文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (1): 21-39  
0
引用本文
王涛, 刘甲美, 栗泽桐, 辛鹏, 石菊松, 吴树仁. 2021. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质, 48(1): 21-39.  
Wang Tao, Liu Jiamei, Li Zetong, Xin Peng, Shi Jusong, Wu Shuren. 2021. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 48(1): 21-39. (in Chinese with English abstract).  

中国地震滑坡危险性评估及其对国土空间规划的影响研究
王涛1,2, 刘甲美1,2, 栗泽桐1,2, 辛鹏1,2, 石菊松3, 吴树仁1,2    
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 新构造运动与地质灾害重点实验室, 中国地质科学院地质力学研究所, 北京 100081;
3. 中国地质环境监测院, 北京 100081
摘要:中国是世界上地震滑坡灾害最为严重的国家之一。考虑地质构造、地形地貌、地层岩性、河流、地震动参数等6类影响因素,针对50年超越概率10%的抗震设防水准,分别开展了基于信息量模型和Newmark模型的地震滑坡危险性评估。基于最不利原则对两项结果进行地震滑坡危险性综合分区,揭示了中国地震滑坡高危险区集中在南北构造带、青藏高原周缘、鄂尔多斯周缘、天山山脉、台湾山脉等5个活动地块边界或地貌过渡带的空间分布特征。通过地震滑坡危险对主要山区城市的影响分析,显示:34个省级行政单元中的云南、四川、甘肃、台湾4省区受影响严重;370个主要城市中的48个城市受影响严重,其中44个城市有活动断裂穿越;9类主体功能规划区中,国家和省级优化开发区域总体较适于城市开发建设;25个经济区与城市群中,总体较适于开发建设,但是滇中、关天、成渝、兰西等4个经济区与城市群受影响严重;14个集中连片特困地区中,滇西边境、乌蒙、秦巴、六盘等4个地区受影响严重,深度贫困区的"三州"受影响严重。这些区域需要在地质灾害防治和国土空间规划中予以特别关注。
关键词地震滑坡    危险性评估    信息量模型    Newmark位移模型    国土空间规划    
中图分类号:P315.5;P642.22;TU98            文献标志码:A             文章编号:1000-3657(2021)01-0021-19
Seismic landslide hazard assessment of China and its impact on national territory spatial planning
WANG Tao1,2, LIU Jiamei1,2, LI Zetong1,2, XIN Peng1,2, SHI Jusong3, WU Shuren1,2    
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. Key Laboratory of Active Tectonics and Crustal Stability Assessment, Institute of Geomechanics, CAGS, Beijing 100081, China;
3. China Institute for GeoEnvironmental Monitoring, Beijing 100081, China
Abstract: China is one of the countries with the most serious earthquake induced landslide disasters in the world. Considering geological structure, landform, stratigraphic lithology, river and ground motion parameters, and aiming at the seismic fortification level exceeding the probability of 10% in 50 years, the hazard assessment of seismic landslide based on information value and Newmark displacement model were carried out respectively. Based on the most unfavorable principle, a comprehensive zonation of the seismic landslide hazard reveals that in China, the high hazard areas of seismic landslides are concentrated in the boundaries of five active plate boundaries or geomorphic transition zones, such as the north-south tectonic belt, the periphery of Qinghai-Tibet Plateau, the periphery of Ordos, the Tianshan Mountain range and the Taiwan Mountain range. The analysis of the impact of seismic landslide hazard on cities in mountainous areas reveals that Yunnan, Sichuan, Gansu and Taiwan, among the 34 provinces, are seriously affected, and 48 of the 370 major cities are severely affected, and 44 of them have active faults crossing. It is summarized that among the 9 national development priority zones, the national and provincial optimized development zones are generally suitable for urban development and construction; the 25 urban agglomeration and economic zone are relatively suitable for urban development and construction, but the central Yunnan, Chengdu-Chongqing, Lanzhou-Xining urban agglomerations and Guanzhong-Tianshui economic zone are seriously affected by seismic landslide hazard. Among the 14 concentrated contiguous severe poverty areas, the western Yunnan border, Wumeng, Qinba and Liupan areas are seriously affected by seismic landslide hazard; the three deep poverty state areas, such as the Liangshan prefecture of Sichuan Province, Nujiang Prefecture of Yunnan Province and Linxia Prefecture, Gansu Province, are also seriously affected. It reminds us that these regions require special attention in geological disaster prevention and national territory spatial planning. The results can provide reference for urban development, land-use plan and detailed seismic landslide risk management in national scale.
Key words: seismic landslide    hazard assessment    information value model    Newmark displacement model    national territory spatial planning    

1 引言

中国地震活动强烈,山区面积约占全国陆域面积的67%。研究表明,诱发区域性地震滑坡的最小震级约为ML 4.5级,最小地震烈度约为Ⅵ度(Keefer, 1984;孙崇绍等, 1997丁彦慧等, 2000; Keefer, 2002; 李忠生, 2003)。根据最新版的《中国地震动参数区划图》(GB18306-2015)和全国地貌类型分区统计(周成虎等, 2010),Ⅶ度及以上基本烈度面积约573.8×104 km2,Ⅶ度及以上高烈度山区面积约占陆域国土面积的40%,该背景使中国成为世界上地震滑坡灾害最为严重的国家之一。中国地震滑坡具有分布广、数量多、规模大、灾害重、致灾模式多样的鲜明特征。以2008年汶川地震为例,地震滑坡分布涉及84县(市),面积约48×104 km2,滑坡数量约6万处,体积大于1000×104 m3的特大型滑坡达数十处,规模最大的大光包滑坡体积可达11.6×108 m3,滑坡累计导致25000~30000人死亡,远超震前20年来全国因地质灾害死亡人数的总和(Huang et al., 2013)。国际上也有许多灾难性的地震滑坡事件,如1970年秘鲁7.7级地震54000名遇难者中有一半是地震滑坡造成的(Rodríguez et al., 1999);2005年巴基斯坦克什米尔地震触发的滑坡直接造成约1000人死亡(Shafique et al., 2016)。鉴于国内外地震滑坡导致严重灾难的普遍性,近年来区域地震滑坡危险性评估研究成为国际工程地质界优先发展领域之一(Wasowski et al., 2011; Fan et al., 2018)。国内外众多学者开展了不同空间尺度的地震地质灾害危险性评估。在全球尺度上,Tanyaş et al. (2017, 2019)依托美国地质调查局USGS数据平台,建立地震滑坡数据库,利用经验式进行近实时的地震滑坡分布参数速报。Yang et al. (2015)采用指标体系权重方法开展了全球的滑坡危险性与风险评估。在大陆尺度上,欧盟联合实施了SafeLand工程,利用启发式和逻辑回归模型开展地震滑坡危险性评估对比研究,探讨应对地质灾害风险的管控策略(Jaedicke et al., 2013)。在国家—地区尺度上,美国加州旧金山湾(Sharifi-Mood et al., 2017)、意大利(Del Gaudio et al., 2004)、伊朗(Rajabi et al., 2013)等分别开展了地震滑坡危险性评估。中国地震滑坡区域评估研究自1999年台湾集集地震和2008年汶川地震以来受到广泛关注,涌现了一系列关于地震滑坡形成机理和发育规律研究的代表性成果(黄润秋, 2009; 殷跃平, 2009; 张永双等, 2009, 2013; 吴树仁等, 2010; 许强等, 2011)。基于典型震例的地震滑坡危险性评估研究也取得了长足进展(许冲等, 2010; 陈晓利等, 2012; 徐光兴等, 2012; 葛华等, 2013; 王涛等, 2013; Lee, 2014; 乔建平等, 2015; 刘甲美等, 2017)。同时,面向地震地质灾害常态预测、同震应急、震后重建等工作需求,先后开展了服务于中长期规划的概率地震危险性(王涛等, 2015Liu et al., 2016; Wang et al., 2020)、服务重大工程建设的设定地震滑坡危险性(Liu et al., 2018)、服务应急救灾的同震滑坡快速评估(王涛等, 2013; 刘甲美等, 2017)、服务震后灾区重大工程建设运营滑坡危险性评估等系统性研究工作(王涛等, 2014)。在地震滑坡危险性区划方面,王兰民等(2019)结合地震动参数区划成果,开展黄土高原区不同概率水平的滑坡风险评估。鲍叶静等(2005)开展了基于不同设防水准的全国地震崩滑概率预测与危险性分区。高庆华等(2011)利用历史案例资料,开展了中国地震地质灾害危险性和风险半定量评估。许冲等(2019)采用近年中国及邻区多次强震滑坡编录数据,利用逻辑回归模型开展了全国地震滑坡危险性评估;制作了中国地震滑坡危险性概率图。

