文章快速检索    
 
  中国地质 2020, Vol. 47 Issue (4): 1186-1203  
0
引用本文
苏茂荣, 李英雷, 刘汇川, 邵永旭, 张青, 周飞, 曹磊, 孙景浩. 2020. 中亚造山带东段古元古代结晶基底:来自中蒙边境花岗岩和沉积地层的证据[J]. 中国地质, 47(4): 1186-1203.  
Su Maorong, Li Yinglei, Liu Huichuan, Shao Yongxu, Zhang Qing, Zhou Fei, Cao Lei, Sun Jinghao. 2020. Paleoproterozoic basement in eastern Central Asia Orogenic Belt:Evidence from granite and sedimentary strata in Sino-Mongolia border area[J]. Geology in China, 47(4): 1186-1203. (in Chinese with English abstract).  

中亚造山带东段古元古代结晶基底:来自中蒙边境花岗岩和沉积地层的证据
苏茂荣1, 李英雷2,3, 刘汇川4,5, 邵永旭1, 张青1, 周飞1, 曹磊1, 孙景浩1    
1. 内蒙古自治区地质调查院内蒙古自治区岩浆活动成矿与找矿重点实验室, 内蒙古 呼和浩特 010020;
2. 中国地质科学院矿产资源研究所, 北京 100037;
3. 北京大学地球与空间科学学院, 北京 100871;
4. 中国石油大学油气资源与探测国家重点实验室, 北京 102249;
5. 中国石油大学地球科学学院, 北京 102249
摘要:中亚造山带东段多个地块内鲜有古老结晶基底物质报道,严重制约了我们对其早期属性的认识。本研究在内蒙古北部与蒙古国接壤的乌力吉特敖包地区,发现了被中下泥盆统泥鳅河组不整合覆盖的古元古代细粒二长花岗岩和沉积地层(乌兰敖包组)。对二长花岗岩开展的LA-ICM-MS锆石U-Pb定年显示其结晶年龄为(1686±10)Ma,说明形成于古元古代。乌力吉特敖包二长花岗岩高钾钙碱性,过铝质(A/CNK=1.08~1.11),且含有大量白云母,属S-型花岗岩。不同于常见的显生宙以来的S-型花岗岩,乌力吉特敖包古元古代花岗岩具有正的εHft)值(+2.9~+6.7),但εHft)值远低于1.7 Ga地壳演化趋势线,且锆石原位Hf同位素二阶段模式年龄为2.0~2.3 Ga,因此其应该来源于古老变泥质岩部分熔融。乌力吉特敖包古元古代花岗岩形成于陆陆同碰撞的构造环境。在古元古代乌兰敖包组变质泥岩获得了一个显著的碎屑锆石峰值年龄(1698 Ma),且该地层被元古宙花岗岩侵入。本研究发现的乌力吉特敖包古元古代末期花岗岩和乌兰敖包组沉积地层说明:中亚造山带东缘各地块内存在古老的结晶基底物质。这为我们认识这些地块早期演化历史提供了重要地质证据。
关键词中亚造山带    古元古代    S型花岗岩    中蒙边境    结晶基底    地质调查工程    
中图分类号:P548;P597            文献标志码:A             文章编号:1000-3657(2020)04-1186-18
Paleoproterozoic basement in eastern Central Asia Orogenic Belt:Evidence from granite and sedimentary strata in Sino-Mongolia border area
SU Maorong1, LI Yinglei2,3, LIU Huichuan4,5, SHAO Yongxu1, ZHANG Qing1, ZHOU Fei1, CAO Lei1, SUN Jinghao1    
1. Inner Mongolia Key Laboratory of Magmatic Mineralization and Ore-Prospecting, Geological Survey Institute of Inner Mongolia, Hohhot 010020, Inner Mongolia, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
4. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
5. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
Abstract: There are few reports of Archean crystalline basement in the eastern part of the Central Asian Orogenic Belt, which impedes researchers' understanding of ancient tectonic evolution of this area. In this study, the authors discovered Paleoproterozoic fine-grained adamellite and sedimentary rocks (Wulanaobao Formation) unconformably covered by the Niqiuhe Formation of Middle Lower Devonian in the Ulikit Obo area along central China-Mongolia border area. The zircon U-Pb dating results (LA-ICP-MS) show that the crystallization age of monzogranite is 1686 ±10 Ma, formed in Paleoproterozoic. The Ulikit Obo granites are high-K calc-alkaline, peraluminous (A/CNK=1.08-1.11). In combination with the existence of muscovite, the Ulikit Obo granites could be classified as S-type granites. They have positive εHf(t) value(+ 2.9-+ 6.7), which is located lower than the 1.7 Ga crustal evolution trend line; besides, the in-situ Hf isotope two-stage model age of zircon is 2.0-2.3 Ga, so the zircon should be derived from partial melting of pelites in syn-collisional tectonic settings. The Wulanaobao Formation was intruded by the Paleoproterozoic Ulikit Obo granites and their detrital zircons yielded a youngest age peak of ca. 1698 Ma. The discovery of Paleoproterozoic Ulikit Obo granites and Wulanaobao Formation indicates the existence of Paleoproterozoic crystalline basement for the microcontinental massifs in the eastern section of the Central Asian orogenic belt.
Key words: Central Asian orogenic belt    Paleoproterozoic    S-type granites    China-Mongolia border area    crystalline basement    geological survey engineering    

1 引言

华北板块与西伯利亚板块间分布有当今地质学研究热点区域之一的中亚造山带,其间夹持有多个地块(Xiao et al., 2003Li et al., 2013Shi et al., 2016Liu et al., 2018a),比如准噶尔、中央蒙古、南戈壁、兴安和额尔古纳河等陆块(图 1a)。但是在这些地块内鲜有古老结晶基底物质报道,甚至有观点认为这些所谓的古陆块并不存在,因此上述也被由北向南划分为古亚洲洋闭合期间新生的额尔古纳非火山型被动陆缘、乌尔其汉火山型陆缘、扎兰屯火山型被动陆缘、华北北部陆缘增生带和宝音图—锡林浩特火山型被动陆缘等条带(图 1b)(Eizenhofer et al., 2014Li et al., 2014Song et al., 2015Fu et al., 2018)。那么中亚造山带东段各地块内是否存在古老结晶基底呢?

