明, 朱小辉, 朱涛, 白建科. 2015. 博格达造山带东段沙沟库都克闪长岩体地球化学特征、年代学及地质意义[J]. 新疆地质, 33(2): 151-158.
汪晓伟, 徐学义, 马中平, 陈隽璐, 朱小辉, 孙吉明, 崔方磊. 2015. 博格达造山带东段芨芨台子地区晚石炭世双峰式火山岩地球化学特征及其地质意义[J]. 中国地质, 42(3): 553-569.
汪晓伟, 徐学义, 马中平, 陈隽璐, 崔方磊, 朱小辉, 孙吉明. 2015. 博格达造山带东段早石炭世火山岩地球化学特征及构造属性[J]. 地质与勘探, 51(1): 108-122.
汪晓伟, 徐学义, 马中平, 陈隽璐, 朱小辉, 孙吉明, 崔方磊. 2015. 博格达造山带东段萨尔乔克地区早石炭世双峰式火山岩地球化学特征及其地质意义[J]. 地质科技情报, 34(3): 58-70.
王金荣, 李泰德, 田黎萍, 于漫, 王怀涛, 赵志雄, 汤中立. 2010. 新疆博格达造山带晚古生代构造一岩浆演化过程:火山岩组合及地球化学证据[J]. 岩石学报, 26(4): 1103-1115.
王金荣, 汪双双, 吴春俊, 吴春俊, 贾志磊, 欧建, 王晓伟, 吴继承. 2008. 新疆博格达造山带东段早泥盆世玄武岩地球化学特征及其构造意义[J]. 矿物岩石地球化学通报, 27(S1): 280-281.
王银喜, 顾连兴, 张遵忠, 吴昌志, 张开均, 李惠民, 杨杰东. 2006. 博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J]. 岩石学报, 22(5): 1215-1224.
王银喜, 顾连兴, 张遵忠, 张开均, 李惠民, 吴昌志, 杨杰东. 2005. 博格达裂谷闭合和区域隆起的同位素年代学证据及地质意义[J]. 地球学报, 26(Z1): 102-104.
吴庆福. 1986. 准噶尔盆地构造演化及含油气远景[J]. 新疆地质, 4(3): 1-19.
张传恒, 刘典波, 张传林, 王自强, 余琪祥. 2005. 新疆博格达山初始隆升时间的地层学标定[J]. 地学前缘, 12(1): 294-302.