中国地质灾害的孕育背景和发育规律十分复杂,囿于现有空间数据质量和各类评估模型的局限性,难以采用统一的模型方法开展危险性评估,客观制约了全国危险性评估进展。本文基于优势互补、综合评估的理念,综合运用基于统计分析和力学模型的评估方法,探讨了全国地震滑坡危险性专题评估,分析了地震滑坡危险性对主要城市、主体功能规划区、战略经济区与城市群、集中连片特困地区的影响,以期为强震山区城镇地质灾害防治和国土空间规划地质安全提供科技支撑。

2 重大地震滑坡灾害概况

除汶川地震以外,中国史载的地震滑坡巨灾事件也不胜枚举,单次地震滑坡及其灾害链导致人员伤亡可达数万(表 1)。统计显示,中国西部强震山区地震滑坡及其灾害链导致死亡人数约占地震灾害总死亡人数的1/3~1/2以上(黄润秋, 2009; Zhuang et al., 2018)。相比降雨型滑坡,地震滑坡具有典型的灾难性和不可预见性,是典型的“黑天鹅”事件,也因此成为地质灾害防治和地震灾害防御的重要工作内容之一。

表 1 中国重大地震滑坡灾害事件统计表 Table 1 Statistics of major seismic landslide cases in China
3 空间数据与评估方法 3.1 数据与处理方法

地震滑坡的形成主要受地震动、地形地貌、地层岩性、水文、土地利用、植被覆盖等因素的综合影响。鉴于各地工程地质条件的差异,导致各类因素对滑坡发育的贡献程度有别。其中地层岩性为地质灾害发育提供了物质基础,地形地貌控制着地质灾害的空间边界条件,河流指示坡脚侵蚀及坡体的水文地质特征,增加斜坡不稳定性,地质构造既控制地形地貌,又可控制岩体结构及其组合特征,对地质灾害的发育起综合控制影响作用,地震动则为地震滑坡的动力触发条件(谭成轩等, 2008张永双等, 2009),为避免选取过多次要因素影响评估结果的可靠性,本文仅选取具有重要致灾意义的因素开展地震滑坡危险性评估(表 2表 3图 1)。

表 2 地震滑坡危险性评估因素说明 Table 2 Explanation of hazard assessment factors of seismic landslide
表 3 工程岩土体分组及物理力学参数 Table 3 Grouping and mechanical parameters of engineering rock and soil mass
图 1 中国地震滑坡危险性评估因素分布图 a—地形坡度;b—地形起伏度;c—工程地质岩土体分组;d—河流分布;e—地质灾害点密度与活动断裂分布;f—基本地震动峰值加速度分布 Fig. 1 Assessment factors distribution of seismic landslide hazard in China a-Topographic slope; b-Topographic relief; c-Engineering geological strata groups; d-River; e-Point density of geohazard and fault; f-Peak ground acceleration
3.2 地震滑坡危险性评估模型和方法

地震滑坡危险性评估流程首先是开展滑坡易发性分析,即评估受静态易发条件控制的滑坡已经发生程度和未来将要发生滑坡的倾向性(吴树仁等, 2009);在滑坡易发性评估的基础上叠加地震动态诱发因素,实现地震滑坡危险性评估。基于国内外地震滑坡危险性评估技术进展及模型特点(Liu et al., 2016;Tanyaş et al., 2019;许冲等, 2019; Wang et al., 2020),首先,采用基于统计学原理的信息量模型和基于力学机制的Newmark累积位移模型分别开展全国地震滑坡危险性评估。其中,信息量模型属于“隐式”评估,利用滑坡影响因素的对滑坡发育的贡献程度,以黑匣子方式间接地反映滑坡发育潜势;Newmark模型属于“显式”评估,将坡体失稳机制和滑移过程的定量分析结果,直接作为滑坡危险性等级划分的依据,具有明确的物理意义(王涛等, 2015)。然后,基于最不利原则,综合两种评估结果,得到全国地震滑坡危险性分区结果,技术流程如图 2所示。

图 2 全国地震滑坡危险性评估技术流程图 Fig. 2 Flow chart of the seismic landslide hazard assessment

(1)基于信息量模型的地震滑坡危险性评估

基于信息量模型的滑坡易发性评估方法是利用滑坡发生频率或密度反映不同影响因素及其子区间的致灾效应大小。通过各因素不同区间滑坡密度与滑坡总密度的比值来计算各类因子层的信息量(贡献权重)(Pradhan et al., 2010; Feizizadeh et al., 2014; 张俊等, 2016),以公式表示为:

(1)

IAjB为成灾因素Aj中第j区间滑坡B发生的信息量,Nj为成灾因素A中第j区间的滑坡面积值或灾点数;Sj为成灾因素A中第j区间的分布面积;N为区域滑坡的总面积或总点数;S为区域总面积。

信息量值“正值”指示该因素有利于滑坡发生,“负值”指示该因素不利于滑坡发生。通过对每个指标因子各分级区间的信息量值图层叠加,实现区域滑坡易发性评估,其表达式为:

(2)

式中,IAi表示各单因素图层的信息量值,I代表多因素综合信息量值,指示滑坡易发性程度。

选取表 2所示与滑坡发育密切相关的影响因素,利用地质灾害分布数据,采用信息量模型计算各因素信息量值,最终叠加各因素作用实现滑坡易发性评估。随后叠加地震动参数,实现地震滑坡危险性评估。滑坡易发性与地震动参数叠加方法,一般会采用因素同等叠加、交互式评估矩阵或指数化综合评估等方法实现。

(2)基于Newmark累积位移模型的地震滑坡危险性评估

Newmark模型是基于极限平衡理论提出的,指出滑块永久位移是在地震作用下,滑体沿最危险滑动面发生瞬时失稳后位移不断累积所致;当施加于潜在滑面处的加速度超过临界(或屈服)加速度ac时,滑体即发生滑动(Newmark, 1965; Jibson et al., 2000)。由极限平衡原理可得:

(3)
(4)

其中,FS称为静态安全系数,c(kPa)、φ(°)、γ(kN/m3)分别为斜坡岩土体等效黏聚力、内摩擦角和岩土体重度,θ(°)为斜坡坡度,t为潜在滑体厚度(m),γw(kN/m3)为水的重度,m为潜在滑体饱和部分厚度占滑体总厚度的比值。

基于Newmark模型的地震滑坡危险性评估方法是利用块体发生的直接位移值或间接概率表征地震滑坡的失稳可能性。区域研究中,由于强震台站分布稀疏不一,而区域内斜坡单元往往数量巨大,难于获取每个斜坡的地震动时程记录。通常采用地震动参数(如地震动峰值加速度PGA、Arias强度等)代替地震加速度时程,利用位移拟合经验式预测累积位移(Ambraseys et al., 1988; Jibson, 2007; Yuan et al., 2016)。

4 全国地震滑坡危险性评估分区 4.1 基于信息量模型的危险性评估

通过对上述各地震滑坡影响因素进行分级,并利用式(1)计算信息量,获取各影响因素各个分级状态下的信息量值(表 4),并根据式(2)将各个因素信息量值叠加得到滑坡易发性信息量图层。按照易发性信息量分布曲线的拐点作为分级标准,将滑坡易发性信息量划分为4个等级:不易发区[-6.87, - 1.45)、低易发区[-1.45, 0.50)、中易发区[0.50, 1.00)和高易发区[1.00, 3.78],最终获得基于信息量模型的全国地震滑坡易发性评估分级图(图 3a)。