图 1 西伯利亚和华北板块及其间大地构造图(a,据Liu et al., 2018a修改)和研究区所处大地构造位置简图(b,据李英雷等, 2017Liu et al., 2019修改) 1—二叠纪以后沉积; 2—二叠纪沉积/火山岩; 3—石炭纪沉积; 4—早古生代中生代沉积物; 5—晚古生代花岗岩; 6—早—中古生代花岗岩类; 7—超基性岩; 8—变质杂岩; 9—前寒武纪基底; 10—国界线; 11—断层; 12—研究区位置 Fig. 1 Tectonic outline of Siberia and North China cratons(a, modified from Liu et al., 2018a) and geological sketch map of the study area(b, modified from Li et al., 2017; Liu et al., 2019) 1-Post-Permian sediments; 2-Permian sedimentary/volcanic rocks; 3-Carboniferous sediments; 4-Early Paleozoic-Mesozoic sediments; 5-Late Paleozoic granite; 6-Early-Middle Paleozoic granitoids; 7-Ultrabasic rocks; 8-Metamorphic complex; 9-Precambrian basement; 10-National boundaries; 11-Fault; 12-Study area

笔者通过详细的野外地质填图(内蒙古1:5万区域地质调查报告阿格廷查干陶勒盖幅),在内蒙古自治区阿巴嘎旗北部与蒙古国接壤的区域,发现了被原划中下泥盆统泥鳅河组角度不整合覆盖的古元古代末期的白云母化细粒二长花岗岩和乌兰敖包组地层,进而表明内蒙古二连—贺根山构造带以北存在古元古代古陆块。本文报道了该花岗岩体的锆石年代学、原位Lu-Hf同位素和地球化学数据,以及乌兰敖包组地层学和碎屑锆石数据,并据此分析了其成岩环境和地质意义。

2 区域地质背景和野外地质特征

研究区位于内蒙古自治区锡林郭勒盟阿巴嘎旗北部乌力吉特敖包一带,北与蒙古国接壤。其大地构造位置属于西伯利亚板块南缘乌里雅苏台活动陆缘(图 1图 2)。研究区地质演化历史倍受地质学者的关注,近年来,许多地质矿产问题都集中到该区域。作为中亚造山带的东段的重要组成部分,兴蒙造山带由众多地块、岛弧、增生楔、洋壳残片等构成,记录了古亚洲洋俯冲及西伯利亚和华北板块碰撞拼合等重要信息(Wang et al., 2006Zhang, 2014Song et al., 2015)。

图 2 研究区地质图 1—第四系;2—阿巴嘎组玄武岩;3—宝力高庙组二段火山碎屑岩;4—宝力高庙组一段碎屑岩夹火山岩;5—泥鳅河组碎屑岩;6—中元古界乌兰敖包组细粒长石石英砂岩夹板岩;7—中元古界乌兰敖包组二云母粉砂质板岩、黑云母板岩夹变质长石石英砂岩;8—中二叠世中粗粒碱长花岗岩;9—中二叠世细粒二长花岗岩;10—早二叠世中粒正长花岗岩;11—早二叠世黑云母二长花岗岩;12—晚石炭世细粒二长花岗岩;13—早石炭世中粒正长花岗岩;14—早石炭世细粒二长花岗岩;15—晚奥陶世黑云母二长花岗岩;16—晚奥陶世巨斑状黑云母二长花岗岩;17—中元古代白云母细粒二长花岗岩;18—采样点;19—断层;20—韧性剪切带;21—不同岩性脉体 Fig. 2 Geological map showing the stratigraphic and igneous components of the study area 1-Quaternary; 2-Basalt of Abaga Formation; 3-Pyroclastic rocks of Baoligaomiao Formation; 4-Volcanic rocks of Baiyingaolao Formation; 5-Niqiuhe Formation; 6-Sandstone and slate of Wulanaobao Formation; 7-Biotite slate of Wulanaobao Formation; 8-Alkali feldspar granite of Middle Permian; 9-Fine grained monzogranite of Middle Permian; 10-Middle grained syenogranite of Early Permian; 11-Biotite monzogranite of Early Permian; 12-Fine-grained Monzogranite of Late Carboniferous; 13-Middle grain syenogranite of Early Carboniferous; 14-Fine-grained monzogranite of Early Carboniferous; 15-Biotite monzogranite of Late Ordovician; 16-Porphyritic biotite monzogranite of Late Ordovician; 17-Muscovite fine-grained monzogranite of Mesoproterozoic; 18-Sampling location; 19-Fault; 20-Ductile shear zone; 21-Vein

目前对研究区内分布的浅变质岩系的研究程度较低,因总体岩性单调,未见化石,1:20万区调分别划归中下奥陶统汗乌拉组和下泥盆统敖包亭浑迪组,2005—2008年内蒙古自治区地质调查院李玉玺等,在开展二连浩特等5幅1:25万区调修测时,采用内蒙古自治区岩石地层划分,将汗乌拉组与大兴安岭地区的铜山组对比,将敖包亭浑迪组与泥鳅河组对比。之后,多数学者都沿用此划分方案。对其时代的归属仅是岩性组合对比,没有可靠的时代依据。笔者通过长期的内蒙古1:5万区域调查工作在2018年新建了正式填图单元乌兰敖包组(Pt2w),其主要分布在研究区北部乌兰敖包、巴彦德勒格尔敖包南及南部阿扎哈达—包尔敖包等地,面积约106 km。区内除出露上述浅变质岩外,主要出露中、下泥盆统泥鳅河组一套黄绿色泥岩、泥质粉砂岩、浅灰色细粒岩屑长石砂岩夹生物灰岩透镜体的海相碎屑岩建造;上石炭—下二叠统宝力高庙组陆相碎屑岩夹火山岩建造。局部被上更新统阿巴嘎组基性火山岩及全新统覆盖。

2.1 古元古代地层特征

乌兰敖包组(Pt2w)是中亚造山带内东缘各微陆块内为数不多的中元古代地层之一,根据岩性组合特征可划分为两个段,一段岩性组合为:灰黑色、白色黑云母角岩化细粒长石石英砂岩、灰色、灰黄色片理化细粒长石砂岩夹蓝灰色黑云母粉砂质板岩,构成韵律层,彼此界线清晰平直。岩石中发育平行层理(图 3a)、水平层理(图 3b)、纹层理、板状交错层理(图 3c)、斜层理、羽状层理、槽状交错层理、包卷层理、脉状层理(图 3d)等,偶见波痕。总体为一套滨浅海相的碎屑岩沉积。该段变形强烈,砂岩中发育等厚褶皱,平卧褶皱、尖棱褶皱等,总体形成轴面北东向的一系列宽缓背向斜褶皱,厚度大于712.8 m。二段主要由蓝灰色绢云母板岩、粉砂质板岩夹变质钙质粉细砂岩(图 3ef)、细粒长石石英砂岩组成,岩石平行层理发育,为一套深水沉积。该段地层变形较强,多形成轴向北东展布的宽缓、同斜倒转褶皱,韧性剪切变形、层间劈理、层间揉皱极为发育。厚度573.7 m。

图 3 乌兰敖包组地层构造 a—灰白色细粒长石石英砂岩与泥质粉砂岩中的平行层理;b—灰白色细粒长石石英砂岩与泥质粉砂岩中的水平层理;c—细粒长石石英砂岩的交错层理;d—细粒长石石英砂岩中的脉状层理、交错层理;e,f—乌兰敖包组二段板岩露头照片 Fig. 3 Stratigraphic structure of the Wulanaobao Formation a-Horizontal bedding in the sandstone and pelitic siltstone; b-Parallel bedding in the sandstone and pelitic siltstone; c-Cross bedding within the sandstone; d-Flaser bedding in the Fine grained feldspathic quartz sandstone; e, f-Slate outcrop of Wulanaobao Formation

一段可见4个基本层序类型(图 4Ⅰ—Ⅳ),基本层序Ⅰ:构成向上变细的韵律层,一般见于该组一段的中下部,其中长石石英砂岩中长石的含量较高,岩石中层理不发育,多呈块状层理;泥质粉砂岩中多发育水平层理、平行层理、局部地段见有正粒序层理等。基本层序Ⅱ:构成向上变细不等厚反复重现的韵律层,多见于该组一段的中上部,变质细砂岩厚度变化不明显,发育平行层理、水平层理、斜层理、板状交错层理、槽状交错层理理、楔状交错层理、低角度交错层理等,并见示顶构造——波痕,偶见(印模)波痕出露;粉砂岩段厚度明显增,发育平行层理、纹层理,局部见小型爬升纹层。基本层序Ⅲ:构成向上变细的韵律层,多见于该组二段的中下部,岩性变化不大;细砂岩段中见有水平层理、平行层理、交错层理;粉砂岩与泥质粉砂岩段中仅见有细纹层理。基本层序Ⅳ:构成向上变细反复重现的韵律层,多见于该组二段中上部,砂岩段中发育水平层理、纹层显示滑动褐皱构造发育,局部见有包卷层理;板岩段中见有清晰水平层理、纹层理。

图 4 乌兰敖包组一段基本层序(Ⅰ-Ⅳ)图 Ⅰ, Ⅱ, Ⅲ, Ⅳ—基本层序;A—灰色、灰紫色变质长石石英细砂岩;B—变质细砂岩;C—变质粉细砂岩;D—变质粉砂岩;E—板岩;F—变质泥质粉砂岩 Fig. 4 Stratigraphic column for the lower sequence of the Wulanaobao Formation Ⅰ, Ⅱ, Ⅲ, Ⅳ-Basic sequences; A-Gray purple metamorphic fine feldspar-quartz sandstone; B-Metamorphic fine sandstone; C-Metamorphic fine sandstone-siltstone; D-Metamorphic siltstone; E-Slate; F-Metamorphic pelitic siltstone
2.2 花岗岩基本特征

研究区侵入岩零星出露,主要为古元古代白云母化二长花岗岩(新厘定),晚奥陶世的二长花岗岩、石炭纪二长花岗岩、正长花岗岩及早、中二叠世的细粒斑状二长花岗岩、正长花岗岩及碱长花岗岩和大量的中酸性脉岩(图 2)。

古元古代二长花岗岩仅分布于乌力吉特敖包南部,为测区内新厘定出的最古老岩体,被晚奥陶世斑状粗中粒黑云母二长花岗岩侵入,呈岩株产出,岩石球形风化明显,发育不同程度的云英岩化蚀变现象,岩石类型单一,为浅肉黄色或灰白色白云母化细粒二长花岗岩(ηγxPt2图 5)。具细粒花岗结构,块状构造。斜长石30%,钾长石(条纹长石)40%,石英22%,白云母8%,黑云母少量(图 5)。斜长石多数1~1.5 mm半自形板状—半自形粒状,轻度绢云母化,发育聚片双晶,为更长石及更中长石;钾长石多数0.7~1.5 mm半自形粒状,主要为条纹长石,多数干净,部分轻度泥化,发育条纹构造;石英0.3~1.5 mm他形粒状;白云母0.2~1.5 mm鳞片状,可见交代黑云母现象。副矿物主要为锆石、磁铁矿、磷灰石、褐铁矿、黄铁矿,另外还有微量副矿物:锐钛矿、白钛石等。

图 5 乌力吉特敖包古元古代花岗岩野外露头(a)和镜下照片(b) Q—石英; Pl—斜长石; Kf—钾长石; MS—白云母 Fig. 5 Field outcrop(a) and microscope photos(b) of Ulikit Obo granites Q-Quartz; Pl-Plagioclase; Kf-K-feldspar; MS-Muscovite
2.3 古元古代地层变质变形特征

乌兰敖包组变形极为强烈。根据地质填图至少可以识别出四期变形。早期为层间揉皱(图 6a),为普遍发育在组内的同生滑动构造。第二期为小型的等厚褶皱(图 6b)、平卧褶皱,可能为早期构造变形形成的规模较小的背向斜构造。第三期构造变形是测区最强烈的一次变形,形成了近东西向的复式背向斜。这次变形改造和置换了前两次构造,使早期褶皱更加紧闭,形成同斜倒转褶皱(图 6c)、尖棱褶皱和不协调褶皱等,并在大型褶皱的转折端发育轴面劈理。与本期构造变形相伴随的是走向断层和韧性剪切变形带(图 6d)。断层规模较大,延续长,大部分具逆断层性质,韧性剪切带与断层展布方向一致,为北东向。第四期构造变形是由东西向的挤压而造成的近南北向或北北东向的褶皱,该期褶皱叠加在早期近东西向褶皱之上。通过本次研究工作发现该套地层无论从岩性特征、变形特征及同位素年龄等方面在区域上均无法对比。该套地层为一套较深水环境的细碎屑岩沉积建造,不含化石,褶皱变形强烈。而本地层区划内的青白口系佳疙疸组、震旦系额尔古纳组、奥陶系、志留系等的变形均没有测区这套地层变形强烈,从岩性组合特征与测区也不能对比。