表 4 地震滑坡影响因素区间的信息量值 Table 4 Information value of seismic landslide influencing factors
图 3 基于信息量模型的全国地震滑坡危险性评估图 a—地震滑坡易发性分区;b—地震滑坡危险性分区 Fig. 3 Seismic landslide hazard assessment based on information value model a-seismic landslide susceptibility; b-seismic landslide hazard

由于目前获取到的全国滑坡分布数据既有地震诱发滑坡也有降雨及人类工程活动诱发滑坡等,无法通过信息量计算获取真实的PGA信息量值,而采用滑坡易发性结果和PGA交互式矩阵的方法评估地震滑坡危险性存在一定程度的主观性,本文采用滑坡易发性信息量结果与地震危险性PGA数值直接相乘的方法得到地震滑坡危险性数值结果,根据地震滑坡危险性数值分布特征,将基于信息量模型的全国地震滑坡危险性评估结果分为4个等级:不危险区、低危险区、中危险区和高危险区(图 3b)。

4.2 基于Newmark模型的危险性评估

利用公式(3)和(4)计算获得临界加速度。其中,岩土体等效黏聚力c、内摩擦角φ和物质重度γ,通过表 2中工程地质岩土体分组及参数经验赋值(段汝文等. 1997; Jibson et al. 2000; 王涛等, 2013; 陈晓利等, 2013; 葛华等, 2013; Zhang et al. 2017)和地形坡度参数获取。根据Keefer对全球地震滑坡数据统计(Keefer, 1984, 2002),地震诱发崩滑灾害以浅层滑坡和岩质的崩塌及碎屑流为主。国内外学者对Newmark模型滑体厚度的参数取值时也均考虑浅层滑坡为主(Jibson et al., 2000; Godt et al., 2008; 王涛等, 2013)。本文将滑体厚度参数取值t=3m,同时考虑到本文针对的是潜在地震滑坡危险性,难以定量刻画未来时间内降雨引起的孔隙水压力变化,因此设定潜在滑体饱和部分厚度占滑体总厚度的比值m=0。经计算可得全国斜坡临界加速度分布结果。尽管国内外基于Newmark模型的位移预测公式形式多样,但通常预测得到的地震滑坡危险性结果整体趋势一致(Dreyfus et al., 2013; 刘甲美等, 2018)。为进一步提升评估的可靠性,本文采用基于中国汶川地震强震动记录的位移经验式计算全国地震滑坡位移分布(徐光兴等, 2012):

(5)

其中,Dn为Newmark累积位移值,单位cm;PGA为地震动峰值加速度,单位g;ac为临界加速度,单位g。参考前人对地震动滑坡Newmark累积位移与地震滑坡危险性关系的认识(Romeo, 2000; Keefer, 2002; Godt et al., 2008),将地震滑坡危险性依据位移大小分为4个等级:不危险区(Dn≤0.01 cm)、低危险区(0.01 cm<Dn≤0.5 cm)、中危险区(0.5 cm<Dn≤5 cm)、高危险区(Dn>5 cm)。

4.3 地震滑坡危险性综合评估分区

通过对比信息量模型(图 3)和Newmark模型的地震滑坡危险性分区结果(图 4),兼顾两种方法的优势,基于最不利原则,按照同一位置的滑坡危险性就高定级的方法,综合确定了地震滑坡危险性最终分区结果(图 5)。结果显示:全国地震滑坡高危险区面积约55.6×104 km2,约占陆域国土面积的5.8%,呈现“一带、两周、两脉”分布特征,集中在南北构造带、青藏高原周缘、鄂尔多斯周缘、天山山脉、台湾山脉等5个活动地块边界或地貌过渡带地区。中危险区面积约160.9 × 104 km2(占比约16.8%),低危险区面积约388 × 104 km2(占比约40.4%),不危险区面积约355.4×104 km2(占比约37.0%)。地震滑坡高危险区分布特征如下:

图 4 基于Newmark模型的全国地震滑坡危险性评估图 a—地震滑坡临界加速度;b—地震滑坡危险性分区 Fig. 4 Seismic landslide hazard assessment based on Newmark model a-critical acceleration; b-seismic landslide hazard
图 5 中国地震滑坡危险性综合分区图 Fig. 5 Integrated zonation of seismic landslide hazard in China

(1)南北构造带分区。北段沿贺兰山—六盘山分布,涉及贺兰山东麓断裂带和六盘山弧形断裂带等,主要影响宁夏北部和南部、甘肃甘南东部、临夏大部、兰州南部、定西西部、天水北部地区。中段沿西秦岭—岷山分布,涉及西秦岭构造带和龙门山断裂带等,主要影响甘肃天水南部—陇南大部,四川阿坝东部岷山地区。南段沿大凉山—横断山脉—云南中西部高原,涉及鲜水河—安宁河—小江断裂带、金沙江—红河断裂带等,主要影响四川雅安大部、乐山西南部、凉山州—攀枝花大部、云南中西大部地区。

(2)青藏高原周缘分区。北缘沿昆仑山—阿尔金山—祁连山—乌鞘岭分布,涉及昆仑山断裂带、阿尔金北缘断裂带、祁连山断裂带等;主要影响南疆昆仑山—阿尔金山北麓沿线各州,甘肃祁连山北麓“河西走廊”地区。东南缘沿喜马拉雅山南麓断裂带分布,主要影响西藏山南—林芝南部地区。东缘分布与南北构造带中段重叠。

(3)鄂尔多斯周缘分区。南缘沿渭河断陷盆地与秦岭过渡带分布,主要涉及秦岭北缘断裂带、渭河盆地北缘断裂带等,主要影响陕西宝鸡—西安—渭南南部山区。东缘沿汾河断陷盆地与中条山、吕梁山、太行山的盆山过渡带分布,涉及汾河断陷盆地边界断裂带,主要影响山西临汾—太原—忻定—大同盆地东西侧山区、河北张家口中南部山区。北缘沿内蒙古中部阴山南麓分布,涉及狼山—乌拉尔山—大青山南麓山前断裂带,主要影响内蒙古巴彦淖尔—包头南部山区、呼和浩特北部山区。西缘与南北构造带北段重叠。

(4)天山山脉分区。沿新疆天山山脉分布,主要涉及天山北麓和南麓断裂带,影响克州大部、阿克苏—库尔勒—吐鲁番北部山区、乌鲁木齐、塔城地区南部山区、伊犁地区等。

(5)台湾山脉分区。沿台湾中部山区分布,涉及台湾山西麓车笼埔断裂、东麓池上断裂和玉理断裂等,主要影响台湾中部山区。

5 地震滑坡危险对国土空间规划的影响分析

采用“地震滑坡影响程度”表征潜在地震滑坡危险对重大战略的影响程度,具体根据地震滑坡高危险区面积占统计单元面积的比例,将影响程度分为3级:严重(地震滑坡高危险区占比≥10%)、中等(高危险区占比≥1%)、轻微(高危险区占比<1%)。

(1)对主要城市和省级行政单元的影响。对370个主要城市(包含4个直辖市,香港、澳门和台湾等7个省级行政单元,294个地级市、7个地区、30个自治州和3个盟等334个地级行政单元,29个省、自治区直辖县。统计截至2018年8月13日)受地震滑坡影响程度分析显示,10个省的48个城市受地震滑坡影响严重;其中44个城市有活动断裂穿越,需特别关注。对全国34个省级行政单元分析显示(图 6a表 5),4个省受地震滑坡影响严重,各省地震滑坡高危险区面积占比依次为:云南50.6%、四川19.6%、甘肃14.5%、台湾43.1%。

图 6 地震滑坡危险对重大战略的影响程度图 a—370个主要城市地震滑坡影响程度图;b—9类主体功能规划区地震滑坡影响程度图;c—25个经济区与城市群地震滑坡影响程度;d—14个集中连片特困地区地震滑坡影响程度图 Fig. 6 Impact degree of seismic landslide hazard on major strategies a-370 major cities; b- 9 major function-oriented zones; c-25 urban agglomeration and economic zones; d- 14 concentrated contiguous severe poverty areas
表 5 受地震滑坡危险影响严重的主要城市统计 Table 5 Statistics of major cities seriously affected by seismic landslide hazard