图 6 乌兰敖包组变形褶皱构造 a—变质粉砂岩中滑动褶皱;b—变质细粒长石石英砂岩中等厚褶皱;c—粉砂质板岩中的同斜倒转褶皱;d—韧性剪切带鞘褶皱 Fig. 6 Deformed fold structure of Wulanaobao Formation a-Strain-slip folding in the metamorphic siltstone; b-Isopach fold within the metamorphic quartz sandstone; c-Synclinal reverse fold in the slate; d-Sheath fold within the Ductile shear zone
3 实验方法及实验结果 3.1 锆石U-Pb定年和原位Lu-Hf同位素分析

本次工作在乌力吉特敖包白云母化细粒二长花岗岩中采集了样品用于测年和元素分析。锆石挑选在内蒙古自治区地质调查院岩矿鉴定室完成,挑选出的锆石送至“北京锆年领航科技有限公司”进行制靶,年龄测定由“内蒙古自治区岩浆活动成矿与找矿重点实验室”完成。该实验室采用Neptune Plus多接收电感耦合等离子体质谱仪和Geolas HD 193 nm激光剥蚀系统。根据锆石阴极发光照片、反射光和透射光照片选择锆石的合适区域,利用193 nm激光器对锆石进行剥蚀,激光剥蚀的斑束一般为32 μm,能量密度为10 J/cm2,频率为6 Hz,激光剥蚀物质以He为载气送入Neptune Plus(MC-ICP-MS),利用动态变焦扩大色散使质量数相差很大的U-Pb同位素可以同时接收从而进行U-Pb同位素测定和原位Lu-Hf同位素测试。锆石标样采用GJ-1、91500或Plešovice标准锆石。数据处理采用中国地质大学刘勇胜老师编写的ICPMSDataCal程序和Kenneth R. Ludwig的Isoplot程序进行分析和作图,采用208Pb对普通铅进行校正。利用NIST 610作为外标计算锆石样品的Pb、U、Th含量。

笔者对白云母化细粒二长花岗岩进行了26颗锆石U-Pb年龄测试,测试结果列于表 1中。其中18个测试点较为集中,207Pb/206U表观年龄介于1665~1698 Ma,加权平均年龄为(1686±10) Ma(MSWD=0.15, n=18; 图 7bc)。剩余分析点中有7个较为年轻,206Pb/238U表观年龄介于170~1308 Ma。乌力吉特敖包二长花岗岩被中下泥盆统泥鳅河组不整合覆盖,这一野外地质观察说明其结晶年龄应早于古生代,它包含的170~1308 Ma的年轻锆石可能是普通铅丢失或者挑选锆石时混染造成,也可能是后期流体带入岩体裂隙或节理缝引起。此外,有一颗锆石较老,207Pb/206U表观年龄为1844 Ma,可能为继承锆石。17个谐和的分析测试点Th/U比值均大于0.1,其锆石CL图像也显示为典型岩浆锆石(图 7a),因此1686 Ma代表了该花岗岩体的岩浆侵位年龄。笔者对乌兰敖包组变质泥岩中的碎屑锆石测试了60个点(图 8),其中1个点为2520 Ma,1个点为1808 Ma,剩余58个点峰值集中在1774~1626 Ma,加权平均年龄为(1698.7±6.1) Ma年龄值。该年龄略大于乌力吉特敖包南的白云母化细粒二长花岗岩,与二者的侵入接触关系一致。

表 1 乌力吉特敖包古元古代花岗岩(TW4295)和乌兰敖包组泥岩(TW2320)LA-ICP-MS锆石U-Pb年龄数据 Table 1 LA-ICP-MS zircon U-Pb dating results of the Ulikit Obo granites(TW4295) and mudstone(TW2320) from the Wulanaobao Formation
图 7 乌力吉特敖包二长花岗岩锆石阴极发光照片(CL)与U-Pb年龄谐和图 Fig. 7 Cathodoluminescence(CL) images and zircon concordia diagrams of the Ulikit Obo monzogranites
图 8 乌兰敖包组泥岩LA-ICP-MS碎屑锆石年龄谐和图和年龄频谱图 Fig. 8 LA-ICP-MS zircon U-Pb diagrams for the mudstone of the Wulanaobao Formation

白云母细粒二长花岗岩获得的同位素年龄集中在1.7 Ga,表明古元古代古陆块是存在的。样品锆石原位Lu-Hf同位素结果(表 2图 9)显示其εHf(t)值为+2.9~+6.7,Hf同位素二阶段模式年龄2.0~2.3 Ga。

表 2 乌力吉特敖包早元古代花岗岩(TW4295)锆石原位Lu-Hf同位素数据 Table 2 In-situ zircon Lu-Hf isotope dating results of the Ulikit Obo granites(TW4295)
图 9 乌力吉特敖包古元古代花岗岩锆石原位Lu-Hf同位素组成 Fig. 9 Zircon εHf(t) versus U-Pb age diagram for the Ulikit Obo granites
3.2 花岗岩全岩主微量元素分析

准确称取0.3 g左右样品于酒精清洗干净的干燥的陶瓷坩埚中,分别记录坩埚重、样品重和坩埚+样品重。将盛有样品的坩埚置于高温炉中900℃灼烧40 min。在坩埚未完全冷却前将其放入干燥器中冷却至常温,称重坩埚+样品。在假设坩埚质量不变的前提下计算样重的损失,即烧失量(LOI)。主微量元素的分析测试均在天津地质调查中心实验室成。常量元素测试采用XRF玻璃熔片法,分析精度和准确度优于5%;稀土和微量元素采用ICP-MS分析方法,分析精度和准确度优于10%。

对采自乌力吉特敖包二长花岗岩的2件样品开展了主微量元素分析,测试结果列于表 3中。该岩体属高钾钙碱性系列火山岩(图 10a),其主微量元素含量变化不大,SiO2为75.83%和76.51%,Al2O3为13.02%和13.40%,Fe2O3T为0.66%和0.72%,TiO2为0.04%和0.06%,Na2O+K2O为8.34%和8.54%,Na2O/K2O比值较高,为0.76~0.82,Mg#为23~29。乌力吉特敖包二长花岗岩为过铝质,A/CNK为1.08~1.11 (图 10b),且样品含有大量白云母,所以其可划分为S-型花岗岩。乌力吉特敖包二长花岗岩的稀土元素配分图和微量元素蛛网相对平坦,轻微右倾(图 11),可见明显的Nb、Ta、Ti、Sr、Eu负异常(Nb*=0.31~0.79; Sr*=0.12~0.16; Eu*=0.07~0.11)。稀土总量为(ΣREEs)n=51×10-6~96×10-6