(2)对全国主体功能区域的影响。《全国主体功能区规划》作为中国国土空间开发的战略性、基础性和约束性规划,将国土空间规划为9类主体功能区域。分析显示,国家和省级优化开发区域总体较适于城市开发建设。其中,国家优化开发区域受地震滑坡影响中等,需关注局部高烈度丘陵区的地震滑坡危险,包括辽中南的海城—盖县—瓦房店沿线Ⅷ度基本烈度区、京津冀的廊坊—宝坻—唐山沿线Ⅷ度基本烈度区、山东半岛的潍坊中部Ⅶ~Ⅷ度基本烈度区。其他7类主体功能区均涉及地震滑坡影响严重的省份(图 6b表 6)。

表 6 受地震滑坡危险影响严重的主体功能区域城市统计 Table 6 Statistics of cities in the main functional regions seriously affected by seismic landslide hazard

(3)对主要经济区与城市群的影响。全国25个主要经济区与城市群规划是落实区域协调发展战略,构建“两横三纵”城市化格局的重要举措。其区域国土面积约246.7×104 km2,地震滑坡高危险区面积占比约5.2%,略低于全国地震滑坡高危险区占比的平均水平,总体较适于开发建设,但是受地震滑坡影响程度不一,滇中城市群、关天经济区、成渝经济区、兰西城市群4个区域受影响严重,需重点关注(图 6c表 7)。地震滑坡影响中等的规划区有5个,包括乌鲁木齐城市群、宁夏沿黄经济区、太原城市群、北部湾经济区、黔中经济区。其余16个规划区受地震滑坡影响轻微。

表 7 受地震滑坡危险影响严重的经济区与城市群统计 Table 7 Statistics of economic zones and city clusters seriously affected by seismic landslide hazard

(4)对集中连片特困地区和实施特殊扶持政策地区(以下简称“特困区”)的影响。《中国农村扶贫开发纲要(2011—2020年)》确定的14个特困区是扶贫攻坚主战场。涉及国土面积约420.7×104 km2,大多分布在强震山区,Ⅶ度及以上基本烈度区面积占比约79.7%。地震滑坡影响严重的地区有4个,包括滇西边境山区、乌蒙山区、秦巴山区、六盘山区(图 6d表 8)。“三区三州”深度贫困地区(含西藏、四省藏区、南疆四地州“三区”,以及四川凉山州、云南怒江州、甘肃临夏州“三州”)受地震滑坡影响程度总体较为严重。其中,“三州”均为地震滑坡影响严重地区,“三区”受地震滑坡影响中等。

表 8 受地震滑坡危险影响严重的集中连片特困地区统计 Table 8 Statistics of concentrated contiguous destitute areas seriously affected by seismic landslide hazard
6 讨论

(1)中国山地丘陵区约占国土面积的三分之二,复杂的地质构造条件,强烈的地震活动,使得中国地震滑坡灾害隐患多、分布广,成灾模式复杂多样,决定了地震滑坡的控制因素多样,相同地质因素条件在不同地区对地震滑坡发育的影响程度也不尽相同。本文基于中国现有的地质灾害调查工作程度和资料积累,通过综合统计分析和力学机制模型,兼顾了信息量模型的稳定性好且便于分区的优势,以及Newmark模型识别高危险区效果好的优势,确保分区结果能够从全国尺度准确揭示高危险区分布特征。重点并非追求复杂模型和技术方法,旨在利用中国现阶段质量不尽理想的数据资料,实现识别灾害危险、支撑防治决策的目标。

(2)自然资源部(原国土资源部)于1999年开始,陆续部署开展了全国山地丘陵区1:10万县(市)地质灾害调查与区划工作,截至2010年底,已完成2020个县(市)800多万km2的调查工作,基本查明了中国地质灾害的总体发育分布规律。需要说明的是,尽管该灾害点并非全由地震触发,但地震仅仅是地震滑坡的诱发条件,地震滑坡的发生还与滑坡自身的易发性程度相关,因此本文利用该成果数据获取了全国滑坡易发性评估结果,再进一步叠加地震危险性结果开展地震滑坡危险性。

(3)本文将地层岩性作为地质灾害发育的物质条件进行建模,然而岩性风化破碎程度及其结构差异对滑坡的形成也至关重要,这些参数特征在大区域尺度评估难以获取,为了解决该问题,必须诉诸新技术方法,例如可尝试利用多光谱或者高光谱遥感技术,开展岩土体类型及物性参数的精细定量填图研究(王涛等,2015)。后续,随着调查工作深入和数据质量提升,逐步更新分辨率更高的地质灾害、工程岩土体及活动断裂等空间数据库,并开展全国地震滑坡工程地质分区,有望进一步深化更新有关研究成果。

7 结论

(1)本文将信息量模型与Newmark评估模型的评估结果相结合,采用最不利原则开展全国潜在地震滑坡危险性评估分区。结果显示:地震滑坡高危险区面积约55.6×104 km2,约占陆域国土面积的5.8%,集中分布在活动地块边界和地貌过渡带地区,呈现“一带、两周、两脉”特征,具体包括南北构造带、青藏高原周缘、鄂尔多斯周缘、天山山脉、台湾山脉5个地区。

(2)通过潜在地震滑坡危险对国土空间规划的分析,显示:全国34个省级行政区中,云南、四川、甘肃、台湾4省受影响严重;370个主要城市中,10个省的48个城市受影响严重,其中44个城市有活动断裂穿越;9类主体功能规划区中,国家和省级优化开发区域总体较适于城市开发建设,其他7类主体功能区均涉及影响严重的省份;25个经济区与城市群中,总体较适于开发建设,但是滇中城市群、关天经济区、成渝经济区、兰西城市群4个规划区受影响严重;14个集中连片特困地区中,滇西边境山区、乌蒙山区、秦巴山区、六盘山区4个地区受影响严重,深度贫困区的“三州”受地震滑坡影响严重。上述影响严重的战略区域应在地质灾害防治和国土空间规划时予以特别关注。

(3)为进一步有效减轻地震地质灾害风险,建议加强面向强震事件的地震滑坡及其灾害链调查编录,工作重心从震后救灾向震前预测转变,开展多尺度(全国、活动构造带、地市等)、多工况(常遇地震、基本地震、罕遇地震等)的地震滑坡风险评估。部署地震地质灾害影响严重、尤其有活动断裂穿越的山区城镇、重大战略区等的地震地质灾害调查,识别高风险区段。统筹国土空间规划,明确高风险区限建、禁建等国土空间用途管制要求,避免类似汶川地震期间映秀、北川等城镇的灾难重演。