表 3 乌力吉特敖包古元古代花岗岩主量(%)和微量元素(10-6)含量 Table 3 Major(%) and trace element(10-6) concentrations of the Ulikit Obo granites
图 10 乌力吉特敖包古元古代花岗岩K2O-SiO2和A/NK-A/CNK图解 a—K2O-SiO2图解; b—A/NK-A/CNK图解(A/CNK=(Al2O3/101.96)/((CaO/56.08)+(Na2O/61.98)+(K2O/94.20));A/NK=(Al2O3/101.96)/((Na2O/61.98)+(K2O/94.20)) Fig. 10 K2O-SiO2 and A/NK-A/CNK diagrams of the Ulikit Obo granites a-K2O versus SiO2 diagram; b-A/NK versus A/CNK diagram (A/CNK=(Al2O3/101.96)/((CaO/56.08)+(Na2O/61.98)+(K2O/94.20)); A/NK=(Al2O3/101.96)/((Na2O/61.98)+(K2O/94.20)))
图 11 乌力吉特敖包古元古代花岗岩微量元素蛛网图和稀土元素配分图 (原始地幔和球粒陨石数据参考文献(Sun and McDonough, 1989)) a—微量元素蛛网图; b—稀土元素配分图 Fig. 11 Primitive mantle normalized incompatible elemental spidergrams and chondrite-normalized REE patterns of the Ulikit Obo granites a-Spidergram; b-Normalized REE pattern (primitive mantle and chondrite data after Sun and McDonough, 1989)
4 讨论 4.1 乌力吉特敖包古元古代末期花岗岩成因

乌力吉特敖包二长花岗岩为过铝质高钾钙碱性S型花岗岩,但是其显示出正的εHf(t)值(+2.9~+6.7)。通常显生宙以来的年轻S-型花岗岩因源区为古老的沉积岩,所以具有低的负的εHf(t)值(Chen et al., 2011Liu et al., 2015, Liu et al., 2017Liu et al., 2018b),而元古宙及之前的S型花岗岩则不同,它们处在地壳演化的早期,在地壳演化线上更加靠近亏损地幔线(图 8),所以常显示出高的正的εHf(t)值。比如本研究的乌力吉特敖包二长花岗岩,具有正的εHf(t)值,但εHf(t)值远低于1.7 Ga地壳演化趋势线,而介于2.0 Ga和2.3 Ga的地壳演化线(图 9),这一特征与其锆石原位Hf同位素二阶段模式年龄(2.0~2.3 Ga)一致。前人报道的元古宙S型花岗岩也显示出了类似的正的εHf(t)值和古老的锆石原位Hf同位素二阶段模式年龄(Jung et al., 2001Dan et al., 2014Li et al., 2017Zhang et al., 2017)。此外,样品具有异常高的Rb/Sr (32~48)、Rb/Ba (30~38)、Al2O3/TiO2(223~305)比值,和较低的CaO/Na2O(0.08~0.09)比值。在源区判别图上,样品点接近泥质岩区域(图 12)。因此,笔者认为虽然乌力吉特敖包二长花岗岩具有正的εHf(t)值,但其仍是典型S型花岗岩,其源岩为古老的变沉积岩。

图 12 乌力吉特敖包古元古代花岗岩岩浆来源判别图 a—Rb/Ba-Rb/Sr图解; b—Al2O3/TiO2-CaO/Na2O图解(图中区域和趋势线来自文献(Patiňo-Douce, 1999Patiňo-Douce and Harris, 1998)) Fig. 12 Magma source discrimination diagram of the Ulikit Obo granites a-Rb/Ba-Rb/Sr diagram; b-Al2O3/TiO2-CaO/Na2O diagram (regional diagram and trend lines after Patiňo-Douce, 1999; Patiňo-Douce and Harris, 1998)

中亚造山带东段古元古代构造和岩浆作用缺乏,因此难以通过特征岩石组合来识别研究区古元古代区域大地构造背景。S型花岗岩虽然可以形成于多种构造环境,比如活动大陆边缘、陆陆同碰撞和碰撞后、甚至与地幔柱相关,但是S型花岗岩在陆陆同碰撞地壳加厚的构造环境最为常见(Wang et al., 2007Wang et al., 2011Liu et al., 2015Liu et al., 2018b)。乌力吉特敖包二长花岗岩具有较高的Rb和Ta含量,较低的Y、Yb、Y+Nb、Yb+Ta含量,在构造环境判别图上,样品点均落于同碰撞花岗岩区域内(图 13)。因此,笔者更倾向于认为乌力吉特敖包二长花岗岩形成于陆陆同碰撞的构造环境。

图 13 乌力吉特敖包古元古代花岗岩构造环境判别图(据Pearce et al., 1984Pearce, 1996;) a—Rb/(Y+Nb)图解; b—Rb/(Yb+Ta)图解; c—Nb/Y图解; d—Ta/Yb图解; ORG—洋脊花岗岩; WPG—板内花岗岩; VAG—火山弧花岗岩; syn-COLG—同碰撞花岗岩 Fig. 13 Tectonic discrimination diagrams of the Ulikit Obo granites(after Pearce et al., 1984; Pearce, 1996) a-Rb versus(Y+Nb) diagram; b-Rb versus(Yb+Ta) diagram; c-Nb versus Y diagram; d-Ta versus Yb diagram; ORG-Ocean ridge granites, WPG-Within plate granites, VAG-Volcanic arc granites, syn-COLG-Syn-collision granites
4.2 中亚造山带东段古元古代基底岩石的识别及构造意义

前人文献报道的研究区附近1.7 Ga的岩浆岩多分布在华北板块北缘或者西伯利亚板块南缘,比如华北板块的密云环斑花岗岩(1679~1715 Ma; Rämö et al., 1995和政军等, 2011a和政军等, 2011b)、大城子环斑花岗岩((1682±20) Ma; Rämö et al., 1995杨进辉等, 2005)、离石黑云母花岗岩((1725±6) Ma; 魏云峰, 2016),西伯利亚板块的Baikal基贝伦岩群((1674±29) Ma; Gladkochub et al., 2007)、Aldan-Stanovoy的Elkon-Gonam岩群(1650 Ma; Gladkochub et al., 2010)等。但是在中亚造山带东缘各地块内鲜见1.7 Ga的岩浆活动。