致谢: 成都理工大学周杨协助开展了工程岩土体整理工作,在此谨表谢意。

参考文献
Ambraseys N N, Menu J M. 1988. Earthquake-induced ground displacements[J]. Earthquake Engineering and Structural Dynamics, 16: 985-1006. DOI:10.1002/eqe.4290160704
Bai Xianfu, Dai Yuqiang, Yu Qingkun, Shao Wenli. 2015. Risk assessment modeling of earthquake-induced landslides and its preliminary application[J]. Journal of Seismological Research, 38(2): 301-312 (in Chinese with English abstract).
Bao Yejing, Gao Mengtan, Jiang Hui. 2005. Probabilistic analysis of earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 24(1): 66-70 (in Chinese with English abstract).
Chen Xiaoli, Ran Hongliu, Wang Mingming. 2012. Hazards zonation for potential earthquake-induced landslide area[J]. Chinese Journal of Geophys, 55(4): 1269-1277 (in Chinese with English abstract).
Chen Xiaoli, Yuan Renmao, Yu Lu. 2013. Applying the Newmarks model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology, 35(3): 661-670 (in Chinese with English abstract).
Del Gaudio V, Wasowski J. 2004. Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy)[J]. Soil Dynamics and Earthquake Engineering, 24(12): 915-928. DOI:10.1016/j.soildyn.2004.06.019
Ding Yanhui, Wang Yuqing, Sun Jinzhong. 2000. Research on the method for prediction of earthquake-induced landslides and its application to engineering projects[J]. Journal of Engineering Geology, 8(4): 475-480 (in Chinese with English abstract).
Dreyfus D, Rathje E M, Jibson R W. 2013. The influence of different simplified sliding-block models and input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake[J]. Engineering Geology, 163: 41-54. DOI:10.1016/j.enggeo.2013.05.015
Duan Ruwen, Wang Jun, Li Lan. 1997. On relationship between physical mechanical indices and vulnerability of loess[J]. Northwestern Seismol. J., 19(3): 81-85 (in Chinese with English abstract).
Fan X, Juang C H, Wasowski J, Huang R, Xu Q, Scaringi G, van Westen C J, Havenith H B. 2018. What we have learned from the 2008 Wenchuan Earthquake and its aftermath:A decade of research and challenges[J]. Engineering Geology, 241: 25-32. DOI:10.1016/j.enggeo.2018.05.004
Feizizadeh B, Blaschke T. 2014. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping[J]. Geographical Information Science, 28(3): 610-638. DOI:10.1080/13658816.2013.869821
Gao Qinghua, Liu Huimin, Li Xiaoli, Zhang Yecheng. 2011. Regional Risk Assessment of Seismic secondary Disaster in China[M]. Beijing: China Meteorological Press (in Chinese).
Ge Hua, Cheng Qiguo, Wang Dewei. 2013. The assessment and mapping of seismic landslide hazards:A case study of Yingxiu area, Sichuan Province[J]. Geology in China, 40(2): 644-652 (in Chinese with English abstract).
Godt J, Şener B, Verdin K, Wald D, Earle P, Harp E, Jibson R. 2008. Rapid Assessment of Earthquake-induced Landsliding[C]//. Proceedings of the First World Landslide Forum, Tokyo, Japan: Global Promotion Committee of the International Programme on Landslides, 219-222.
Gu Jin, Wang Yunsheng, Cao Wenzheng, Zhang Lei, Huang Jianlong, He Jianxian, Liu Yong. 2016. Formation mechanism and motion process of Lantianwan Landslide triggered by the 1786 Moxi Earthquake[J]. Mountain Research, 34(5): 520-529 (in Chinese with English abstract).
Huang Runqiu, Fan Xuanmei. 2013. The landslide story[J]. Nature Geoscience, 6: 325326.
Huang Runqiu. 2009. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Journal of Rock Mechanics and Engineering, 28(6): 1239-1249 (in Chinese with English abstract).
Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Vangelsten B V, Smith J T, Tofani V, Ciurean R, Winter M G, Sverdrup-Thygeson K, Syre E, Smebye H. 2013. Identification of landslide hazard and risk 'hotspots' in Europe[J]. Bulletin of Engineering Geology and the Environment, 73: 325-339. DOI:10.1007/s10064-013-0541-0
Jibson R W. 2007. Regression models for estimating coseismic landslide displacement[J]. Engineering Geology, 91(2/4): 209-218.
Jibson R W, Harp E L, Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 58(3/4): 271-289.
Keefer D K. 1984. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 95(4): 406-421. DOI:10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
Keefer D K. 2002. Investigating Landslides Caused by Earthquakes -A Historical Review[J]. Surveys in Geophysics, 23(6): 473-510. DOI:10.1023/A:1021274710840
Lee C T. 2014. Statistical seismic landslide hazard analysis:An example from Taiwan[J]. Engineering Geology, 182: 201-212. DOI:10.1016/j.enggeo.2014.07.023
Lei Zhongsheng, Yuan Daoyang, Ge Weipeng, He Wengui, Liu Xingwang. 2007. Textual research on the Tianshui M 7 earthquake in 734 AD and analysis of its causative structure[J]. Seismology and Geology, 29(1): 51-62 (in Chinese with English abstract).
Li Zhongsheng. 2003. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Ctastrophology, 18(4): 64-70 (in Chinese with English abstract).
Liu J M, Gao M T, Wu S R, Wang T, Wu J. 2016. A hazard assessment method for potential earthquake-induced landslides-A case study in Huaxian County, Shaanxi Province[J]. Acta Geologica Sinica, 90(2): 590-603. DOI:10.1111/1755-6724.12693
Liu J M, Shi J S, Wang T, Wu S. 2018. Seismic landslide hazard assessment in the Tianshui area, China, based on scenario earthquakes[J]. Bulletin of Engineering Geology and the Environment, 77: 1263-1272. DOI:10.1007/s10064-016-0998-8
Liu Jiamei, Wang Tao, Shi Jusong, Li Zetong. 2017. Emergency rapid assessment of landslides induced the Jiuzhaigou Ms 7.0 earthquake, Sichuan, China[J]. Journal of Geomechanics, 23(5): 639-645 (in Chinese with English abstract).
Liu Jiamei, Wang Tao, Shi Jusong, Xin Peng, Wu Shuren. 2018. The influence of different Newmark displacement models on seismic landslide hazard assessment:A case study of Tianshui area, China[J]. Journal of Geomechanics, 24(1): 87-95 (in Chinese with English abstract).
Liu Yanchun. 2016. Causes of tarthquake-induced collapse and landslide disasters in meizoseismal area of the 1815 Pinglu earthquake in Shanxi[J]. Earthquake Research in Shanxi, (4): 32-34 (in Chinese with English abstract).
Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Geotechnique, 15(2): 139-160. DOI:10.1680/geot.1965.15.2.139
Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis:backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling[J]. Environmental Modelling & Software, 25(6): 747-759.
Qiao Jianping, Wang Meng, Wu Caiyan. 2015. Study on Wenchuan earthquake-induced landslide risk zonation[J]. Journal of Engineering Geology, 23(2): 187-193 (in Chinese with English abstract).
Rajabi A M, Khamehchiyan M, Mahdavifar M R, Del Gaudio V, Capolongo D. 2013. A time probabilistic approach to seismic landslide hazard estimates in Iran[J]. Soil Dynamics and Earthquake Engineering, 48(1): 25-34.
Rodríguez C E, Bommer J J, Chandler R J. 1999. Earthquakeinduced landslides:1980-1997[J]. Soil Dynamics and Earthquake Engineering, 18(5): 325-346. DOI:10.1016/S0267-7261(99)00012-3
Romeo R. 2000. Seismically induced landslide displacements:a predictive model[J]. Engineering Geology, 58(3/4): 337-351.
Sun Chongshao, Cai Hongwei. 1997. Developing and distributing characteristics of collapses and landslides during strong historic earthquake in China[J]. Journal of Natural Disasters, 6(1): 25-30 (in Chinese with English abstract).
Sun Ping, Shao Tiequan, Shi Jusong, Zhang Shuai, Meng Jing. 2015. Giant Landslides Triggered by the 1718 Tongwei Earthquake in Pan'an, Gansu Province, China[J]. Acta Geologica Sinica(English Edition), 89(1): 309-310. DOI:10.1111/1755-6724.12417
Shafique M, van der Meijde M, Khan M A. 2016. A review of the 2005 Kashmir earthquake-induced landslides:From a remote sensing prospective[J]. Journal of Asian Earth Sciences, 118(15): 68-80.
Sharifi-Mood M, Olsen M J, Gillins D T, Mahalingam R. 2017. Performance-based, seismically-induced landslide hazard mapping of Western Oregon[J]. Soil Dynamics and Earthquake Engineering, 103: 38-54. DOI:10.1016/j.soildyn.2017.09.012
Tan Chengxuan, Lei Weizhi, Sun Weifeng, Wang Jiming, Zhang Chunshan, Wu Shurren. 2008. An analysis of the danger influence factors of geohazard risk assessments in typical stick loess regions in China[J]. Geological Bulletin of China, 27(11): 1771-1781 (in Chinese with English abstract).
Tang Chuan, Huang Chuxing, WanYe. 1997. Lijiang earthquake and the induced rockfalls and slumps in Yunnan[J]. Journal of Natural Disasters, 6(3): 78-86 (in Chinese with English abstract).
Tang Zhaorong, Yuan Renmao, Hu Zhiqing, Zheng Qingquan. 2012. 3-D distinct element modeling of sliding process and depositing behavior in Jiufengershan landslide induced by 1999 Taiwan ChiChi earthquake[J]. Journal of Engineering Geology, 20(6): 940-954 (in Chinese with English abstract).
Tanyaş H, van Westen C J, Persello C, Alvioli M. 2019. Rapid prediction of the magnitude scale of landslide events triggered by an earthquake[J]. Landslides, 16(4): 661-676. DOI:10.1007/s10346-019-01136-4
Tanyaş H, Van Westen C J, Allstadt K E, Jessee M A N, Görüm T, Jibson R W, Godt J W, Sato H P, Schmitt R G, Marc O, Hovius N. 2017. Presentation and analysis of a worldwide database of earthquake-induced landslide inventories[J]. Journal of Geophysical Research:Earth Surface, 122(10): 1991-2015. DOI:10.1002/2017JF004236
Wang Lanmin, Pu Xiaowu, Chen Jinchang. 2019. Distribution feature and disaster risk of earthquake-induced landslide in loess plateau[J]. Cities and Disaster Reduction, 3: 33-40 (in Chinese with English abstract).
Wang Miao. 2017. Research on Mechanical Properties and Testing Technique of Seasonally Frozen Soils[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration (in Chinese with English abstract).
Wang T, Liu J M, Shi J S, Gao M T, Wu S R. 2020. Probabilistic seismic landslide hazard assessment:A case study in Tianshui, Northwest China[J]. Journal of Mountain Science, 17(1): 173-190. DOI:10.1007/s11629-019-5618-1
Wang Tao, Hu Qiuyun, Zhang Yongshuang, Wu Shuren, Xin Peng. 2014. Multi-scale landslide hazard assessment for key section of Chengdu-Lanzhou railway, Wenchuan seismic region[J]. Journal of Geomechanics, 20(4): 379-391 (in Chinese with English abstract).
Wang Tao, Wu Shuren, Shi Jusong, Xinpeng. 2013. Case study on rapid assessment of regional seismic lanslid hazard based on simplifilied newmark displacement model:Wenchuan Ms 8.0 earthquake[J]. Journal of Engineering Geology, 21(1): 16-24 (in Chinese with English abstract).
Wang Tao, Wu Shuren, Shi Jusong, Xin Peng. 2015. Concepts and mechanical assessment method for seismic landslide hazard:A review[J]. Journal of Engineering Geology, 23(1): 93-104 (in Chinese with English abstract).
Wang G, Zhang D, Furuya G, Yang J. 2014. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China:A case study[J]. Engineering Geology, 174(1): 36-45.
Wang Jiayun, Zhang Chenghang, Gao Bo, Feng Wei. 2013. Distribution regularity and development characteristics of geohazards in Yushu earthquake area[J]. Journal of Engineering Geology, 21(4): 508-515 (in Chinese with English abstract).
Wasowski J, Keefer D K, Lee C T. 2011. Toward the next generation of research on earthquake-induced landslides:Current issues and future challenges[J]. Engineering Geology, 122(1/2): 1-8.
Wen B, Wang S, Wang E, Zhang J. 2004. Characteristics of rapid giant landslides in China[J]. Landslides, 1(4): 247-261. DOI:10.1007/s10346-004-0022-4
Wu Shuren, Zhang Chunshan, Shi Jusong, Wang Tao. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995-1005 (in Chinese with English abstract).
Wu Shuren, Wang Tao, Shi Ling, Sun Ping, Shi Jusong, Li Bin, Xin Peng, Wang Huabin. 2010. Study on catastrophic landslides triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 18(2): 145-159 (in Chinese with English abstract).
Xu Guangxing, Yao Lingkai, Li Chaohong, Wang Xiaofang. 2012. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering, 34(6): 1131-1136 (in Chinese with English abstract).
Xu Chong, Dai Fuchu, Yao Xin, Zhao Zhou, Xiao Jianzhang. 2010. Gis platform and certainty factor analysis method based Wenchuan earthquake induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 18(1): 15-26 (in Chinese with English abstract).
Xu Chong, Xu Xiwei, Zhou Bengang, Shen Lingling. 2019. Probability of coseismic landslides:A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 27(5): 1122-1130 (in Chinese with English abstract).
Xu Chong, Tan Xibin, Wang Shiyuan, Xu Xiwei, Zhang He, Tian Yingying, Ma Siyuan, Fang Lihua, Lu Renqi, Chen Lichun, Tan Xibin. 2018a. A panorama of landslides triggered by the 8 August 2017 Jiu Zhaigou, Sichuan Ms7.0 earthquake[J]. Seismology and Geology, 40(1): 232-260 (in Chinese with English abstract).
Xu Chong, Tian Yingying, Ma Siyuan, Xu Xiwei, Zhou Bengang, Wu Xiyan, Zhuang Jianqi, Gao Yuxin, Wu Weiying, Huang Xueqiang. 2018b. Inventory and spatial distribution of landslides in Ⅸ-Ⅺ high intensity areas of 1920 Haiyuan (china) M8.5 earthquake[J]. Journal of Engineering Geology, 26(5): 1188-1195 (in Chinese with English abstract).
Xu Chong. 2015. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian earthquake[J]. Journal of Engineering Geology, 23(4): 755-759 (in Chinese with English abstract).
Xu Chong, Xu Xi wei, Zheng Wenjun, Min Wei, Ren Zhikun, Li Zhiqiang. 2013a. Distribution of the related disaster and the causative tectonic of the Minxian-Zhanxian MS6.6 earthquake on July 22, 2013, Gansu, China[J]. Seismology and Geology, 35(3): 616-626 (in Chinese with English abstract).
Xu Chong, Xu Xiwei, Wu Xiyan, Dai Fuchu, Yao Xin, Yao Qi. 2013b. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 21(1): 25-44 (in Chinese with English abstract).
Xu Chong, Xu Xiwei, Zheng Wenjun, Wei Zhanyu, Tan Xibin, Han Zhujun, Li Chuanyou, Liang Mingjian, Li Zhiqiang. 2013c. Landslides triggered by the April 20, 2013 Lushan, Sichuan Province MS 7.0 strong earthquake of China[J]. Seismology and Geology, 35(3): 641-660 (in Chinese with English abstract).
Xu Chong, Xu Xiwei, Yu Guihua. 2012. Study on the characteristics, mechanism, and spatial distribution of Yushu earthquake triggered landslides[J]. Seismology and Geology, 34(1): 47-62 (in Chinese with English abstract).
Xu Qiang, Li Weile. 2010. Distribution of large-scale landslides induced by the Wenchuan Earthquake[J]. Journal of Engineering Geology, 18(6): 818-826 (in Chinese with English abstract).
Xu Yueren, He Honglin, Li Wenqiao, Zhang Weiheng, Tian Qinjian. 2018. New evidences for amendment of macro-epicenter location of 1303 AD Hongtong earthquake[J]. Seismology and Geology, 40(5): 6-27 (in Chinese with English abstract).
Xu Qiang, Dong Xiujun. 2011. Genetic types of large-scale landslides induced by Wenchuan earthquake[J]. Earth Science, 36(6): 1134-1142 (in Chinese with English abstract).
Yang W, Shen L, Shi P. 2015. Mapping landslide risk of the world[C]//Shi P, Kasperson R. (eds). World Atlas of Natural Disaster Risk[M]. IHDP/Future Earth-Integrated Risk Governance Project Series. Berlin Heidelberg: Springer, 57-66.
Yin Yueping. 2009. Rapid and long run-out features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(2): 153-166 (in Chinese with English abstract).
Yin Yueping. 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sicuan[J]. Journal of Engineering Geology, 16(4): 433-444 (in Chinese with English abstract).
Yin Guanghua, Li Jun, Zhang Yong, Yang Zhang. 2001. Statistical analysis and research of landslides caused by Nileke earthquake[J]. Inland Earthquake, 15(1): 56-63 (in Chinese with English abstract).
Yin Zhiqiang, Chen Hongqi, Chu Hongliang, Xu Yongqiang, Zhao Wuji. 2013. Analysis on the key controlling factors of geo-hazards triggered by five typical earthquake events in China since 2008[J]. Earth Science Frontiers, 20(6): 289-302 (in Chinese with English abstract).
Yin Zhiqiang, Xu Yongqiang, Chen Hongqi, Sa Lanpeng, Jiang Xingwu. 2016. The development and distribution characteristics of geo-hazards induced by August 3, 2014 Ludian earthquake and comparison with Jingg and Yingjiang Earthquakes[J]. Acta Geologica Sinica, 90(6): 1086-1097 (in Chinese with English abstract).
Yin Zhiqiang, Zhao Wuji, Chu Hongliang, Sun Wei. 2014. Basic characteristics of geo-disasters Induced by Lushan earthquake and compare to them of Wenchuan earthquake[J]. Acta Geologica Sinica, 88(6): 1145-1156 (in Chinese with English abstract).
Yuan R, Deng Q, Cunningham D, Han Z, Zhang D, Zhang B. 2016. Newmark displacement model for landslides induced by the 2013 Ms 7.0 Lushan earthquake[J]. Frontiers of Earth Science, 10(4): 740-750. DOI:10.1007/s11707-015-0547-y
Yuan Daoyang, Lei Zhongsheng, Yang Qingyun, Wang Aiguo, Xie Hong, Su Qi. 2014. Seismic disaster features of the 1879 southern Wudu M8 earthquake in Gansu Province[J]. Journal of Lanzhou University (Natural Sciences), 50(5): 611-621 (in Chinese with English abstract).
Yuan Daoyang, Lei Zhongsheng, Wang Aiguo. 2017. Additional textual criticism of southern Tiamshui M 8 earthquake in Gansu Province in 1654[J]. China Earthquake Engineering Journal, 39(3): 509-520 (in Chinese with English abstract).
Zhang Anliang, Mi Fengshou, Zhong Jin. 1989. Deformation relics of the 1556 Huaxian (Shanxi, China) great earthquake and the study of palaeoseismicity on the frontal fault zone of the Huashan MTS[J]. Seismology and Geology, 11(3): 73-81 (in Chinese with English abstract).
Zhang D, Wang G. 2007. Study of the 1920 Haiyuan earthquakeinduced landslides in loess (China)[J]. Engineering Geology, 94(1/2): 76-88.
Zhang Jun, Yin Konglong, Wang Jiajia, Liu Lei, Huang Faming. 2016. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296 (in Chinese with English abstract).
Zhang Yecheng, Zhang Lihai, Zhao Xiaoqing. 2012. Distribution and formation of earthquake-induced secondary geological disasters in China[J]. Seismology and Geology, 34(4): 805-809 (in Chinese with English abstract).
Zhang Yongshuang, Shi Jusong, Sun ping, Yao Xin. 2009. Coupling between endogenic and exogenic geological processes in the Wenchuan earthquake and example analysis of geohazards[J]. Journal of Geomechanics, 15(2): 131-141 (in Chinese with English abstract).
Zhang Yongshuang, Cheng Yuliang, Yao Xin, Wang Jun, Wu Shuren., Wang Meng. 2013. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geological Bulletin of China, 32(12): 1900-1910 (in Chinese with English abstract).
Zhang Z L, Wang T, Wu S R, Tang H M, Liang C Y. 2017. Seismic performance of loess-mudstone slope by centrifuge tests[J]. Bulletin of Engineering Geology and the Environment, 76: 671-679. DOI:10.1007/s10064-015-0846-2
Zhao Jinquan, Zhang Dawei, Gao Shuyi, Su Zongzheng. 2003. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M 8[J]. Earthquake Research in Shanxi, (3): 16-22 (in Chinese with English abstract).