前人报道了一些中亚造山带东段各地块内的中—新元古代岩石,比如内蒙古北山地区和查干凹陷钻孔中的新元古代片麻岩(牛文超等, 2017罗军等, 2018)、内蒙古乌拉特中旗索伦山地区中元古代石英闪长岩(刘伟等, 2018)、内蒙古苏尼特左旗中元古代片麻状花岗岩(孙立新等, 2018)和辽宁东部中元古(南辽河群)硼酸盐矿床(许虹等, 2004)。这些中新元古代岩石记录可能并不能代表中亚造山带东段各地块内的结晶基底。

本研究不仅发现了乌力吉特敖包古元古代末期花岗岩(1686±10) Ma,还识别了变质强烈的古元古代末期的沉积地层,说明中亚造山带东缘的地块内存在古老结晶基底物质,而不是在古亚洲洋或蒙古—鄂霍茨克洋闭合过程才增生而成。它们的来源可能是西伯利亚板块,可能是华北板块,也可能是塔里木板块,因为三大板块内均存在约1.7 Ga的岩浆岩记录(He et al., 2018)。

依据前人的构造划分,研究区位于西伯利亚古陆南缘,可能在古元古代是西伯利亚古陆的一部分(图 1)。李锦轶等(2009a, 2009b)认为西伯利亚古陆是一个在古元古代最后固结的古老陆块,主体由太古宙和古元古代的结晶岩系组成,其上覆盖了中元古代至古生代沉积岩系。在该古陆内部,中元古代早期裂陷槽发育,其中堆积了厚度比较大的沉积岩系。根据本研究野外调查及室内综合分析,研究区内出露的乌兰敖包组形成于滨浅海相沉积环境。乌兰敖包组基本层序显示由下至上由粗变细的特征(图 4),具有滨浅海环境下的进积序列特征。偶见波痕,指示为水体动荡环境,说明在古元古代为滨浅海相沉积环境,该区处于大陆边缘。随着大洋俯冲闭合,该区在古元古代末期(1.7 Ga),以本研究发现的同碰撞成因的乌力吉特敖包花岗岩为标志,开始陆陆碰撞。因此,本研究发现的古元古代同碰撞成因花岗岩为李锦轶的观点提供了中元古代的物质记录。李怀坤等(1995, 2009, 2010, 2011)认为古亚洲洋盆应该是在中元古代早期打开的,其标志是西伯利亚及中朝板块内部的中元古代裂陷槽及其边部的裂谷型岩浆岩。这一增生阶段结束后,蒙古—鄂霍茨克造山带前身的洋盆,随着图瓦、中蒙古和额尔古纳等陆块的拼合以及它们与西伯利亚陆块的碰撞,与古亚洲洋分开。研究区内发现中元古代古陆块,可能是由西伯利亚古陆块裂解出来的,经漂移呈地块分布在古亚洲洋中。随着古生代西伯利亚板块与华北板块的汇聚及中生代古亚洲洋逐渐消亡,在这些地块边缘沉积了奥陶系陆缘碎屑岩、火山岩建造,及中酸性岩浆侵入。至早中泥盆世,本区由活动陆缘向被动陆缘转化,沉积了泥鳅河组一套海相碎屑岩建造。

5 结论

(1) 内蒙北部乌力吉特敖包高钾钙碱性过铝质S-型花岗岩结晶年龄为1686 Ma,具高的正的εHf(t)值(+2.9~+6.7),形成于陆陆同碰撞的构造环境。

(2) 本研究识别的乌力吉特敖包古元古代末期花岗岩和乌兰敖包组沉积地层直接说明中亚造山带东段地块内存在古元古代结晶基底物质。

(3)乌兰敖包组具有滨浅海进积序列特征,该区在古元古代末期处于大陆边缘。

注释:

❶内蒙古第一区测队.1979.1:200000白音图嘎吉尔格郎图幅区域地质调查报告[R].

❷内蒙古自治区地质调查院. 2007.1:250000吉尔格郎图苏木幅(L50C003001)区域地质调查报告[R].

❸内蒙古自治区地质调查院.2019.内蒙古1:50000巴彦德勒格尔等四幅区域地质矿产调查报告[R].

致谢: 野外样品采集以及室内岩石分析工作得到了鞠文信、宝音乌力吉、张有宽正高级工程师及野外项目组人员的大力帮助,实验数据分析得到了肖剑伟、张婷婷、呼日乐、马佳骏、张爱、陶文龙等的帮助,内蒙古自治区地质调查院领导的支持和付出保证了本文得以顺利完成;郝梓国主编和评审专家的意见,对提高论文质量起了重要作用,在此一并致以诚挚谢意。