Zhuang J, Peng J, Xu C, Li Z, Densmore A, Milledge D, Iqbal J, Cui Y. 2018. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China[J]. Geomorphology, 314: 1-12. DOI:10.1016/j.geomorph.2018.04.012
Zhu Jiezuo, Jiang Zexiong. 1978. The Songpan Earthquake[M]. Beijing: Seismological Press (in Chinese).
Zhou Chenghu, Cheng Weiming. 2010. Research and compilation of the Geomorphological Atlas of the People's Republic of China[J]. Geographical Research, 29(6): 970-979 (in Chinese with English abstract).
Zou Jinchang, Shao Shunmei, Jiang Rongfa. 1994. The relation between the Gulang seismic landslides and fault belts[J]. Northwestern Seismological Journal, 16(3): 60-65 (in Chinese with English abstract).
白仙富, 戴雨芡, 余庆坤, 邵文丽. 2015. 地震滑坡危险性评估模型及初步应用[J]. 地震研究, 38(2): 301-312.
鲍叶静, 高孟潭, 姜慧. 2005. 地震诱发滑坡的概率分析[J]. 岩土力学与工程学报, 24(1): 66-70.
陈晓利, 冉洪流, 王明明. 2012. 潜在地震滑坡危险区区划方法[J]. 地球物理学报, 4: 205-213. DOI:10.3969/j.issn.1672-7940.2012.02.015
陈晓利, 袁仁茂, 庾露. 2013. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J]. 地震地质, 35(3): 661-670. DOI:10.3969/j.issn.0253-4967.2013.03.019
丁彦慧, 王余庆, 孙进忠, 唐蕴. 2000. 地震崩滑预测方法及其工程应用研究[J]. 工程地质学报, 8(4): 475-480. DOI:10.3969/j.issn.1004-9665.2000.04.016
段汝文, 王俊, 李兰. 1997. 黄土的物理力学指标与黄土易损性分析研究[J]. 西北地震学报, 19(3): 81-85.
高庆华, 刘惠敏, 李晓丽, 张业成. 2011. 中国地震次生地质灾害区域风险评估[M]. 北京: 气象出版社.
葛华, 陈启国, 王德伟. 2013. 地震滑坡危险性评价及编图——以映秀震中区为例[J]. 中国地质, 40(2): 644-652. DOI:10.3969/j.issn.1000-3657.2013.02.028
顾金, 王运生, 曹文正, 张磊, 黄健龙, 贺建先, 刘勇. 2016. 1786年磨西地震烂田湾滑坡形成机制及过程[J]. 山地学报, 34(5): 520-529.
黄润秋. 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 28(6): 1239-1249. DOI:10.3321/j.issn:1000-6915.2009.06.021
雷中生, 袁道阳, 葛伟鹏, 何文贵, 刘兴旺. 2007. 734年天水7级地震考证与发震构造分析[J]. 地震地质, 29(1): 51-62. DOI:10.3969/j.issn.0253-4967.2007.01.004
李忠生. 2003. 国内外地震滑坡灾害研究综述[J]. 灾害学, 18(4): 64-70. DOI:10.3969/j.issn.1000-811X.2003.04.013
刘甲美, 王涛, 石菊松, 栗泽桐. 2017. 四川九寨沟Ms7.0级地震滑坡应急快速评估[J]. 地质力学学报, 23(5): 639-645. DOI:10.3969/j.issn.1006-6616.2017.05.001
刘甲美, 王涛, 石菊松, 辛鹏, 吴树仁. 2018. 基于不同位移预测模型的地震滑坡危险性评估研究——以天水地区为例[J]. 地质力学学报, 24(1): 87-95.
刘艳春. 2016. 1815年山西平陆地震极震区崩塌滑坡地震灾害成因浅析[J]. 山西地震, (4): 32-34. DOI:10.3969/j.issn.1000-6265.2016.04.008
乔建平, 王萌, 吴彩燕. 2015. 汶川地震灾区滑坡风险区划研究[J]. 工程地质学报, 2: 3-9.
孙崇绍, 蔡红卫. 1997. 中国历史地震时滑坡崩塌的发育及分布特征[J]. 自然灾害学报, 6(1): 25-30.
谭成轩, 雷伟志, 孙炜锋, 王继明, 张春山, 吴树仁. 2008. 中国典型粘黄土区地质灾害风险评估危险性影响因素分析[J]. 地质通报, 27(11): 1771-1781. DOI:10.3969/j.issn.1671-2552.2008.11.003
唐川, 黄楚兴, 万晔. 1997. 云南省丽江大地震及其诱发的崩塌滑坡灾害特征[J]. 自然灾害学报, 6(3): 78-86.
唐昭荣, 袁仁茂, 胡植庆, 郑清泉. 2012. 台湾集集地震九份二山滑坡发生机制的三维数值模拟分析[J]. 工程地质学报, 20(6): 940-954. DOI:10.3969/j.issn.1004-9665.2012.06.006
王兰民, 蒲小武, 陈金昌. 2019. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾, (3): 33-40. DOI:10.3969/j.issn.1671-0495.2019.03.009
王佳运, 张成航, 高波, 冯卫. 2013. 玉树震区地质灾害分布规律与发育特征[J]. 工程地质学报, 21(4): 508-515. DOI:10.3969/j.issn.1004-9665.2013.04.005
王淼. 2017.季冻土力学性质及实验技术研究[D].哈尔滨: 中国地震局工程力学研究所.
王涛, 胡秋韵, 张永双, 吴树仁, 辛鹏. 2014. 汶川震区成兰铁路关键段多尺度滑坡危险性评估[J]. 地质力学学报, 20(4): 379-391. DOI:10.3969/j.issn.1006-6616.2014.04.006
王涛, 吴树仁, 石菊松, 辛鹏. 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估以汶川8.0级地震为例[J]. 工程地质学报, 21(1): 16-24. DOI:10.3969/j.issn.1004-9665.2013.01.003
王涛, 吴树仁, 石菊松, 辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报, 23(1): 93-104.
吴树仁, 石菊松, 张春山, 王涛. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995-1005. DOI:10.3969/j.issn.1671-2552.2009.08.001
吴树仁, 王涛, 石玲, 孙萍, 石菊松, 李滨, 辛鹏, 汪华斌. 2010. 2008汶川大地震极端滑坡事件初步研究[J]. 工程地质学报, 18(2): 145-159. DOI:10.3969/j.issn.1004-9665.2010.02.001
徐光兴, 姚令侃, 李朝红, 王晓放. 2012. 基于汶川地震强震动记录的边坡永久位移预测模型[J]. 岩土工程学报, 34(6): 1131-1136.
许冲, 戴福初, 姚鑫, 赵洲, 肖建章. 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 18(1): 15-26. DOI:10.3969/j.issn.1004-9665.2010.01.003
许冲, 徐锡伟, 周本刚, 沈玲玲. 2019. 同震滑坡发生概率研究——新一代地震滑坡危险性模型[J]. 工程地质学报, 27(5): 1122-1130.
许冲, 谭锡斌, 王世元, 徐锡伟, 张合, 田颖颖, 马思远, 房立华, 鲁人齐, 陈立春, 谭锡斌. 2018. 2017年8月8日四川省九寨沟Ms7.0地震触发滑坡全景[J]. 地震地质, 40(1): 232-260. DOI:10.3969/j.issn.0253-4967.2018.01.017
许冲, 田颖颖, 马思远, 徐锡伟, 周本刚, 吴熙彦, 庄建琦, 高玉欣, 吴玮莹, 黄学强. 2018. 1920年海原8.5级地震高烈度区滑坡编录与分布规律[J]. 工程地质学报, 26(5): 1188-1195.
许冲. 2015. 利用同震滑坡分析2014年鲁甸地震震源性质与破裂过程[J]. 工程地质学报, 23(4): 755-759.
许冲, 徐锡伟, 郑文俊, 闵伟, 任治坤, 李志强. 2013a. 2013年甘肃岷县漳县6.6级地震触发滑坡及其构造分析[J]. 地震地质, 35(3): 616-626.
许冲, 徐锡伟, 吴熙彦, 戴福初, 姚鑫, 姚琪. 2013b. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 21(1): 25-44.
许冲, 徐锡伟, 郑文俊, 魏占玉, 谭锡斌, 韩竹军, 李传友, 梁明剑, 李志强. 2013c. 2013年四川省芦山"4.20"7.0级强烈地震触发滑坡[J]. 地震地质, 35(3): 641-660.
许冲, 徐锡伟, 于贵华. 2012. 玉树地震滑坡分布调查及其特征与形成机制[J]. 地震地质, 34(1): 47-62. DOI:10.3969/j.issn.0253-4967.2012.01.006
许强, 李为乐. 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 18(6): 818-826. DOI:10.3969/j.issn.1004-9665.2010.06.002
徐岳仁, 何宏林, 李文巧, 张伟恒, 田勤俭. 2018. 1303年洪洞地震宏观震中修订的新证据[J]. 地震地质, 40(5): 6-27.
许强, 董秀军. 2011. 汶川地震大型滑坡成因模式[J]. 地球科学——中国地质大学学报, 36(6): 1134-1142.
殷跃平. 2009. 汶川八级地震滑坡高速远程特征分析[J]. 工程地质学报, 17(2): 153-166. DOI:10.3969/j.issn.1004-9665.2009.02.002
殷跃平. 2008. 汶川八级地震地质灾害研究[J]. 工程地质学报, 16(4): 433-444. DOI:10.3969/j.issn.1004-9665.2008.04.001
殷志强, 陈红旗, 褚宏亮, 徐永强, 赵无忌. 2013. 2008年以来中国5次典型地震事件诱发地质灾害主控因素分析[J]. 地学前缘, 20(6): 289-302.
殷志强, 徐永强, 陈红旗, 撒兰鹏, 姜兴武. 2016. 2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究[J]. 地质学报, 90(6): 1086-1097. DOI:10.3969/j.issn.0001-5717.2016.06.003
殷志强, 赵无忌, 褚宏亮, 孙巍. 2014. "4·20"芦山地震诱发地质灾害基本特征及其与"5·12"汶川地震对比分析[J]. 地质学报, 88(6): 1145-1156.
尹光华, 李军, 张勇, 杨章. 2001. 尼勒克地震滑坡的统计分析及初步研究[J]. 内陆地震, 15(1): 56-63. DOI:10.3969/j.issn.1001-8956.2001.01.007
袁道阳, 雷中生, 王爱国. 2017. 1654年甘肃天水南8级地震补充考证[J]. 地震工程学报, 39(3): 509-520.
袁道阳, 雷中生, 杨青云, 王爱国, 谢虹, 苏琦. 2014. 1879年甘肃武都南8级地震的震灾特征[J]. 兰州大学学报(自然科学版), 50(5): 611-621.
张安良, 米丰收, 种瑾. 1989. 1556年陕西华县大地震形变遗迹及华山山前断裂古地震研究[J]. 地震地质, 11(3): 73-81.
张永双, 石菊松, 孙萍, 姚鑫. 2009. 汶川地震内外动力耦合及灾害实例[J]. 地质力学学报, 15(2): 131-141. DOI:10.3969/j.issn.1006-6616.2009.02.003
张永双, 成余粮, 姚鑫, 王军, 吴树仁, 王猛. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报, 32(12): 1900-1910.
张业成, 张立海, 赵晓青. 2012. 中国地震次生地质灾害分布特征与形成条件[J]. 地震地质, 34(4): 805-809. DOI:10.3969/j.issn.0253-4967.2012.04.022
张俊, 殷坤龙, 王佳佳, 刘磊, 黄发明. 2016. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 35(2): 284-296.
赵晋泉, 张大卫, 高树义, 苏宗正. 2003. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, (3): 16-22. DOI:10.3969/j.issn.1000-6265.2003.03.011
周成虎, 程维明. 2010. 《中华人民共和国地貌图集》的研究与编制[J]. 地理研究, 29(6): 970-979.
朱皆佐, 蒋泽雄. 1978. 松潘地震[M]. 北京: 地震出版社.
邹谨敞, 邵顺妹, 蒋荣发. 1994. 古浪地震滑坡及其与断裂带的关系[J]. 西北地震学报, 16(3): 60-65.