参考文献
Chen Chenghong, Hsieh P S, Lee Chiyu, Zhou Hanwen. 2011. Two episodes of the Indosinian thermal event on the South China Block:Constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite[J]. Gondwana Research, 19(4): 1008-1023. DOI:10.1016/j.gr.2010.10.009
Cui Yuliang, Qu Hongjie, Chen Yingfu, Wang Sen. 2019. First identification of~2.61Ga amphibolite in Jiefangyingzi area on the northern margin of the North China Craton[J]. Geology in China, 46(2): 436-437 (in Chinese with English abstract).
Dan Wei, Li Xianhua, Wang Qiang, Wang Xuance, Liu Yu, Wyman D A. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton:Implications for rapid sediment recycling during slab break-off[J]. Precambrian Research, 254: 59-72. DOI:10.1016/j.precamres.2014.07.024
Eizenhofer P R, Zhao Guochun, Zhang Jian, Sun Min. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone:Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks[J]. Tectonics, 33(4): 441-463.
Fu Dong, Huang Bo, Kusky T M, Li Gangzhu, Wilde S A, Zhou Wenxiao, Yu Yang. 2018. A Middle Permian ophiolitic melange belt in the solonker Suture zone, Western Inner Mongolia, China:Implications for the Evolution of the Paleo-Asian Ocean[J]. Tectonics, 37(5): 1292-1320.
Gladkochub D P, Donskaya T V, Mazukabzov A M, Stanevich A M, Sklyarov E V, Ponomarchuk V A. 2007. Signature of Precambrian extension events in the southern Siberia[J]. Russian Geology and Geophysics, 48(1): 17-31. DOI:10.1016/j.rgg.2006.12.001
Gladkochub, Dmitry P, Pisarevsky, Sergei A, Donskaya, Tatiana V, Ernst, Richard E, Wingate, Michael T D, Söderlund, Ulf, Mazukabzov, Anatoliy M, Sklyarov, Eugene V, Hamilton, Michael A, Hanes, John A. 2010. Proterozoic mafic magmatism in Siberian craton:An overview and implications for paleocontinental reconstruction[J]. Precambrian Research, 183: 660-668. DOI:10.1016/j.precamres.2010.02.023
He Fubing, Wei Bo, Xu Jixiang, Sun Yonghua, Li Ruijie. 2017. Ages, origin and geological implications of the volcanic rocks in the Baoligaomiao Formation of East Ujimqin Banner, Inner Mongolia[J]. Geology in China, 44(6): 1159-1174 (in Chinese with English abstract).
He Zhenyu, Klemd R, Yan Lili, Zhang Zeming. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 185: 1-14. DOI:10.1016/j.earscirev.2018.05.012
He Zhengjun, Niu Baogui, Zhang Xinyuan, Zhao Lei, Liu Renyan. 2011a. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating[J]. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract).
He Zhengjun, Zhang Xinyuan, Niu Baogui, Liu Renyan, Zhao Lei. 2011b. The paleo-weathering mantle of the Proterozoic rapakivi granite in Miyun County, Beijing and the relationship with the Changzhougou Formation of Changchengian System[J]. Earth Science Frontiers, 18(4): 123-130 (in Chinese with English abstract).
Jung S, Mezger K, Hoernes S. 2001. Trace element and isotopic (Sr, Nd, Pb, O) arguments for a mid-crustal origin of Pan-African garnet-bearing S-type granites from the Damara orogen (Namibia)[J]. Precambrian Research, 110(1/4): 325-355.
Li Huaikun, Li Huimin, Lu Songnian. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi formation of Changcheng system and their geological implications[J]. Geochimica, 24(1): 43-48 (in Chinese).
Li Huaikun, Lu Songnian, Li Huimin, Sun Lixin, Xiang Zhenqun, Geng Jianzhen, Zhou Hongying. 2009. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China[J]. Geological Bulletin of China, 28(10): 1396-1404 (in Chinese with English abstract).
Li Huaikun, Su Wenbo, Zhou Hongying, Geng Jianzhen, Xiang Zhenqun, Cui Yurong, Liu Wencan, Lu Songnian. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing[J]. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract).
Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).
Li Jinyi. 2009a. Cycles and Stages of Geological History of China Mainland[J]. Geology in China, 36(3): 504-527 (in Chinese with English abstract).
Li Jinyi, Zhang Jin, Yang Tiannan, Li Yaping, Sun Guihua, Zhu Zhixin, Wang Lijia. 2009b. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University(Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract).
Li Shan, Wang Tao, Wilde S A, Tong Ying. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment)[J]. Earth-Science Reviews, 126: 206-234. DOI:10.1016/j.earscirev.2013.06.001
Li Shan, Wilde S A, He Zhengjun, Jiang Xiaojun, Liu Renyan, Zhao Lei. 2014. Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China[J]. Tectonics, 33(6): 960-981.
Li Wenjing, Yin Changqing, Long Xiaoping, Zhang Jian, Xia Xiaoping, Wang Luojuan. 2017. Paleoproterozoic S-type granites from the Helanshan Complex in Inner Mongolia:Constraints on the provenance and the Paleoproterozoic evolution of the Khondalite Belt, North China Craton[J]. Precambrian Research, 299: 195-209. DOI:10.1016/j.precamres.2017.07.009
Li Yinglei, Xu Guo, Liu Huichuan, Bai Lingqi, Su Yinchun, Liu Xiaonü. 2017. Petrogenesis and tectonic implication of volcanic rocks from Manitu Formation in the western Great Xing'an Range[J]. Geoscience, 31(4): 683-696 (in Chinese with English abstract).
Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet:Implications for the subduction of the Bangong-Nujiang Tethyan Ocean[J]. Gondwana Research, 41: 157-172. DOI:10.1016/j.gr.2015.04.007
Liu Huichuan, Li Yinglei, He Hongyun, Huangfu Pengpeng, Liu Yongzheng. 2018a. Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing'an massifs (NE China)[J]. Lithos, 304: 347-361.
Liu Huichuan, Wang Yuejun, Li Zhonghai, Zi Jianwei, Huangfu Pengpeng. 2018b. Geodynamics of the Indosinian orogeny between the South China and Indochina blocks:Insights from latest Permian-Triassic granitoids and numerical modeling[J]. Geological Society of America Bulletin, 130(7/8): 1289-1306.
Liu Huichuan, Wang Yuejun, Cawood P A, Fan Weiming, Cai Yongfeng, Xing Xiaowan. 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China)[J]. Gondwana Research, 27(3): 1292-1306. DOI:10.1016/j.gr.2013.12.013
Liu Huichuan, Li Yinglei, Wu Liwen, Huangfu Pengpeng, Zhang Ming. 2019. Geochemistry of high-Nb basalt-andesite in the Erguna Massif (NE China) and implications for the early Cretaceous back-arc extension[J]. Geological Journal, 54(1): 291-307.
Liu Wei, Li Gangzhu, Bai Yuming, Zhang Siyuan, Li Chengyuan, Zhao Guangming. 2018. Discovery of the Mesoproterozoic quartz diorite in the Solonker Area, Urad Zhong Qi, Inner Mongolia, and its tectonic significance[J]. Acta Geologica Sinica, 92(10): 2106-2119 (in Chinese with English abstract).
Luo Jun, Yun Jinbiao, He Zhiliang, Li Tianyi, Song Haiming. 2018. The discovery of Mesoproterozoic gneiss from Mao 11 well in Cha'gan Sag, Inner Mongolia:Evidence from zircon U-Pb geochronology[J]. Geology in China, 45(3): 632-633 (in Chinese with English abstract).
Niu Wenchao, Ren Bangfang, Ren Yunwei, Sun Lixin, Duan Xiaolong, Duan Lianfeng, Li Min, Zhang Jiahun. 2017. Discovery of Neoproterozoic gneissic granite from the Beishan area, Inner Mongolia:Zircon U-Pb chronologic evidence[J]. Geology in China, 44(2): 409-410 (in Chinese with English abstract).
Patiňo-Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas[J]. Geological Society London Special Publications, 168(s1): 55-75.
Patiňo-Douce A E, Harris Nigel. 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689-710. DOI:10.1093/petroj/39.4.689
Pearce J. 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. DOI:10.18814/epiiugs/1996/v19i4/005
Pearce J A, Harris N B W, Tindle A G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks[J]. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Rämä Tapani O, Haapala I, Vaasjoki M, Yu Jianhua, Fu Huiqin. 1995. 1700 Ma Shachang complex, northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust[J]. Geology, 23(9): 815-818. DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
Ren Jishu, Zhao Le, Li Chong, Zhu Junbin, Xiao Liwei. 2017. Thinking on Chinese tectonics-duty and responsibility of Chinese geologists[J]. Geology in China, 44(1): 33-43 (in Chinese with English abstract).
Shi Yuiruo, Anderson J L, Li Linlin, Ding Jing, Liu Cui, Zhang Wei, Shen Chonghui. 2016. Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for Late Palaeozoic and Early Mesozoic evolution of the Central Asian Orogenic Belt[J]. International Geology Review, 58(8): 967-982. DOI:10.1080/00206814.2016.1138333
Song Shuguang, Wang Mingming, Xu Xin, Wang Chao, Niu Yaoling, Allen M B, Su Li. 2015. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB:Implications for two cycles of seafloor spreading and accretionary orogenic events[J]. Tectonics, 34(10): 2221-2248. DOI:10.1002/2015TC003948
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and process[J]. Geological Society, London, Special Publications, 42(SI): 313-345.
Sun Lixin, Ren Bangfang, Wang Shuqing, Xu Xinying, Zhang Yun. 2018. Petrogenesis of the Mesoproterozoic gneissic granite in the Sonid Left Banner Area, Inner Mongolia, and its tectonic implications[J]. Acta Geologica Sinica, 92(11): 2167-2189 (in Chinese with English abstract).
Wang Fei, Zhou Xinhua, Zhang Lianchang, Ying Jifeng, Zhang Yutao, Wu Fuyuan, Zhu Rixiang. 2006. Late mesozoic volcanism in the Great Xing'an range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 251(1/2): 179-198.
Wang Yuejun, Fan Weiming, Sun Min, Liang Xinquan, Zhang Yanhua, Peng Touping. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:A case study in the Hunan Province[J]. Lithos, 96(3/4): 475-502.
Wang Yuejun, Zhang Aimei, Fan Weiming, Zhao Guochun, Zhang Guowei, Zhang Yuzhi, Zhang Feifei, Li Sanzhong. 2011. Kwangsian crustal anatexis within the eastern South China Block:Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 127(1/2): 239-260.
Wei Yunfeng. 2016. Age and geochemical characteristics of Paleoproterozoic granites in Lishi area, Shanxi Province[J]. Huabei land and resources, (3): 93-95 (in Chinese).
Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1-20.
Xu Hong, Peng Qiming, Palmer M R. 2004. Origin of tourmaline-rich rocks in a Paleoproterozoic Terrane (NE China):Evidence from Evaporite-Derived Boron[J]. Geology in China, 31(3): 240-252 (in Chinese with English abstract).
Yang Jinhui, Wu Fuyuan, Liu Xiaoming, Xie Liewen. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China[J]. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract).
Zhang Daohan, Wei Junhao, Fu Lebing, Schmitt A K, Wang Dahao, Tan Jun, Liu Jinke. 2017. Petrogenesis and thermal overprint of S-type granites in Helanshan region, North China Craton:Constraints on the 1.90 Ga khondalites decompression melting and 1.32 Ga tectono-thermal event[J]. Precambrian Research, 303: 660-672. DOI:10.1016/j.precamres.2017.08.016
Zhang Kaijun. 2014. Genesis of the Late Mesozoic Great Xing'an Range Large igneous Province in eastern central Asia:A Mongol-Okhotsk slab window model[J]. International Geology Review, 56(13): 1557-1583. DOI:10.1080/00206814.2014.946541
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011a. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄[J]. 地质通报, 30(5): 798-802.
和政军, 张新元, 牛宝贵, 刘仁燕, 赵磊. 2011b. 北京密云元古宙环斑花岗岩古风化壳及其与长城系常州沟组的关系[J]. 地学前缘, 18(4): 123-130.
李怀坤, 李惠民, 陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义[J]. 地球化学, 24(1): 43-48.
李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约[J]. 地质通报, 28(10): 1396-1404.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670 Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束[J]. 地学前缘, 18(3): 108-120.
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 26(7): 2131-2140.
李锦轶. 2009a. 中国大陆地质历史的旋回与阶段[J]. 中国地质, 36(3): 504-527.
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009b. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584-605.
刘伟, 李钢柱, 白宇明, 张思源, 李成元, 赵广明. 2018. 内蒙古乌拉特中旗索伦山地区中元古代石英闪长岩的发现及其构造意义[J]. 地质学报, 92(10): 2106-2119.
李英雷, 徐国, 刘汇川, 白灵麒, 苏银春, 刘小女. 2017. 大兴安岭西缘玛尼吐组火山岩成因及构造指示[J]. 现代地质, 31(4): 683-696.
罗军, 云金表, 何治亮, 李天义, 宋海明. 2018. 内蒙古查干凹陷毛11井发现中元古代晚期变质岩:锆石U-Pb定年证据[J]. 中国地质, 45(3): 632-633.
牛文超, 任邦方, 任云伟, 孙立新, 段霄龙, 段连峰, 李敏, 张家辉. 2017. 内蒙古北山地区发现新元古代片麻状花岗岩:锆石U-Pb定年证据[J]. 中国地质, 44(2): 409-410.
孙立新, 任邦方, 王树庆, 许新英, 张云. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义[J]. 地质学报, 92(11): 2167-2189.
魏云峰. 2016. 山西省离石一带古元古代花岗岩年代和地球化学特征[J]. 华北国土资源, (3): 93-95.
许虹, 彭齐鸣, Palmer Martin R. 2004. 辽宁古元古代地体中富电气石岩石的成因:蒸发岩硼源的证据(英文)[J]. 中国地质, 31(3): 240-253. DOI:10.3969/j.issn.1000-3657.2004.03.002
杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义[J]. 岩石学报, 21(6): 1633-1644.
崔玉良, 渠洪杰, 陈英富, 王森. 2019. 华北板块北缘解放营子地区发现~2.61Ga斜长角闪岩[J]. 中国地质, 46(2): 436-437.
任纪舜, 赵磊, 李崇, 朱俊宾, 肖黎微. 2017. 中国大地构造研究之思考-中国地质学家的责任与担当[J]. 中国地质, 44(1): 33-43.
何付兵, 魏波, 徐吉祥, 孙永华, 李瑞杰. 2017. 内蒙古巴彦敖包地区宝力高庙组火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 中国地质, 44(6): 1159-1174.